- 1 Global continental weathering trends across the Early
- 2 Permian glacial to post-glacial transition: Correlating high
- 3 and low paleo-latitude sedimentary records
- 4 Jianghai Yang^{1*}, Peter A. Cawood^{2,3}, Yuansheng Du¹, Bin Feng⁴, and Jiaxin Yan¹
- 5 ¹State Key Laboratory of Biogeology and Environmental Geology, China University of
- 6 Geosciences, Wuhan, 430074, China
- 7 ²Department of Earth Sciences, University of St. Andrews, North Street, St. Andrews KY16
- 8 9AL, UK
- 9 ³School of Earth and Environment, University of Western Australia, Crawley, WA 6009,
- 10 Australia
- ⁴No.4 Institute of Geological & Mineral Resources Survey of Henan, Zhengzhou, 450016,
- 12 China

13 ABSTRACT

14 Time equivalent Early Permian sedimentary successions from high latitude 15 Gondwana basins and from equatorial accumulations in North China, covering the glacial 16 to post-glacial transition, display correlatable trends in continental weathering intensity based on chemical index of alteration (CIA) values. The successions display a pattern of 17 18 CIA values that varies with latitude similar to modern estuarine suspended sediments. 19 Based on the modern day CIA-temperature correlation, the syn-glacial early Permian low 20 to high latitude land surface temperature gradient is estimated at ~20 °C, slightly higher 21 than the calculated values for the contemporaneous sea surface temperature gradient. **INTRODUCTION** 22

23	Chemical weathering displays a strong dependence on climate and is favored in hot
24	and humid conditions, but depressed in cold and dry climates (Nesbitt and Young, 1982).
25	It converts primary labile silicate minerals to secondary clay and oxide-hydroxide
26	minerals, resulting in modified whole-rock elemental abundances (e.g., Nesbitt and
27	Markovics, 1997). The chemical index of alteration (CIA, Nesbitt and Young, 1982) is the
28	most widely accepted index and is based on the proportion of secondary aluminous
29	minerals relative to primary mineral phases. CIA provides an effective measure of
30	weathering conditions at the source.
31	In this paper we present mineralogical, geochemical and geochronological data
32	from a Lower Permian sedimentary sequence in North China, documenting continental
33	weathering trends in these low-latitudinal sedimentary rocks and correlate them with
34	contemporaneous high-latitude Gondwana records. Furthermore, we show that modern
35	day differences in chemical weathering intensities between the low- and high-latitudinal
36	sediments can be applied to the earliest Permian successions, yielding realistic estimates of
37	the land surface temperature gradient. The Early Permian marks the end of the major
38	high-latitude Gondwana glaciation and the transition to a post-glaciation climate state
39	(Fielding et al., 2008; Isbell et al., 2012). This transition coincides with changes in
40	sedimentology, fossil assemblages and sediment composition (Dickins, 1996; Wopfner,
41	1999), and with fluctuation in atmospheric CO_2 and O_2 contents (Glasspool and Scott,
42	2010; Montañez et al., 2007).

