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Abstract

This study aimed at complementing studies of sperm whale social and vocal behaviour that 

were restricted to the Pacific Ocean.

The characteristic  multi-pulsed structure  of  sperm whale clicks  allows for  estimation  of 

whales'  size  from measurements  of  the  inter-pulse  intervals  (IPI).  I  have  developed  two  new 

automatic methods for IPI estimation from clicks recorded during foraging dives. When compared 

to other previously developed methods, the newly developed method that averages several clicks' 

autocorrelation function showed the best performance amongst the automatic methods. 

Previous  studies  did  not  support  individual  identity  advertisement  among  social  unit 

members as the function for the sperm whale communication signals called codas. I tested within 

coda type variation for individual specific patterns and found that, while some coda types do not 

allow for individual discrimination, one did so. This variation suggests that different coda types 

may have distinct functions. 

Analysis of social structure in the Azores found that, similar to the Eastern Tropical Pacific, 

sperm whales  form long  term social  units  of  about  12  individuals.  Unlike  the  Pacific  Ocean, 

Azorean social units do not form temporary groups with other units, suggesting differences in the 

costs and benefits of group formation. I argue that these are due to differences in terms of predation 

pressure and intraspecific competition between the Azores and the Pacific study sites.

The variation of coda repertoires in the Atlantic also showed a pattern dissimilar to that 

previously  documented  in  the  Eastern  Tropical  Pacific.  In  the  North  Atlantic,  coda  repertoire 

variation is mostly geographic, which is parsimoniously explained by random drift of culturally 

transmitted coda repertoires. No sympatric vocal clans with distinct dialects were found as has been 

noted in the Pacific. Drawing upon the differences found in social structure I argue that selection for 

maximization of differences between units with similar foraging strategies may have led to the 

Pacific vocal clans. 

The  differences  between  oceans  suggest  that  sperm whales  may adaptively  adjust  their 

behaviour according to experienced ecological conditions. 
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CHAPTER 1

General introduction

                                                                                                            

1.1. Introduction

1.1.1. Animal social structure

Conspecifics  are  an  important  part  of  the  environment  of  the  great  majority  of  animal 

species. Examples include animals that occupy the same space or aggregate in the same food patch, 

parents and offspring in early stages of life, and animals that maintain long term social relationships 

throughout their lives. Interactions among co-occurring conspecifics can be mutually beneficial, 

such  as  between  offspring  and  a  care  providing  parent,  or  disadvantageous  to  either  or  both 

interactants, for example when animals compete for resources.

Social structure is the synthesis of interactions among individuals. Hinde's (1976) concept of 

social structure treats it as the top of a three level framework. At the bottom of this framework is the 

quality  and  nature  of  the  interactions  among  individuals,  with  interactions  occurring  when  the 

presence and/or the behaviour of one individual, affects that of another. These interactions can take 

many forms, such as instances of nursing of offspring, grooming and agonistic encounters. At the 

second level are the social relationships among individuals; the content, quality and patterning of 

the interactions between a pair of individuals defines their relationship. The social structure of a 

group of animals is then made up of the content, quality and patterning of relationships among them 

and this makes up the top level (Whitehead, 2008). 

Interactions among individuals, the basis of Hinde's framework, are often hidden from a 

scientist's perception, particularly in more cryptic species. An alternative is to use spatio-temporal 

associations of individuals instead of interactions as the fundamental element of social structure. 
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Animals are usually considered to be "associated" when they are in conditions where interactions 

can take place. Associations have the advantage that, being state variables, they can more easily be 

measured  instantaneously  as  opposed  to  interactions,  which  may  require  longer  periods  of 

observation (Whitehead, 2008). 

Cetaceans spend a large proportion of their lives submerged and are a prime example of a 

taxon where behavioural interactions among animals are difficult  to observe.  Thus the study of 

social structure in this group is usually based on measuring associations among individuals. In the 

study of both interactions and associations, the identification and recognition of individual animals 

is essential.  In cetacean studies,  individuals are usually identified using conspicuous marks and 

shapes on the animal's body, normally through the use of photographic techniques that allow a 

permanent  record  of  sightings  and  associations  of  individuals.  These  techniques  have  proven 

themselves in numerous studies of social structure in these highly social species (e.g. Bigg et al., 

1990; Christal et al., 1998; Karczmarski et al., 2005 ).

Social  structure  can  affect  aspects  of  a  species'  biology such as  gene  flow (Whitehead, 

1998), habitat use (Baird & Dill, 1996; Ersts & Rosenbaum, 2003), the spread of diseases (Lee, 

1994; Guimarães  et al., 2007) and the manner in which information is retained and transmitted 

among  individuals  (McComb  et  al.,  2001;  Wittemyer  et  al.,  2005)  and  therefore  deserves 

consideration.  In  turn,  social  structure  is  also  affected  by ecological  factors  such  as  predation 

pressure and availability of resources (Whitehead, 2008). 

Predation pressure can be minimized by the presence of conspecifics because the probability 

of a single animal being predated upon may be reduced by the presence of conspecifics (dilution 

effect).  The  presence  of  other  individuals  may also  reduce  vigilance  requirements  for  any one 

individual  (and consequently increase time to forage),  enhance group defence (e.g. mobbing in 

birds)  and  confuse  predators  and  these  further  contribute  to  reducing  predation  pressure.  The 

presence of conspecifics may also provide an advantage in acquiring and defending resources such 

as food and may provide useful information to individuals deciding where to settle and forage by 

indicating  the  presence  of  suitable  conditions.  Cooperative  hunting  for  prey  can  be  another 

advantage provided by the presence of conspecifics (Barnard, 2004). These potential advantages 

can act as a force that brings animals together, potentially leading to group formation. However, 

group formation may also involve disadvantages. A group may be more conspicuous to predators 

than single individuals,  and in some cases predators may preferentially,  or uniquely,  prey upon 
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groups, in which case predation pressure may be higher for groups compared to single individuals. 

Conspecifics usually have similar resource requirements, including food, reproductive partners and 

shelter, and the presence of other individuals may increase the competition for these resources. The 

balance of the advantages and disadvantages of proximity to conspecifics will affect the quality and 

nature of interactions among individuals, and consequently influence the social structure. 

Correlation between various  ecological  factors and social  structure has  been reported in 

several studies. For example Faulkes et al. (1997) investigated the relationship between phylogeny, 

ecology and sociality in 15 species of African mole-rats that live in a range of different ecological 

conditions, and exhibit differences in social structure. They found that more complex social systems 

occur  in  habitats  with  low  geophyte  density  and  high  variability  in  rainfall,  suggesting  that 

environmental constraints are a determining factor in the evolution of social structure. Intraspecific 

variation  in  social  structure  has  also  been  correlated  with  ecological  differences.  For  example, 

Wittemeyer  et  al. (2005)  observed that  the  cohesion  of  African  savannah elephant  (Loxodonta 

africana) family units was little altered with different ecological conditions, whereas the formation 

of aggregations of these family units was significantly reduced in dry seasons in comparison to wet 

seasons.

1.1.2. Recognition using communication signals

Living in groups may require the coordination of activities among group members. This may 

be facilitated by transfer of information among group members through the use of communication 

signals. Animals may use communication signals for sexual partner coordination (e.g. lordosis in 

female cats), pair-bond maintenance (e.g. tail twining in dusky titi monkeys; Callicebus moloch; 

Bradbury & Vehrencamp, 1998), appeasement and affiliation (e.g. grooming in primates; Bradbury 

&  Vehrencamp,  1998),  coordination  of  movement  (e.g.  movement  initiation  calls  in  African 

Savannah elephants;  Payne,  2003) and in the sharing of environmental  information  (e.g. vervet 

monkey,  Cercopithecus aethiops, warning calls; Cheney & Seyfarth, 1990). In addition to these 

functions, communication signals may also be used to facilitate recognition.  Recognition involves 

the discrimination of specific individuals and/or groups, among a domain of non-target individuals 

or groups (Bradbury & Vehrencamp, 1998; Sherman et al., 1997). 

Group recognition can be achieved by familiarization with each group member's individual 

specific signals, but may also be achieved through the use of group specific signals. Screech calls of 

greater spear-nosed bats (Phyllostomus hastatus) provide an example of the latter. These calls show 
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differences among groups, but not among individuals (Boughman, 1997). Playback studies have 

shown that greater spear-nosed bats can discriminate between the calls of their own group mates 

and those of other bats, but show no evidence of discrimination between individuals (Boughman & 

Wilkinson, 1998). Individual-level signal recognition is always based on learned familiarization and 

memorization  (through  imprinting  for  example),  and  requires  prior  experience  with  specific 

individuals (Bradbury & Vehrencamp 1998, Tibbetts & Dale 2007) and thus may be more likely to 

arise within groups of animals with long term social relationships.

Individual recognition is thought to have an important role in the evolution of cooperation 

and in particular of altruism (Crowley et al., 1996). The evolution of helping behaviour in which 

individuals increase another's fitness at the expense of its own immediate fitness, is often explained 

in  terms  of  an  increase  in  inclusive  fitness  by  providing  aid  to  offspring  or  other  relatives 

(Hamilton, 1964), or the later reciprocation of helping behaviour by unrelated individuals (Trivers, 

1971). Recognition of the target of help by the provider is therefore an important aspect of the 

evolution of this behaviour, by allowing differential provision of help to kin and  reciprocators.

Individual  recognition  is  also  thought  to  facilitate  the  stabilization  of  linear  dominance 

hierarchies  by allowing individuals  to  keep track  of  the outcome of  previous  interactions  with 

previous members of the hierarchy (Barnard & Burk, 1979; Dugatkin & Earley, 2004). 

1.1.3. Sperm whale life history and social structure

The sperm whale (Physeter macrocephalus) is the largest species of the toothed whales (sub-

order Odontoceti), with females growing up to 12.5m (15 metric tons) and males up to 18.3m (60 

metric tons) (Best, 1979; Rice, 1989). Usually found in waters deeper than 200m in all oceans, it 

has the second widest distribution of any marine mammal, exceeded only by the orca (Orcinus  

orca), although female sperm whales usually only occur between parallels 40º North and South 

(Rice, 1989).

Within this wide range, sperm whale distribution is not uniform however. Whalers were the 

first  to  recognize  the  existence  of  areas  where  sperm  whales  were  concentrated,  or  'grounds' 

(Townsend, 1935). The factors that determine these concentrations are still poorly understood, not 

least  because of the inaccessibility of the mesopelagic  realm in which members  of  the species 

forage. Several studies have suggested factors such as  the continental shelf break, oceanic fronts 

where water masses meet, cyclonic eddies, and warm-core rings as determinants of sperm whale 
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distribution (Waring  et al., 1993; André, 1997; Griffin, 1999; Biggs  et al., 2000; Gregr & Trites, 

2001; Waring et al., 2001; Whitehead, 2003) but there is no consensus on the relative importance of 

these  factors.  Jaquet  (1996)  argued  that  the  correlation  between  sperm whale  distribution  and 

oceanography is  scale  dependent,  and  that  at  larger  scales  it  is  mostly  determined by primary 

production which may determine the food available to sperm whales. 

In  most  parts  of  the  world  sperm  whales  appear  to  feed  on  meso  and  bathypelagic 

cephalopods with mantle lengths between 0.2 and 1.0m (Clarke, 1962; Berzin, 1972; Clarke, 1980; 

Kawakami, 1980; Rice, 1989; Santos et al., 1999). Fish between 0.3 and 3m long have also been 

found in sperm whales stomachs, particularly at higher latitudes (Kawakami, 1980; Rice, 1989). To 

catch  prey,  sperm  whales  engage  in  foraging  dives  that  can  take  them  as  deep  as  1000m 

(Whitehead, 2003). The global population of sperm whales is estimated to consume about a 100 

million metric tons of prey per year, a number that underlines the species' ecological importance. 

The sperm whale's  long life  span (Rice,  1989)  allows the formation of long-term social 

bonds among individuals (Christal et al., 1998). Studies on the social organisation of sperm whales 

in the Pacific Ocean have shown that female sperm whales and their immature offspring live in 

long-term stable social units of 10 to 12 individuals with only occasional movements of individuals 

among units.  In the Pacific  these units  form temporary multi-unit  groups that typically last  for 

periods of days before disassociating (Christal  et al., 1998; Coakes & Whihead, 2004; Jaquet & 

Gendron,  in  Press).  Gero  (2005)  found that  within  sperm whale  social  units,  individuals  have 

preferred associations and avoidances. 

Male sperm whales disperse from their maternal units at about the age of 6 to form what are 

called 'bachelor groups' with other males of similar age (Best, 1979). As they age and grow, males 

are found in smaller groups and at higher latitudes, a trend that culminates in a solitary life in polar 

latitudes which are outside the range of females. Sexually mature males travel to lower latitudes for 

breeding, often transferring between oceans (Ivashin, 1981). It is suggested that they rove between 

female  units/groups  in  search  of  females  in  oestrus  (Best,  1979;  Whitehead,  1993;  Christal  & 

Whitehead,  1997;  Whitehead & Weilgart,  2000;  Whitehead,  2003).  The factors  that  govern the 

range and timing of movements of mature males and the extent to which they return to their natal 

seas to breed is unknown. 

These patterns of female philopatry and male dispersal are displayed in the species' genetic 
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population structure. Studies using microsatellites suggest that globally sperm whales present low 

diversity in the bi-parental nuclear genome and little variation among ocean basins due to breeding 

outside maternal units and male-mediated transfer of genetic material over long ranges and across 

oceans  (Lyrholm  et  al.,  1999;  Engelhaupt,  2004).  Analysis  of  the  variation  in  the  maternally 

inherited  mitochondrial  genome showed low levels  of  diversity  on  a  global  scale,  but  marked 

variation among ocean basins, indicating that females do not switch basins (Lyrholm & Gyllensten, 

1988). Genetic analysis has also shown that although sperm whale units/groups often contain highly 

related  individuals,  they  typically  also  include  unrelated  individuals,  and  often  more  than  one 

matriline is present (Bond, 1999; Mesnick, 2001; Engelhaupt, 2004).

1.1.4 Sperm whale vocalizations

One  of  the  unique  features  of  the  sperm  whale  is  the  spermaceti  organ,  an  oil  filled 

anatomical structure located in its nose, that makes up to 25 - 33% of the animal's body (Rice, 

1989). Different theories about the function of the sperm whale's hypertrophied nasal complex have 

been put forward (Carrier et al., 2002; Clarke, 1970, 1978), but the most convincing and generally 

accepted is that of Norris & Harvey (1972) which describes it as a sound producing organ – the 

largest in the animal kingdom. Other studies  have further developed the Norris & Harvey theory on 

the mechanism of sound production (Cranford, 1999; Møhl et al., 2003). According to these, sperm 

whales produce sound by forcing air through a lip-like structure that produces a sound pulse. This 

sound pulse propagates inside the spermaceti organ until it is reflected from the air sacs located at 

the frontal and distal ends of the oil case. This process produces a series of decaying pulses, one 

from each reflection cycle, which propagate to the lower part of the spermaceti organ, the junk. This 

is thought to function as an acoustic lens, collimating the sound and transmitting it to the water in 

front of the whale. Despite an initial description of sperm whale clicks which reported a lack of 

directionality (Watkins, 1980; Watkins et al., 1985), subsequent studies demonstrated that they are 

in fact highly directional, and have source levels as high as 223 dB re 1  Pa @ 1m, the highest 

biologically  produced  source  levels  that  have  been  recorded  from any animal  (Zimmer  et  al., 

2005a). The click sounds that are produced by this mechanism are short (0.1 – 30 ms in duration; 

Whitehead,  2003)  and  broadband,  and  often  have  an  intrinsic  structure  composed  of  regular 

decaying pulses, resulting from the multiple reflections inside the spermaceti.  The time interval 

between  consecutive  pulses,  the  inter-pulse  interval  (IPI),  is  proportional  to  the  length  of  the 

spermaceti organ, and therefore to the whale's size, allowing acoustic measurement of sperm whale 
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lengths (Norris & Harvey, 1972; Adler-Fenchel 1980; Gordon 1991; Goold, 1996; Rhinelander & 

Dawson, 2004).

The evolution of such a large sound-producing organ suggests that sound production must 

have an important function in the life of the sperm whale. Echolocation, either for prey finding or 

navigation is likely an important use of sound, especially during the long foraging dives that can 

take the whales down to depths of several hundred metres, well below the euphotic zone. During 

these foraging dives, sperm whales produce regular sequences of clicks at rates of between 0.5 and 

1  s-1  (Whitehead & Weilgart,  1990;  Gordon,  1991;  Goold  & Jones,  1995;  Jaquet  et  al.,  2001; 

Madsen et al., 2002b).

1.1.5. Sperm whale codas

 Occasionally sperm whales produce series of clicks with stereotyped timings called codas. 

The term codas was first used by Watkins & Schevill (1977), to name the “temporal repetitive pulse 

patterns” that sometimes can be heard at the end of longer sequences of sperm whale clicks. These 

were the same sounds previously mentioned by Backus & Schevill (1966) as “sequences of clicks 

which are repeated several times”. Watkins & Schevill (1977), described codas as stereotyped series 

of 3 to 40 clicks, lasting between 0.5 and 1.5 seconds. By using an array of hydrophones, which 

allowed them to estimate the location of the vocalizing whales, they described what seemed to be an 

exchange of codas between two spatially separated whales.  

Neither  Watkins  &  Schevill  (1977)  nor  Watkins  (1977)  refer  to  the  sex  of  the  whales 

recorded. Mullins et al. (1988) did not report any codas from two male sperm whales tracked off 

Nova Scotia, but some authors report hearing codas from mature males (Pavan et al., 2000, Karlsen 

et al., 2001), and others report codas at latitudes where only mature males occur (Gordon  et al., 

1992). In the Azores, where both mature male individuals and female groups occur (Clarke, 1956), 

Antunes  (2000)  reported  codas  produced  by whales  with  estimated  lengths  between  7  and  13 

metres, a range that does not include the larger mature males, and the smaller calves. Marcoux et al. 

(2006) found that codas recorded in the tropical and subtropical South Pacific Ocean were almost 

entirely produced by mature females. 

The observation of preferred associations and avoidances among sperm whale social unit 

members (Gero, 2005) suggests that sperm whales have individualized relationships within units. 

This may require ways by which animals recognize individuals in order to adjust their behaviour 
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accordingly. Chemical signalling is unlikely to be used because Odontocetes do not have a well 

developed sense of smell  (Morgane & Jacobs, 1972) and signals  would disperse in a slow and 

unpredictable  way  in  the  aquatic  environment.  Visual  cues  could  potentially  be  used  at  short 

distances during daylight periods but the transmission of identity through acoustic signals is better 

suited  for  instantaneous long range  communication.  Codas  have  been proposed to  function for 

communication and identification of unit membership, and are the most likely signals to be used for 

individual identification and recognition. Backus & Schevill (1966), noted that the temporal pattern 

and repetition rate of coda sequences were not adequate for echolocation and suggested that codas 

have a communicative function. Watkins & Schevill (1977) hypothesised that the function of codas 

could be to signal the individuals’ identity to conspecifics. However, Weilgart & Whitehead (1993) 

dismissed  the  individual  identification  theory  on  the  basis  that  the  number  of  coda  types  was 

considerably  less  than  the  number  of  whales  present  in  their  study area,  that  different  whales 

produced the same coda types, and that individuals often produced more than one coda type. Others 

(Watkins  et al., 1985; Moore  et al., 1993; Rendell & Whitehead, 2004) also observed coda types 

that were shared by different individuals. More recently, Schulz (2007) has studied the individual 

coda repertoires  from a single  social  unit  from Dominica and found that,  apart  from one adult 

female and her calf, all of the other five individuals mainly produced the same two coda types at 

similar frequencies, providing further evidence that codas do not function exclusively for individual 

identification, and recognition is not possible using coda type repertoires.

Although the precise function of codas is unclear, evidence points to communication and 

social bonding as their main function (Watkins & Schevill,  1977; Whitehead & Weilgart,  1991; 

Schulz, 2007; Chapter 3). This suggests that individuals within a unit must share a common signal 

code for communication to be effective. Unit members share elements of their coda repertoire, and 

engage in antiphonal coda exchanges suggesting sharing of a signal code (Schulz, 2007). Unless 

there is a large genetic component to the coding scheme, or it corresponds to an adaptation to the 

physical  environment,  sharing  of  repertoires  suggests  convergence  of  vocal  signals  by  social 

learning during interaction with other whales.

Observations on the vocalizations of three stranded sperm whale calves, of different ages 

and in rehabilitation, have shown an increasing resemblance to codas in the older ones (Watkins et  

al.,  1988),  suggesting  a  developmental  process  .  Acoustic  communication  is  the  most  likely 

modality  for  medium  to  long  range  communication  underwater,  and  therefore  mother-calf 
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communication is likely to take the form of acoustic signals. An immediate post-birth need for 

localization and coordination between a calf and its mother that forages at depth for long periods in 

a featureless environment, suggests that signals and coding schemes used for this purpose may have 

a  strong inherited  component.  Schulz  (2007)  found that  within  a  sperm whale  social  unit,  the 

mother and calf coda type repertoires were distinct from other unit members, supporting the idea of 

specific  mother-calf  communication  signals.  However,  sperm  whale  calves,  and  in  particular 

females who have a low probability of dispersing from the natal social unit, may also require a 

communication scheme for coordination with other social unit members. The temporal stability of 

coda repertoires (Rendell & Whitehead, 2005a) suggests that if female sperm whale calves remain 

in their natal units, they may acquire a coda repertoire that is functional within the unit from other 

unit members, because the unit may already possess a functional common repertoire. This repertoire 

acquisition may arise through a developmental process mediated by genetic determination, but the 

long term social environment within units also provides the conditions for social learning to take 

place. Learning the typical vocal repertoire of the maternal units might also prove useful in the case 

where whales later transfer between units, as happens occasionally in the Pacific (Christal  et al., 

1998),  because  units  preferentially  associate  with  others  having  similar  vocal  repertoires,  and 

therefore transfers are likely between units with similar repertoires.

Gordon (1987) suggested that codas could vary geographically and some differences are 

found  between  distinct  geographical  locations.  The  most  common  coda  types  found  in  the 

Caribbean have longer intervals at the beginning (Moore et al., 1993), while in the Galápagos the 

last intervals seem to be longer (Weilgart & Whitehead, 1993). In contrast however, a coda type 

made of five equally spaced clicks (5 regular)  has been found in the NW Atlantic (Watkins & 

Schevill, 1977), Caribbean (Moore et al., 1993) and Pacific (Rendell & Whitehead, 2003), and was 

the most common type in the Azores (Antunes, 2000) and the Galapagos (Weilgart & Whitehead, 

1993). In the Mediterranean, most codas seem to fit the type called 3+1 (three evenly spaced clicks, 

followed by a final click with a longer interval; Borsani et al., 1997; Pavan et al., 2000), although 

other types have been found (Drout & Gannier, 1999). 

Weilgart  &  Whitehead  (1997)  found  group-dialects  and  geographical  variation  in  coda 

repertoires of the Pacific, and proposed that codas are learnt within matrilineal social groups and 

reflect family relationships. Further analysis by Rendell & Whitehead (2003b) found that sperm 

whale social units in the Pacific could be grouped into vocal clans based on their coda repertoires. 
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Because vocal clans were often sympatric and shared most nuclear DNA haplotypes, they suggested 

that vocal clans are the result of culturally transmitted behaviour. Additional studies have reported 

differences between clans in terms of habitat use, foraging and reproductive success, indicating that 

clan membership likely has consequences for individual fitness (Marcoux  et al.,  2007a; 2007b; 

Whitehead, 2003; Whitehead & Rendell, 2004). Rendell & Whitehead (2005a) found geographical 

variation in coda repertoires within clans, with similarity among repertoires showing a negative 

trend with increasing distance. They also found that coda repertoires seem to be temporally stable 

for periods of at least six years.

Animal  communication  coding  schemes  and  consequently  their  signals,  result  from the 

interplay of inherited traits and the physical and social environment (Bradbury & Veherencamp, 

1998). The extent to which each of these components contributes to the resulting communication 

signals is variable. It is generally agreed that to ensure a good match between sender and receiver 

coding schemes, developing animals that have neither the time nor the opportunity to learn, rely 

heavily  on  heritable  acquisition  of  signals  and  codes  (Bradbury  &  Veherencamp,  1998).  For 

example  anurans  produce  species  specific  sounds  without  prior  experience  with  conspecifics 

(Gerhardt, 1994). Other species seem to rely mostly on learning to develop a functional coding 

scheme.  For  example,  differences  in  contact  call  dialects  of  yellow-naped  amazon  parrots 

(Amazona auropalliata) are maintained by dispersing birds matching their calls to those of the roost 

they disperse  into,  even  in  the  presence  of  high  levels  of  gene  flow across  dialect  boundaries 

(Wright, 1996; Wright & Wilkinson, 2001).

Coda  repertoires  are  unlikely  to  result  from adaptations  to  local  ecological  conditions. 

Acoustic signals may be adapted to certain medium characteristics (Slabbekoorn & Smith, 2002) 

and this constrains the range of parameters that can be varied to encode signals. For example white-

throated dippers (Cinclus cinclus) avoid the masking effect caused by the constant noise of running 

water  in  their  riverine  habitat  by  calling  at  frequencies  above  the  noise's  dominant  spectrum 

(Brumm & Slabbekoorn, 2006). This limits the frequency range over which communication can be 

effective. Sperm whale clicks are short, broadband pulses which consequently do not have much 

signal parameter space for coding in the frequency domain. The coding scheme of codas seems to 

be based on the time domain alone through variation of the inter-click intervals  (ICIs). Such a 

scheme is less influenced by propagation effects than other systems based on frequency domain 

coding,  and therefore  codas  may be more  robust  to  local  acoustic  conditions.  The  presence of 
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sympatric groups with distinct vocal repertoires such as found in the Pacific (Rendell & Whitehead, 

2003b) and observations of certain coda types that are found across wide ranges (e.g. codas with 

five equally spaced clicks in the Azores: Chapter 5, Caribbean: Moore et al., 1993, and the Pacific 

Ocean: Weilgart & Whitehead, 1993; Weilgart & Whitehead, 1997) also suggests that codas are not 

the result of adaptation to local conditions. 