43 GEOLOGICAL SETTING AND SAMPLING SEQUENCE

44	The North China Craton occupied a near equatorial setting (~5–15 $^{\circ}$) during the
45	late Paleozoic (Fig. 1A; Huang et al., 2001). The craton formed through Paleoproterozoic
46	suturing of Archean blocks and has constituted a stable platform since the
47	Mesoproterozoic. Uplift in the early Paleozoic resulted in a major hiatus across the
48	platform, and subsequent late Paleozoic transgression resulted in the deposition of
49	widespread Late Carboniferous-Permian littoral, coal-bearing, clastic-dominated
50	sequences (Wang, 1985). Drill core through the early Permian strata within the Yongcheng
51	basin in southeastern North China yielded a continuous section that has escaped modern
52	weathering. The sampled upper Shanxi Formation and conformably overlying Xiashihezi
53	Formation consist of fine-grained sandstone, siltstone and black-pale gray mudstone with
54	coal-seams up to several meters thick (Fig. 1b) that accumulated in a deltaic environment
55	(Feng, 2012).
55 56	(Feng, 2012). Methods
55 56 57	(Feng, 2012). Methods Whole-rock major and trace element concentrations were determined by XRF and
55 56 57 58	(Feng, 2012). Methods Whole-rock major and trace element concentrations were determined by XRF and ICP-MS, and mineralogical compositions were analyzed by XRD. Tuffaceous sandstone
55 56 57 58 59	(Feng, 2012). Methods Whole-rock major and trace element concentrations were determined by XRF and ICP-MS, and mineralogical compositions were analyzed by XRD. Tuffaceous sandstone at the top Shanxi Formation was sampled for zircon LA-ICPMS dating. Analytical details
55 56 57 58 59 60	(Feng, 2012). Methods Whole-rock major and trace element concentrations were determined by XRF and ICP-MS, and mineralogical compositions were analyzed by XRD. Tuffaceous sandstone at the top Shanxi Formation was sampled for zircon LA-ICPMS dating. Analytical details and data are listed in the GSA Data Repository ¹ .
 55 56 57 58 59 60 61 	(Feng, 2012). Methods Whole-rock major and trace element concentrations were determined by XRF and ICP-MS, and mineralogical compositions were analyzed by XRD. Tuffaceous sandstone at the top Shanxi Formation was sampled for zircon LA-ICPMS dating. Analytical details and data are listed in the GSA Data Repository ¹ . RESULTS
 55 56 57 58 59 60 61 62 	(Feng, 2012). Methods Whole-rock major and trace element concentrations were determined by XRF and ICP-MS, and mineralogical compositions were analyzed by XRD. Tuffaceous sandstone at the top Shanxi Formation was sampled for zircon LA-ICPMS dating. Analytical details and data are listed in the GSA Data Repository ¹ . RESULTS Dated zircons are elongate and euhedral with well-developed oscillatory zoning
 55 56 57 58 59 60 61 62 63 	(Feng, 2012). Methods Whole-rock major and trace element concentrations were determined by XRF and ICP-MS, and mineralogical compositions were analyzed by XRD. Tuffaceous sandstone at the top Shanxi Formation was sampled for zircon LA-ICPMS dating. Analytical details and data are listed in the GSA Data Repository ¹ . RESULTS Dated zircons are elongate and euhedral with well-developed oscillatory zoning (Fig. DR1A). Th/U ratios are 0.55–1.63, indicating a volcanic origin (Table DR1). The
 55 56 57 58 59 60 61 62 63 64 	(Feng, 2012). Methods Whole-rock major and trace element concentrations were determined by XRF and ICP-MS, and mineralogical compositions were analyzed by XRD. Tuffaceous sandstone at the top Shanxi Formation was sampled for zircon LA-ICPMS dating. Analytical details and data are listed in the GSA Data Repository ¹ . RESULTS Dated zircons are elongate and euhedral with well-developed oscillatory zoning (Fig. DR1A). Th/U ratios are 0.55–1.63, indicating a volcanic origin (Table DR1). The youngest 21 analyses with concordance of 95% or greater yielded an age of 293.0 ± 2.5 Ma

66	age constrains the Shanxi Formation to the Asselian-Sakmarian on the timescale of
67	Gradstein et al. (2012).
68	Silt-mudstone samples are mainly composed of clay minerals and quartz, with little
69	or no feldspar $(0-6\%)$ and calcite $(0-2\%)$ (Table DR2). High siderite contents occur in
70	three samples. Identified clay minerals include kaolinite, chlorite and illite. Kaolinite
71	displays a negative relation with both chlorite and illite, and increases significantly from
72	50%–70% in the upper Shanxi Formation to 70%–80% in the lower Xiashihezi Formation
73	(except for two samples with relatively high chlorite contents), and then decreases to
74	40%–70% for most samples in the upper Xiashihezi Formation (Fig. DR2).
75	Calculated CIA values using the silica-bound calcium correction (Nesbitt and
76	Young, 1982, Fedo et al., 1995; McLennan, 1993) for silt-mudstone samples show a sharp
77	increase from 87.8 to 91.3 for the upper Shanxi Formation to 91.8–98.0 for the lower
78	Xiashihezi Formation and then a gradual decrease to 81.7–92.0 for the upper Xiashihezi
79	Formation. This variation is consistent with those of other weathering indices (e.g.,
80	plagioclase index of alteration, Fedo et al., 1995) and kaolinite contents (Fig. DR2). Zr/Ti
81	ratios, largely controlled by source rock composition (e.g., Scheffler et al., 2003), are
82	relatively constant (Fig. DR2) and have no discernible co-variation with chemical
83	weathering indices in the Lower Permian sequence. On the Al ₂ O ₃ -CaO+Na ₂ O-K ₂ O
84	(A-CN-K) plot (Nesbitt and Young, 1984; Fedo et al., 1995) (Fig. 1C), the samples with
85	CIA values of < 86 trend approximately parallel to the A-CN boundary, mimicking the
86	predicted weathering trend (Nesbitt and Young, 1984). Samples with higher CIA values
87	(CIA $> \sim 86$) lie subparallel to the A-K boundary but gradually tend toward the A apex. On

88	the A-CN-K diagram the linear trend through the data points (sub)parallel to the A-CN
89	boundary extends back to a point at which the proportion of plagioclase and K-feldspar are
90	considered representative of the original parent rock composition (Fedo et al., 1995). This
91	trend corresponds to the composition of the upper crust of southern North China (Gao et
92	al., 1998) (Fig. 1C), the inferred source, and is consistent with facies reconstruction
93	(Wang, 1985).
94	CORRELATIONS
95	In the Early Permian, Gondwana occupied mid- to high southern hemisphere
96	paleo-latitudes (Fig. 1, Torsvik and Cocks, 2004). Periodic glaciations are recorded in the
97	sedimentary successions of the Karoo (Scheffler et al., 2006), Kalahari (Scheffler et al.,
98	2006), Ruhuhu (Diekmann and Wopfner, 1996), Paraná (Goldberg and Humayun, 2010),
99	Satpura (Roy and Roser, 2013), Khalaspir basins (Ghosh and Sarkar, 2010) and Spiti Basin
100	(Ganai et al., 2014) (Fig. 1). End Carboniferous-Permian Gondwana successions in these
101	basins all exhibit a significant CIA increase at the Early Permian glacial to post-glacial
102	transition (Fig. 2), corresponding to the demise of the earliest Permian ice sheets (Isbell et
103	al., 2012), and signify enhancement of continental weathering. This climatic event is
104	constrained biostratigraphically to the end Sakmarian-Artinskian and by ion microprobe
105	zircon dating in the Karoo Basin to around 290 Ma (Bangert et al., 1999). The elevated
106	CIA values diminish by the Kungurian, around ~281 Ma on the basis of a zircon U-Pb age
107	from the Paraná Basin (Mori et al., 2012).
108	Our new zircon age from the Yongcheng Basin indicates that the boundary

109 between the Shanxi and Xiashihezi formations correlates, within error, with the glacial to

110	post-glacial transition in the Gondwana successions. This correlation indicates that the
111	end-Sakmarian marks a significant rise in sediment CIA values in both low- and high-
112	latitude locations and is a global signature (Fig. 2). The rise in CIA values also corresponds
113	with an increase in atmospheric CO_2 content (Fig. 2; Montañez et al., 2007) and the global
114	negative shift in seawater oxygen isotopes (Fig. 2; Korte et al., 2005; Korte et al., 2008). A
115	subsequent decrease in CIA values is shown by both the North China and Gondwana
116	sequences and has been related to intensifying aridity (Goldberg and Humayun, 2010)
117	and/or a resumption of cold climate conditions (Fielding et al., 2008), and is accompanied
118	by corresponding variation of atmospheric pCO_2 and seawater $\delta^{18}O$ (Fig. 2).
119	DISCUSSION
120	Extrapolation of chemical proxy data to degree of weathering is influenced by
121	sedimentary and tectonic processes (e.g., Rieu et al., 2007; Scheffler et al., 2003). The
122	potential effect of such variables on weathering index of samples from the North China
123	craton is minimized by the stable tectonic setting, the uniform source composition with
124	derivation from within the craton, the absence of any evidence for significant potassium
125	metasomatism (Fig. 1C), and analyses limited to lutite samples from fresh core. Therefore,
126	chemical weathering index signatures and linked clay mineral assemblage variation
127	provide a valid record of changes in chemical weathering conditions of the source related
128	to climate variation. Greatly enhanced continental weathering during the deposition of the
129	basal Xiashihezi Formation corresponds with basin deepening and a major marine
130	transgression (Feng, 2012), consistent with the intensification of weathering and a
131	post-glacial climate. Temporal correlation of the continental weathering trends in North