Whitehead  et  al. (1998)  found  that  groups  with  similar  coda  repertoires  have  similar 

mitochondrial DNA (mtDNA) variation, and suggested that this pattern was explained by maternal 

inheritance of the coda dialects. However, sperm whale social units are not strictly matrilineal and 

often several mtDNA haplotypes are found within units (Mesnick, 2001). Because the vocal output 

of unit members is shared, the presence of several mtDNA haplotypes within units argues against an 

important causal role for maternally inherited genes in coda repertoires. Other genetic evidence 

points to male dispersal, female philopatry and mating outside natal units (Lyrholm et al., 1999; 

Engelhaupt,  2004)  which  does  not  support  the  inheritance  of  coda  repertoires  through  the  bi-

parental genome. The presence of population structuring in the Pacific based on vocal repertoires 

associated with a weak nuclear DNA genetic differentiation also offers no support for this. 

Other  less direct  genetic  effects  have been proposed to  influence behavioural  traits.  For 

example, Brown (2001) suggested that genomic imprinting (the inactivation of a particular allele 

dependent  upon the  sex  of  the  parent  from which  it  was  inherited)  could  account  for  parallel 

transmission  of  maternally  inherited  genome  and  behavioural  traits  in  a  scenario  of  multiple 

paternity of social unit members exhibiting similar behaviour. Janik (2001) argued that differences 

in the effectiveness of mitochondrial  proteins would affect  the energetic budget of animals and 

therefore  a  wide  range  of  behavioural  patterns.  A scenario  in  which  differences  in  cellular 

metabolism could account for the variation in coda ICIs does not, however, seem a parsimonious 

explanation. I suggest that in the case of the social units where multiple mtDNA haplotypes are 

present, different individuals would have dissimilar repertoires, which does not seem to be the case 

because mtDNA haplotypes are shared across vocally dissimilar groups (Rendell  & Whitehead, 

2003b).

Despite  the  potential  effects  of  indirect  genetic  determination,  vocal  learning  where 

individual whales modify the coda patterns in their repertoires as a result of interaction with other 

whales remains a parsimonious explanation for the sharing of individual repertoires within social 

units. However, neither individual nor social learning have been experimentally demonstrated in 
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sperm whales.

In a comparative review of methods such as telemetry, photographic identification, various 

types  of  genetic  analysis,  contaminants,  morphology  and  others  for  determining  population 

structure and movements in sperm whales, Whitehead & Mesnick (2003) concluded that analysis of 

coda repertoires provides information at the temporal level of generations (decades) and was the 

only characteristic that reliably showed geographical variation in sperm whales at spatial scales of 

less than an ocean basin (~5,000 km). The knowledge about sperm whale coda repertoire variation 

is however restricted to the Eastern Pacific and further studies in other locations are required for a 

better understanding of the global variation of repertoires in sperm whale populations. 

1.2 Thesis overview

The characteristic  multi-pulsed structure of  sperm whale clicks  allows the estimation of 

whale  size from measurement  of  the IPIs  (Gordon,  1991;  Rhinelander  & Dawson,  2004).  This 

provides not only a very useful tool for estimation of the body lengths of individual sperm whale 

populations, but also, as demonstrated by Schulz (2007) a way of investigating individual vocal 

repertoire in cases where each animal has a different IPI. In Chapter 2 I describe two new methods 

of automatic inter-pulse interval estimation, and compare their accuracy and consistency to those of 

a manual method and other previously described automatic IPI measurement methods.

Earlier studies have not found support for individual specific coda type repertoires (Weilgart 

& Whitehead 1993; Schulz, 2007), however, these studies have looked only at variation among 

coda types. I hypothesise that variation within a coda type may carry individual specific information 

and test this idea in Chapter 3.

The study of how sperm whales associate is important in the understanding of the factors 

that  may drive  variation  in  the  coda  repertoires.  Most  of  the  research  on  sperm whale  social 

structure has been carried out in the Pacific Ocean (Christal et al., 1998; Coakes & Whihead, 2004; 

Jaquet & Gendron, in Press). However, a more recent study has hinted at differences between the 

Pacific locations and the Atlantic, that may be driven by ecological factors (Jaquet & Gendron, in 

Press). In chapter 4 I analyse the sperm whale social structure found in the Azores archipelago and 

compare my findings with those previously reported in the Pacific Ocean.
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In order to investigate if the patterns of coda repertoire variation observed in the Pacific 

Ocean  could  be  generalized  to  other  populations,  I  investigated  the  spatial  variation  of  coda 

repertoires in the North Atlantic and Gulf of Mexico and present my findings in Chapters 5.

In  summary,  the  aim of  this  study is  to  complement  the  studies  of  sperm whale  social 

structure and coda repertoire variation from the Pacific Ocean, with new analysis from locations in 

the Atlantic Ocean. In addition to facilitating this study, the improvements in the methodology of 

IPI measurement presented in Chapter 2 will hopefully be useful in future studies that measure this 

parameter to estimate body length. I hope that these contributions will improve the understanding of 

the mechanisms and function of variation in coda repertoires and social structure of this species. 
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CHAPTER 2

Measuring inter-pulse intervals in Sperm whale clicks:

 Consistency of automatic estimation methods

                                                                                                                         

2.1. Introduction

2.1.1. Sound production in the sperm whale

One of  the first descriptions of sperm whale vocalizations noted the characteristic multi-

pulsed structure of individual clicks (Backus & Schevil,  1966). The initial understanding of the 

mechanism causing this multi-pulsed structure was that sound reverberated between air sacs, acting 

as sound reflectors, at both ends of the spermaceti organ, resulting in pulses of decaying amplitude 

and equal spacing determined by the lengthwise two-way travel time through the spermaceti organ 

(Norris & Harvey,  1972). The inter-pulse interval (IPI),  i.e. the time delay between consecutive 

pulses, was therefore proposed as a method for acoustic estimation of the size of the whale (Norris 

& Harvey, 1972).  Møhl  et al. (2003) elaborated on the Norris & Harvey theory and proposed the 

"bent horn" model of sound production in the sperm whale. According to this model an initial pulse 

originates when the whale forces air through a lip-like structure of connective tissue (the museau-

de-singe,  or  monkey lips)  at  the  anterior  end of  the right  nasal  passage.  Part  of  the  generated 

acoustic energy is passed to the water creating an initial pulse, p0.  A proportion of the acoustic 

energy produced at the museau-de-singe is reflected backwards by an air filled cavity, the distal sac, 

at the anterior end of the spermaceti organ. This pulse travels through the oil filled spermaceti organ 

until it  is reflected forward by another air filled structure (frontal sac), propagating through the 

structure called  junk  (Cranford, 1999;  Møhl  et al., 2003). This structure, located ventrally to the 

spermaceti organ, acts as an acoustic lens focusing the acoustic energy of the outgoing pulse, p1 in a 
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directional beam (Møhl  et al., 2003, 2000; Zimmer  et al., 2005b). Part of the forward reflected 

energy from the frontal sac also propagates back through the spermaceti organ to again be reflected 

by the  frontal  sac,  initiating  another  cycle  of  reflections.  Each  cycle  of  reflections  creates  the 

subsequent pulses which are characteristic of the multi pulsed structure. 

Figure 2.1. Schematic view of the head of a sperm whale depicting the bent-horn model of click sound generation 
(modified from Figure 1 of Madsen et al., 2002a). The dashed arrows indicate the primary sound path within the 
nasal complex according to the modified Norris & Harvey (1972) theory. The solid arrows indicate the emission 
of the weak pulse (p0) from the phonic lips/museau de singe (Ms), the emission of the highly directional sonar 
pulse (p1) from the junk (Ju), and the leakage of sound energy as the p1/2 pulse from the frontal air sac (Fr). Di, 
distal air sac; So, spermaceti organ (after Schulz et al., 2008).

The waveforms of sperm whale clicks in typical field recordings are not as clear cut as the 

classic  multi-pulsed  structure  suggested  by  the  Norris  &  Harvey  model  (Figure  2.2).  This  is 

especially true for clicks recorded from foraging dives. In the clicks of codas (sequences of clicks 

produced in stereotyped patterns  thought to  be used for communication)  a  much clearer  multi-

pulsed structure is usually apparent. In most field recordings of foraging sperm whale clicks other 

pulses can occur within a single click at locations not predicted by the Norris & Harvey (1972) 

model,  which  makes  measuring  IPIs  less  straightforward  than  expected.  In  earlier  attempts  to 

estimate  IPIs  for  length  measurements,  these  so-called  'anomalous  clicks'  have  either  been 

discarded from the analysis or a significant amount of user interpretation was required to measure 

the 'true' IPI (e.g. Goold et al., 1996; Rendell & Whitehead, 2004; Rhinelander & Dawson, 2004). 
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These 'anomalous clicks'  have subsequently been explained by further developments of the Norris 

& Harvey theory. 

Figure 2.2. Example of typical sperm whale click recorded from a diving whale soon after initiation of the dive 
'fluke up'  (60th and 90th clicks  from the  series  depicted in  Figures  2.3  to  2.5).  Even  though it  is  possible  to 
discriminate two pulses in each click (marked by arrows) the waveform shows other oscillations in between. 

 Zimmer  et al. (2005a) proposed  a geometric model which explains the variations in the 

pulsed structure as dependent on the aspect of the whale relative to the receiver. According to this 

model, intermediate pulses (p1/2) occur when the direct path between the reflections at the frontal 

and distal sacs and the receiver does not propagate lengthwise through the spermaceti or junk, i.e. 

when the receiver is off the axis of the whale (Figure 2.1). This suggests that the estimation of IPIs 

to measure the size of sperm whales is best performed if recordings are done from either behind or 

in front of the whale.

A quantitative relationships between IPI and whale length has been derived by relating the 

IPI to the length of the spermaceti organ, using the speed of sound through the spermaceti oil, and 

then scaling it to the total whale length using an allometric relationship (Norris & Harvey, 1972; 

Goold, 1996). Others have derived this relationship empirically by comparing photographic whale 

size estimation with IPI estimation for individual whales (Gordon, 1991; Rhinelander & Dawson, 

2004). Data on the allometric relationship between total length and the size of the spermaceti organ 

are sparse and have been mostly derived from whales killed during commercial whaling. Sperm 

whales are no longer a target of commercial exploitation and so the empirical estimation of the 

relationship between IPI and total length measured in another independent way is the only feasible 
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way forward.

The ability to estimate size acoustically would be a very useful tool for estimating the size 

composition of sperm whale populations. In the field, recordings of clicks for size estimation are 

often made immediately after a whale flukes (i.e. initiates a deep foraging dive). 'Fluke-up' is also 

the time at which photographic images are collected for identification purposes, allowing the link 

between identity and IPI to  be made.  This link is  important  to avoid considering multiple  size 

estimates from the same whales as different individuals. It may also allow tracking of the increase 

in size of known individuals over time.  Furthermore, automatic methods of IPI estimation have 

several potential advantages over manual techniques. They are less onerous and more objective, 

allowing for hundreds or thousands of clicks to be measured in a shorter time period than it would 

take  a  human  operator.  These  methods  are  particularly  useful  when  used  in  conjunction  with 

automatic click detectors, which automatically select portions of click waveforms that can be used 

for later analysis.

The linking between whale identity and IPI (and consequently size) may also allow for the 

identification of vocalisations from particular individuals. This ability was a key step in the study by 

Schulz (2007) where individual coda repertoires within a sperm whale social unit were investigated 

for the first time. Schulz (2007) measured IPIs from recordings of identified whales in isolation, 

providing  the  calibration  of  a  method  for  assigning  codas  to  individuals  based  on  IPIs.  The 

breathing periods at the surface between dives are usually when single animals are encountered, and 

photographic  identification  images  and  click  recordings  made  in  each  encounter  provide  the 

calibration data for individual assignment of vocalisations based on IPIs. The recording of foraging 

clicks made in these encounters have the potential to produce high numbers of clicks, and these 

clicks  usually  have  a  less  clear  multi-pulsed  structure  than  coda  clicks.  Automatic  or  semi-

automatic IPI measurement methods may be particularly useful in these cases, potentially reducing 

the amount of time required to produce an IPI estimate for a series of clicks in comparison with 

manual measurement.

2.1.2. Approaches to measuring IPIs

IPIs were initially measured from filtered waveforms using an oscilloscope (Alder-Fenchel, 

1980; Gordon, 1991).  Goold (1996) proposed the use of waveform autocorrelation and cepstral 

analysis for estimating the IPIs from single clicks. Autocorrelation measures the similarity between 

a waveform and a time delayed version of itself as a function of the time delay. It can be used to 
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estimate IPIs, because the time lag between pulses will correspond to the maximum value of the 

autocorrelation. Cepstral analysis is a non-linear signal analysis tool, firstly described by Bogert et  

al. (1963). The power cepstrum was defined as the power spectrum of the logarithm of the power 

spectrum of a signal and was proposed as an heuristic technique for finding echo arrival times in a 

signal (Bogert  et al.,  1963;  Childers  et al., 1977). This ability for detecting delayed versions of a 

signal wavelet makes this technique useful for estimation of IPIs considering that multiple pulses 

are time delayed versions of the main pulse. The processing of the complex cepstrum, in addition to 

the arrival time, can be used to determine the waveform of the delayed pulse (Childers et al., 1977). 

The resulting independent variable in cepstral analysis is in units of time, but to avoid confusion, 

Bogert  et  al.  (1963)  proposed  quefrency as  the  term to  be  used  for  this,  as  well  as  the  term 

gamnitude for the values of the dependent variable. These methods however are not immune to the 

problems  of  off-axis  estimation.  Intermediate  pulses  confound  both  automatic  and  manual 

estimation  of  IPIs  from  recordings  of  individual  clicks.  Also,  occasionally  during  manual 

measurement and visual inspection of waveforms, it is not always clear where the relevant pulses 

for measurement are located. 

Because the intermediate pulses are aspect dependent (Zimmer et al., 2005b) their location 

between  the  main  pulses  varies  as  a  whale  moves during  a dive,  whereas  the  main  pulses 

corresponding to the lengthwise reflections should be invariant. The time invariant pulses may be 

discriminated from time variant pulses by averaging click measures over a series of clicks from the 

same individual whale. For example, Teloni (2008) demonstrated that, by averaging the individual 

clicks cepstra from a series of regular clicks, it  is possible to obtain IPI estimates from whales 

recorded from an unknown aspect. 

Waveform averaging is another method that may increase the consistency of IPI estimates 

compared  to  estimates  from individual  clicks.  By aligning  the  main  pulses  and  averaging  the 

waveforms of several clicks from the same whale the invariant pulses coinciding in time should 

reinforce each other and contribute more to the resulting waveform than the intermediate pulses. 

The averaging of the autocorrelation functions may also allow the discrimination of time invariant 

pulses  from  series  of  clicks  from  the  same  whale.  In  this  case  coinciding  peaks  in  the 

autocorrelation functions should stand out when averaged across a click series. This method does 

not  depend  on  temporal  alignment  as  does  waveform  averaging.  Neither  waveform  nor 

autocorrelation averaging have been tested so far.
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Here  I  present  a  comparison  of  six  automatic  IPI  estimation  methods  that  integrate 

information  from  series  of  clicks  from  individual  sperm  whales,  including  waveform  and 

autocorrelation averaging for the first time. I compare these automated measurements of IPI with 

those made manually by an experienced operator and evaluate the consistency of each method by 

comparing  multiple  recordings  of  the  same whale  and produce  some recommendations  for  IPI 

estimation. 

2.2. Methods

2.2.1. Field methods

Single  or  groups  of  sperm  whales  were  tracked  using  visual  and  acoustic  methods 

(Whitehead & Gordon, 1986) in the Gulf of Mexico and around the Balearic Islands. The focal 

whales  were  approached  when  breathing  at  the  surface  between  foraging  dives.  Photographic 

identification images where taken when whales fluked to initiate deep dives. The vessel was hove to 

in or close to the dive location (marked by an area of slick water on the surface) and recordings 

were initiated for acoustic length estimation. The recordings were made using a towed hydrophone 

array (2x Benthos AQ-4 elements connected to 30dB Magrec pre-amplifiers with 100Hz high-pass 

filter, inside an oil filled tube at the end of 100m of cable) and either a Creative Labs XTG or a 

Creative Labs Audigy 2 ZS sound card, sampling at 48 or 96 kHz (temporal resolution of 0.02 and 

0.01 ms respectively). The sound files were first analysed using an automatic click detector program 

(Rainbow Click; Gillespie & Leaper, 1996) in order to identify the series of first clicks. Typically in 

the Gulf of Mexico, and occasionally in the Balearic recordings, several click series could be heard. 

The clicks of the focal whale could be distinguished, recognized, tracked and labelled through the 

early part of the recording based on their loudness, relative bearing and spectral characteristics. 

Recordings in which the focal whale's first clicks could not be distinguished unambiguously from 

other clicking animals were not used in the analysis. All clicks from the focal animal were labelled 

using  Rainbow  Click  and  manual  IPI  measurements  were  made  within  Rainbow  Click.  The 

waveforms of these clicks were then extracted for further analysis  by a custom written Matlab 

(Mathworks,  Natick,  Massachusetts)  program.  The  Matlab  program  took  the  individual  click 

waveform vectors xt (i.e. a series of sampled amplitude values) from a sequence of clicks assigned 

to an individual whale as input from which IPI estimates were calculated using several methods.
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2.2.1. Manual measurement

I  manually measured IPIs using a cross-correlation routine built  into the Rainbow Click 

program. This was done by manually selecting two sections of the waveform containing pulses, 

which were then cross-correlated. The peak of the cross-correlation was automatically estimated by 

the program but in some cases it was manually adjusted by the operator when it was considered not 

to correspond to the best match between waveform sections. The IPI calculated was the sum of the 

time lag between the start time of each section and the lag measured by the cross-correlation. The 

peak selection was aided by visualization of each sections waveform, overlaid on each other at the 

chosen  lag  in  order  to  evaluate  the  best  match  between  them.  Manual  IPI  measurement  was 

performed sequentially for each click in a file using Rainbow Clicks built in capability. Only those 

clicks  considered  to  be  suitable  for  measurement  by the  operator  were  measured.  Clicks  were 

considered suitable when at least two pulses were clearly identified, with the second having a lower 

amplitude than the first and, if the cross-correlation produced a clearly distinct peak.

2.2.2. Waveform averaging

Waveform averaging was performed by averaging the amplitude of time aligned individual 

click waveforms across a series of clicks from the same whale. Waveforms were aligned by their 

envelope  maxima,  and  zero  padded  to  ensure  equal  length  for  all  vectors.  Envelopes  were 

calculated as the magnitude (complex modulus) of the Hilbert transformed waveform vector.

The  IPI  estimate  (IPIwaveI)  was  then  calculated  from  the  average  waveform  using  the 

autocorrelation method described below. 

2.2.3. Click autocorrelation

In this method IPI was estimated by automatically locating the peaks of the positive lags 

autocorrelation function calculated as:

 rt=
∑
t=1

n

x t
2

∑t=1

n

x t
2∑

t=1

n

xt t
2 

(2.1)

where  n is the number of samples in the waveform,  xt is the amplitude value of the waveform 

sample at time t, and xt+Dt is the amplitude value of the waveform sample at time lag Dt.
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For each click series three IPI estimates were derived. The first estimate (IPIxcorr) was the 

mode of a distribution of the highest autocorrelation peak of all clicks in a series. A second estimate 

(IPIxcorr3) was calculated as the mode of a distribution of values of the highest autocorrelation peak 

plus the two highest peaks adjacent to it. This approach followed from the empirical observation 

that the autocorrelation delay that seemed to correspond to the best match between waveforms was 

often not the highest, but one of the adjacent positive peaks which took the second or third highest 

values.  The  delays  corresponding to  these  peaks  were  included in  an  attempt  to  automatically 

incorporate these in the analysis. In both cases only values larger than 2 ms were considered to 

avoid spurious correlations of p0 with itself.

A third IPI estimate  (IPIxcorrI)  was calculated by averaging the positive lag autocorrelation 

functions of all the clicks in a series assigned to the same whale. The autocorrelation vectors were 

aligned at zero lag, and zero padded to ensure equal number of elements prior to averaging. The IPI 

was  estimated from the time delay of the peak value of the average cross  correlation function 

beyond a minimum threshold (2 ms). 

2.2.4. Click cepstrum

Each individual click's IPIceps was estimated by locating the quefrency corresponding to the 

peak gamnitude in their complex cepstra above a threshold minimum IPI (2.00 ms). The complex 

cepstrum Ct was calculated from the sample vector xt as:

C t=ℜFFT−1log  U FFT x t (2.2)

where FFT denotes the Fast Fourier transform and FFT-1 its inverse, Û denotes a phase unwrapping 

function,  log denotes the complex logarithm and ℜ denotes the real part. A FFT size of 1024 

points was used. The click waveforms were not windowed prior to calculation to avoid degrading 

the second pulse detection and were zero padded to reduce aliasing in the cepstrum domain and 

phase unwrapping errors (Childers et al., 1977).

Cepstrum averaging was performed by averaging the complex cepstra  of all  clicks  in  a 

series. The IPI estimate (IPIcepsI) from averaged cepstra was estimated in the same way as for the 

individual clicks. This procedure differed from Teloni et al. (2008) only in the use of the complex 

cepstrum whereas Teloni et al. (2008) used power cepstrum. The complex cepstrum retains phase 

information and allows for recovery of the delayed pulse's waveform and it was used in order to 
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investigate if this would help in the discrimination of the IPI quefrency by identifying a typical 

wavelet shape.

2.2.5. Estimating uncertainty and consistency

It may be expected that the uncertainty of IPI measurements in a click series decreases as 

more clicks are included in the analysis. However, as a whale progressed in its foraging dive the 

uncertainty about its aspect relative to the hydrophones increases, and so the least uncertainty may 

be obtained from a number of clicks that balances these two factors. The uncertainty of the IPIs for 

each click series was evaluated by using a bootstrap procedure with 1000 iterations. Each bootstrap 

sample was constructed by resampling with replacement from each series of clicks assigned to a 

whale, and recalculating the IPI estimates for each sample The coefficient of variation of the IPI 

estimates across the 1000 iterations was used as a measure of uncertainty. To investigate how the 

number of clicks used for IPI estimation influences the estimate variability, for each click series the 

bootstrap procedure was repeated for different numbers of clicks in incremental steps of 20 clicks. 

At each incremental step clicks were added in the same order in which they were produced. This 

was  done  for  all  of  the  aforementioned  estimation  methods,  with  the  exception  of  manual 

measurement.

For each click series and for each method's bootstrap, two IPI estimates were produced. One 

estimate was produced as the mean IPI of all bootstrap iterations, obtained when all clicks were 

included in the bootstrap (All). Another estimate (Min CV) was produced as the mean IPI of all 

bootstrap  iterations  on  the  number  of  clicks  included  that  gave  the  minimum  coefficient  of 

variation.

The consistency of each of the methods was investigated by comparing estimates produced 

for series of clicks from the same whale that had been recorded on at least two different occasions 

within the same year. Whales were identified by comparing photographs of their flukes (Arnbom, 

1987). The range (maximum minus minimum values) of each individual whale's IPIs was used a 

measure of consistency and was calculated for each of the automatic methods. 

Assuming the manually measured IPIs to be the closest estimate to the 'true' IPIs, for each 

click series I also calculated each automatic IPI estimate's absolute deviation from the mean manual 

IPI estimate, both for All and Min CV estimates.

           All analyses were implemented as custom written Matlab programs.
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2.3. Results

For this analysis 35 first-click recordings from seven individual whales recorded on more 

than one dive were used. Three of these whales were recorded from the Gulf of Mexico and four 

from around the Balearic Islands. Each whale was recorded on between 3 and 10 occasions. The 

mean number of clicks per series was 210 (range 50-382).

2.3.1. Manual measurements

In  all  but  one  click  series  there  were  clicks  in  which  pulses  could  be  discriminated 

sufficiently well for manual measurement. The percentage of manually measured clicks from each 

series varied between 1 and 81% (2 and 149 clicks). Manual measurements had coefficients of 

variation  (CV)  between  <0.01  and 0.08,  but  only on  three  (9%) recordings  for  which  manual 

measurements were made were these larger than 0.03.

2.3.2. Waveform averaging

In  only 26% of  the recordings  was it  possible  to  distinguish a  main  pulse followed by 

another of lesser amplitude in the average waveform (Table 2.1; e.g. Figure 2.2). In the cases where 

pulses  were  distinguished,  other  intermediate  oscillations  that  were  visible  in  the  individual 

waveforms contributed less to the overall average waveform. 

Measuring the average waveform reliably depended to a great extent on the alignment of 

individual waveforms. In some cases, where a series of clicks assigned to the same whale contained 

many in which the highest amplitude did not correspond to the main pulse, the alignment criterion 

failed to align them. Also, in cases where the main pulses were composed of several cycles, and the 

one with the highest  amplitude was not consistent across clicks in a series, the alignment,  and 

consequently the resulting average waveform, was affected.

The bootstrap CVs obtained for waveform averaging IPIs had ranged between <0.01 and 

0.32 both for when all clicks were used and for  Min CV estimates. In 45% of recordings, lower 

bootstrap CVs resulted when fewer than the total clicks in the series were used for estimation. In 

these cases the number of clicks whose bootstrap produced the lowest CV ranged between 20 and 

320.
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Figure 2.3. Example of waveform averaging for a single whale (#3003) recorded in the Balearics. The top panel 
represents the waveforms of 126 clicks, in the same order in which they were recorded on the ordinate scale and 
time in the abscissa. Grey scale represents the logarithm of the waveform envelope. Waveforms were time aligned 
by their envelope maxima. Bottom panel represents the average of the time aligned waveforms. The time scale 
origin is set to the average waveform maximum amplitude.

Table 2.1. Number of recordings in which peaks could be discriminated in the waveform, autocorrelation and 
cepstrum  averaging  plots.  Last  row  values  represent  the  number  of  recordings  in  which  peaks  could  be 
discriminated for each one of the methods. Last column values represent the number of recording in which peaks 
could not be discriminated.  Row and heading intersections represent  the number of recordings in  which one 
method showed a peak and the other did not. The total number of recordings was 35.

Waveform peak present - 0 1 9
Autocorrelation peak present 19 - 5 29

15 0 - 23
26 6 12

Waveform peak 
absent

Autocorrelation peak 
absent

Cepstrum peak 
absent

Cepstrum peak present
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2.3.3. IPI estimation using autocorrelation

It was possible to identify a peak value by averaging of autocorrelation function plots in 

which in 83% of the click series (Table 2.1; e.g. Figure 2.4). This peak usually coincided with the 

peak of some of the individual click's autocorrelation functions. Even in the cases where many 

individual clicks did not show a clear peak in their autocorrelation functions, the averaging of the 

whole  series  of  clicks  resulted  in  an  averaged function  that  exhibited  a  clear  peak.  In  the  six 

recordings  in  which  a  clear  peak  was  not  identified  in  the  average  autocorrelation,  the  other 

averaging methods (waveform and cepstra) did not exhibit a clear peak either (Table 2.1). 