132	China with similar trends in Gondwana indicates a global phenomenon recording the
133	glacial to post-glacial transition (Fig. 2), despite possible local tectonic influences on
134	sediments, which might be averaged out by large catchment areas for the sampled basins.
135	This event corresponds to a warming interval associated with high atmospheric CO_2
136	concentrations (up to 2500 ppmv), which are distinctly higher than the earliest Permian
137	values (~300 ppmv) of averaged present atmospheric CO_2 levels and followed by a
138	short-lived drop in the Artinskian (Montañez et al., 2007). Increasing temperature is
139	characteristic of a glacial to post-glacial transition (Korte et al., 2008; Rieu et al., 2007).
140	Such a CO ₂ -forcing climate change could be responsible for the continental weathering
141	enhancement as manifested by the compiled sediment geochemical data (Fig. 2).
142	Modern large river estuary suspended sediment analyses show CIA values
143	changing with latitude and land surface temperature (Li and Yang, 2010). We hypothesize
144	a similar latitude-associated silicate weathering distribution in the earliest Permian
145	glaciation, which is an interval with atmospheric CO_2 levels broadly similar to the present
146	day average (Montañez et al., 2007). CIA-latitude and CIA-temperature correlations for
147	modern estuary systems are depicted in figure 3, and North China and Gondwana basin
148	data are also plotted on this diagram based on their CIA values. The obtained latitude
149	ranges overlap with those determined from Early Permian paleogeographic constraints
150	(Fig. 1, Torsvik and Cocks, 2004). Given this relationship, we estimate a low- to
151	high-latitude land surface temperature (LST) gradient of ~20 $^{\circ}$ C and mid- to high-latitude
152	LST gradient of ~10 $^{\circ}$ C for the earliest Permian glacial stage. The low- to high-latitude
153	LST gradient is largely comparable with the result based on present day CO_2 concentration

154	modeled by Gibbs et al. (2002) for the Sakmarian, but higher than the contemporaneous
155	low- to high-latitude sea surface temperature gradient of ~9–12 °C given by Korte et al.
156	(2008), likely reflecting differences in the heat transport efficiency between the oceans and
157	the atmosphere. The smaller difference in CIA values between the post-glacial low- and
158	high-latitude basins (Fig. 2) likely denotes a subdued temperature gradient during that
159	period.
160	CONCLUSIONS
161	A tuff zircon age and variations in CIA values from the Lower Permian sequence in
162	North China enable correlation of this low-latitude sedimentary record with those in
163	high-latitude Gondwana regions. Concomitant offset toward high CIA values in both high
164	and low latitudinal successions reflects global climate change from a glacial to post-glacial
165	state. Correlations of continental weathering with latitude and with temperature based on
166	models from present day settings demonstrate a low- to high-latitude LST gradient of ~ 20
167	°C for the earliest Permian syn-glacial period.
168	ACKNOWLEDGMENTS
169	Editor Ellen Thomas and reviewers Grant M. Young, Karin Goldberg, Lorenz

170 Schwark and Isabel P. Montañez are gratefully acknowledged for their constructive

- 171 comments. We thank Zhaochu Hu for help with zircon LA-ICPMS dating and staff at
- 172 the Yongcheng County core storage facility for help with sampling. This study was
- 173 financially supported by National Science Foundation of China (Nos. 40921062 and
- 41302083), the '111project' (No. B08030) and the Fundamental Research Funds for
- 175 the Central Universities (CUGL140402).

176 **REFERENCES CITED**

- 177 Bangert, B., Stollhofen, H., Lorenz, V., and Armstrong, R., 1999, The geochronology and
- 178 significance of ash-fall tuffs in the glaciogenic Carboniferous-Permian Dwyka Group
- 179 of Namibia and South Africa: Journal of African Earth Sciences, v. 29, p. 33–49,
- 180 doi:10.1016/S0899-5362(99)00078-0.
- 181 Dickins, J.M., 1996, Problems of a Late Paleozoic glaciation in Australia and subsequent
- 182 climate in the Permian: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 125,
- 183 p. 185–197, doi:10.1016/S0031-0182(96)00030-2.
- 184 Diekmann, B., and Wopfner, H., 1996, Petrographic and diagenetic signatures of climatic
- 185 change in peri- and postglacial Karoo Sediments of SW Tanzannia: Palaeogeography,
- 186 Palaeoclimatology, Palaeoecology, v. 125, p. 5–25,
- 187 doi:10.1016/0031-0182(95)00084-4.
- 188 Fedo, C.M., Nesbitt, H.W., and Young, G.M., 1995, Unraveling the effects of potassium
- 189 metasomatism in sedimentary rocks and paleosols, with implications for
- 190 paleoweathering conditions and provenance: Geology, v. 23, p. 921–924,
- 191 doi:10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2.
- 192 Feng, B., 2012, Study on coal-accumulating characteristic of Shanxi Formation and low
- 193 Shihezi Formation in Yongcheng Coalfield: Henna Province: Journal of Henan
- 194 Polytechnic University, v. 31, p. 177–181.
- 195 Fielding, C.R., Frank, T.D., Birgenheiner, L.P., Rygel, M.C., Jones, A.J., and Roberts, J.,
- 196 2008, Stratigraphic imprint of the Late Paleozoic Ice Age in eastern Australia: A