Figure 2.4. Example of autocorrelation averaging for a series of clicks from single whale (#3003) recorded in the 
Balearics. The top panel represents the positive lag autocorrelation function of 126 clicks, in the same order in 
which they were recorded on the ordinate scale and time in the abscissa. Grey scale represents the autocorrelation 
value. Bottom panel represents the averaged autocorrelation function across all clicks in the top panel. Vertical 
line shows the automatically measured IPI value.
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The bootstrap CVs obtained for autocorrelation averaging IPIs ranged between <0.01 and 

0.21. Only in six (17%) recordings for All clicks estimates, and in only three (9%) for Min CV were 

these values not 0.00. In four click series (11%) the averaging of less than total number of clicks 

produced a lower estimate. In these cases the number of clicks averaged ranged between 80 and 

280.

2.3.4. IPI estimation using cepstra

The bootstrap CVs obtained from individual click ceptra IPIs ranged between <0.01 and 

0.64. In 66% of recordings, lower bootstrap CVs (between 0.01 and 0.41) resulted when fewer than 

the total number clicks in the series were used for estimation. In these cases the number of clicks in 

which bootstrap produced the lowest CV ranged between 20 and 220.

Figure 2.5. Example of cepstra averaging for a single whale (#3003) recorded in the Balearics. The top panel 
represents the cepstra of 126 clicks, in the same order in which they were recorded on the ordinate scale and time 
in the abscissa. Color scale represents the logarithm of the gamnitude values. Vertical line shows the automatically 
measured IPI value.
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In 66% of recordings the averaging of individual clicks' cepstra produced curves in which it 

was possible to visually identity a peak value (Table 2.1;  e.g. Figure 2.5). In all cases where this 

peak could be distinguished, it was preceded by several oscillations of larger gamnitude than the 

ones following it. 

The  bootstrap  CVs  for  cepstra  averaging  ranged  between  <0.01  and  0.35.  In  40%  of 

recordings, lower bootstrap CVs resulted when fewer than the total number of clicks in the series 

was used for estimation. In these cases where the number of clicks in which bootstrap produced the 

lowest CV ranged between 20 and 260.

2.3.5. Uncertainty and consistency of IPI measurements

The bootstrapping procedure revealed that, in many cases, as more clicks from a series were 

included,  the  mean  of  IPI  estimates  remained  constant  whilst  the  95% percentile  range  either 

decreased or remained stable (Figure 2.6, panels a,b,d and e). This was considered a convergence 

and it was observed in 69% of the bootstraps for autocorrelation on individual clicks, both when 

using autocorrelation maxima or the three highest peaks. In the case when three peaks were used, 

more clicks were required for convergence than when a single peak was used. Because of this, the 

three peak method was dropped from subsequent comparisons. 

Waveform averaging and individual click cepstra methods only showed convergence in 7% of the 

recordings, whilst cepstral averaging converged on 58% of the recordings. Convergence occurred 

more  frequently  (81%) when using  autocorrelation  averaging  than  in  any other  method.  When 

several estimation methods in a single recording converged, they always did so to a similar value 

(e.g. Figure 2.6). 

The manual IPI estimates were consistent across recordings of the same whale made on 

different occasions (ranges between 0.00 and 0.21ms).  From the automatic estimation methods, 

both individual  click and averaging  autocorrelation  produced the most  consistent  values  across 

recordings  of  the same whale (ranges  between 0.02 and 2.04  ms,  and between 0.01 and 1.91, 

respectively). The highest ranges of IPIs (between 0.97 and 3.26 ms) were obtained using cepstral 

estimation from individual clicks. Averaging cepstra from a click series tended to produce more 

consistent  IPI estimates (within whale ranges between 0.02 and 1.92 ms) than estimation from 

individual click cepstra (within whale ranges between 0.91 and 2.31 ms).
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For averaging methods, only those averages for which plots produced distinguishable peaks, 

autocorrelation provided the estimates closest to the manual measurements (Table 2.2). Only for 

individual  #1018  was  autocorrelation  not  the  method  that  least  deviated  from  the  manual 

measurement (Table 2.2). 

Figure  2.6.  IPI  estimates  for  the  same click  series  represented  in  figures  2.3  to  2.5,  obtained  using  several 
methods: a) individual click autocorrelation maxima; b) individual click autocorrelation - 3 peaks; c) individual 
click cepstra; d) average autocorrelation; e) average cepstrum; f) average waveform. Horizontal lines join the 
mean of 1000 estimates obtained by bootstrapping the first n clicks in a series, with n in the abscissa. Vertical lines 
represent the 95% percentile range.

Although the general trend was for  Min CV IPIs to produce more consistent values than 

using All clicks in the series there were a few cases where this did not happen (e.g. IPIceps for #3001; 

Tables 2.3 and 2.4).
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Table 2.4. Absolute deviations of IPIs mesured using averaging methods from the manually measured IPIs using 
data  only for  the  average  curves  in  which  a  peak  was  discriminated.  The  mean values  are  shown for  each 
individual's click series and for all individuals. The number of click series in which a peak could be discriminated 
is shown in parenthesis. Values in boldface represent the minimum value of each row. All deviation values in 
milliseconds.

ID
Min CV All Min CV All Min CV All

#1007 0.04 (2) 0.04 (2) - - - -
#1016 0.01 (1) 0.00 (1) - - - -
#1018 0.04 (3) 0.03 (3) 0.07 (3) 0.07 (3) 0.01 (1) 0.01 (1)
#3001 0.18 (2) 0.18 (2) - - 0.30 (1) 0.30 (1)
#3002 0.03 (5) 0.02 (5) 0.06 (5) 0.06 (5) 0.19 (1) 0.49 (1)
#3003 0.01(10) 0.01 (10) 0.06 (9) 0.19 (9) 0.05 (3) 0.26 (3)
#3004 0.03 (6) 0.02 (6) 0.06 (6) 0.05 (6) 0.03 (3) 0.03 (3)

All 0.03 (29) 0.03 (29) 0.06 (23) 0.11 (23) 0.08 (9) 0.19 (9)

Autocorrelation
integration

Cesptrum
integration

Waveform
integration

2.4. Discussion
Manual IPI measurement provided the most consistent IPI estimates for the same whale on 

different occasions, indicating that it remains an= useful, if labour intensive, method. Methods that 

averaged autocorrelation and cepstra values across clicks in a sequence provided more consistent 

results than those that relied on taking the mean of values from individual clicks. Averaging of 

autocorrelation data seemed to require fewer clicks than averaging of cepstra to converge on an IPI 

estimate  (e.g. Figure  2.6),  as  well  as  producing  more  consistent  estimates.  This  method  may 

therefore be preferable for IPI estimation, although there were a few cases where cepstral averaging 

converged  whilst  autocorrelation  did  not.  Apart  from applications  where  IPI  is  required  to  be 

estimated  in  real-time  and  the  added  processing  power  is  a  limitation,  running  both  methods 

simultaneously and comparing results may prove useful to cover situations in which one of the 

techniques outperforms the other. Amongst the averaging methods, waveform averaging produced 

the least consistent estimates. The main difficulty in using waveform averaging is the alignment of 

clicks' waveforms as this is sensitive to the presence of pulses other than p0 and p1 (e.g. p1/2 pulses, 

or surface reflections), and variation in the relative amplitude of the different cycles in the main 

pulse between clicks. Cepstral and autocorrelation averaging do not suffer from the problem of 

alignment as both have a defined reference (zero time-lag in the case of autocorrelation averaging, 

and zero quefrency in the case of cepstral averaging).
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Manual  IPI  measurement  depends  on  the  choice  of  suitable  pulses  to  be  measured  and 

therefore  is  heavily  dependent  on  the  operator’s  experience.  The  judgement  of  the  operator 

measuring each click is unlikely to be independent between clicks when several from the same 

series are analysed at the same time. In cases where the selection of pulses for measurement is 

problematic (e.g. when p1/2 pulses occur) the operator will likely rely on prior information from 

other clicks to decide how to measure IPI. An important additional disadvantage of manual IPI 

measurement is that it is time consuming. The automatic estimation methods overcome both these 

limitations, allowing for a great number of recordings to be analysed in less time and in a more 

systematic way.

Teloni  et al. (2008) investigated the use of cepstral averaging to estimate IPIs from clicks 

recorded  from whales  of  unknown aspect.  Their  average  cepstrum plot  showed  a  plateau  that 

corresponded to aspect-dependent pulses at quefrencies below the IPI peak. This plateau was not 

observed in the present study because the complex cepstrum that retains phase information was 

used here, while Teloni et al. (2008) used the power cepstrum (Equation 1 in Teloni et al.,  2008). 

However,  the  higher  oscillations  observed  before  the  peak  gamnitude  in  the  present  study 

correspond to this plateau. Teloni et al. (2008) also noted that only after averaging between 200 to 

1000 clicks, did a peak appear in the average cepstrum that could be discriminated. For some of the 

cases in the present study a peak was obtained with fewer clicks (e.g. after 40 clicks in the case of 

the recording shown in Figures 2.5 and 2.6). This is not interpreted as being due to differences 

resulting from use of different forms of cepstral analysis, but rather due to differences in recording 

aspect between both studies. In the present study the clicks were recorded from directly behind the 

whale  and  it  is  therefore  likely  that  relatively  more  clicks  without  intermediate  pulses  were 

recorded, compared with Teloni et al. (2008) whose recordings would have covered a wider range 

of aspects. As pointed out by Teloni et al. (2008) in cases when it is not possible to record in the 

whales anteroposterior axis, more clicks will be required to ensure a wide coverage of a range of 

whale aspects. 

The consistency of IPI estimation methods was evaluated here using a comparison between 

recordings of the same individually identified whale on different occasions. This approach does not 

directly address  the question of accuracy of  IPI as a  method for  assessing animal  body length 

because the actual size of the animal was not known. However the consistency of IPI measures is 

key towards this goal. 
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Due to the conditions in which the recordings were made it is likely that the true IPI was 

captured, and its closest estimate is the manually measured IPI. Zimmer et al. (2005b) pointed out 

that sperm whale body length can only be estimated correctly when clicks are recorded close to the 

body axis. The recordings used in the present study were made in or close to the surface location 

from where the whale dived, and sperm whales normally dive vertically during the initial part of the 

dives (Watwood  et al., 2006). Thus the recording hydrophones were likely to have been directly 

behind the focal animal during at least the early part of the recordings. 

None  of  the  techniques  here  compared  can  extract  IPI  information  from  poor  quality 

recordings, although methods that involve averaging should help in this respect. Good signal to 

noise ratio recordings greatly enhance reliable IPI estimation. Good signal to noise ratio recordings 

can be made by recording from as close as possible to a whale without disturbing it. In this study 

using small boats for this purpose proved useful. If possible it is also recommended that the boats' 

machinery  is  turned  off  to  avoid  contamination  of  recordings.   The  use  of  signal  filters  for 

attenuation of low frequency noise is also useful in increasing signal to noise ratio. If the recording 

hydrophone is placed at a shallow depth, surface reflected clicks may overlap with direct path clicks 

making the discrimination between pulses difficult,  as  reported for some cases in Teloni  et al., 

(2008). It is recommended that the recording hydrophone is placed as deeply as possible to avoid 

this effect. It may also be advantageous to vary the depth of the hydrophone during recording to 

avoid recording surface reflections with a constant delay. This may have been partially achieved in 

the recordings  used in  this  study by the  gradual  sinking of  the  towed hydrophone array while 

recording first clicks. 

The measures of dispersion obtained from the bootstrap provide a measure of the confidence 

of the IPI estimates,  and this procedure is thus recommended. High dispersion of bootstrap IPI 

estimates may indicate a weak or absent multi-pulsed structure in the recorded click waveforms. 

The aforementioned bootstrap procedure where different numbers of clicks are averaged, is also 

useful in identifying the number of clicks that need to be averaged to produce the IPI estimate with 

the highest confidence. 

Associating whale identification with IPI measurements  also allows for  individual  vocal 

repertoire to be studied provided the individuals being investigated have distinguishable IPIs. This 

method was used by Schulz (2007) and is applied in Chapter 3. 
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In conclusion I have developed and tested two new methods of automatic IPI measurement 

and  compared  their  accuracy  and  consistency  with  other  previously  used  methods.  Manual 

measurement  by  an  experienced  operator  provided  the  most  self-consistent  estimates.  The 

autocorrelation averaging technique had the best overall performance of the automated methods 

achieving  a  very  similar  performance  to  manual  measurement.  On  some  recordings  cepstrum 

averaging methods converged when autocorrelation did not, so running both of these automated 

methods and choosing the best of the two is recommended.
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CHAPTER 3

Individual discrimination in sperm whale codas

                                                                                                            

3.1. Introduction

3.1.1. Individual recognition

Living in groups provides a number of situations where members can gain advantages by 

coordinating activities and maintaining cohesion. This may require the exchange of information 

through  some  form  of  communication.  In  long  term  social  groups,  animals  may  develop 

behavioural  strategies  that  are  based  on  individualized  relationships  among  members  such  as 

dominance hierarchies and roles within groups (Wilson,  2000).  In these cases there might be a 

selective pressure for the development of identity signals and mechanisms that allow discrimination 

and  recognition  of  particular  individual  and/or  group  members,  from non-target  individuals  or 

groups.  In  fact,  some  studies  suggest  that  individual  recognition  is  an  important  factor  in  the 

structure of group hierarchies (Dugatkin & Earley, 2004). Long term associations among animals 

also  provide  the  prior  experience  of  particular  individuals  required  for  the  development  of 

individual-level  signal  recognition,  based  on  learned  familiarization  (Bradbury  &  Vehrencamp 

1998; Tibbetts & Dale, 2007).

The  ability  to  discriminate  among  group  members  can  also  be  advantageous  when 

behavioural  responses  to  signals  have  different  consequences  depending  on  the  signaller.  For 

example receivers can optimize the costs of responding to alarm calls given, by varying responses 

depending on their reliability and spatial relationship of the signaller(s) (Robinson, 1981; Ydenberg 

& Dill, 1986, Cheney & Seyfarth, 1988, Bachman, 1993, Kildaw, 1995). Animals can also keep 

track of hierarchical relationships within groups by eavesdropping on signals from interactions of 
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other individuals (Bergman et al., 2003). 

Individual  discrimination  is  possible  when  individual  signal  parameters  have  unique 

attributes,  or  when  the  signal  parameters'  variability  is  greater  among  than  within  individuals 

(Beecher, 1982; 1989). For example white-winged vampire bats (Diaemus youngi) show individual 

variation in the structure of social calls, that can be discriminated by the animals (Carter  et al., 

2008).

3.1.2. Sperm whale vocalizations

The sperm whale (Physeter macrocephalus) is a social cetacean species. This is particularly 

the case for females, calves and immature animals of both sexes who live in long term social units 

of 12 animals on average (Christal  et al., 1998). These generally matrilinear units are distributed 

throughout subtropical and tropical waters (Rice, 1989) and their composition is largely stable over 

decades (Whitehead & Weilgart, 2000), albeit with occasional movements among units (Christal et  

al., 1998). In the Pacific Ocean these units frequently form groups with one or two other units that 

persist for days (Whitehead & Weilgart, 2000). Sperm whale groups often move in a coordinated 

fashion,  spreading themselves beyond visibility range over hundreds or thousands of meters of 

ocean (Whitehead, 2003).

Some authors have suggested that post-menopausal females might play a special role within 

social units by assisting with the care of calves and acting as repositories of information that are 

advantageous (Gero, 2005; McAuliffe & Whitehead, 2005). Individuals within social units have 

preferred  associates  among  members  (Gero  et  al.,  2008).  These  observations  suggest  that 

individuals  might  interact  differently  among  unit  members.  Differential  interaction  among  unit 

members primes the need for an individual discrimination system.

Sperm whales rely mostly on the emission of pulsed sounds for communication, orientation 

and finding prey (Jaquet  et al., 2001; Whitehead, 2003; Johnson & Tyack, 2003; Madsen  et al., 

2002a; 2002b; Miller  et al.,  2004a; 2004b). These clicks are characterized by having a series of 

usually evenly spaced pulses of decaying amplitude (Backus & Schevill, 1966) whose inter-pulse 

interval (IPI) has been shown to be correlated with the whales' size (Gordon, 1991; Rhinelander & 

Dawson,  2004).  Series  of  clicks  are  produced during  foraging  dives  at  rates  of  1-2 clicks  per 

second. 

Occasionally sperm whales produce stereotyped series of 4 to 40 clicks termed codas which 
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are assumed to have a communicative function (Watkins & Schevill, 1977; Whitehead & Weilgart, 

1991; Schulz, 2007; Schulz  et al., 2008). Sperm whale groups in the South Pacific Ocean have 

distinct coda dialects which are stable for periods of at least six years (Weilgart & Whitehead, 1997; 

Rendell  & Whitehead,  2005a). Whitehead  et  al. (1998)  found  that  in  the  Pacific  coda  dialect 

variation was correlated with mtDNA variation. This was interpreted as an indication of parallel 

vertical  transmission  of  both  mitochondrial  haplotypes  and  vocal  repertoires  within  the  mostly 

matrilinear units. Rendell & Whitehead (2003b) also found that sperm whale units and groups in the 

Pacific Ocean could be aggregated into vocal clans based on their coda repertoires. Because vocal 

clans were often sympatric and shared most nuclear DNA haplotypes they suggested that vocal 

clans are the result of culturally transmitted behaviour. 

The  function  initially  proposed  for  codas  was  one  of  individual  signatures  (Watkins  & 

Schevill,  1977;  Watkins  et  al.,  1985).  Later  studies  which  classified  codas  into  distinct  types 

showed  evidence  of  coda  type  sharing  among  individuals,  challenging  the  initial  hypothesis 

(Whitehead & Weilgart, 1991; Rendell & Whitehead, 2004). Schulz (2007) found that most adult 

animals within a social unit shared the most common coda type, with the exception of the mother-

calf pair whose repertoires were different from those of other unit members. Apart from the mother-

calf differences, the repertoire similarities of other members did not support the idea of individually 

distinctiveness  coda  type  repertoires,  as  most  individuals  share  most  common coda  types,  and 

produced them at  similar  rates.  This  sharing  of  coda  repertoires  suggests  the  function  of  coda 

repertoires to be group membership recognition, either at the unit or clan levels. This idea is further 

supported by the fact that social units seem preferentially to form groups with other units of their 

own clan (Whitehead, 2003). 

Codas are not perfectly stereotyped however. Within particular coda types which might be 

identified  statistically  there  is  often  considerable  variation  and it  is  possible  that  some of  this 

variability is specific to individuals. Thus, individuals within groups might be recognisable by the 

way they make particular coda types rather then by the range of coda types they produce. With this 

in  mind  I  hypothesise  that  despite  similarities  in  coda  types,  variations  within  these  could 

potentially carry information on animals' identity and therefore codas could have both group and 

individual  level  information.  Here I  test  the hypothesis  that  variation within coda types  allows 

statistical  discrimination  of  individual  social  unit  members,  potentially  allowing  for  individual 

identity to be communicated between members in a social unit.
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3.2. Methods

3.2.1. Field methods

The  study  uses  the  same  dataset  used  and  collected  by  Schulz  (2007)  consisting  of 

recordings of codas from a single social unit collected on the lee coast of the island of Dominica. 

This unit termed the “Group of Seven” consisted of five adult females (Identification codes #5130, 

#5563, #5722, #5561, #5560), one juvenile male (#5727), and one male calf (#5703), forming a 

social unit (see Gero, 2005). This unit was followed for a total of 41 days from January 16 to March 

26,  2005.  The  whales  were  tracked  visually  and  acoustically  using  a  directional  hydrophone 

(Whitehead & Gordon, 1986). During daylight hours the animals were approached while on the 

surface,  usually between foraging dives,  and digital  photographs of their  flukes were taken for 

individual identification purposes (Arnbom, 1987) using a Canon D10 digital SLR camera and a 

Canon EF 300mm lens. 

Fifteen coda recordings of this unit were made using a towed hydrophone array (consisting 

of 2x Benthos AQ-4 elements coupled to Magrec 30dB preamplifiers located 3 metres apart in a oil 

filled tube, towed on 100m of cable). Recordings were made using a Foxtex VF-160 multi-track 

recorder sampling at 48kHz. Coda recordings were made opportunistically, usually when there were 

whales visible at the surface. Additionally recordings of regular clicks were made whenever solitary 

individuals fluked at the beginning of a foraging dive.

The recordings were analysed by Tyler Schulz using Rainbow Click,  an automatic click 

detection program (Gillespie, 1997) which was used to mark the clicks belonging to the same coda, 

as well as the series of regular clicks from solitary whales. Typically a series of regular clicks from 

a diving whale could be distinguished when it first started vocalizing. These could be recognized, 

tracked and labelled through the early part of the recording based on their loudness, relative bearing 

and spectral characteristics. 

3.2.2. Assignment of codas to individuals and types

The waveforms of the selected clicks were exported and analysed using a custom written 

Matlab (Mathworks Inc., Natick MA, USA) program used to estimate the IPI modal class of each 

coda, and each regular click series (Schultz, 2007). The clicks of each of the  "Group of Seven" 
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whales had sufficiently distinct IPI among themselves to allow for individual discrimination based 

on it. Codas were assigned to individuals based on the clicks' IPIs by Tyler Schulz as described in 

Schulz (2007). I classified codas having between 4 and 10 clicks into types based on the number 

and temporal patterns of their clicks using k-means classification of inter-click intervals vectors 

(ICIs) standardized by coda duration, as described in Rendell & Whitehead (2003a; 2003b), using a 

custom written computer program in Matlab. The coda types obtained were named following the 

nomenclature used by Weilgart & Whitehead (1993).

3.2.3. Individual discrimination

The  coda  types  represented  by  the  arbitrary  quantity  of  at  least  five  codas  from each 

individual,  were  selected  for  subsequent  analysis.  Individual  discrimination  was  tested  by 

calculating linear discriminant functions using four sets of variables: standardized ICIs (RelICI), 

absolute ICIs (AbsICI), the envelope amplitude of each coda click relative to the loudest in the 

codas  (Amp),  and  a  combination  of  the  latter  two  (AbsICI+Amp).  RelICI  was  calculated  by 

standardizing the AbsICI values by their sum i.e., the total duration of the coda. Because the sum of 

RelICI equals unity, one of the values is redundant, and so for this dataset the last standardised ICI 

was  not  included in  the  analysis.  The  peak  amplitude  was calculated  as  the  ratio  between the 

maximum value of the waveform envelope of each click in a coda, and the maximum of those 

values, therefore taking values between 0 and 1.

To test if individuals could be discriminated by their codas I performed a linear discriminant 

analysis  for  each  coda  type.  For  each  discriminant  analysis  the  classification  error  rates  were 

calculated as the proportion of incorrect classifications across all individuals. I also calculated the 

incorrect classification rate for each individual being compared. For each comparison, a random 

classification was performed by sampling from the initial set of individuals being compared and 

randomly  assigning  test  codas  to  individuals,  thus  keeping  the  proportion  of  codas  for  each 

individual.  The proportion of codas incorrectly classified in this  way was taken as the random 

assignment  error  rate.  The random assignment  procedure described above was repeated  10,000 

times for each comparison. The proportion of random assignment iterations whose error rates were 

lower  than  the  discriminant  function  error,  is  a  measure  of  the  probability  that  the  calculated 

classification error rate could have been obtained by chance. The discriminant analysis and error 

rate calculations were performed using custom written Matlab code which used the “Discriminant 

Analysis Toolbox” by Michael Kiefte (1999) after the methods in Ripley (1996).
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3.2.3. Partial Mantel tests

Because differences observed among individuals could have also been due to differences in 

the whales' vocal output among days, I evaluated the combined effects of day of recording and 

individual using a partial Mantel test (Smouse et al., 1986). This was performed for each coda type. 

The test was performed using a matrix of pairwise coda similarities (Rendell & Whitehead, 2003a; 

basal similarity = 0.001, Euclidean norm) as a response matrix. Two binary pairwise matrices of the 

same size as the response matrix were used as explanatory variables. The first matrix was built with 

elements equal to unity for the cases when the pairs of codas were from the same individual, and 

zero otherwise. A second matrix was similarly built with unity for pairs of codas recorded on the 

same day. The partial correlation between the response matrix and 'same individual' taking 'same 

day' into account was then calculated. The obtained value was compared to a distribution of the 

same parameter calculated by randomizing the binary matrices, for 1,000 iterations.

3.3. Results

3.3.1. The Group of Seven coda repertoire

The analysis of the coda recordings from the  “Group of Seven” resulted in a total of 315 

codas, assigned to 15 types using k-means clustering (Table 3.1). From these only coda types 1+3 

(16% of the total group repertoire) with four clicks, and 1+1+3 (33%) and 5Reg (26%) with five 

clicks (Figure 3.1) had at least two individuals represented by at least five codas and could therefore 

be used for discriminant analysis (Table 3.1).   

The calf (individual #5703) was left out of the analysis altogether either due to its low 

representation for some coda types, or because it was the only whale to make a certain coda type.

Most  of  the  individual  whale  repertoires  used  for  discriminant  analysis  included  codas 

recorded on at least two different days for each coda type, with the exception of individual #5727 

with only one recording day for both coda types represented, and individual #5563 for coda type 

1+1+3 (Table. 3.2).

40



Table 3.1. Coda type repertoire of the Group of Seven social unit, classified using k-means clustering. Column 
headings  indicate  whale  identification  numbers  and  row  heading  indicate  coda  type.  Numbers  in  the 
classification table correspond to frequency with which individual produced each coda type. Bold frequencies 
correspond to the the codas used in the analysis.

#5130 #5560 #5561 #5563 #5703 #5722 #5727 S
4R 2 3 3 0 1 1 0 10
1+3 11 0 3 1 0 34 0 49

2+1+1+1 0 3 0 6 4 0 0 13
1+1+3 21 36 22 18 0 0 7 104

5R 0 38 33 4 0 0 8 83
5+1 0 0 0 0 12 0 0 12
6R 1 0 0 0 1 1 1 4
7R 1 6 0 0 0 0 0 7
6+1 0 0 0 1 5 0 0 6

6+1+1 0 1 0 0 1 0 0 2
1+1+6 0 3 1 0 0 0 0 4

8R 0 6 0 1 1 0 0 8
1+1+7 0 1 0 0 0 0 0 1

9R 0 5 0 1 3 0 0 9
9+1 0 1 0 0 2 0 0 3
S 36 103 62 32 30 36 16 315

Figure 3.1. Relative time patterns for the three coda types used in discriminant analysis. Error bars represent 95 % 
percentiles across all codas for all individuals.

3.3.2. Discriminant analysis

For all but one of the coda types and variable sets included in the analysis, all discriminant 

function analyses resulted in a number of canonical discriminant functions equal to the number of 

individual whales being compared.  This permits  the discrimination among all  individuals being 
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compared. In the case of the variable set  RelICIs for coda type 1+1+3, it  was only possible to 

calculate  three  canonical  discriminant  functions,  the  same  as  the  number  of  variables  in  the 

analysis.

Only two individuals (#5130 and #5722) were represented with more than five codas of type 

1+3 therefore only allowing for discrimination between them (Table. 3.1). The classification error 

rates for this coda type were always lower than the random classification error for variable sets 

Amplitudes and AbsICIs+Amplitudes indicating that the classification of codas to individual whales 

performed better than random assignment of codas to individuals (Table 3.3). Variable sets AbsICIs 

and  RelICIs  presented  error  rates  with  a  higher  probability  of  being  obtained  by  random 

classification, but still fairly low. The observed classification error rates were lowest for variable set 

AbsoluteICIs+Amplitudes.  In all  variable sets  the individual  error rates were always higher  for 

individual #5722 than individual #5130. 

The  distribution  of  canonical  discriminant  values  for  individual  #5130  completely 

overlapped those for #5722 in all datasets (Figure 3.2). 

Coda type 1+1+3 was represented with enough codas per individual to allow discriminant 

analysis for five adult whales (#5130, #5560, #5561, #5563 and #5727).

Mean  classification  error  rate  values  were  lowest  for  variable  set  AbsICI+Amp,  while 

individual error rates were either lowest or similar to AbsICI (Table 3.3).

Table 3.2. Distribution of codas assigned to individuals by date of recording in 2005. First column indicates 
coda type classified using k-means and second column correspond to individual whale identification codes. 
Column headings corresponds to recording dates. 

Jan Jan Feb Feb Feb Feb Feb Feb Feb Mar Mar

1+3
#5130 - - 3 - - 7 1 - - - -
#5722 - - 2 - - - 7 - 7 - 18

1+1+3

#5130 - - 16 5 - - - - - - -
#5560 8 - 17 - 9 - - - - - -
#5561 9 - - 2 11 - - - - - -
#5563 18 - - - - - - - - - -
#5727 6 - - - 1 - - - - - -

5Reg
#5560 10 - 1 - 7 - - 8 - 4 -
#5561 12 - - - 8 - - 7 - - 6
#5727 - 8 - - - - - - - - -

23th 26th 1st 2nd 3rd 7th 15th 17th 27th 2nd 9th
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With the exception of two variable set and coda type combinations (AbsICI, 1+3: p=0.014; 

RelICI, 1+3: p=0.034), discriminations for all datasets exhibited low probabilities of having been 

obtained by random assignment (0.001 or less). However, canonical discriminant function values 

for all individuals exhibited considerable overlap, and a clear separation pattern was not found for 

any variable set (Figure 3.3). This indicates that separation of individuals using linear discriminants 

is not possible. 

Only individuals #5160, #5561 and #5727 were represented with more than five codas of 

type 5Reg. Mean classification error rates for each variable set in type 5Reg were lower in variable 

set AbsICI+Amp. Individual error rates for this dataset were either the lowest of all datasets or 

similar to AbsICI (Table 3.3). 

Table 3.3. Overall and individual whale classification error rates for coda types 1+3, 1+1+3 and 5Reg, and for 
variable sets Absolute ICIs, Relative ICIs. Amplitude and Absolute ICIs + Amplitude. Individual specific error 
rates  are  in  the  same  order  as  in  line  labels.  Last  column contains  the  probability  of  obtaining  a  better 
classification error rate than by random assignment of identification to individuals. 

In the majority of cases the standardized canonical discriminant coefficients corresponding 

to click amplitudes were one order of magnitude lower than the variables corresponding to the 

Absolute ICIs. This indicates that the subset of variables that correspond to the ICIs has a stronger 
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mean error ID error p 
1+3 5130+5722 0.22 0.46 0.15 0.014
1+1+3 5130+5560+5561+5563+5727 0.58 0.62 0.42 0.50 0.89 0.71 <0.001
5Reg 5560+5561+5727 0.13 0.11 0.06 0.50 <0.001

mean error ID error p 
1+3 5130+5722 0.24 0.64 0.12 0.034
1+1+3 5130+5560+5561+5563+5727 0.58 0.62 0.36 0.46 0.94 1.00 <0.001
5Reg 5560+5561+5727 0.25 0.21 0.12 1.00 <0.001

Amp mean error ID error p 
1+3 5130+5722 0.16 0.46 0.06 <0.001
1+1+3 5130+5560+5561+5563+5727 0.63 0.95 0.19 0.68 0.94 0.86 0.001
5Reg 5560+5561+5727 0.39 0.16 0.52 1.00 <0.001

Abs ICI + Amp mean error ID error p 
1+3 5130+5722 0.09 0.18 0.06 <0.001
1+1+3 5130+5560+5561+5563+5727 0.47 0.62 0.25 0.46 0.67 0.71 <0.001
5Reg 5560+5561+5727 0.08 0.11 0.00 0.25 <0.001

AbsICI

RelICI



effect on the discrimination, than click amplitudes.

In two of the four variable sets (RelICI and Amp) the canonical discriminant function values 

for coda type 5Reg did not show a clear separation among the different individuals (Figure 3.4). 

However,  the  same values  for  the  datasets  including  absolute  ICIs  (AbsICI  and AbsICI+Amp) 

showed an obvious separation of individuals using linear discriminants.

The comparisons within coda types 1+1+3 and 5 Reg had individuals in common (#5560, 

#5561 and #5727; Table 3.1). This allowed for the comparison of the relative ability to discriminate 

among  individuals  across  coda  types,  by  comparing  their  individual  classification  error  rates. 

Individual error rates for individuals #5560 and #5561 were always lower for coda type 5Reg than 

for 1+1+3. Individual #5727 only exhibited lower error rates for coda type 5Reg, in variable sets 

AbsICI and AbsICI+Amp.

Figure 3.2. Histograms of canonical discriminant function values for comparisons between individuals #5130 
(dark bars) and #5722 (white bars) for coda type 1+3 and variable sets AbsoluteICIs, RelativeICIs, Amplitudes 
and AbsoluteICIs+Amplitudes.
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Figure 3.3. First  two canonical  discriminant  functions  for  comparison  among individuals  #5130(), 
#5560(),  #5561(),  #5563()  and  #5727()  for  coda  type  1+1+3  and  variable  sets  AbsoluteICIs, 
RelativeICIs, Amplitudes and AbsoluteICIs+Amplitudes.

Figure 3.4. First two canonical discriminant functions for comparison among individuals #5560(), #5561() 
and  #5727()  for  coda  type  5Reg  and  variable  sets  AbsoluteICIs,  RelativeICIs,  Amplitudes  and 
AbsoluteICIs+Amplitudes. 
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The pairwise similarity for 5Reg codas showed higher values for comparisons within same 

individual than  between individuals,  both within  and between days.  The same pattern was not 

apparent for coda types 1+3 and 1+1+3, where similarities were identical regardless of individual 

identity and day of recording (Figure 3.5). 

3.3.3. Partial Mantel tests

The partial Mantel tests resulted in significant correlation coefficients of 0.37 (p < 0.001), 

0.11 (p < 0.001) and 0.55 (p < 0.001) for coda types 1+3, 1+1+3 and 5Reg respectively. The low 

correlation  value  for  coda  type  1+1+3  indicates  a  relatively  weak  effect  of  individual  in  the 

similarity of codas. The highest value for coda type 5Reg indicates that the effect of individual 

identity  is  strong even taking  into  account  variation  among days.  Coda type  1+3 exhibited  an 

intermediate correlation value.

Figure  3.5. Boxplots  of  coda  similarity  values  within  individuals  on  same  day  (WI/SD);  within 
individuals on different days (WI/DD); between individuals on different days (BI/DD); and between individuals 
on different days (BI/SD) for coda types 1+3, 1+1+3 and 5Reg. 
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3.4. Discussion

For some coda types the classifiers could discriminate among individual sperm whales better 

than random assignment, indicating that individual variation does exist within coda types.

Relative click amplitudes have not previously been tested as a potential variant in sperm 

whale coda communication, but it proved not to be a useful carrier of identity information. Relative 

ICIs did not perform better than Absolute ICIs in discriminating among individual whales for all 

coda types analysed. Generally the classification with AbsoluteICIs + Amplitudes performed better 

than using AbsoluteICIs alone. However the differences were probably due to slight differences in 

the  randomization  distributions  and  I  do  not  interpret  these  as  a  considerable  improvement  in 

discrimination. 

Despite the fact that the performance of the best variable sets for each coda type was better 

than random assignment, only for coda type 5Reg did the discrimination appear robust enough to 

allow a reliable assignment of codas to individuals. It was also clear that this discrimination relied 

heavily on absolute, rather than relative, inter-click intervals, suggesting that the common practice 

of standardising intervals in these kinds of analyses (e.g. Moore et al., Weilgart & Whitehead, 1997; 

Rendell  &  Whitehead,  2003a)  might  actually  be  throwing  away  important  information.  These 

results raise the possibility that differences in discrimination ability between coda types suggests 

different functionality of those types. In the case of the social unit studied here, coda type 5Reg 

seems to carry more information with respect to individual identity than the other types. This coda 

type is noteworthy because it is ubiquitous across geographical areas in which sperm whale coda 

repertoire have been studied (Caribbean: Moore et al., 1993; Pacific Ocean: Weilgart & Whitehead, 

1993; Weilgart & Whitehead, 1997). It has also been highlighted as being more likely to occur at 

the start of coda exchanges than other coda types (Weilgart & Whitehead 1993). The results raise 

the possibly that this particular coda type may be preferably used for encoding individual identity in 

the species, which would also help explain both its ubiquity and its frequent occurrence at the start 

of exchanges. 

One strategy by which individual identity can be encoded is through variation in signal type 

repertoires.  Individual  type  repertoire  variation  seems  not  to  be  present  in  sperm  whales  as 

individual  whales  share  the  majority  of  coda  types  (Schulz,  2007).  Unique  individual  voice 

characteristics can also be used to transmit the vocalizer's identity such as for the grunt calls of wild 
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chacma baboon (Papio cynocephalus ursinus) (Owren et al., 1997). This has not been demonstrated 

in sperm whales so far.  Sperm whale clicks are short  broadband pulses and likely do not have 

enough parameter space in the frequency domain to allow for signal coding. One feature particular 

to  sperm whales  clicks  is  the  multi-pulsed  structure.  Some authors  have  hypothesised  that  the 

whales can discriminate IPIs (Whitehead, 2003) and because this parameter is correlated with the 

whale  size  (Gordon,  1991;  Rhinelander  &  Dawson,  2004)  it  could  potentially  be  used  to 

discriminate among individuals of different sizes. This ability still remains to be demonstrated, and 

individual discrimination of all unit members by IPI would only be possible for cases where each 

individual is of a different size. This was the case for the small social unit studied here but it is 

unlikely that this  criterion is  satisfied sufficiently generally to allow for the development of an 

individual recognition system based on IPIs alone. Also, IPIs will change during a whale's life with 

the growth of the spermaceti organ. IPI discrimination is further complicated by off-axis effects 

which  change the  clicks'  multi-pulsed  structures  depending on  the  vocalizing  whales  aspect  in 

relation to the receiver (Zimmer et al., 2005b). 

The fact that the within coda type individual variation can be used to distinguish individuals 

suggests hierarchical mapping as the individuality coding scheme in codas. Hierarchical mapping is 

typical in bird song, where a mean pattern of vocalizations indicates species identity, and deviations 

from this indicate individual identity (Becker, 1982; Falls, 1982).  Hierarchical mapping has also 

been  found to  code  for  individual  and  gender  in  electrical  fish  (Crawford,  1992;  Friedman & 

Hopkins,  1996).  In  codas,  individual  information  seems  to  be  encoded  in  variations  in  timing 

around the coda type's stereotyped rhythm. For the social unit studied here, the 5Reg type, defined 

by five (fairly) equally spaced clicks, provides the mean pattern from which idiosyncratic variations 

depart.  Such  a  coding  scheme would  be  constrained  by the  amount  of  within  type  variability 

possible that would still allow the coda to be recognised as a 5Reg type. 

Signal coding in species that rely on frequency coding allow for the time domain to code for 

motivation and arousal state cueing while retaining signal functionality.  In dolphins for example, 

the  frequency  contour  shape  of  signature  whistles  is  conserved  within  each  individual,  while 

frequency, duration, and intensity varied with behavioural context (Caldwell & Caldwell, 1965). 

Another example is the variation of call structure in elephant rumbles which reflects both identity 

and emotional state (Soltis  et al., 2005). Variation in parameters such as formant, minimum and 

maximum  frequencies  can  be  used  to  discriminate  between  individual  elephants,  whereas 
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coefficients which reflect tonality (periodicity of the pitch period) and jitter (temporal stability of 

the pitch period) seemed to vary depending on the relative dominance rank of other individuals 

present. If sperm whale codas coding rules rely on changes in the time domain alone, there may be 

limitations in the amount of variability that can be introduced by motivational and emotional cueing 

without changing the signal's functionality. Variation due to motivation and emotional states could 

also potentially complicate individual discrimination, if  the variation occurs in the same coding 

parameter.  I  found a  positive correlation between coda similarity and individual  identity,  when 

controlling for differences between recording days. This indicates that individual discrimination is 

robust to the range of arousal and motivational contexts sampled across recordings. Also for the 

cases of individuals #5560 and #5561 there is almost no overlap in the discriminant space even 

though the animals were simultaneously recorded on three different days. However I cannot rule out 

that similar contextual and motivational conditions were present in the various recording events. 

Motivational  cueing  could  still  be  transmitted  in  the  click  amplitudes.  These  showed  less 

consistency in the ability to discriminate among individuals.

The ability of the clustering used in the analysis to group codas into functional categories is 

a  potential  limiting  factor  in  my conclusions.  K-means  clustering  has  been  previously used  in 

studies that showed that the technique can pick out naturally occurring groupings in sperm whale 

coda datasets (Rendell & Whitehead, 2003a). The method has also previously been used to support 

the grouping of sperm whale social units into clans (Rendell & Whitehead, 2003b) which in turn 

showed  differences  in  biological  relevant  aspects  such  as  reproductive  and  foraging  success 

(Marcoux et al., 2007a, Marcoux et al., 2007b, Whitehead & Rendell, 2004). This suggests that the 

method captures biological meaningful differences. Furthermore, since I have studied only a single 

social unit here is analysed, and from this only a subset of individuals, any generalization of these 

conclusions should be taken with caution.

These results suggest that there is a selection pressure for the development of mechanisms 

that allow the discrimination and recognition between individuals within social  units.  This idea 

remains  to  be  tested  and  doing  so  is  a  major  challenge.  The  ability  for  discrimination  and 

recognition  among  social  unit  members  could  be  tested  with  coda  playback  experiments,  if 

differences in behavioural reactions among social unit members could be evaluated. These would 

require a priori knowledge of individual repertoires from the specific social units being tested. Were 

individual  recognition  to  be  demonstrated  in  sperm whales,  it  would  help  clarify  whether  the 

49



observed individual differences are the result of non-functional individual biases in the learning 

and/or production of codas, or the consequences of pressure for the transmission of individuality. In 

the  former  case  the  observed  differences  in  discrimination  suggest  that  individual  biases  vary 

between coda types.

Most  of  the  research  on  individual  recognition  has  focused  on  territoriality,  aggressive 

competition  and parental  care  (Tibbetts  & Dale,  2007).  Recognition  of  parent  and  offspring is 

particularly important in species that breed in large, high-density colonies, such as bats, seals and 

seabirds, and is likely to be common in animals that live in herds (Tibbetts & Dale, 2007). It is also 

an advantage for mother-calf sperm whale pairs to be able to recognize each other among other unit 

members. Differences between the mother and calf, and the remainder of the social unit were the 

only differences in coda type repertoires found in the "Group of Seven" (Schulz, 2007). This was 

interpreted as a response to the increased necessity to locate each other and ensure the efficient 

transfer  of  milk,  providing  a  mutual  recognition  system.  This  suggests  the  presence  of  two 

individual  recognition  schemes;  one  for  mother-calf  pairs  based  on  coda  type  repertoire;  and 

another  based  of  within  type  variations  for  other  unit  members.  A possible  explanation  that 

accommodates  both  observations  is  a  scenario  where  identifying  individuals  from within  type 

variation requires that whales interact and learn socially over long periods of time. Since the calf 

has not experienced such a learning period, a less subtle coding scheme based on different coda 

types is used. 

Individual recognition is thought to have an important role in the evolution of cooperation 

(Crowley et al., 1996) and on the stabilization of linear dominance hierarchies (Dugatkin & Earley, 

2004). Sperm whales are thought to live in non-hierarchical societies (Whitehead, 2003) although 

little evidence of this has been put forward. Intraspecific competition within social units should be 

low since in the pelagic realm few, if any resources of interest are defensible. Therefore one would 

not expect agonistic encounters and territoriality to drive the development of individual recognition 

within social units. On the other hand, some studies have suggested several forms of individualized 

relationships within sperm whale units, which would require individual recognition. For instance, 

Gero  et  al. (2008)  found  that  sperm whales  form preferred  associations  and  avoidances  with 

particular unit members. Others (Weilgart et al., 1996; Whitehead, 2003; McAuliffe & Whitehead, 

2005) have suggested that similarly to elephants (McComb et al., 2001) menopausal female sperm 

whales act as repositories of knowledge, and as cohesive agents, which would benefit social units as 
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a whole. The long lives and the stability of social units allow familiarization to take place providing 

the context for individual recognition. 

The present study calls for further work on the contextual use of codas. If indeed coda types 

have different functionalities, these could be reflected in contextual use. Longer term study of the 

individual repertoires of the “Group of Seven” would increase the sample size allowing for a greater 

control  of  context  and motivational  variables and more precise  conclusions  on the presence of 

individuality information and its variation between coda types. Also, further research targeting the 

individual repertoires of other social units from the same and other geographical areas with different 

coda type repertoires, will allow the verification of the hypothesis of differential functionality of 

coda types in transmitting individuality.

In  conclusion I  have demonstrated that  it  is  possible  to  discriminate  between individual 

sperm whales based on absolute ICI variability. This supports the initial hypothesis that variation 

within  coda  types  allows  distinction  among  group  members.  However  the  discrimination 

performance was not the same for all coda types which suggests differential functionality between 

coda types. The present study also suggests that codas are hierarchically coded signals in which 

individuality information is encoded in finer variations in timing around the stereotyped rhythm of a 

given coda type.
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CHAPTER 4

Ecology-driven variation in sperm whale social structure?

                                                                                                                         

4.1. Introduction

4.1.1. Animal groups  

Variations  in  animal  group  sizes  and  their  social  structure  represent  compromises 

accommodating  associative  and  dissociative  factors  (Wrangham  et  al.,  1993).  Protection  from 

predators through dilution and early detection (Hamilton, 1971; van Schaik et al., 1983), resource 

defence (Garber, 1988; Peres, 1989) and communal offspring care (Taborsky, 1984; Packer  et al., 

1992; Whitehead, 1996; Koenig & Dickinson, 2004) are all advantages of group living which work 

as associative factors bringing animals together. On the other hand competition for resources such 

as food, mates, and shelter work as dissociative factors which limit group sizes (Terborgh & Janson 

1986; Wilson, 2000). The ability to vary group size allows for flexibility in response to ecological 

conditions depending of the balance of cost/benefits of group living. For example in fission-fusion 

societies, primates balance the costs of increased competition in large groups with the benefits of 

group living by adjusting group sizes (Dunbar, 1992; Takahata  et al., 1994; Kummer, 1995; van 

Schaik, 1999). Spinner dolphins (Stenella longirostris) in the Pacific Ocean also show differences in 

social structure that depend on ecological conditions (Karczmarski  et al., 2005). Around Midway 

Atoll, spinner dolphins live in a stable society of long-term associates while off the large Hawaiian 

Islands they live in a fission–fusion society with great day-to-day variability in group size and 

membership. Karczmarski et al. (2005) suggest that in Midway Atoll due to the reduced availability 

of sheltered shallow-water locations in which to rest in daytime, and easy access to deep water 

foraging locations, it is less costly not to disperse and stable societies are favoured. On the other 
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hand, the larger islands offer a more heterogeneous environment with several locations capable of 

holding a proportion of the foraging groups, favouring a more variable society.

The group sizes and social structure that result from balancing the pros and cons of group 

living affect other aspects of an animal's biology such as gene flow (Whitehead,1998); habitat use 

(Baird & Dill, 1996; Ersts & Rosenbaum, 2003), the spread of diseases (Lee, 1994; Guimarães et  

al.,  2007)  and the  manner  in  which information is  retained  and transmitted among individuals 

(McComb et al., 2001; Wittemyer et al., 2005).

4.1.2. Sperm whale social structure

The  sperm whale  (Physeter  macrocephalus,  L.,  1758) is  one  of  the  most  wide  ranging 

marine  mammals,  and  is  found in  all  oceanic  deep  waters  (Rice,  1989).  Attempts  to  correlate 

oceanographic features with sperm whale distribution are not agreed upon, and different studies 

have proposed different factors that determine sperm whale abundance (Whitehead, 2003). In an 

attempt  to  resolve  the  discrepancies  between studies,  Jaquet  (1996)  argued that  the  correlation 

between sperm whale distribution and oceanography is scale dependent. At spatial scales of a few 

hundred kilometres and a temporal scale of months sperm whale abundance is correlated with areas 

of high primary productivity (Jaquet & Whitehead, 1996). At smaller spatial and temporal scales 

whales seem to be correlated with the presence of oceanographic features such as the continental 

shelf break, oceanic fronts where water masses meet, cyclonic eddies, and warm-core rings (Waring 

et al., 1993; André, 1997; Griffin, 1999; Biggs  et al., 2000; Gregr & Trites, 2001; Waring  et al., 

2001; Whitehead, 2003).

 The sperm whale's long life span (Rice, 1989) allows for the formation of long-term social 

bonds between individuals, which is a characteristic of the social structure seen in females (Christal 

et al., 1998). Most of the information we have on sperm whale societies comes from research in the 

Pacific Ocean (Christal et al., 1998; Coakes & Whihead, 2004; Jaquet & Gendron, in Press). These 

studies  have  shown  that  females  and  their  offspring  form  stable  units  of  between  10  to  12 

individuals, with only occasional movements of individuals between units (Christal  et al., 1998). 

Temporal  analyses  of  association  rates  have  shown  that  social  units  tend  to  form short  term 

groupings which persist for periods of days, with other units that share cultural traits (Whitehead, 

2003). This pattern of social structure appears to be typical within the Pacific (Galapagos Islands: 

Christal et al., 1998; Chile: Coakes & Whitehead, 2004; Gulf of California: Jaquet & Gendron, in 
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Press). 

Jaquet & Gendron (in Press) compared the social structure patterns they found in the Gulf of 

California with those reported for the Pacific and the Gulf of Mexico, Dominica and the Sargasso 

Sea. They found larger mean typical group sizes in the Pacific than in the Atlantic. Based on this 

comparison they suggested that  differences  in  site-specific  ecological  factors  such  as  predation 

pressure  and/or  food  resources  are  likely  to  influence  sperm  whale  social  organization.  This 

comparison  however  relied  on  limited  datasets  for  the  Atlantic,  which  could  not  adequately 

parameterise the social structure models for comparison. The present study uses a dataset from the 

Azores of a similar size to those described from the Pacific to allow a more detailed comparison. 

The sperm whale social structure for this archipelago located in the Atlantic Ocean has not been 

previously analysed. The analysis follows the methodological standards used in the Pacific studies 

to allow a direct comparison and provide a better understanding of how ecological factors may 

influence social structure, and which selective forces drive sperm whale social structure.

4.2. Methods

4.2.1. Field methods

Identification photographs of sperm whales were collected in the central and eastern island 

group of the Azores archipelago (Figure 4.1) between 1989 and 2007, with the exception of 1992 

and  1994.  Most  photographs  were  of  adult  female  and  immature  sperm whales  of  both  sexes 

although a few adult males were also encountered. 

Data were collected from the International Fund for Animal Welfare research vessel Song of 

the Whale, a 14m auxiliary powered ketch (between 1987 and 1995), from  Whale Watch Azores 

vessel Colomban a 18m schooner (between 1993 and 2002) and Physeter, a 12m motor catamaran 

(2003 onwards).
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Figure 4.1. Study area including the Azorean Central Group of islands (Faial, Pico, São Jorge, Graciosa, Terceira 
from West to East) and São Miguel in the Eastern Group. The locations where the photo-identifications used in the 
study were made are shown as points.

 

Sperm whales were located and tracked visually and acoustically using either a directional 

or towed hydrophone (Whitehead & Gordon, 1986). In later years detections were also made in 

conjunction with a network of land based lookouts. Whales were approached while on the surface, 

between  foraging  dives.  By  carefully  manoeuvring  the  vessel  directly  behind  the  whale, 

photographs  of their  flukes  were taken for individual  identification purposes when the animals 

fluked. Photographic equipment used varied through the study period; a Canon T90 35mm film 

SLR camera with a 300mm lens (between 1987 and 1995), a Canon EOS 600 film camera with a 

Sigma 70-300mm zoom lens (between 1993 and 2003) and a Canon EOS 10D digital camera with a 

Tamron  28-300mm  zoom  lens  (between  2004  and  2006)  were  used.  Fluke  photographs  were 

assigned a quality rating value Q, between 1 (worst  quality)  and 5 (best  quality)  following the 

scheme described by  Arnbom (1987), organized into a catalogue and matched within the catalogue 

by Lisa Steiner. All analysis in this chapter used only photographs classified with Q ≥ 3.