197	record of alternating glacial and nonglacial climate regime: Journal of the Geological
198	Society, v. 165, p. 129–140, doi:10.1144/0016-76492007-036.
199	Ganai, J.A., Rashid, S.A., Alam, M.M., Balaram, V., and Sathyanarayanan, M., 2014, The
200	geochemistry of Permo-Carboniferous black shales from Spiti region, Himachal
201	Pradesh, Tethys Himalaya: A record of provenance and change in climate: Himalayan
202	Geology, v. 35, no. 1, p. 31–39.
203	Gao, S., Luo, T., Zhang, B., Zhang, H., Han, Y., Zhao, Z., and Hu, Y., 1998, Chemical
204	composition of the continental crust as revealed by studies in East China: Geochimica
205	et Cosmochimica Acta, v. 62, p. 1959–1975, doi:10.1016/S0016-7037(98)00121-5.
206	Ghosh, S., and Sarkar, S., 2010, Geochemistry of Permo-Triassic mudstone of the Satpura
207	Gondwana basin, central India: Clues for provenance: Chemical Geology, v. 277,
208	p. 78–100, doi:10.1016/j.chemgeo.2010.07.012.
209	Gibbs, M.T., Rees, P.M., Kutzbach, J.E., Ziegler, A.M., Behling, P.J., and Rowley, D.B.,
210	2002, Simulations of Permian climate and comparisioins with climate-sensitive
211	sediments: The Journal of Geology, v. 110, p. 33-55, doi:10.1086/324204.
212	Goldberg, K., and Humayun, M., 2010, The applicability the Chemical Index of Alteration
213	
215	as a paleoclimatic indicator: An example from the Permian of the Paraná Basin,
213	as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 293, p. 175–183,
213214215	as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 293, p. 175–183, doi:10.1016/j.palaeo.2010.05.015.
213214215216	as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 293, p. 175–183, doi:10.1016/j.palaeo.2010.05.015. Glasspool, I.J., and Scott, A.C., 2010, Phanerozoic concentrations of atmospheric oxygen
213214215216217	 as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 293, p. 175–183, doi:10.1016/j.palaeo.2010.05.015. Glasspool, I.J., and Scott, A.C., 2010, Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal: Nature Geoscience, v. 3, p. 627–630,

- 219 Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M., 2012, The geological time
- 220 scale 2012: Oxford, UK, Elsevier, p. 1144.
- Huang, B., Otofuji, Y.I., Zhu, R., Shi, R., and Wang, Y., 2001, Paleomagnetism of
- 222 Carboniferous sediments in the Hexi corridor: Its origin and tectonic implications:
- Earth and Planetary Science Letters, v. 194, p. 135–149,
- doi:10.1016/S0012-821X(01)00557-X.
- 225 Isbell, J.L., Henry, L.C., Gulbranson, E.L., Limarino, C.O., Fraiser, M.L., Koch, Z.J.,
- 226 Ciccioli, P.L., and Dineen, A.A., 2012, Glacial paradoxes during the late Paleozoic ice
- age: evaluating the equilibrium line altitude as a control on glaciation: Gondwana
- 228 Research, v. 22, p. 1–19, doi:10.1016/j.gr.2011.11.005.
- 229 Korte, C., Jasper, T., Kozur, H.W., and Veizer, J., 2005, δ^{18} O and δ^{13} C of Permian
- 230 branchiopods: A record of seawater evolution and continenal glaciation:
- 231 Palaeogeography, Palaeoclimatology, Palaeoecology, v. 224, p. 333–351,
- doi:10.1016/j.palaeo.2005.03.015.
- 233 Korte, C., Jones, P.J., Brand, U., Mertmann, D., and Veizer, J., 2008, Oxygen isotope
- values from high-latitudes: Clues for Permian sea-surface temperature gradients and
- 235 late Paleozoic deglaciation: Palaeogeography, Palaeoclimatology, Palaeoecology,
- 236 v. 269, p. 1–16, doi:10.1016/j.palaeo.2008.06.012.
- 237 Li, C., and Yang, S., 2010, Is chemical index of alteration (CIA) a reliable proxy for
- chemical weathering in global drainage basins?: American Journal of Science, v. 310,
- p. 111–127, doi:10.2475/02.2010.03.
- 240 Mahjoor, A.S., Karimi, M., and Rastegarlari, A., 2009, Mineralogical and geochemical