4.2.2. Group sizes

The sizes of groups encountered at sea were estimated using a mark recapture technique 

with a Petersen estimator and Chapman correction for small  samples (Seber,  1982;  Whitehead, 

2003; Coakes & Whitehead, 2004). Following Coakes & Whitehead (2004) the period between the 
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first and last identifications of each day was divided into two sections of equal duration (S1 and S2), 

and  the  number  of  individuals  identified  in  the  first  section  (nS1),  the  number  of  individuals 

identified in the second section (nS2) and the number of individuals in common to both (nS12 ) were 

used to calculate the group size estimate Ng:

N g=
nS11⋅nS21

nS12
−1  (4.1)

and its coefficient of variation calculated as:

   
CV g=

 nS11⋅nS21⋅nS1−nS12⋅nS2−nS12

nS1212⋅nS122
N g

 (4.2)

Following the rationale from previous work (Whitehead, 2003) group size estimates were 

divided into those with CVs ≤ 0.25 and a more inclusive set with 0.25 < CVs ≤ 0.40. The former 

provides a more accurate measure, but is biased towards smaller groups, while the latter, though 

less precise, takes into account larger groups (Whitehead, 2003; Coakes & Whitehead, 2004).

The group sizes calculated using equation 4.1 are as observed by an observer from outside 

of the group, such as a predator or a researcher.  Typical group size corresponds to the size of the 

group experience by a member of the population (Jarman, 1974). The mean typical group size Ntg 

was calculated as:

N tg=
∑
i=1

M

N g i 
2

∑
i=1

M

N g i 
 (4.3)

where  Ng(i)  is  the  group size  for  group  i (from equation 4.1)  and  M is  the  number of  groups 

(Whitehead, 2008).

 4.2.3. Temporal patterns of association

Temporal  association  patterns  were  investigated  by calculating  the  Standardized  Lagged 

Association Rate (SLAR), as the probability of two animals being associated  t time lags after a 

previous association (Whitehead, 1995; Whitehead, 2008). Day was used as the sampling period, t. 

The SLAR was calculated using program SOCPROG (v2.3, written by H. Whitehead and available 
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from http://myweb.dal.ca/hwhitehe/social.htm). The program also calculates approximate standard 

errors using a temporal jackknife process in which sampling periods are omitted from the analysis 

in turn (Whitehead, 1995; Whitehead, 2007). The Standardized Null Association Rate (SNAR) was 

also calculated as the association rate expected under random association (Whitehead, 2008).

Program SOCPROG was also used to fit four models (of the exponential family using a 

maximum likelihood procedure) of how association rate changes with time lag (Table 4.1). In these 

models the SLAR is fitted to a combination of processes of either constant or exponential decay 

whose effects are equally likely to occur at any time (Whitehead, 1995; Whitehead, 2008). 

4.2.4. Identification of key individuals

To  identify  the  sets  of  individuals  that  were  likely  to  be  long  term  companions,  'Key 

individuals' were identified as animals that had been associated with each other at least three times, 

each separated from all others by at least 30 days (Christal et al., 1998). 

Table 4.1. Models of the exponential family fitted by program SOCPROG to lagged association data (Whitehead, 

2008)

 

Model Description

Model 1

Model  2

Model 3

Model 4

Level of association between individuals a, invariant 
with time

Short term level of association a, followed by
 disassociation at rate 1/b
Short term level of association (a + c) falling off at 
disassociation rate 1/b, and leveling off at association
level a
Combination of two processes with two levels of
association (a + c) and disassociation rates (1/b and 1/d)

h =a

h =a⋅e−b

h =ac⋅e−b

h =a⋅e−bc⋅e−d 

4.2.5. Estimation of numbers of constant companions 

Christal  et al., (1998) compared several temporal association criteria to investigate which 

allows for the most accurate estimation of individuals’ true numbers of constant companions. They 

found that considering animals to be associates if identified within 12 hour periods, best estimates 

the  true  number  of  constant  companions.  This  essentially  corresponds  to  individuals  being 
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identified in the same day and this was the criterion used in the Azores dataset.

The number of constant companions for each 'key individual' was estimated using a mark-

recapture procedure (Christal  et al., 1998), that considered animals identified in the same day as 

associates. If we assume that individual whales that associated with each other on at least three 

days, t1, t2 and t3, each separated from the others by at least 30 days, are constant companions, the 

number of constant companions for each individual is estimated as:

   N cc=
n121⋅n131⋅n231

n12312
−1  (4.4)

where n12, n13 and n23 are respectively the number of individuals commonly identified in t1 and t2, in 

t1 and t3 and in t2 and t3, and n123 the number of associates common to the three. For key individuals 

with four or more identification periods, the number of constant companions was calculated as the 

median of all sets of three identification periods. Each key individual's unit size is then estimated as 

the number of constant companions plus one. 

4.2.6. Unit delineation

The results of the SLAR analysis (see Results) indicated that the temporal threshold of 30 

days, previously used in the Pacific (Whitehead, 1991; Christal et al., 1998) for identifying constant 

companions and units was also applicable to the Azores data. Two whales that remained associated 

for  longer  than  this  threshold  were  considered  to  be  constant  companions,  and  therefore   the 

threshold has to be larger than any temporary association period. As no short term groups seem to 

form in the Azores (see Results) the same rules may also be applied, therefore making the results 

comparable across locations. Social units were delineated following the rules previously applied for 

the  Pacific:  key  individuals  that  were  associated  with  at  least  two  others  during  at  least  two 

identification periods, were considered to be members of the same unit. In the cases where a unit 

was  represented  by  a  single  key  individual,  all  animals  associated  with  it  on  at  least  two 

identification  periods  were  considered  member  of  its  unit  (Christal  et  al., 1998;  Coakes  & 

Whitehead, 2004; Jaquet & Gendron, in Press).

The mean number of unit members for each delineated unit was calculated as the mean of 

the estimated unit size of all the key individuals that make up the unit. 
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4.3. Results

4.3.1. Identifications

The initial photographic identification dataset comprised a total of 3121 photographs (Table 

4.2).  When restricted to  photographic quality Q  ≥ 3,  the data  were limited to  a  total  of  2,217 

identifications from 988 individuals, on 433 days (mean identifications per sampling period: 5.12, 

mean individuals identified per day sampling period: 3.65). 

4.3.2. Group size estimation

The number of identifications per sampling period was low. In many cases this meant that 

once sampling periods had been divided into two periods there were often no identifications in 

common to both. It was therefore only possible to estimate group sizes for a total of 44 sampling 

periods. Estimates ranged from 7.0 to 15.5 for estimates with 0.25 < CV ≤ 0.40 and 11.0 and 16.14 

for estimates with CV ≤ 0.25. 

Table 4.2. Distribution of number of photographic identifications by year and photographic quality index (Q). 
Columns S and SQ>3 represent respectively, the total of identifications with photographic quality indexes three or 
greater and overall total.
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Q = 1 Q = 2 Q = 3 Q = 4 Q = 5 S
1987 - 4 8 6 - 14 18
1988 - 3 6 15 1 22 25
1989 - 4 10 9 - 19 23
1990 - 1 6 7 - 13 14
1991 - 2 7 7 - 14 16
1993 - 12 23 8 - 31 43
1995 - 35 69 26 1 96 131
1996 3 5 3 - - 3 11
1997 - 2 4 - - 4 6
1998 6 39 15 2 - 17 62
1999 2 91 36 3 - 39 132
2000 5 51 16 1 - 17 73
2001 - 29 26 2 - 28 57
2002 4 116 31 1 - 32 152
2003 3 101 96 5 - 101 205
2004 1 42 212 188 5 405 448
2005 8 138 228 151 9 388 534
2006 2 73 195 210 21 426 501
2007 1 121 337 206 5 548 670
S 35 869 1328 847 42 2217 3121

S
Q≥3



Table 4.3. Estimates of mean group size (Ng) and mean typical group size (Ntg) for all days which produced 
estimates with coefficients of variation within the ranges of 0 to 0.25 and 0.25 to 0.40. Also included are group 
size estimates for the same ranges when the dataset is restricted to days where the first and last identification 
photographs were taken at least five hours apart.

In addition, because the time span between the first and last identification photograph was 

often short, I also produced group size estimates restricted to days where this period was at least 

five hours (Table 4.3).

4.3.3. Identification of key individuals

68 "key individual" whales were identified using the criteria described above. The maximum 

number of sampling periods separated by at least 30 days from each other used to identify key 

individuals was nine, and the maximum time lag between sampling periods was 6926 days (more 

than 18 years).

4.3.4. Unit size estimation

The estimated unit sizes for all key individuals ranged from 2 to 20 (mean 6.52 SD 4.43) 

(Figure 4.2).

4.3.5. Temporal association patterns

The calculated SLAR showed that the level of association was fairly stable for periods of 

about 100 days (which roughly corresponds to the length of a field season), after which it decayed 

more rapidly although it never reached the level of null association during the range of temporal 

lags considered (Figure 4.3). 
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n n

18 11.42 (2.30) 11.56 26 8.98 (2.18) 9.36

3 11.50 (0.98) 12.22 4 12.29 (1.20) 12.69

CV ≤ 0.25 0.25 ≤ CV ≤ 0.40
N

g
 (SD) N

tg
 N

g
 (SD) N

tg
 

all days

at least 5 hours between first
 and last identifications
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Figure 4.2. Frequency distribution of estimated unit sizes for 68 key individuals.

While fitting of model 3 gave the lowest QAIC value suggesting it as the best explanatory 

model, the QAIC for model 2 was very similar indicating a similar level of support and that these 

models  could  not  be  distinguished using the  available  data  (Table  4.4).  The  negative  value  of 

parameter a for model 3 does not have a realistic meaning since it allows for a negative SLAR with 

time lags beyond 3,613 days, which calls into the question the suitability of this model for these 

data.

Even though model 3 usually allows for a high level of short term associations plus a second 

level of stable associations ('Constant companions + casual acquaintances', Whitehead et al., 1991; 

Whitehead,  2008), it  can be seen from visual inspection of this model's fit  that it  is essentially 

identical  to  model  2  (Figure  4.3).  This  is  also  true  for  model  4.  The  data  do  not  support  the 

existence of any higher level of association at shorter time lags. For this reason it appears that the 

simpler model 2, which also has good support, and consistent and realistic parameters is a better 

description of the temporal patterning of associations. Model 2 is labelled as 'Casual acquaintances' 

in  Whitehead  (2008)  as  its  exponential  decay  function  without  a  baseline  level  of  persistent 

associations, can be used to describe patterns of temporary short term associations, followed by 

rapid disassociation. I refrain for using that terminology here because the associations persist for 
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longer  than  100  days  so  the  nomenclature  can  be  misleading  because  over  these  timescales 

demographic processes such as mortality, births and migration can all have important effects along 

with social dymamics.

Figure 4.3.  Standardized null  and lagged association (SLAR) rates and fitted models (Table  4.4).  Error bars 
represent temporal jackknife standard errors. The SLAR curve was smoothed with a 4,000 associations moving 
average, but model fitting was performed on the unsmoothed data. 

Model 2 can be reparameterized to aid in its interpretation to provide value for measures of 

social structure and their associated standard errors directly:

h = 1
m
⋅e

− r
365.25⋅  (4.5)

where  h(t) is  the  standardized  lagged  association  rate,  m corresponds  to  the  mean  number  of 

associated individuals, and r to the annual disassociation rate (Whitehead, 2008). This model's fit 

estimates a gregariousness of 12.16 individuals (SE 1.38), with a disassociation rate of 0.195/year 

(SE 0.06) (Table 4.4).
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Table 4.4. Parameters and goodness of fit values of the models of variation of Standardized Lagged Association 
Rates (h(t)) with association time lag (t). QAIC is the quasilikelihood Akaike Information Criterion, and DQAIC 
indicates the difference between QAIC and that of the lowest from all  models. Figures in parenthesis denote 
standard errors of the estimated parameters.

4.3.6. Unit delineation

The application of the unit delineation rule to the dataset resulted in the assignment of 104 

individuals to 19 units  (Table 4.5). Of the 68 key individuals,  two were not assigned to a unit 

because no associations that met the unit delineation criteria were found. 

Unit sizes ranged between two and 17 individuals. For most units, the mean estimated unit 

size was similar to the number of whales that had been assigned to it. However for some units (Az4, 

Az8) the number of assigned individuals was more than double that of the mean estimated unit size.

Whales were identified on 433 days. Pairs of whales that had been assigned to different units 

were seen on only five of these; (units Az4 and Az8 on 8 July 2004, units Az4 and Az17 on 27 June 

2005, units Az2 and Az8 on 18 August 2006 and 27 September 2006, units Az6 and Az17 on the 17 

June 2007).
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Model Estimated parameters QAIC

Model 1 12800.93 80.38

Model  2 12720.86 0.31

Model 3 12720.55 0

Model 4 12724.52 3.97

r 

12720.86 0.31

DQAICa (x10-3) b (x10-3) c (x10-3) d (x10-3)

67.91
(6.88)

82.22
(9.02)

0.54 
(0.16)

-39.66
(17.18)

120.69
(13.09)

0..31
(17.21)

5.79
(77.84)

144.76
(17.21)

81.09
(80.85)

0.515
(2.07)

m

Model 2
 Reparameterized 

0.19
 (0.06)

12.16 
(1.38)

h =a

h =a⋅e−b

h =ac⋅e−b

h =a⋅e−bc⋅e−d 

h = 1
m
⋅e

− r
365.25





Table 4.5. Summary information for delineated social units. Unit labels are shown in the first column. Other 
columns correspond to (from left to right): the number of individuals assigned to each unit; the mean of the unit 
size is estimated from all 'key individuals' in the unit; the total number of days in which at least two unit member 
were associated; the longest time interval between the first recorded association among unit members; and the 
years in which at least two unit member were observed as associates. 

4.4. Discussion
The analysis of temporal patterns of associations of sperm whales in the Azores revealed a 

pattern unlike those previously reported for studies in the Pacific Ocean. The temporal patterns of 

association found in Gulf of California (Jaquet & Gendron, in Press), Chile (Coakes & Whitehead, 

2004) and the Galapagos Islands (Whitehead, 2003 and Coakes & Whitehead, 2004), are generally 

characterized by short term associations of more than one long term stable social unit over periods 

of a few weeks, which then disassociate into their constituent units. In these cases the models that 

best described the variation of SLAR are similar to model 3, the so-called 'Constant companions 

and  casual  acquaintances'  model,  which  accommodates  two  levels  of  association  of  different 

durations (Whitehead, 2008). This pattern is also observable in the differences between group and 

unit size estimates for these areas (Table 4.6), with the former being about twice the latter since, 

groups observed at sea are typically aggregations of more than a single social unit. 
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Unit  Individuals N days Years observed

16 14.59 (0.56) 389 1211 2004, 2006, 2007
7 3.25 (0.29) 25 6968 1988, 1989, 2005, 2006, 2007
3 4.00 (0.00) 6 403 2006, 2007
17 6.26 (0.39) 351 1520 2003 – 2007
4 4.33 (0.27) 15 2947 1998, 2002, 2003, 2006
5 6.00 (0.00) 42 773 2005, 2007
3 3.00 (0.00) 10 431 2005, 2006
11 4.87 (0.40) 258 1465 2002 – 2006
4 3.83 (020) 11 2179 2001, 2005, 2007
4 7.00 (0.00) 10 621 2004 – 2006
3 3.75 (0.09) 10 1574 2003, 2004, 2007
7 8.67 (0.44) 42 735 2005 – 2007
3 * 6 678 2005, 2007
3 * 6 236 2006, 2007
2 2.50 (0.00) 2 342 1988, 1989
4 2.00 (0.00) 15 9 2007
4 2.75 (0.00) 15 1138 2004, 2005, 2007
2 2.50 (0.00) 2 319 2003 – 2004
2 3.00 (0.00) 3 367 2005 – 2006

* No key individuals identified in unit                        

Mean estimated 
unit size (CV)

Longest lag 
(days)

Az 1
Az 2
Az 3
Az 4
Az 5
Az 6
Az 7
Az 8
Az 9
Az 10
Az 11
Az 12
Az 13
Az 14
Az 15
Az 16
Az 17
Az 18
Az 19



Table 4.6.  Estimated unit size, typical group size and disassociation rates for sperm whales in the Gulf of 
California, Galápagos. Chile, Northern Gulf of Mexico (from Jaquet & Gendron, in Press, Whitehead, 2003 
and Coakes & Whitehead, 2004, Coakes & Whitehead, 2004 and Richter et al., in Press, respectively), and 
the Azores (current study). Standard errors shown in parenthesis.  

The  observed  temporal  patterns  of  association  do  not  lend  themselves  to  the  same 

interpretation.  The  SLAR variation in  the Azores  does  not  suggest  the  formation of  temporary 

groups. It is characterized by a persistent level of association of 12.16 (SE 1.38) individuals on 

average; lasting for periods of about 100 days (essentially about a single sampling season), after 

which the level of association drops.  This suggests  that  social  units  in the Azores,  although of 

similar sizes to other locations, do not form short term groups. After the initial level of association, 

the longer term trend in association, shows a decrease until the highest time lag considered (6968 

days).  Although  it  remains  above  the  null  association  rate,  there  is  no  evidence  of  the  rate 

stabilizing at a second level. Some cases of associations lasting for at least 19 (Az2), 8 (Az5) and 6 

(Az9) years were found, indicating that Azorean sperm whales can remain associated for very long 

periods. The largest of these is the longest association period recorded to date for sperm whales. 

The frequent sighting of these social units in the Azores spanning more than a decade suggests long 

term philopatry. Apparent disassociation over periods greater than 100 days could easily be due to 

demographic  factors  such  as  dispersal,  mortality  or  movements  of  individuals  between  units 

(Christal  et  al.,  1998  estimated  this  rate  at  around  0.1  per  unit  per  year,  which  is  not  highly 

dissimilar to the disassociation rate reported here), or sampling factors such as changes in the ability 

to identify marked individuals (e.g. changes in distinct marks). An alternative explanation for the 

temporal  pattern  observed is  that  long term units  form groups that  last  for  a  season,  and then 

dissociate between years. This, however, is at odds with the result that the estimated unit sizes are 

similar to the estimated group sizes (about 12 individuals). 

Only on five out of 433 occasions were members from more than one unit identified on a 

single day, suggesting that occurrence of different units in the same location occurs only very rarely. 
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Gulf of California Chile Northern AzoresGulf of Mexico
Identification photographs 1782 4475 1971 714 2217
Identified individuals 612 1548 898 285 988
Estimated unit size 12.5 (4.51) 11.5 (6.3) 11.0 (18.0) 5.2 (3.48) 12.16 (1.38)
Estimated typical group size 28.4 (6.42) 27.7 (8.1) 31.3 (18.7) 7.4 (4.03) 11.50 (0.98) 

0.0126 (0.0297) 0.053 (0.065) 0.134 (0.185) 0.016 (0.021) 0.082 (0.009)

Galápagos

Disassociation rate (days-1)



These observations indicate that the groups of whales encountered at sea typically correspond to 

single social units. 

The few data available for the Gulf of Mexico (Jaquet et al., 2005; Richter et al., in Press) 

and other locations in the Atlantic Ocean (Sargasso Sea; Dominica: Gero, 2005) support the idea of 

differences between the Pacific and other locations. Sperm whale typical group sizes in the Sargasso 

Sea are similar in size to those found in the Azores (around 12 individuals), that corresponds to the 

estimated mean unit size in the latter location. In Dominica and in the Northern Gulf of Mexico 

group size estimates are approximately half  of these values.  The differences in social  structure 

between locations potentially correspond to underlying differences in the balance of benefits and 

costs of group living. The social unit sizes are similar in the Pacific and in the Azores suggesting 

that the determinants for this level of association are similar in both locations but are different for 

group level associations.

The advantage gained in defence against predators is a frequent factor attributed to group 

living. Animals in groups experience a reduced chance of being predated upon due to a dilution 

effect,  communal  defence  and  increased  vigilance  (Hamilton,  1971;  van  Schaik  et  al.,  1983). 

Predator defence has been suggested as one of the factors driving sperm whale group living (Pitman 

et al., 2001; Whitehead, 2003). As a consequence of their large size sperm whales do not have many 

predators. Despite reports of harassment by false-killer whales (Pseudorca crassidens) and pilot-

whales (Globicephala sp.) the killer whale (Orcinus orca) is the only species whose attacks have 

been reported to cause mortality (Jeferson et al., 1991; Pitman et al., 2001; Whitehead, 2003). Some 

of the reported attacks elicited defensive formations in which whales remain at  the surface and 

adopt a radial distribution, either with their heads or their flukes towards the centre. This ability to 

bunch together for defence may be one of the advantages of group formation in sperm whales. Early 

predator detection and increased vigilance are also other possible advantages that would increase 

with the number of animals in a group.

Most  reports  of  killer  whale  attacks  come from the  Eastern  Pacific  Ocean (Whitehead, 

2003), and there are no reports so far for the Atlantic. In the Azores despite more than 20 years of 

whale watching activities focused on sperm whales, not a single attack or harassment event has 

been  reported  (Lisa  Steiner,  personal  communication;  Serge Viallele,  personal  communication). 

Killer whale sightings are rare in the Azores (Pereira, 2008, Lisa Steiner, unpublished data) and in 

the Gulf of Mexico (O’Sullivan & Mullin 1997, Mullin & Hoggard 2000, Fulling  et al., 2003). 
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These differences may reflect differences in killer whale abundance between locations. Also killer 

whales have been shown to have different foraging specializations and food preference (Lopez & 

Lopez 1985; Bigg et al., 1990; Similä & Ugarte, 1993; Baird & Dill, 1995; Ford et al., 1998; Ford 

& Ellis, 1999; Pitman & Ensor 2003). Even in the Pacific where reports of attacks exist, mortality 

by killer whales is not likely to be a major cause of death for adult sperm whales. Several instances 

where both species were seen together with no apparent interaction have been reported, as well as 

cases where sperm whales displaced killer whales (Whitehead, 2003). Mature male sperm whales 

are  solitary  and  are  usually  found  at  high  latitudes  where  killer  whale  abundance  is  higher 

(Corkeron & Connor, 1999; Forney & Wade, 2006). Defence against predators does not appear to 

necessitate group living in adult males, although they are larger than females making them more 

difficult to prey upon. However, calves are highly vulnerable. With their smaller sizes and inability 

to dive deep they are a more likely target of killer whale attacks, and their protection is highly likely 

to be an important factor in the evolution of group living and long-term social bonds in females 

sperm whales (Whitehead, 2003). 

A particular form of cooperation which has been put forward as one of the main functions of 

sperm whale units is allomaternal care of calves (Whitehead, 1996a; Gero, 2005). Sperm whale 

calves are often escorted at the surface by social unit members other than their mothers (Gero, 

2005).  Allomaternal  care  might  allow increased  foraging  time  at  depth  for  the  mothers,  while 

leaving their calves at the surface under the care of others. This is specially advantageous for sperm 

whales where the high investment in a single offspring is threatened by the lack of protection from 

predators in an open environment. 

 Some authors have speculated that because sperm whales are long lived, they can benefit 

from the knowledge acquired by older social unit members. Cooperation in the form of communal 

knowledge is another possible driver of group formation (Whitehead, 1996a; Whitehead, 2003). 

This has also been proposed for African savannah elephants (Loxodonta africana; McComb et al., 

2001), whose social structure is very similar to sperm whales (Weilgart, et al., 1996). Nonetheless, 

it appears likely that defence against predation is a major associative factor promoting the evolution 

of social bonds in sperm whales. When it comes to defence from predators, bigger groups are better 

(Wilson, 2000)

The need for refuge should not be an important source of intraspecific competition for sperm 

whales, as none is to be found in their pelagic environment. Competition for reproductive partners 

67



is also likely not to be important for female sperm whales, as they do not form long term mated 

pairs, and one male can probably inseminate several of the oestrous females when accompanying a 

group/unit (Whitehead, 2003). However, intraspecific scramble competition for food could well be 

the main disadvantage of group living in sperm whales, and the major dissociative factor in the 

formation of social groups. Thus prey density is expected to limit maximum group sizes.

Savannah elephants show many similarities to sperm whales in their life histories and social 

structure  (Best, 1979; Weilgart et al., 1996). Both species are long lived, and are among the largest 

in their habitats. Females and their offspring live in long term stable matrilinear groups of about a 

dozen animals, which move through their habitats in a coordinated fashion. Males of both species 

disperse from the maternal groups when they mature and then rove between cooperative groups of 

related females in search of oestrous females. Despite the disparity of their terrestrial and aquatic 

habitats,  these  and  other  life  history  similarities  suggest  convergences  driven  by  similar 

evolutionary pressures.

Wittemeyer  et  al. (2005)  showed  quantitatively  that  savannah  elephants  possess  a 

multitiered society with an increasing level of cohesion from upper to lower tiers. One can find 

equivalence  in  the  levels  of  association  between  the  two  species.  Sperm  whale  social  units 

consisting of groups of long term associated females and their calves are equivalent to  second tier, 

or family groups described by Wittemeyer et al. (2005). The fusion of second tier groups into third 

tier bond groups in elephants, is equivalent to the formation of sperm whale groups by sperm whale 

social  units.  Wittemeyer  et al. (2005) observed that the cohesion of second tier  units  was little 

altered with different ecological conditions, whereas the formation of third and forth tier units was 

significantly reduced in conditions of increased intraspecific competition. These parallels support 

the idea that  multi-unit  group formation  in  sperm whales  can also be dependent  on ecological 

conditions, as suggested for savannah elephants.

 Sperm whale prey density is virtually impossible to measure directly. However, although 

primary productivity at  the surface should not  have immediate  and direct  consequences  on the 

sperm  whales  mesopelagic  prey,  it  has  been  shown  to  correlate  positively  with  sperm  whale 

distribution at large temporal and spatial scales (Jaquet & Whitehead, 1996). Export production (the 

amount of organic matter produced by primary production that is not remineralised before being 

transferred to below the euphotic zone) is the main source of organic carbon for mesopelagic and 

bathypelagic habitats (Honjo  et al.,  2008). Lampit  & Antia (1997) found that outside the polar 
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regions,  there is  a positive correlation between surface primary production and vertical  particle 

carbon  flux  normalized  to  depth  of  2000m  (the  mesopelagic/bathypelagic  boundary).  In  the 

mesopelagic zone at depths of up to 1500 m, the vertical migrations of zooplankton also play an 

important role in the way by which primary production is vertically transferred in the water column 

(Steinberg et al., 2000; Honjo et al., 2008). By engaging in diel vertical migrations to feed in the 

euphotic  zone  during  the  night  and  sinking  back  to  depth  during  the  day,  organisms  transfer 

primary production to the mesopelagic zone.  Increased organic carbon input in the mesopelagic 

environment under high primary production areas potentially contributes to increase sperm whales 

prey density, by increasing the available food source at the bottom of the mesopelagic food chain. 