- 241 characteristics of clay deposits from South Abarkouh district of clay deposit (Central 242 Iran) and their applications: Journal of Applied Science, v. 9, no. 4, p. 601-614, 243 doi:10.3923/jas.2009.601.614. 244 McLennan, S.M., 1993, Weathering and global denudation: The Journal of Geology, 245 v. 101, p. 295-303, doi:10.1086/648222. 246 Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., 247 Isbell, J.L., Birgenheier, L.P., and Rygel, M.C., 2007, CO₂-forced climate and 248 vegetation instability during Late Paleozoic deglaciation: Science, v. 315, p. 87-91, 249 doi:10.1126/science.1134207. 250 Mori, A.L.O., de-Souza, P.A., Marques, J.C., and Lopes, R.C., 2012, A new U-Pb zircon 251 age dating and palynological data from a Lower Permian section of the southermost 252 Paraná Basin, Brazil: biochronostratigraphical and geochronological implications for 253 Gondwanan correlations: Gondwana Research, v. 21, p. 654-669, 254 doi:10.1016/j.gr.2011.05.019. 255 Nesbitt, H.W., and Markovics, G., 1997, Weathering of granodioritic crust, long-term 256 storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments: 257 Geochimica et Cosmochimica Acta, v. 61, p. 1653-1670, 258 doi:10.1016/S0016-7037(97)00031-8.
- 259 Nesbitt, H.W., and Young, G.M., 1982, Early Proterozoic climates and plate motions
- 260 inferred from major element chemistry of lutites: Nature, v. 299, p. 715–717,
- 261 doi:10.1038/299715a0.

262	Nesbitt, H.W., and Young, G.M., 1984, Prediction of some weathering trends of plutonic
263	and volcanic rocks based on thermodynamic and kinetic considerations: Geochimica
264	et Cosmochimica Acta, v. 48, p. 1523–1534, doi:10.1016/0016-7037(84)90408-3.
265	Rieu, R., Allen, P.A., Plötze, M., and Pettke, T., 2007, Climatic cycles during a
266	Neoproterozoic "snowball" glacial epoch: Geology, v. 35, p. 299-302,
267	doi:10.1130/G23400A.1.
268	Roy, D.K., and Roser, B.P., 2013, Climatic control on the composition of
269	Carboniferous-Permian Gondwana sediments, Khalaspir basin, Bangladesh:
270	Gondwana Research, v. 23, p. 1163–1171, doi:10.1016/j.gr.2012.07.006.
271	Scheffler, K., Hoernes, S., and Schwark, L., 2003, Global changes during
272	Carboniferous-Permian glaciation of Gondwana: linking polar and equatorial climate
273	evolution by geochemical proxies: Geology, v. 31, p. 605–608,
274	doi:10.1130/0091-7613(2003)031<0605:GCDCGO>2.0.CO;2.
275	Scheffler, K., Buehmann, D., and Schwark, L., 2006, Analysis of late Paleozoic glacial to
276	postglacial sedimentary successions in South Africa by geochemical
277	proxies—response to climate evolution and sedimentary environment:
278	Palaeogeography, Palaeoclimatology, Palaeoecology, v. 240, p. 184–203,
279	doi:10.1016/j.palaeo.2006.03.059.
280	Taylor, S.R., and McLennan, S.M., 1985, The continental crust: Its composition and
281	evolution: Oxford, United Kingdom, Blackwell, 1–312 p.

- 282 Torsvik, T.H., and Cocks, L.R.M., 2004, Earth geography from 400 to 250 Ma: a
- paleomagnetic, faunal and facies review: Journal of the Geological Society, v. 161,
- 284 p. 555–572, doi:10.1144/0016-764903-098.
- 285 Wang, H., 1985, Atlas of the palaeogeography of China: Beijing, Cartographic Publishing
- 286 House, 74–80 p.
- 287 Wopfner, H., 1999, The Early Permian deglaciation event beween East Africa and
- 288 northwestern Australia: Journal of African Earth Sciences, v. 29, p. 77–90,
- 289 doi:10.1016/S0899-5362(99)00081-0.

290 FIGURE CAPTIONS

- Figure 1. (A) Magneto- and fauna-based Early Permian paleogeographic map (Huang et
- al., 2001; Torsvik and Cocks, 2004) showing the approximate positions of the Yongcheng
- 293 (black square) and the Gondwana basins (black stars: 1-Satpura Basin, 2-Khalaspir Basin,
- 294 3-Kalahari Basin, 4-Ruhuhu Basin, 5-Paraná Basin, 6-Karoo Basin, 7-Spiti Basin and
- 295 8-Central Iran Basin); (B) stratigraphic column of Core Zk1401 with analyzed samples,
- where filled circles, blank circles and filled star represent silt-mudstone, fine-grained
- 297 sandstone and zircon dating sample sites, respectively; and (C) A-CN-K
- 298 (Al₂O₃-CaO*+Na₂O-K₂O) diagram for the Lower Permian silt-mudstone (open circles)
- and fine-grained sandstone (open diamonds) samples, with CIA scale on the left side. Also
- 300 plotted are the molar proportions of southern North China upper crust (SCN, Gao et al.,
- 301 1998), interior North China upper crust (INC, Gao et al., 1998) and average upper
- 302 continental crust (UCC, Taylor and McLennan, 1985).