This appears to be the case for all the areas where sperm whales have been studied in the Pacific. 

The primary production in the Gulf of California has been reported to reach levels at least two to 

three  fold  higher  than  in  open  ocean  areas  of  the  Atlantic  and  Pacific  at  the  same  latitudes 

(Zeitzschel, 1969). Production is usually high in the winter when strong Southerly winds induce 

upwelling of nutrient rich waters on the east side of the Gulf (Alvarez-Borrego & Lara-Lara, 1991), 

reaching on occasions one of the highest surface nutrient concentrations in any of the oceans in the 

world (Alvarez-Borrego et al., 1978). The Eastern Tropical Pacific (ETP), an area defined between 

the  coast  of  Central  and  South  America  to  140º  W,  and  between  the  Tropics  of  Cancer  and 

Capricorn, is characterized by enhanced nutrient supply to the euphotic zone caused by wind driven 

currents.  Nutrient  input  causes  primary  production  levels  in  this  region  to  be  higher  than  the 

adjacent sub-tropical gyres (Pennington  et al., 2006). Its unique oceanographic conditions have a 

strong impact on the species-habitat interactions of the animals that inhabit it. For instance even 

though yellow fin tuna (Thunnus albacares), spotted (Stenella attenuata) and spinner dolphins are 

common across the tropical oceans, only in the ETP do these species commonly associate in feeding 

assemblages (Ballance et al., 2006). Also it is the only region where four booby species (Sula spp.) 

of seabird are found, one endemic and the other three represented by the largest known breeding 

colonies (Ballance et al., 2006). 

Around the Galapagos Islands the phytoplankton biomass is at least twice that of open-ocean 

and equatorial upwelling regions of the ETP. This increased productivity is supported by abundant 

nutrients from iron fertilization from land and mixing and upwelling caused by the collision of 

equatorial upwelling current with the islands (Martin et al., 1994; Pennington et al., 2006). Finally, 

the Humboldt Current is a predominant northward flow of surface waters of  subantarctic origin 
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along the West coast of South America, from Southern Chile to Ecuador and the Galapagos Islands. 

The strong upwelling of cool nutrient-rich subsurface waters makes its zone of influence one of the 

most productive marine ecosystems on earth, supporting strong fisheries off Peru and Chile (Alheit 

& Bernal, 1993; Kudela et al., 2005; Thiel et al., 2007). 

Figure 4.4. Mean primary productivity rate for months between September 1997 and August 2007 calculated from 
SeaWiFS  remote  sensing  data  calculated  using  the  Vertically  Generalized  Production  Model  (Behrenfeld  & 
Falkowski,  1997),  downloaded  from  http://www.science.oregonstate.edu/ocean.productivity/custom.php.  Five 
zones centred at the locations of the studies by Christal  et al. (1998), Coakes & Whitehead (2004), Jaquet & 
Gendron (in Press) and the present study, are shown. The radii for the Azores and Galapagos circular areas are 
about 250km; the spatial scale of concentrations of sperm whale according to Whitehead (2003). Lower panel 
shows boxplots of the primary production rate values for the cells in each of the five areas shown on the top plot. 
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The locations from where comprehensive sperm whale social structure has been published, 

Galapagos, Chile and Gulf of California (Christal et al. 1998; Coakes & Whitehead, 2004; Jaquet & 

Gendron, in Press) are all very productive under the influence of ocean Eastern boundary, coastal 

and  equatorial  effects.  In  contrast,  as  can  been  seen  in  Figure  4.4,  the  Azores  is  a  much  less 

productive environment, situated in the North Atlantic subtropical anticyclonic gyre, characterized 

by oligotrophic conditions and low productivity (Frazel & Berberian, 1990; Longhurst et al., 1995). 

If these differences in primary production are reflected in the amount of available prey for sperm 

whales, intraspecific competition for food is expected to be greater in the Azores where resources 

are fewer.

Little is known about the bathypelagic and mesopelagic Cephalopoda that make up most of 

the sperm whales' diet, and little inference about their distribution can be made. However sperm 

whales  show variation in  the relative proportion  of  different  cephalopod families  in  their  diets 

between locations. Whales in the Azores seem to feed mostly on squid of the Octopotheuthidae and 

Histiotheuthidae  families,  whilst  Ommastrephidae  and  Ancistrocheiridae  are  additional  diet 

components  in  Chile  and  the  Galapagos  respectively  (Whitehead,  2003).  Differences  in  the 

abundance,  population  dynamics  and  distribution  of  prey  between  the  Azores  and  the  Eastern 

Pacific  locations,  are  potentially  reflected  in  sperm  whale  intraspecific  competition  and 

consequently  social  structure,  with  group  formation  in  the  Pacific  being  supported  by  larger 

aggregations of prey. 

The previous studies from the Pacific provided until now a well established image of the 

social structure of sperm whales, mostly due to the mutual support of the findings from several 

locations within that ocean. The finding of the absence of multi-unit group formation in the Azores 

indicates  that  this  level  of  association  is  not  an  omnipresent  feature  of  the  species  social 

organization.  I  hypothesise  that  the relative advantages  of multi-unit  group formation in  sperm 

whales, such as a larger number of conspecifics for communal defence, are reduced in ecological 

conditions  where  intraspecific  scramble  competition  is  increased  (by  low  prey  concentration). 

Under such conditions the benefits of forming social units, for example the cooperative care of 

calves, remain, but the disadvantages of forming larger groups are higher.

Considering the wide ranging distribution of female sperm whales, the ability to alter group 

size  in  response  to  varying  ecological  conditions  would  provide  an  advantageous  adaptive 

flexibility.  The  studies  so  far  published  present  an  overall  description  of  sperm  whale  social 

structure across several years. No analysis of sperm whale social structure in varying ecological 
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conditions  at  a  single  location  has  been  published.  Such  an  analysis  would  help  to  clarify  if 

variations in social structure due to ecological conditions were the result of fixed adaptations to 

local  prevalent  conditions  or,  similar  to  savannah  elephants,  if  sperm whale  units  vary  group 

formation depending on the experienced conditions. 

The conclusions drawn here are limited by the scarce information available on sperm whale 

ecology, particularly its prey. This precludes accurate conclusions about potential effects in social 

structure.  Another  limiting  factor  is  the  lack  of  social  structure  data  from other  locations  for 

comparison. Future studies using similar methods are needed to understand better the variation in 

sperm whale social structure across ecological variation.

In  conclusion,  this  study  provides  new  data  on  the  social  structure  of  sperm  whale 

populations  in  the  North  Atlantic  Ocean,  which  supports  a  previous  suggestion  of  differences 

between the Atlantic and Pacific Oceans. Results show that female and immature sperm whales in 

the Azores form long term social units but do not form temporary groups as found in the Pacific. 

Therefore, I suggest that, similar to what has been found for other mammalian species, differences 

in ecological conditions, mainly primary production and predation, cause the differences found in 

sperm whale social structure. 
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CHAPTER 5

Variation in sperm whale coda repertoires within the North Atlantic Ocean

                                                                                                            

5.1. Introduction

5.1.1. Variation in sperm whale codas

The study of variation in communication signals is important to inform understanding of 

how they are  influenced by selective pressures  they are  subject  to. When temporal  changes  in 

culturally transmitted signals is low, this variation may reliably reflect ancestry (Barrett-Lennard 

2000; Deecke  et al., 2000). Because cultural variation is faster than genetic variation, it has the 

potential  to reflect  more recent changes in population structure than genetic analysis. A species 

where the study of communication signals is particularly useful in revealing population structure is 

the sperm whale (Physeter macrocephalus) where signal variation was the only characteristic that 

was a reliably structured trait at spatial scales of less than an ocean basin (Whitehead & Mesnick, 

2003).

The sperm whale is a social cetacean species. This is particularly the case for females, calves 

and immature animals of both sexes which live in social units of 11-12 animals on average (Christal 

et al., 1998). Social units are defined as groups of whales that remain associated for periods of 

years. These generally matrilinear units occur in subtropical and tropical waters (Rice, 1989) and 

their  composition  is  stable  over  decades  (Whitehead  & Weilgart,  2000)  albeit  with  occasional 

movements of individuals among units (Christal  et al., 1998). These units frequently form larger 

groups with one or two other units that persist for days (Whitehead & Weilgart, 2000). Members of 

groups move in a coordinated fashion, often spreading over hundreds or thousands of meters of 

ocean (Whitehead, 2003). Males disperse from their natal units at a mean age of about 6 years, and 

gradually move to cold-water feeding grounds. In their late 20s they begin to make migrations to 
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the tropics to mate (Whitehead & Weilgart 2000). According to genetic evidence mating generally 

occurs outside the natal group (Lyrholm et al., 1999; Engelhaupt, 2004).

Occasionally sperm whales produce stereotyped series of 2 to 40 clicks called codas which 

are assumed to have a communicative function (Watkins & Schevill, 1977; Whitehead & Weilgart, 

1991; Schulz, 2007). Within the Pacific Ocean, Weilgart & Whitehead (1997) found evidence of 

both group specific dialects and geographical variation in coda repertoires.  Sperm whale social 

units in the Pacific Ocean that share their coda repertoire can be considered to be members of larger 

groupings called clans which also share mtDNA haplotypes and cannot be distinguished genetically 

(Rendell & Whitehead, 2003b). Because clans are often sympatric and because of the evidence of 

gene  flow  among  them,  their  differing  acoustic  repertoires  are  best  explained  by  cultural 

transmission  (Rendell  & Whitehead  2003b).  Within  these  clans  Rendell  &  Whitehead  (2005a) 

found reduced similarity at  geographic scales which approximately correspond to that  of sperm 

whale home ranges (200 - 1000km). Sperm whale social units preferentially associate and form 

groups with other units of the same clan despite the fact that units from different clans are often 

sympatric (Whitehead, 2003). 

Additional research in the Pacific has discovered differences in diet, habitat use, foraging 

and reproductive success among sympatric sperm whale clans (Whitehead, 2003; Marcoux et al., 

2007a;  2007b).  For example two of the clans found in the Galapagos Islands seem to respond 

differentially  to  the  El  Niño/Southern  Oscillation  (ENSO)  oceanic  climate  phenomenon.  The 

“Regular” clan shows better feeding success than clan “+1” in normal cool years, a scenario that is 

reversed in warmer ENSO conditions (Whitehead & Rendell, 2004). These observations suggest 

that clan membership has consequences in terms of individual fitness. 

It appears that sperm whale populations in the Pacific are structured such that culturally 

discrete populations often share the same habitat (Rendell & Whitehead, 2003b). The analysis of 

variation in coda repertoires is the most readily available way to evaluate cultural variation in sperm 

whale  populations.  Until  now the  study of  sperm whale  population  structure  inferred  by coda 

repertoire analysis was restricted to the Pacific Ocean. Here I present new data on spatial variation 

of coda repertoires in the North Atlantic Ocean.
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5.2. Methods

5.2.1. Field methods

The basis of the analysis  presented here is a collection of sperm whale coda recordings 

collected  between  1988 and 2006  from several  research  campaigns  targeting  sperm whales,  in 

several locations in the North Atlantic Ocean, Gulf of Mexico and Caribbean Sea (Table 5.1; Figure 

5.1). I collected the Gulf of Mexico coda recordings in 2002 - 2005 as well as the 2006 recordings 

in  the  Azores  and  Sargasso  Sea.  The  1990s  recordings  from  the  Azores  and  Dominica  were 

collected by the International Fund for Animal Welfare (IFAW) Song of the Whale team, and were 

kindly made available to this study by Jonathan Gordon. The 2004 coda recordings from Iceland 

were  also  made  by  IFAW's  Song  of  the  Whale team,  and  kindly  made  available  by  Douglas 

Gillespie. Tyler Schulz and Hal Whitehead from Dalhousie University made available the 2005 

recordings from Dominica and Sargasso Sea, and the 1992 recordings from Panama. Sperm whales 

were tracked using a combination of visual and acoustic methods and recordings of codas were 

made using a variety of equipment (Table 5.1). Photographic identifications of individual whales 

were also collected during the same encounters, and individual photographs were quality rated with 

Q values between 1 (worst quality) and 5 (best quality) (Arnbom, 1987). 

5.2.2. Coda repertoires

Codas from recordings made on the same day were grouped into daily repertoires assuming 

that in each day a single group of whales was tracked. Information on photographically identified 

individuals was used to amalgamate daily repertoires further into group repertoires. If nA and nB are 

the number of individual whales identified from good quality photographs (Q ≥ 3) on days A and B 

respectively and  nAB the number of individuals common to both days,  then I grouped the daily 

repertoires if (Weilgart & Whitehead, 1997): 

nAB ≥ 0.25 x Minimum{nA,nB}.

Only repertoires containing more than 30 codas with 3 to 12 clicks (99% of the total) were 

used in  the  analysis.  Coda vocalizations  were identified  aurally and marked for  analysis  using 

Rainbow  Click,  an  automatic  click  detector  program  (Gillespie,  1997),  which  allows  the 

measurement  of  inter-click  intervals  (ICIs).  The  ICIs  were  exported  for  further  analysis  using 
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custom written programs in Matlab (Mathworks, Inc., Natick MA, USA). 

Table 5.1. Location, years and recording equipment for the recordings used in the study.

Region Years Organization/project - Vessel Recording equipment

Azores

1991, 1993, 1995 IFAW  -  Song  of  the  Whale - 
14m auxiliary sailboat 

100m towed array; 2x Benthos AQ-4 hydrophone elements; 
Sony TCD-D1 DAT recorder @ 48kHz

2006 Whale Watch Azores - Physeter 100m towed array; 2x Benthos AQ-4 hydrophone elements; 
Minidisc recorder

Dominica

1995, 1996 IFAW  -  Song  of  the  Whale - 
14m auxiliary sailboat 

100m towed array; 2x Benthos AQ-4 hydrophone elements; 
Sony TCD-D1 DAT recorder @ 48kHz

2005 Dalhousie University - Balaena 100m towed array; 2x Benthos AQ-4 hydrophone elements; 
Foxtex VF-160 multi-track recorder @ 48kHz

Iceland 2004 IFAW -  Song of the Whale II - 
21.5m sailboat

100m towed array; 2x Benthos AQ-4 hydrophone elements, 

Gulf of Mexico

2001-2005 TAMUG/SWSS  -  Gyre  - 55m 
research ship
SWSS - Summer Breeze -  14m 
auxiliary sailboat 

100m or 200m towed array; 2x Benthos AQ-4 hydrophone 
elements; Creative Labs XTG sound card @ 96kHz or 2x 
HTI-96-MIN  hydrophones;  Creative  Nomad  recorder  @ 
48kHz

Panama
1992 Dalhousie University - Balaena 

- 12m auxiliary sailboat
30m long towed Benthos AQ-21B hydrophone; Nagra IV-
SJ  reel-to-reel  tape  recorder  (19  cm/s);  Ithaco  453 
preamplifier.

Sargasso Sea 2005, 2006 Dalhousie University - Balaena 
- 12m auxiliary sailboat

100m  long  towed  array;  2x  Benthos  AQ-4  hydrophone 
elements

5.2.3. Coda repertoire similarities

Repertoires were compared using a multivariate similarity metric (Rendell & Whitehead, 

2003a):

S AB=

∑
i=1

nA

∑
j=1

l j=li

nB 0.001
0.001d ij

nA⋅nB

,

 where  SAB denotes  the  similarity  between  repertoires  A and  B consisting  of  nA and  nB codas 

respectively,  li the number of clicks of coda  i in repertoire  A, lj the number of clicks of coda  j  in 

repertoire  B and  dij the distance between ICI vectors. The latter parameter was calculated in two 

different ways using Euclidean and Infinity norms. This similarity measure was calculated using the 

absolute ICIs as well as using ICIs standardized by the total duration of the coda (i.e. the sum of the 

ICIs). In the latter case because the sum of standardized ICIs always equals unity, one of the values 

is redundant, and so the last ICI was not included in the analysis.
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The  similarity  metrics  were  used  to  construct  four  average  linkage  dendrograms 

corresponding to  the  combination  of  either  absolute  ICIs  (AbsICI)  or  standardized  by duration 

(RelICI), and either Infinity or Euclidean norms. The dendrograms' ability to represent the original 

pairwise  distances  between  repertoires  was  measured  by calculating  the  cophenetic  correlation 

coefficients (Sokal & Rohlf, 1962). For each dendrogram the clustering reliability was evaluated 

using a bootstrap procedure as used by Rendell & Whitehead (2003b). At each bootstrap iteration 

the codas from each repertoire were randomly sampled with replacement prior to calculating the 

pairwise repertoires similarities and building the hierarchical clustering linkages. The reliability for 

each dendrogram branch was measured as the proportion of bootstrap iterations in which it was 

recreated.

 

Figure 5.1. Map of coda recording locations colour coded by region:  Azores;  Sargasso Sea;  Iceland;  
Dominica;   Panama;   Gulf of Mexico.  Also shown are the shortest distance lines over waters deeper than 
200m between each pair of repertoires. 
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The dendrograms were compared to identify common patterns across distance measures and 

ICI  standardization.  The  variation  in  coda  patterns  driving  the  clustering  was  investigated  by 

plotting  the  first  against  the  second  ICIs  for  three  click  codas,  and  the  first  two  principal 

components of a principal component analysis for four click codas when using absolute ICIs. For 

ICIs standardized by duration (RelICIs) a histogram of the first relative ICI for three click codas 

was plotted,  and the first  interval  was  plotted against  the second for  four click codas.  For  the 

remainder of coda lengths the first two principal components were plotted against each other. 

5.2.4. Spatial variation of coda repertoires

The spatial variation of coda repertoires was investigated using Mantel matrix correlation 

tests which allow correlations between non-independent data matrices from pairwise comparisons 

to be tested (Mantel, 1967; Schnell  et al., 1985). Under the assumption that relative location (i.e. 

how repertoires are arranged in space with respect  to  each other)  is  more meaningful  than the 

absolute  geographic location,  the tests  were performed on a  square  repertoire  similarity matrix 

(Euclidean norm, Absolute ICIs) and a matrix of the same size of pairwise spatial distances between 

repertoires.  The  spatial  distances  were  calculated  as  the  lengths  of  the  shortest  path  between 

repertoires  over  waters  deeper  than  200m.  This  depth  was  chosen  as  the  average  limit  of  the 

continental shelf, inshore of which sperm whales are rarely found (Whitehead, 2003). The shortest 

path was calculated by the Fast-Marching algorithm (Sethian, 1996, Deschamps & Cohen, 2001) 

implemented  by  Gabriel  Peyre  in  the  Fast  Marching  Toolbox  for  Matlab  (downloaded  from 

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=6110&objectType=FI 

LE). The Fast Marching algorithm finds the shortest path on a surface using a gradient descent of 

the distance function. A global gradient grid was created from the General Bathymetric Chart of the 

Oceans (GEBCO) one minute grid (IOC et al., 2003) by assigning a value of 2-32 to all cells with 

depths over  200m, and one to all  other  cells.  A two-dimensional  version of the Fast  Marching 

algorithm was used on this grid to find the shortest path between the mean locations of repertoires 

for each pairwise comparison (Figure 5.1). The geographical distance along the path obtained in this 

way  was  calculated  by  summing  the  great  circle  distances  between  the  central  geographical 

coordinates  of  the  grid  cells  making  up  the  path.  This  last  measure  corresponds  to  the  actual 

physical separation between the recording locations that the whales would have to swim through 

typical habitat.
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5.3. Results

5.3.1. Coda repertoires

A total of 15,246 codas having between 3 and 12 clicks, distributed by 56 group repertoires 

were used in the analysis (Table 5.2).

Table 5.2. Number of codas and repertoires recorded for each region sampled

5.3.2. Coda repertoire similarities

The calculated average linkage dendrograms had cophenetic correlation coefficients (CCC) 

between  0.932  (RelICI,  infinity  norm)  and  0.944  (AbsICI,  Euclidean  norm)  indicating  a  good 

representation of the original pairwise distances between repertoires (Figure 5.2). 

The variance explained by first two principal components used for identification of the ICI 

patterns driving clustering ranged from 83% for 12 click codas to 100% for four click codas when 

using AbsICIs (Figures 5.3 to 5.5) and from 69% for 12 click codas to 85% for five click codas for 

RelICIs. 

Generally  all  the  dendrograms  for  both  absolute  and  relative  ICIS,  and  Euclidean  and 

infinity norm metrics exhibited three major groupings of repertoires. A first branching consistently 

separated a group of two repertoires - PaN_10058, and GoM_238520 – from the remainder with a 

bootstrap support between 0.36 (AbsICI, Infinity norm) and 0.70 (AbsICI, Euclidean norm)(e.g. 

Figure 5.2). The first of these is the single repertoire from Panama recorded in 1992 and the latter 

corresponds to a group of whales identified as a 'bachelor group' of immature males in the Gulf of 

Mexico in 2005. Three other repertoires (SaS_30010, Azo_1007, Azo_1014) clustered in this 
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Region Number of repertoires Number of codas
11 3238
28 8051
13 3012

Caribbean [Car] 2 524
Iceland [Ice] 1 123
Panama [Pan] 1 298
S 56 15246

Azores [Azo]
Gulf of Mexico [GoM]
Sargasso Sea [SaS]
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branch on a few occasions. These repertoires are characterized by having high variation in ICIs and 

depending on which codas were randomly selected during bootstrap they clustered with repertoires 

from all regions. By removing these three repertoires from the analysis, bootstrap support for the 

separation of Pan_10058 and GoM_238520 from other  repertoires  increased to  values between 

0.871 and 0.989. 

Figure  5.5. Plots  of  first  two  principal  components  for  11  and  12  click  codas.  Points  are  colour  coded  by 
recording region using the same code as other figures. The percentage in parenthesis represents the variance 
explained. Insets show example coda patterns.
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The  separation  of repertoires  Pan_10058  and  GoM_238520  was  in  part  driven  by 

differences in the number of clicks. 98% of codas from these repertoires have between six and 11 

clicks. The codas from these repertoires are characterized by regularly spaced clicks lasting for over 

one second, which tended to be the longest within groups of codas with the same number of clicks 

in the dataset. 

A second major  branching,  also consistent  across  analyses,  grouped the majority of  the 

repertoires from the Azores and Sargasso Sea (e.g. Figure 5.2). More than 93% of the codas from 

the Azores and Sargasso Sea repertoires had between four and 10 clicks with the exception of 

repertoires Azo_1002, Azo_10014 and Azo_1007, in which cases codas with 3, 11 and 12 clicks had 

a representation of more than 10%. 

Bootstrap  values  ranged  between  0.108  (AbsICI,  Infinity  norm)  and  0.436  (AbsICI, 

Euclidean norm) when including all repertoires but increased to between 0.476 (AbsICI, Infinity 

norm)  and 0.851 (RelICI,  Euclidean  norm)  when removing repertoires  SaS_31164,  Sas_31165, 

Azo_1093,  Azo_1094,  SaS_30010,  Azo_1007,  Azo_1014,  and  GoM_237777  which  showed  a 

tendency to cluster inconsistently across all branches. 

Codas  from the  Azores  and the  Sargasso  Sea  tended to  be  'regular' i.e. all  clicks  were 

approximately equally spaced (e.g. Types #43 and #63; Figure 5.3). However there was a tendency 

for separation between codas of this type from different regions. This can be seen in the principal 

components  plots  (e.g. Sargasso:  types  #53,#72,  #94,  #102;  Azores:  types  #59,#75,  #93,  #103; 

Figures 5.3  and 5.4) and these patterns  tended not  to  overlap with those found in  the Gulf of 

Mexico.

The majority of the codas from Dominica had between four and six clicks and had temporal 

patterns that were distinct from those of other regions (e.g. types #51, #56 and #65 in Figure 5.3; 

type  #71  in  Figure  5.4). Despite  these  differences  both  the  repertoires  from Dominica  always 

clustered within the branch encompassing the Sargasso Sea and Azorean repertoires, but they were 

more similar to themselves than to others in the Atlantic Basin (bootstrap support >0.876)  in the 

majority of the dendrograms.

The  single  repertoire  from Iceland  also  clustered  with  the  Atlantic  basin  branch  in  the 

majority of dendrograms. No coda patterns typical of the Icelandic repertoire were found, and most 

Icelandic codas were within the typical variation found for the Sargasso Sea and Azores. 

84



When the Iceland and Dominica repertoires did not cluster within the Atlantic basin branch, 

bootstrap support  for the branch encompassing both these repertoires was much lower then the 

when  they  did.  Also,  the  Gulf  of  Mexico  repertoires  GoM_237777,  GoM_238188  and 

GoM_238558, tended to group with the Atlantic basin repertoires, the latter in all dendrograms and 

the first two only when using relative ICIs.

All dendrograms exhibited a consistent third major grouping of most of the Gulf of Mexico 

repertoires that separated from most of the Atlantic basin repertoires (e.g. Figure 5.2). Although this 

separation  was  consistent,  its  composition  was  variable  and  the  branch  was  supported  by  low 

bootstrap values ranging from 0.108 (AbsICI, Infinity norm) to 0.436 (AbsICI, Euclidean norm). 

The Gulf of Mexico repertoires were characterized by having mostly three to five click codas with 

patterns that did not overlap with those from other regions in most cases ( e.g. types #31, #33, #34, 

#41, #42, #58, #61, in Figure 5.3).

Within  the  Gulf  of  Mexico,  some  coda  types  seemed  restricted  to  a  few  repertoires. 

Repertoire GoM_238188 contained coda type #61 (Figure 5.3) that was not shared with others. 

Coda type #74 (Figure 5.4) occurred mostly in repertoires GoM_237790 and GoM_238164.

A group of two repertoires from the Sargasso Sea and two from the Azores (SaS_31165, 

SaS_31164,  Azo_1093  and  Azo_1094)  tended  to  be  grouped  together  consistently  with  high 

bootstrap values.  These four repertoires were often grouped in the major branch containing the 

GoM repertoires. Apart from these, no other Atlantic basin repertoires clustered within the Gulf of 

Mexico  branch.  When  these  Atlantic  repertoires  clustered  within  the  Gulf  of  Mexico  branch 

repertoires GoM_237438 and GoM_238172 were the two most similar to them. These two GoM 

repertoires were also the closest repertoires to SaS_31165, SaS_31164, Azo_1093 and Azo_1094 

when they occurred in  the main Atlantic  Basin branch.  The two SaS repertoires correspond to 

recordings made on consecutive days. These may have been recordings of the same group of whales 

encountered on consecutive days which the photographic identification criterion failed to join in a 

single group repertoire, which would explain their high similarity and consistent clustering. The two 

Azorean repertoires  were recorded 11 days  apart  in  1995,  and there were no identified whales 

common to those days suggesting that these were not part of the same group.