303	Figure 2. Correlating CIA variation of the equatorial Early Permian pelitic sedimentary
304	rocks from the Yongcheng Basin in North China with those from the mid-high latitude
305	Khalaspir Basin (Roy and Roser, 2013), Satpura Basin (Ghosh and Sarkar, 2010), Karoo
306	Basin (Scheffler et al., 2006), Kalahari Basin (Scheffler et al., 2006), Ruhuhu Basin
307	(Diekmann and Wopfner, 1996), Paraná Basin (Goldberg and Humayun, 2010), Spiti
308	Basin (Ganai et al., 2014) and Central Iran Basin (Mahjoor et al., 2009) in Gondwana. The
309	zircon age data obtained by this study for the Yongcheng sequence, by Bangert et al.
310	(1999) for the Karoo sequence, and by Mori et al. (2012) for the Paraná sequence, are
311	marked according to their respective stratigraphic positions. Also shown are the temporal
312	variations in inferred atmospheric CO ₂ content (Montañez et al., 2007) and low- and high-
313	latitudinal low-Mg calcite oxygen isotopic signature from fossil shells for comparison
314	(Korte et al., 2005; Korte et al., 2008).
315	Figure 3. Plot of mean CIA values (green line) and deviations (gray box) for each of the
316	studied and compiled earliest Permian sedimentary rocks with those from modern estuary
317	suspended sediment CIA-latitude (A) and CIA-temperature (B) correlation models based
318	on the compilation (black squares) of Li and Yang (2010). Abbreviations: YB-Yongcheng
319	Basin, SB-Satpura Basin, SIB-Spiti Basin, PB-Paraná Basin, KB-Karoo Basin,
320	KLB-Khalaspir Basin, and RB-Ruhuhu Basin.
321	¹ GSA Data Repository item 2014xxx, xxxxxxxx, is available online at
322	www.geosociety.org/pubs/ft2014.htm. or on request from editing@geosociety.org or

323 Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Figure 1 Click here to download high resolution image

GSA Data repository Item

Supplementary materials for:

Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high and low paleo-latitude sedimentary records

Jianghai Yang^{1*}, Peter A. Cawood^{2,3}, Yuansheng Du¹, Bin Feng⁴, Jiaxin Yan¹,

- ¹ State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
- ² Department of Earth Sciences, University of St. Andrews, North Street, St. Andrews KY16 9AL, UK
- ³ School of Earth and Environment, University of Western Australia, Crawley, WA 6009, Australia
- ⁴ No.4 Institute of Geological & Mineral Resources Survey of Henan, Zhengzhou, 450016, China

ANALYTICAL PROCEDURES

Whole-rock major and trace element concentrations were determined with X-ray florescence and ICP-MS by ALS Chemex, and mineralogical X-Ray Diffraction analysis and zircon LA-ICPMS dating were conducted in the State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences (Wuhan).

1. U-Pb isotope LA-ICPMS analysis of zircons

Zircons were separated from sample PSG3 by conventional procedures before hand-picking under a binocular microscope, mounting in epoxy and polished. Back scatter electron (BSE) and cathodoluminescence (CL) images were conducted on a JEOL JXA-8100 electron microprobe. Representative CL images for the analyzed zircons are shown in Figure DR1. Prior to LA-ICPMS analysis, zircons were subject to washing with dilute HNO₃ in an ultrasonic bath to eliminate surface contamination. For the LA-ICPMS analyses, laser sampling was performed using a Geolas 2005, and ion-signal intensities were acquired by an Agilent 7500a ICP-MS instrument. The diameter of the laser spot was 32 µm. Each analysis incorporated a background acquisition of approximately 20-30 s (gas blank) followed by 50 s data acquisition from the sample. The Agilent Chemstation was utilized for the acquisition of each individual analysis. Detailed operating conditions for the laser ablation system and the ICP-MS instrument and data reduction are described by Liu et al. (2010). Zircon 91500 (206 Pb/ 238 U age = 1062.4 ± 0.4 Ma, Wiedenbeck et al., 1995) was used as external standard for U-Pb dating, and was analyzed twice every 6 analyses. Off-line selection and integration of background and signals, and time-drift correction and quantitative calibration for trace element analyses and U-Pb dating were performed by ICPMSDataCal (Liu et al., 2010; Liu et al., 2008). Concordia diagrams and weighted mean calculations were made using Isoplt/Ex ver3 (Ludwig, 2003). Zircon standards Gi-1 was analyzed as unknown and the obtained mean 206 Pb/ 238 U age is 599.1 ± 8.4 Ma (2σ) in line with the recommended age of 599.8 ± 1.7 Ma (2σ , Jackson et al., 2004).