Overall, the repertoire similarity values were higher than the mean values found between 

clans but lower than those found within clans in the Pacific using the same metrics (Rendell & 
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Whitehead,  2003a;  2003b).  Bootstrap support  values  for the major  dendrogram groupings were 

lower in the Atlantic than for the branches representing the different Pacific clans.

5.3.3. Spatial variation 

With  the  exception  of  the  repertoires  within  the  Azores,  there  is  a  significant  negative 

correlation between repertoire  similarity and spatial  distance (Table 5.3).  The correlations were 

smaller when regions from within the North Atlantic basin were combined than when combinations 

contained the Gulf of Mexico region, and smaller than the correlation using all sampled regions. 

Table 5.3.  Correlation between coda repertoire similarity and distance matrices (r),  and Monte Carlo 
Mantel significance (p) obtained from 10,000 permutations. Values are shown for single regions represented by 
more than two repertoires and for combinations of regions spanning different parts of the area sampled. Also 
given are the range of values of the respective similarity and distance matrices. 

r (p) similarity range (x10-3) distance range (km)

Azores  0.0715 (0.59358) 0.499 - 5.515 5 - 235

Sargasso Sea -0.3343 (0.02001) 0.085 - 19.216 33 - 1,990

Gulf of Mexico -0.3677 (0.00189) 0.022 - 18.425 3 - 805

Azores + Sargasso Sea -0.1260 (0.03498) 0.085 - 19.216 5 - 4,291

Azores + Sargasso Sea + Iceland -0.1277 (0.06500) 0.085 - 19.216 5 - 6,722

Azores + Sargasso Sea + Dominica -0.2235 (0.00356) 0.085 - 19.216 4 - 5,767

Gulf of Mexico + Dominica  -0.3696 (0.00142) 0.022 - 18.425 4 - 4,611

Gulf of Mexico + Panama -0.3681 (0.00023) 0.022 - 18.425 3 - 3,365

Gulf of Mexico + Panama + Dominica -0.4282 (0.00011) 0.022 - 18.425 4 - 4,611

All regions -0.4603 (<0.00001) 0.022 - 19.216 3 - 10,527

5.4. Discussion

The analysis of the spatial variation in sperm whale coda repertoires in the North Atlantic 

revealed a picture unlike that previously found in the Pacific. Rendell & Whitehead (2003b) were 

able to allocate sperm whale groups in the Pacific Ocean to clear,  often sympatric vocal clans. 

These clans exhibited differences in habitat use, feeding habits, foraging and reproductive success 

(Whitehead, 2003, Marcoux et al., 2007a; 2007b), which indicates that the methods were effective 
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at distinguishing biological meaningful classes. Using similar metrics to the ones used by Rendell & 

Whitehead (2003) to analyse codas from the North Atlantic and Gulf of Mexico, I have not found 

any evidence of  sympatric but vocally distinct  clans. This result  persisted even when using non 

standardized ICIs, which show higher variability in general.

The differences in variation of coda repertoires found between the North Atlantic and Pacific 

ocean basins are unlikely to be due to differences in the acoustic data collection methods.  The 

differences  found in  coda  timing patterns  were compared  within ocean basins  where  recording 

methods were identical.  Within the Pacific, groups of sperm whales recorded in the same way, 

showed  higher  coda  repertoire  differentiation  among  themselves  than  that  found  among  North 

Atlantic groups, which were also collected using consistent methods within themselves.

The significant negative correlation between repertoire similarities and geographic distance 

in the North Atlantic, and the finding of coda patterns unique to certain regions indicates that the 

variation  of  coda  repertoires  in  the  North  Atlantic  is  mostly  geographically  structured.  This 

contrasts with the Pacific, where only after removing the variance in coda output attributed to clans 

is there a correlation between repertoire similarity and spatial distance, indicating that at the spatial 

scales analysed the clan effect is stronger than geography (Rendell & Whitehead, 2005a).  The lack 

of significant correlation between repertoire similarity and distance within the Azores suggests that 

there is no geographic structuring at the scale of a few hundred kilometres, suggested as the spatial 

scale  for concentrations of sperm whales and the scale of movements over periods of weeks to 

months (Whitehead, 2003). The lack of geographic structure may be due to movements of social 

units with similar repertoires at these scales.

The bootstrap support values for the two main dendrogram divisions (North Atlantic basin, 

Gulf of Mexico) were lower than the ones found between vocal clans in the Pacific (Rendell & 

Whitehead,  2003b).  In  addition,  only  the  separation  of  the  repertoires  from  Panama  and  the 

bachelor  group  from the  remainder  exhibited  a  similarity  value  lower  than  the  mean  between 

Pacific clans. This indicates that overall, the coda repertoire variation is lower in the North Atlantic 

Ocean.

The high similarity between the single  repertoire from Panama and that  from a Gulf of 

Mexico male  'bachelor group' suggests a link between these areas,  possibly explained by male 

dispersal. Male sperm whales are known to disperse from their philopatric natal units to form loose 
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aggregations called 'bachelor groups' (Gaskin, 1970; Best, 1979; Whitehead, 2003). These move 

considerably longer distances than females (Whitehead, 2003). The  'bachelor groups' recorded in 

the Gulf of Mexico may have originated in the Western Caribbean Sea and moved 2000km NNW 

through the Yucatan strait into the Gulf of Mexico, carrying with it a coda repertoire typical of its 

area of origin. However, the temporal stability of these male groups and the functionality of codas 

within them is unknown. This may also indicate qualitative differences in the codas produced by 

bachelor groups which may obscure or replace geographical variation for this component of the 

population

The  two repertoires  from Dominica  were  more  similar  to  each  other  than  to  any other 

repertoire,  and  more  similar  to  the  repertoires  of  the  North  Atlantic  basin  than  to  the  Gulf  of 

Mexico. The most common coda pattern found in this region (Type #51, Figure 5.3), had been 

recognized as the most common in the area as  long ago  as the early 80s (Moore  et al.,  2003), 

suggesting temporal stability of vocal repertoires within this region. 

Codas are most commonly recorded from social groups of females and so the recording of 

codas in Icelandic waters, at a latitude where usually only males are found, is noteworthy. At the 

time of recordings no calves were seen, and  it was not clear if the group recorded was composed of 

females.

The differences in coda repertoire variation between the Eastern Tropical Pacific and the 

North Atlantic are paralleled by the differences I have found in social structure between the two 

areas (Chapter 4). The apparent lack of temporary multi-unit group formation found in the Azores 

may remove the need to identify social units as potential group partners. This could account for the 

absence of vocally distinct  clans in the wider North Atlantic and Gulf of Mexico, assuming of 

course that the social structure that I have shown in the Azores is similar to that in the wider oceanic 

basin, or at least for the regions sampled. As argued in Chapter 4, the absence of multi-unit group 

formation in the Azores may be due to reduced predation pressure and to increased costs of forming 

larger  groups  because  of  reduced  food  availability  compared to  high  productivity  areas  in  the 

Eastern Tropical Pacific. 

The idea that vocal differences between Pacific vocal clans function primarily as the means 

by which social units identify others with which to associate, assumes that there are advantages in 

associating with certain units over others. This is consistent with preferred group formation among 
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units with similar vocal repertoires in the Pacific (Rendell & Whitehead, 2003b; Whitehead, 2003).

Using stable isotope analysis Marcoux et al. (2007b) found differences in diet between clans 

in the same area and proposed that these are due to different foraging behaviours, with some groups 

using  more  inshore  resources  and  others  depending  more  on  pelagic  food  sources.  Similar 

ecological niche preferences and requirements for coordinated group movement within multi-unit 

groups with a particular foraging behaviour may favour the grouping of units possessing that same 

behaviour. The fact that groups from different clans seem to move through habitat and synchronize 

diving in different ways suggests that this is the case (Whitehead, 2003). Whales could benefit from 

associating with others with similar movement patterns and foraging strategies, because they would 

be more likely to use the same space in similar ways. This benefit may be a selective pressure for 

the development of signals that are specific to groups having similar foraging specializations in the 

Pacific. The lack of multi-unit group formation may remove the pressure for vocal differentiation 

between units  resulting in  the apparent absence of sympatric  vocal  dialect  groups in  the North 

Atlantic, or units may not have specialised in their feeding strategies.

Some studies of the geographical variation in bird song between closely related species have 

noticed cases where differences  in song type  are larger in sympatry than in allopatry (Brown & 

Lemon, 1979; Wallin, 1986). This has been explained as a form of character displacement where the 

presence of the other species leads to divergence of song characteristics to maximize differences 

between them. Similarly, the acoustic structure of chimpanzee (Pan troglodytes) pant hoots has also 

been shown to be more distinct between neighbouring groups than between distant communities. 

This variation is not explained by genetic differences and suggests vocal convergence within groups 

and vocal divergence between neighbouring groups (Crockford et al., 2004). In the Pacific character 

displacement  might  account  for  the  divergence  of  coda  repertoires  between  social  units  with 

different foraging specializations, leading to the evolution of vocal clans. If vocal clans are the 

result of a pressure for differentiation of units possessing different foraging strategies, and foraging 

specializations  are  not  present  in  the  North  Atlantic,  this  could  explain  why  the  level  of 

differentiation among sympatric vocal clans found in the Pacific is greater than that found among 

groups within and among regions in the North Atlantic.

Without any selection process for differentiation between sympatric groups, the observed 

geographic variation across the North Atlantic may be explained by cultural drift among philopatric 

social units. Using samples collected in the Azores and Gulf of Mexico, Lyrholm et al., (1999) and 

Engelhaupt  (2004)  found support  for  breeding  outside  maternal  groups  and  transfer  of  genetic 

89



material  over  long  ranges,  which  does  not  suggest  bi-parental  inheritance  of  coda  repertoires. 

Findings  of  low  diversity  but  significant  differentiation  between  regions  and  two  mtDNA 

haplotypes unique to the Gulf of Mexico support social philopatry of females (Engelhaupt, 2004). 

Long term photographic identification data also support long term philopatry, at least in the Azores 

where several social units have been re-identified over periods of up to 19 years (Chapter 4). In the 

Northern  Gulf  of  Mexico,  sperm whales  have  been  identified  in  the  same group on  occasions 

separated by periods of up to two years (Jochens et al., 2008). No long term identification data exist 

for Sargasso Sea and Iceland for comparison. 

The sympatric occurrence of vocally distinct groups in the Pacific was used to argue against 

codas constituting local adaptations. The lack of such observation in the Atlantic precludes the same 

interpretation. However, it is unlikely that codas constitute optimal adaptations to local conditions. 

Sperm whale clicks are short broadband pulses which do not have much signal parameter space for 

coding in the frequency domain. The coding scheme of codas seems to be based on the time domain 

through variation of the ICIs. Such a scheme is less constrained by propagation effects than other 

signals based on frequency domain coding, and therefore it is not expected to be affected by local 

conditions.

Despite suggestions of less direct genetic effects that may determine coda repertoires, such 

as genomic imprinting (Brown, 2001) and differences in the effectiveness of mitochondrial proteins 

affecting  the  energetic  budget  of  animals  (Janik,  2001),  social  learning  remains  the  most 

parsimonious explanation for the variation of coda repertoires reported here. The macrogeographic 

(Mundinger, 1982) differentiation between repertoires of groups that likely never interact (e.g. from 

the Gulf  of  Mexico  and the  Azores)  may not  be functional  and only the product  of  imperfect 

cultural transmission of repertoires within units/groups, i.e. cultural drift.

In conclusion I have found that the variation of sperm whale coda repertoires in the North 

Atlantic and Gulf of Mexico basins is mostly geographic. It suggests differentiation of the Gulf of 

Mexico from the North Atlantic basin which in turn shows weak, but detectable, spatial variation in 

repertoires.  This pattern of variation is unlike that found for the Pacific Ocean, where sympatric 

dialects were found. I suggest that the differences in coda repertoire variation between ocean basins 

may be related to differences in the social structure between the locations studied in both oceans 

which  in  turn  reflect  ecologial  differences  (Chapter  4).  In  the  Pacific  the  differences  in  coda 

repertoires  between clans  may result  from selection  for  advantages  gained by multi-unit  group 

formation between social units with similar foraging behaviour. The absence of temporary multi-
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unit groups in the Atlantic may thus remove the pressure for vocal differentiation between units. 

The differences in coda repertoires among different geographical locations here may result from 

cultural drift.
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CHAPTER 6

General discussion

                                                                                                                         

6.1. Introduction 

The  sperm whale  has  one  of  the  largest  geographic  ranges  of  any  mammal  on  Earth. 

Throughout this range the species inhabits habitats in both high and low latitudes and is subject to a 

range of various ecological conditions (Rice, 1989; Whitehead, 2003). The evolution of the natural 

world’s most powerful long range bio-sonar, based on pulsed sounds, has undoubtedly given the 

species a unique advantage for exploiting resources inaccessible to other marine mammals,  and 

contributed significantly to the success of the species as a mesopelagic predator whose range covers 

all oceans. The selective pressure for the development of both highly specialized organs that allow 

the production of loud directional pulses, to an extreme unparalleled in other Odontocetes, and of 

the neural hardware for processing echoes may have constrained the evolution of communication in 

this species to the use of similar pulsed sounds. 

Group living may well constitute another important adaptation in allowing the species to 

occupy a wide spatial range and exploit deep waters. Protection in numbers, especially for calves, 

and allomaternal care, may have been advantageous as the species expanded its range into the deep 

ocean. Sharing the burden of caring for surface-bound calves among social unit members increases 

the time adult females have available to spend in long and deep foraging dives, compared to the 

case of a solitary female and her calf. Moreover, it is easier to protect a calf from predators within a 

group where conspecifics may join forces in defence of calves. 

The  evolution  of  such  a  social  system,  along with  the  necessity of  coordinated  activity 

among group members, required a communication system. Given the characteristics of the aquatic 
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medium, where chemical signals  disperse in a slow and unpredictable way, and light is  greatly 

attenuated, acoustic communication is the most likely modality for a long range communication 

system. As mentioned above, sperm whales show extreme adaptations for long range sonar based 

on  the  production  of  powerful  click  vocalisations.  This  may  have  constrained  the  species’ 

communication system to use similar pulsed sounds resulting in the distinctive and unusual coda 

vocalisations of sperm whales, a rare example of a rhythm-based communication system.   

This interplay between communication signals and social structure has been demonstrated 

by studies in the Pacific Ocean, where sperm whale social units were found to preferentially group 

with others who share the same vocal repertoire. Despite these important findings, our knowledge 

of sperm whale social structure and vocal behaviour is still  restricted and comes from studies of 

populations over a small  part of the species’ distribution. 

In this study I developed and tested two new methods of measuring inter-click intervals from 

sperm whale clicks. I investigated coda repertoire variation at the individual level within a single 

social  unit  to  test  the  hypothesis  that  variation  within  coda  type  could  be  used  for  individual 

identification. I also set out to investigate aspects of sperm whale behaviour in the North Atlantic 

Ocean to compare with existing findings  that were in  great part restricted to the Pacific. I studied 

social  structure  and  coda  repertoire  variation  in  the  North  Atlantic  from  locations  where 

longitudinal data already existed. 

6.2. Automatic inter-pulse interval measurement

Sperm whale clicks have a characteristic multi-pulse structure that allows for the estimation 

of the whale's size from the measurement of the inter-pulse interval (IPI) (Backus & Schevil, 1966; 

Norris  &  Harvey,  1972).  This  potentially  allows  for  passive  acoustic  estimation  of  the  size 

distribution of sperm whale populations (Adler-Fenchel, 1980), and has also been successfully used 

to investigate individual whale vocal repertoires (Schulz, 2007).  However the measurement of IPI 

is not straightforward, and is in many cases complicated by clicks which do not conform to the 

expected  multi-pulse  structure  (Zimmer  et  al.,  2005b).  In  Chapter  2  I  developed  two new IPI 

measurement  methods  that  automatically  integrate  information  from  several  clicks  with  the 

objective of providing a fast,  accurate,  and objective automated means of estimating IPIs from 

series of clicks made by diving whales, that is also robust to clicks that do not show a clear multi-
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pulse structure. These two automatic methods were compared with one manual and three automatic 

measurement  methods  in  terms  of  consistency  and  uncertainty.  One  of  the  newly  developed 

methods, that averages the autocorrelation functions of several clicks in a series, provided the most 

consistent and least uncertain estimates off all the automated methods.

These methods are of considerable applied value for surveys of sperm whale populations. 

They should also prove to be an important tool in future studies of individual coda repertoires 

through the use of  IPIs,  especially for  analyses  of foraging dive clicks  where the multi-pulsed 

structure is usually not as obvious as coda clicks. When whales within a group have individually 

distinct IPIs, codas can be assigned to individuals by comparing IPIs from coda clicks to foraging 

clicks recorded  from a single animal (Schulz, 2007). Automatic IPI measurement methods is useful 

not only in the initial identification of IPIs unique to each individual, but also  at later stages if 

individual repertoires are to be tracked over periods of years where individual IPIs may change due 

to growth. 

6.3. Individual discrimination in sperm whale codas

The identification of preferred associations and avoidances within sperm whale units (Gero, 

2005; Gero  et al., 2008) is one indication that group members may have a means of identifying 

other individuals. Due to the limitations of other sensory modalities in the aquatic environment, 

identity is likely to be transmitted over medium to long ranges using acoustic signals. 

The  initial  description  of  codas  suggested  that  they  were  indeed  individually  specific 

(Watkins  &  Schevill,  1977).  Since  then  however,  the  results  of  other  studies  have  not  been 

consistent with the hypothesis that coda types or repertoires were  individually specific (Weilgart & 

Whitehead, 1993). Recently Schulz (2007), who investigated the individual coda repertoires within 

a single social unit, showed that it was not possible to distinguish among five of the seven unit 

members by their coda type repertoires. However, I hypothesised that variation within coda types 

could  be individually specific and I tested this in Chapter 3. I showed that in one of the three coda 

types  tested,  the  within  coda  type  variation  of  non-standardized  inter-click  intervals  allowed 

discrimination  between  individual  whales.  The  fact  that  one  coda  type  allowed  for  individual 

distinction and others did not, suggests that only a subset of coda types may function in this way. 
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Coda types with different functions may be subject to different selective forces. For example 

selection may act to maximize differences between individuals in coda types used for individual 

identification,  whereas  social  affiliation  or  group  membership  signals  may  be  subject  to 

convergence  pressures,  leading  to  shared  call  characteristics.  Temporal  stability  may  also  be 

different depending on the function. In coda types that function as identity signals within social 

units, constant exposure to unit members allows individuals to track changes in the call structure of 

others, and may be less stable than codas subject to a pressure to conform among individuals which 

are not in permanent contact (e.g. clan-specific coda types which still need to be recognised after 

potentially long separations between social units). For these reasons, future studies of the variation 

of coda repertoires may benefit from looking at different coda types separately. Similarly, studies of 

coda  functionality  will  need  to  include  hypotheses  that  take  into  account  the  possibility  that 

different code types have different functions.  

Five of the seven individuals in the social unit studied in Chapter 3 shared the most common 

coda types (Schulz, 2007). However one adult female and her calf each produced its own distinct 

coda type. This was interpreted as a response to the importance of these individuals locating each 

other  to  ensure effective nursing and calf  care,  and the need for  a   mutual  recognition system 

(Schulz, 2007). This suggests the presence of two individual recognition schemes; one for mother-

calf pairs based on coda type, and another based on within type variations for other unit members. A 

possible explanation that reconciles both observations is a scenario where identifying individuals 

from within type variation requires that whales interact and learn socially over long periods of time. 

Since the calf has not experienced such a learning period, but has an important requirement for 

locating  its  mother,  a  less  subtle  coding  scheme  based  on  different  coda  types  may  be  more 

adaptive. 

The  indication  that  coda  type  '5  Regular'  may  serve  to  transmit  identity  within  the 

investigated social unit does not explain the function of other coda types. In addition to individual 

identification,  codas  have  been  suggested  to  function  as  means  of  “maintaining  social  bonds” 

among social unit members (Schulz, 2007) and as 'clan signatures' in mediating seemingly altruistic 

behaviour among units with similar vocal repertoires (Rendell & Whitehead, 2003b). The two coda 

types  for  which  individual  specific  variation  was  not  found  may  function  in  these  ways. 

‘Maintaining social bonds’ is however, still a somewhat vague function and should not be viewed as 

a complete explanation – we still ultimately need to know exactly how these calls function within 
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the context of social bonds. Also, it is still not clear why many different codas types are produced in 

the context of these suggested functions. 

6.4. Sperm whale social structure 

In  Chapter  4  the  analysis  of  the  temporal  patterns  of  association  (Christal  et  al., 1998; 

Coakes & Whitehead, 2004; Jaquet & Gendron, in Press) revealed sperm whales in the Azores form 

long term stable social  units  of about 12 individuals which is  in line with results  from several 

studies from the Pacific. However, unlike previous findings reported from the Pacific (Christal  et  

al., 1998; Coakes & Whitehead, 2004; Jaquet & Gendron, in Press), Azorean sperm whales do not 

tend to form temporary groupings of several  units,  indicating that multi-unit formation is not a 

general feature of the species’ social system. I suggest that this variation is caused by underlying 

differences in ecological conditions, in particular prey availability and possibly predation pressure. 

Results showing a social structure characterized by temporary grouping of social units, all 

originate  from studies  in  the Eastern Tropical  Pacific  and coast  of  Chile  (Christal  et  al. 1998; 

Coakes & Whitehead, 2004; Jaquet & Gendron, in Press). The primary production in the Gulf of 

California has been reported to reach levels at least two to three times higher than in open ocean 

areas of the Atlantic and Pacific at the same latitudes, and on occasions reaching one the highest 

surface nutrient concentrations in any of the oceans in the world (Zeitzschel, 1969; Alvarez-Borrego 

et al., 1978). The Eastern Tropical Pacific (ETP), is characterized by primary production levels that 

are higher than the adjacent sub-tropical gyres (Pennington  et al., 2006). Around the  Galápagos 

Islands the phytoplankton biomass is at least twice that of open-ocean and equatorial upwelling 

regions of the ETP (Martin  et al., 1994; Pennington  et al., 2006). The strong upwelling of cool 

nutrient-rich subsurface waters off Chile and Ecuador makes its zone of influence one of the most 

productive marine ecosystems on earth (Alheit & Bernal, 1993; Kudela  et al., 2005; Thiel  et al., 

2007). Also,  these  areas  are  affected  by  the  El  Niño-Southern  Oscillation  (ENSO)  climate 

phenomenon, which introduces temporal variability at scales of years to decades. This phenomenon 

has  been  shown  to  affect  foraging  success  of  different  clans  in  different  ways  (Rendell  & 

Whitehead, 2004), possibly by differentially affecting the dynamics of the prey on which different 

clans have specialized, and/or altering the relative efficiency of the different foraging strategies 

used by the  clans.  In  comparison,  the  Azores  are  much less  productive.  Situated  in  the  North 
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Atlantic subtropical anticyclonic gyre, this location is characterized by oligotrophic conditions and 

low  productivity  (Frazel  &  Berberian,  1990;  Longhurst  et  al.,  1995).  These  differences  are 

consistent with reduced intraspecific competition for food in the Pacific where primary production 

may correlate with higher food availability, compared to the Azores where less abundant prey may 

increase scramble competition.  Lower food availability in the Azores may also indirectly affect 

social structure through demographic effects, by supporting a smaller population in this area, and 

therefore decreasing the number of units available to form groups. 

Other  cetacean  species  also  show  variation  in  social  structure  depending  on  location 

ecological conditions. Around Midway Atoll (Hawaii), spinner dolphins (Stenella longirostris) live 

in  a  stable  society of  long-term associates  while  off  the large  Hawaiian  Islands  they live in  a 

fission–fusion  society  with  substantial  day-to-day  variability  in  group  size  and  membership 

(Karczmarski et al., 2005). Karczmarski et al.  (2005) suggested that around Midway Atoll, where 

there is easy access to deep water foraging locations and reduced availability of sheltered shallow-

water locations in which to rest in daytime, it is less costly not to disperse and stable societies are 

favoured. Around the larger islands a more variable society is favoured due to a more heterogeneous 

environment with several locations capable of holding a proportion of the foraging groups. In this 

case, social structure seems to be affected by predation pressure through the availability of sheltered 

areas that are thought to be important in protection from shark predation in deep waters (Norris & 

Dohl, 1980). In comparison, in their oceanic habitat, sperm whales have no access to protection 

from sheltered areas and possibly rely on their social unit/group members as means of reducing 

predation pressure.

Killer whales (Orcinus orca) are likely to be the main predator of sperm whales (Whitehead, 

2003). Stronger predation pressure in the Pacific may favour larger groups for increased protection. 

Low sighting rates of killer whales in the Azores (Pereira, 2008, Lisa Steiner, unpublished data) and 

in the Gulf of Mexico (O’Sullivan & Mullin 1997, Mullin & Hoggard 2000, Fulling et al., 2003) 

and the fact that most attacks of killer whales on sperm whales have been reported from the Pacific 

(Jeferson  et  al.,  1991;  Pitman  et  al.,  2001;  Whitehead,  2003),  support  the  idea  that  predation 

pressure is higher in the Pacific. 

This  combination  of  reduced  intraspecific  competition  and  possibly  higher  predation 

pressure in the Pacific, may favour the formation of larger groups compared to the Azores where 

reduced  prey availability may increase the costs of grouping with other social units. However, the 
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sizes of social units are similar between the Pacific locations and the Azores. This suggests that 

these units are either less influenced by ecological factors, or under the influence of ecological 

factor that are similar among locations, and that the benefits of these associations are higher than 

the costs of forming them.

Killer  whales  represent  another  example of how ecological  factors  may influence social 

structure in cetaceans. Killer whales in the nearshore waters of the eastern North Pacific occur in 

two sympatric  forms  that  show remarkable  differences  in  their  diets.  The  'resident'  form feeds 

exclusively on fish while  the  'transient'  predominantly feeds  on pinnipeds  and small  cetaceans 

(Ford et al., 1998). The differences in foraging specialization are also reflected in social structure 

and  population  genetics.  Genetic  studies  show  that  both  forms  of  killer  whales  represent 

monophyletic  groups,  suggesting that  differentiation  between them occurred  only once (Barret-

Lennard, 2000). Like sperm whales, killer whales form long term stable social groups. Pods (groups 

of whales that travel together more than 50% of the time, as observed over periods of years) of 

'residents' are made of one to three subpods. These subpods comprise of two to nine individuals of 

mixed age and sex which rarely separate from each other for more than a few hours. These subpods 

appear to contain a single matriline and result from lack of dispersion from natal groups by both 

sexes. 'Transients' on the other hand, form pods containing between one and four individuals, but 

are most commonly found in groups of three. This is the group size at which individual energy 

intake rates are maximized, which are thought to result from a synergistic effect of increased prey 

detection and capture rate (Baird & Dill, 1996). In 'transients', individuals of both sexes can either 

disperse or remain in their mother's pod (Bigg et al., 1990; Baird, 2000). These differences in social 

structure have been suggested to relate to differences in the balance of costs and benefits of groups 

living  associated  with  feeding  on  different  prey (Baird,  2000).  Due  to  the  increasing  costs  of 

forming groups larger than three individuals, 'transients'  may benefit from dispersing from their 

natal pods, and dispersal may be conditional on the number of individuals already present in the 

natal pod  (Baird, 2000). Even though groups of three individuals are favoured during foraging, 

'transients'  occasionally  form  temporary  groups  of  larger  animals,  which  suggests  that  other 

advantages may be gained by individuals in larger groups when food related competition is reduced, 

or when cooperation may provide benefits in the capture of large or dangerous prey (Baird, 2000). 

In contrast, preying on fish may result in less constraint on the sizes of 'resident' pods compared to 

'transients'  who prey upon marine mammals. Less constrained by group sizes, 'residents' of both 
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sexes may receive benefits in terms of inclusive fitness (Hamilton, 1964) by not dispersing and 

providing care for related calves (Waite, 1988). The costs associated with inbreeding from lack of 

dispersal  in  'residents'  may be circumvented by mating  between pods,  rather  than  within them 

(Baird, 2000).

Although both sperm and killer whales form long term social units,  their  social  systems 

show differences. Male dispersal seems to be obligatory in sperm whales and at least optional in 

'transients' and absent in 'residents'. Predation may be a less important factor in killer whale social 

systems  as  they may have  fewer  predators  than  sperm whales.  Even though different  foraging 

specialisations have been proposed for different sperm whale clans in the Pacific (Marcoux et al., 

2007b), no differences in social structure are apparent; a social structure characterised by multi-unit 

groups seems to be present in all clans (Whitehead, 2003). However, I am not aware of any analysis 

that  specifically looked for differences in social  structure between clans. Sperm whales are not 

thought to be cooperative hunters, in the sense that several individuals increase their capture rate 

from cooperative handling of single prey, thus such benefits may not be a determinant of their social 

structure as in the case of 'transient' killer whales.  

Variation  in  the  grouping  of  social  units  into  larger  groups  dependent  on  ecological 

conditions, such as suggested in Chapter 4, has also been found in African savannah elephants 

(Loxodonta africana). Female savannah elephants' society is characterised by a multitiered structure 

with an increasing level of cohesion among individuals from upper to lower tiers (Wittemeyer et al., 

2005).  In the first  (i.e. lowest)  tier,  adult  females and their  calves represent  the most regularly 

associating individuals, which coalesce into 'family units' in the second tier, which in turn coalesce 

into 'extended family units' in the third tier and in the fourth-tier 'episodical units'. Wittemeyer et al. 

(2005) observed that the cohesion of second tier units, was little affected with different ecological 

conditions, whereas the formation of third and forth tier units was significantly reduced in the dry 

season, which may relate to increased intraspecific competition. Wittemeyer  et al. (2005) argued 

that second tier units are organized below the ecological threshold at which variability in the social 

costs and benefits of forming these units, can significantly affect their formation and cohesion. On 

the other hand, the balance of the costs and benefits of forming third and fourth tier social units is 

much more affected by ecological factors and their formation may be reduced when conditions are 

less favourable.  

Sperm whales share many aspects  of their  life history with savannah elephants, perhaps 
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more than with other cetacean species, suggesting that these two species' social organization may 

well be the result of convergence under similar selection pressures. Both species are long lived, 

among the largest in their habitats (and there is thus little predation pressure on adults), both show 

male dispersal and in both females live in strictly or generally matrilinear social units (Lee & Moss, 

1999; Whitehead,  2003). Equivalences between social  units of both species can be drawn, with 

savannah elephant second tier units corresponding to sperm whale social units, and elephant third 

tier units corresponding to sperm whale multi-unit groupings found in the Pacific. As suggested for 

savannah elephants, the benefits of forming sperm whale social units may be less dependent on 

ecological conditions, while the balance of the costs and benefits of multi-unit group formation may 

be more affected by ecological factors.

Protection from predators in larger groups is  potentially a benefit  for both the savannah 

elephants'  second  tier  and  sperm whale  social  units.  However  mature  sperm whale  males  are 

solitary, which indicates that the group living may not be necessary for protection from predators, 

although they are much larger than females making them more difficult to prey upon. The formation 

of long term relationships such as found in both species may enhance protection from predators by 

providing a more stable group compared to more variable associations, although many other species 

seem to find protection in numbers without long-term relationships. This would be specially useful 

in an environment where the presence of conspecifics may not be easily predicted such as the sperm 

whale's open ocean habitat. The benefits of  both savannah elephants second tier and sperm whale 

social  units  may  also  be  long-term,  through  investment  in  offspring  (Wittemyer  et  al.,  2005; 

Whitehead, 2003). Except human caused mortality, most predation of savannah elephants seems to 

target juvenile individuals (Ruggiero, 1991; Wittemyer et al., 2005). Sperm whale calves must also 

be an easier target for predation than the much larger adults. Both adult savannah elephants and 

sperm whales exhibit allomaternal care of calves (Lee, 1987; Whitehead, 1996; Payne, 2003; Gero, 

2005). In groups with calves, adult  sperm whale stagger their  dives more than when no calf is 

present, reducing the time calves are unaccompanied by an adult at the surface (Whitehead, 1996). 

Savannah elephant  calves  are  nursed by females other  than their  mothers (Lee,  1987) and calf 

mortality seems to decline as the number of allomothers in the family unit (i.e. second tier social 

unit) increases (Payne, 2003). These observations suggest that, in addition to potential benefits in 

protection from predators for themselves, the care and protection of calves may well be one of the 

main advantages provided by the formation of savannah elephant second tier  and sperm whale 

social units.
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Apart from mother-calf pairs, both sperm whale's social units and savannah elephant second 

tier units are probably the relationship levels where inclusive fitness (Hamilton, 1964) benefits are 

greatest, as members of these units are more likely to be related than in higher levels. This may also 

act to create and maintain relationships at this level, as has been suggested by Wittemyer  et al.  

(2005) for savannah elephants.

As well  as the more permanent benefits of elephant second tier and sperm whale social 

units, additional benefits may be gained from forming third and fourth tier units in elephants and 

multi-unit groupings in sperm whales, when the costs of forming these are reduced. Protection from 

predators  may  well  be  an  advantage  at  these  levels,  because  benefits  such  as  dilution  effect, 

increased vigilance and defence ability would increase with the number of animals. Protection from 

predators has been proposed as the main advantage of sperm whale multi-unit group formation 

(Whitehead, 2003). In the case of elephants, additional benefits of third and fourth tier units may 

include larger  aggregations  during the breeding  season that  may more easily attract  mates  and 

intragroup  information  exchange  (Moss  & Poole,  1983;  Foley,  2002;  Wittemyer  et  al.,  2005). 

Because individuals  in  larger  groups  also incur  higher  costs  related with competition,  both the 

formation of sperm whale multi-unit groups and elephant third tier units may be conditional on 

ecological conditions. 

Aspects of sperm whale multi-unit formation suggest that, besides protection from predators, 

other advantages may be gained at this level of association.  If the advantages of grouping sperm 

whale social units were restricted to protection from predators in large groups, no preference in 

association among units would be expected, or at least preference would be based on unit sizes. 

However, the formation of multi-unit groups in the Pacific is non-random, as groups tend to be 

formed with other units that share their vocal repertoire, even though sympatric units with different 

repertoires are found (Whitehead, 2003). This suggests that other advantages may be important at 

this level of association.

6.5. Coda repertoire variation 

Previous studies in the Pacific Ocean have revealed that sympatric sperm whale social units 

could be grouped into clans with different dialects. These clans also showed differences in diet, 

habitat use, foraging, and reproductive success, suggesting that clan membership has implications in 

terms  of  individual  fitness  (Whitehead,  2003;  Marcoux  et  al.,  2007a;  2007b).  In  Chapter  5,  I 
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analysed the variation in coda repertoires in the North Atlantic and Gulf of Mexico and did not find 

sympatric dialects.

The  parallel  finding  of  differences  in  sperm whale  social  structure  and  coda  repertoire 

variation between locations studied in the North Atlantic and Eastern Tropical Pacific suggests a 

link  between  these  two aspects  of  sperm whale  behaviour.  In  Chapter  5,  I  suggested  that  the 

differences in coda repertoire variation between ocean basins may be related to differences in social 

structure  between  the  locations  studied  in  both  oceans.  In  the  Pacific  the  differences  in  coda 

repertoires among clans may result from character displacement of signal parameters, driven by 

individual  advantages  gained  by  group  formation  between  social  units  with  similar  foraging 

specializations. The absence of temporary multi-unit groups in the Atlantic may thus remove the 

need for vocal differentiation among units, and explain why marked differences among sympatric 

groups are not found. However a great variety of codas are still produced in the Atlantic, which 

indicates  that  they  must  have  other  functions  besides  simply  advertising  clan  membership.  In 

Chapter  3,  I  found support  for  identity transmission  as  a  function  for  one of  three  coda  types 

compared, and others have found evidence for the use of codas as social affiliation signals (Schulz, 

2007). Different functions for different coda types may, at least partially, account for the variety of 

codas produced.

6.6. Foraging specialisation and the evolution of vocal dialects in cetaceans

The suggestion that sympatric foraging specializations may exist  in the Eastern Tropical 

Pacific,  and  be  absent  in  the  North  Atlantic,  calls  for  a  hypothesis  that  could  explain  these 

differences. A comparison with other species that also show sympatric foraging specializations  may 

provide some insight.  The cultural transmission of different foraging strategies was suggested to 

have initiated the division between fish-eating and mammal-eating killer whale forms (Baird et al., 

1992; Boran & Heimlich, 1999; Baird, 2000). The foraging specialization of killer whales pods im 

the eastern North Pacific may have occurred because resource variability and abundance allowed 

for niche partitioning -  an abundance of fish and marine mammal prey that could support  two 

foraging specializations simultaneously. This species also seems to exhibit foraging specialization 

in the productive waters of the Antarctic. There, ecotype A killer whales seem to feed mostly on 

Antarctic  minke  whales  (Balaenoptera  bonaerensis),  whereas  ecotype  B  is  thought  to  prey 
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preferentially on pinnipeds, and occasionally on other cetaceans and penguins. Ecotype C killer 

whales are believed to prey mainly on fish and have been reported to interact with other marine 

mammals and penguins without any predation attempts (Pitman & Ensor, 2003; Krahn et al., 2008). 

Killer whales in other locations do not seem to have such niche partitioning. For example in the 

Crozet Islands the same killer whales have been observed attacking fish, penguins, pinnipeds and 

large  cetaceans  (Guinet,  1991;  1992).  In  Hawaii,  located  in  the  oligotrophic  North  Pacific 

subtropical gyre,  there are indications that killer  whales do not exhibit  foraging specializations, 

feeding both on marine mammals and cephalopods (Baird et al., 2006). In other locations only one 

feeding specialization has been identified. For example in inshore and coastal Northern Norway 

killer whales seem to have specialized in eating herring (Simila, 1997). 

Sperm whale clans may also result  from cultural  transmission of foraging behaviour,  as 

suggested for killer whales. Using stable isotopes analysis, Marcoux et al., (2007b) found evidence 

of differences in diet among clans in the same area and proposed that these are due to different 

foraging  behaviours,  with  some  groups  using  more  benthic  or  inshore  resources  and  others 

depending more on pelagic resources.  Additional studies have reported differences between clans 

in terms of habitat use, foraging and reproductive success, indicating that clan membership likely 

has  consequences  in  terms  of  individual  fitness  (Marcoux  et  al.,  2007a;  Whitehead,  2003; 

Whitehead & Rendell, 2004). These observations are consistent with the idea of niche partitioning 

by different sperm whales clans. 

All  data  describing  sperm  whale  vocal  clans,  and  a  social  structure  characterized  by 

temporary grouping of social units, originate from studies in the Eastern Tropical Pacific and coast 

of Chile (Christal et al., 1998; Rendell & Whitehead, 2003b; Coakes & Whitehead, 2004; Jaquet & 

Gendron, in Press). As aforementioned, these areas are very productive because of the influence of 

ocean Eastern boundary, coastal and equatorial effects. In contrast, the Azores and the Sargasso Sea 

are much less productive (Frazel & Berberian, 1990; Longhurst et al., 1995). The Gulf of Mexico's 

primary productivity is higher than the Sargasso Sea and Azores, but not as high as the Eastern 

Tropical Pacific (Figure 4.4; Chapter 4). It is plausible that higher levels of primary production in 

the eastern Pacific could cause higher abundance and diversity of sperm whale prey, which not only 

allow  for  the  formation  of  larger  groups  as  discussed  above,  but  may  also  allow  for  niche 

partitioning and foraging specialization. Whales in less productive areas such as the Azores and the 

Sargasso Sea may depend on less abundant prey and consequently be subject to reduced niche space 
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that does not allow for foraging specialization.

Foraging  specializations  may be important  in  the differentiation  of  vocal  repertoires  for 

some species, as suggested here for sperm whales. In cases where there are advantages of grouping 

with animals that have the same foraging specialization, vocal signals can be used to communicate 

the  foraging  specialization  to  which  they  belong  benefiting  both  receiver  and transmitter.  Red 

crossbills (Loxia curvirostra) provide an illustration of this. Red crossbills occur in nine sympatric 

forms that show variation in size and bill shape thought to correspond to foraging specializations on 

distinct conifer resources (Groth, 1988; 1993; Benkman, 1993, 2003; Benkman & Miller, 1996; 

Benkman et al., 2001; Parchman et al., 2006). Niche partitioning among crossbill forms may have 

been possible due to a variety of resources in sufficient abundance, in this case distinct conifer 

species. Distinct contact call subtypes constitute the most conspicuous differences between these 

different forms. These call subtypes are learned early in life and tend to remain stable during the life 

of the birds. Red crossbills respond selectively to contact calls of the subtype associated with their 

own foraging specialization (but see Sewall & Hahn, 2009 for evidence of erosion in call subtype 

selective response) and females preferably choose mates that produce the same call subtype as their 

own  (Snowberg  &  Benkman,  2007).  Apart  from  the  reproductive  advantages  of  mating  with 

partners with the same adapted specialization, red crossbills have also been suggested to benefit 

from assorting with others from the same foraging specialization by pooling information about 

foraging success (Smith  et al., 1999). This grouping of individuals with similar requirement may 

also involve costs, as competition may increase, and other benefits associated with protection from 

predators may be important. Similarly, the differences between sperm whale clans in the Pacific 

may be used to signal social units' foraging specialisation, which would mediate the formation of 

multi-unit  grouping among units  with similar  foraging specialisations.  As suggested for eastern 

North Pacific killer whales and sperm whales, niche partitioning among crossbill forms may also 

have been possible due to a variety of resources in sufficient abundance to favour specialisation.

6.7. Sperm whale behavioural variability

We can expect sperm whale social behaviour to have evolved a balancing of the costs and 

benefits  of group living approaching some kind of  optimum. However  sperm whales  occupy a 

broad range of environmental conditions, and the behavioural strategies that maximise benefits in 
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spite of incurred costs in one set of ecological conditions, may not do so in another, and sperm 

whales would benefit  from adaptively adjusting their  behaviour accordingly.  The differences in 

social structure between the Azores and the Pacific, which I suggested are related to differences in 

ecological  conditions,  may  provide  an  example  of  behavioural  flexibility  in  sperm  whales. 

However,  the  mechanisms  by  which  sperm whale  behaviour  may  adapt to  varying  ecological 

conditions are unknown.

 In the case of social structure, it is not known if individual sperm whales within a location 

change their behaviour facultatively according to the experienced conditions so that the average 

benefits for individuals of the emerging social structure are increased,  or if the observed social 

structure results from fixed adaptations to average local conditions. In the example of elephants 

presented above,  the same individuals  seem to adapt  the formation of  third tier  social  units  to 

variation  in  ecological  conditions  within  their  lifespan,  while  maintaining  second  tier  units, 

suggesting that the first can be changed, but not the latter. Killer whales in the eastern North Pacific 

also seem to be capable of change at some levels of social association, but more constrained at 

others.  'Transient'  pods seem to be constrained in their  sizes but also to aggregate temporarily, 

perhaps when conditions are favourable. Sperm whale units in the Pacific can occasionally be found 

alone, not  aggregated in larger groups (e.g. unit T described in Rendell & Whitehead, 2004), which 

suggests that the formation of multi-unit groups is not an absolute requirement. However sperm 

whale social structure studies have presented the average social structure, and have not investigated 

variation related to ecological conditions, precluding precise conclusions about a direct relationship 

between ecological conditions and the formation of multi-unit groups. 

In the case of differences in vocal behaviour among Pacific clans,  existing data support 

temporal stability (Rendell & Whitehead, 2005a), even though the sample period included years in 

which different ecological conditions (ENSO years) were shown to differentially affect the clans 

foraging success (Whitehead & Rendell,  2004).  Because the differences  in coda repertoires are 

likely to take a long time to develop, temporal stability of these differences is expected even if the 

benefits gained by the formation of groups among units of the same clan (as opposed to random) 

depended on experienced ecological conditions. 

In the case of red crossbills, the vocal repertoire differences could be maintained genetically 

as mating takes place within forms. The sperm whale's low global nucleotide diversity, a result 

mainly of male dispersal (Lyrholm et al., 1999; Engelhaupt, 2004), does not support inheritance of 
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locally adapted behaviour  that  would benefit  the more spatially philopatric  female social  units. 

There is no evidence that males choose their breeding grounds and mating partners selectively to 

increase  the probability of  transmitting locally adapted genes.  Other   possible  explanations  for 

locally adapted behaviour in sperm whales are phenotypic expression of maternally inherited genes, 

phenotypic plasticity through norms of reaction and behavioural acquisition through social learning. 

These  explanations  are  not  mutually  exclusive  and  several  of  these  processes  may  act 

simultaneously. The formation of long term social groups which often show coordinated behaviour 

(e.g. movements and vocal output; Rendell & Whitehead, 2003b, Whitehead, 2003) suggests that 

social learning may be important in maintaining ecologically adapted behaviours. 

The hypothesis about the influence of ecological variation in the social and vocal behaviour 

of  sperm  whales  predicts  that  in  locations  in  the  Pacific  where  ecological  conditions  are 

characterized  by  reduced  niche  space  and  prey  abundance,  and  lower  predation  pressure  in 

comparison to the Eastern Tropical Pacific and Chile (e.g. in subtropical gyres) one would find 

comparatively reduced cultural diversity, similar to that observed in the North Atlantic, and a social 

organization characterized by the absence of multi-unit group formation. Conversely, locations with 

potentially more diverse and abundant  food resources would exhibit  sympatric cultural  variants 

such as the Pacific clans and the formation of multi-unit groups.

6.8. Suggested future research

The studies presented here are only the first steps toward a proper understanding of the 

issues discussed above, and all areas addressed by this thesis can be characterised by a need for 

further investigation.  The analysis  of individual discrimination using within coda type variation 

presented in this study relied on a small dataset which did not include all members of the studied 

social unit. Further studies of the same unit used in this study (Group of Seven), as well as other 

units,  are  required  to  draw  more  precise  conclusions  on  the  presence  of  individual-specific 

information and its variation among coda types. An ongoing study in Dominica will likely provide 

additional  data  from  the  Group  of  Seven that  will  provide  greater  control  of  context  and 

motivational variables, and verification of the hypothesis suggested in this thesis. The expansion of 

this research to other social units by assigning codas to individuals based on IPIs depends on the 

finding and being able to follow other social units showing distinct IPIs for each individual. The use 
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of automatic IPI estimation methods such as the ones tested in Chapter 3 will facilitate the finding 

of this fortuitous combination of factors by reducing the time required for measuring clicks from 

diving whales. An alternative means by which individual specific repertoires may be determined is 

through the use of sound recording tags deployed on known individuals (e.g.  Johnson & Tyack, 

2003). Future research on individual use of coda repertoires could be based on the deployment of 

these instruments,  although the application of this  method on a whole social  unit  would be an 

expensive and daunting task. 

The finding of individual-specific variation in coda types is a prerequisite for its use by 

sperm whales for communicating individual identity. However, two additional steps are required to 

demonstrate that sperm whales use within coda type variation for this function. Both the ability of 

sperm whales to discriminate between codas of the same type produced by different individuals, 

and behavioural  differences reflecting differential  responses to  different  individuals,  need to  be 

demonstrated. Playback studies, where the behaviour of individual whales is monitored while being 

exposed to stimuli from known and unknown individuals and appropriate controls, are the most 

obvious methodology to study the use of codas for individual discrimination (Janik  et al., 2006; 

Rendell & Whitehead, 2005b).  

Some of the hypotheses raised by this study assume temporal stability in coda repertoires. 

The  proposed  advantages  gained  by  transmitting  a  signal  identifying  a  foraging  specialization 

would require some degree of temporal stability because vocal differences between social units with 

different foraging specializations,  that  only occasionally meet,  would need to remain functional 

over time.  The Pacific studies found that coda repertoires of social units are stable for at least 6 

years  (Rendell  &  Whitehead,  2005a).  Although  this  period  of  time  represents  only  a  small 

proportion of a sperm whale's typical lifespan (>50 years)  it  supports some degree of temporal 

stability of repertoires in the Pacific. Also, the finding of the same coda type in recordings off 

Dominica made approximately 20 years apart also suggests temporal stability of coda repertoires in 

this  region (Chapter 5). However,  given the differences found between the Pacific and Atlantic 

studies one should be careful in extrapolating these observations into other areas, and the temporal 

stability of repertoires may well  be another difference found between oceans.  The data used in 

Chapter 5 will be further analysed to investigate the temporal variation of coda repertoires in the 

North Atlantic.

The aforementioned predictions that locations in the Pacific Ocean with similar ecological 
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variation  (e.g. similar  levels  of  primary  production)  would  exhibit  social  structure  and  coda 

variation similar to that found for North Atlantic (i.e. absence of sympatric clans and multi-unit 

groups), require testing through the collection of data on sperm whale social structure and coda 

repertoire variation from other locations, and in varying ecological conditions. Such investigation is 

largely constrained by our limited knowledge of sperm whale ecology, which precludes the accurate 

determination of sperm whale ecological niches, in particular lack of knowledge of the spatial and 

temporal patchiness of their prey. Stable isotope analysis, which has proven to be an useful tool for 

detection  of  niche  partitioning  among  sperm  whale  clans  in  the  Pacific,  will  be  useful  in 

conjunction with coda repertoire  analysis  to aid  in further  investigation of this  hypothesis.  The 

study of variation in fatty acid signatures (Iverson et al., 2004) could potentially also reveal niche 

partitioning between clans. 

The aforementioned ideas give rise to some hypotheses that need testing. Future research 

should focus on these aspects to either support or dismiss the assumptions made. A key idea of the 

theories presented here is that in the Pacific social units benefit from preferentially forming groups 

with other units from the same clan. The potential advantages gained by this require investigation. 

The  isolation  of  units  from  different  clans,  mediated  by  vocal  behaviour,  should  also  be 

investigated. Differing behavioural responses of social units to coda playbacks from the same and 

different clans would support the hypothesis of social unit assortment mediated by coda repertoire. 

Another major research challenge is the demonstration of learning in sperm whales. The size and 

life history of the species precludes studies in captivity similar to those on smaller cetaceans (e.g.  

bottlenose dolphins).  In addition,  logistics and ethical  issues prohibit  translocation experiments. 

Long term studies in which the behavioural  output of known individuals is tracked in the field 

remains the only investigation method with which to verify the proposed rationale. 

6.9. Conclusions 

Found in every ocean on the planet, the sperm whale is the second most widespread marine 

mammal and an important component of the pelagic ecosystem. Within its  range the species is 

subject  to  a  wide  variety  of  ecological  conditions,  from  tropical  highly  productive  areas,  to 

oligotrophic  subtropical  gyres,  to  high  latitudes  with  strong  seasonality  in  productivity.  Sperm 

whales may well be an example of how flexibility in social behaviour allows a species to adapt to a 
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wide range of conditions. The suggestions made in this thesis that sperm whale social structure 

varies  according to ecological  conditions,  and that  functional  variation in  vocal  behaviour  may 

relate to those changes, seems to support this idea. However, data are sparse and information from a 

variety of other locations are required.

The results presented in this thesis provide support  for the communication of individual 

identity as one of the functions of sperm whale codas, but also suggest that different coda types may 

have different functions.  The study of the function of codas is still in its infancy and faces many 

difficulties, not least the problems of assigning the recorded signals to their producer. Pioneering 

work by Schulz (2007) that investigated individual repertoires was an important advance. Future 

studies in other locations and targeting other social units are required. The use of IPIs for assigning 

of codas to individuals may well be an important tool in further developing our understanding of 

codas and these studies would benefit from the use of automatic IPI measurement methods such as 

those developed in this thesis. 

Comparative  studies  across  species  and  within  species  in  different  environments  are  a 

powerful tool for understanding the pressures that shape behaviour. The studies of sperm whale 

social structure and coda repertoire variation presented in this thesis provided a contrast to previous 

studies from the Pacific. The contrast between the findings from the Pacific and Atlantic study sites 

underlines the importance of comparative studies in the understanding of sperm whale behaviour 

and highlights  the dangers  of  generalising behavioural  patterns  among regions.  The contrasting 

results between oceans lead to new hypotheses and questions about the function and evolution of 

social structure and coda communication in sperm whales. However, these hypotheses rely on many 

assumptions and need to be tested by further research.

The sperm whale remains a mysterious animal that deserves study not only because of its 

important ecological role, but also as an example of how behaviour may help animals adapt to 

extreme environments. The difficulties of studying an animal that spends most of its life in the open 

ocean  submerged and beyond visual perception no doubt contribute to our sparse understanding of 

this species. Although the sperm whale is not an easy subject to study, it is a fascinating one and the 

investigation of its  biology will always provide a host of captivating questions to fill the lives of 

scientists willing to take on the challenges of its study.
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