2. Mineralogical X-Ray Diffraction analysis

X-ray diffraction (XRD) studies of samples were performed with a PANalytical X'Pert Pro using a Cu-Ni tube at 40 kV and 40 mA, under continuous scanning with a speed of 8°/min. The mass percentage (mass %) of the main mineral phases identified were semi-quantified with an analytical error of ± 10 %.

3. Whole-rock geochemical analysis

After removing surface layer, solid samples were grounded to less than 200 mesh. For elemental oxide concentration analysis, sample powders were mixed with dry lithium tetraborate and borate and fused to glass beads, and analytical performance was conducted on a PANalytical Axios X-ray florescence spectrometer with accuracy better than 5% and uncertainty less than 5%. Trace element (Rb, Sr, Ba, and Zr) contents were obtained on Perkin Elmer Elan 9000 ICP-MS with accuracy better than 10% and uncertainty less than 10% for the analyzed elements after complete fusion of samples with lithium borate and dissolution in ultrapure HNO₃.

DATA REPOSITORTY FIGURE CAPTIONS

Figure DR1. A: Representative CL images for dated zircons; B: Tera-Wasserburg plot of zircon analyses from Sample PGS3, where the gray symbols mark the integrated analyses for calculating weighted average age [inset, 293.0 ± 2.5 Ma (n = 21, MSWD = 0.57)]. This average age is equal to the lower intercept age within error (290. 0 \pm 3.0 Ma) and interpreted as the depositional age of this tuffaceous bed. Another three concordant analyses gave Paleoproterozoic 207 Pb/ 206 Pb ages (1832-1721 Ma, Table DR1), and are considered xenocrystic in origin.

Figure DR2. Stratigraphic variations of CIA value (chemical index of alteration, Nesbitt and Young, 1982), clay mineral assemblage, and provenance chemical indicator Zr/Ti ratio for silt-mudstone samples. Other chemical weathering indices including weathering index of Parker (WIP, Parker, 1970), chemical index of weathering (CIW, Harnois, 1988), plagioclase index of alteration (PIA, Fedo et al., 1995) and CIA_{molar} (expressed as Al₂O₃/(CaO*+Na₂O+K₂O) mole ratio, Goldberg and Humayun, 2010) were also plotted for comparison. CaO* involved in index calculations represent only the Ca in silicate fractions.

REFERENCES CITED

- Goldberg, K., and Humayun, M., 2010, The applicability the Chemical Index of Alteration as a paleoclimatic indicator: an example from the Permian of the Paraná Basin, Brazil: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 293, p. 175-183.
- Harnois, L., 1988, The CIW index: a new chemical index of weathering: Sedimentary Geology, v. 55, p. 319-322.
- Jackson SE, Pearson NJ, Griffin WL, Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, v. 211, p. 47-69.
- Liu, Y., Gao, S., Hu, Z., Gao, C., and Zong, K., 2010, Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths: Journal of Petrology, v. 51, p. 537-571.
- Liu, Y., Zong, K., Kelemen, P.B., and Gao, S., 2008, Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates: Chemical Geology, v. 247, p. 133-153.
- Nesbitt, H.W., and Young, G.M., 1982, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites: Nature, v. 299, p. 715-717.
- —, 1984, Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations: Geochimica et Cosmochimica Acta, v. 48, p. 1523-1534.
- Ludwig K.R. 2003. User's manual for Isoplot 3.00: a geochronological toolkit for microsoft Excel: Berkeley
- Parker, A., 1970, An index of weathering for silicate rocks: Geological Magazine, v. 107, p. 501-504.
- Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C, Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl., v. 19, p.1-23.

Spot	Pb	Th	U	- Th/II	207Pb	/206Pb	207Pb/235U		U 206Pb/238U		rho	207Pb/206Pb		207Pb/235U		206Pb/238U		Concordance
Брог	ppm	ppm	ppm	11/0	Ratio	$\pm 1\sigma$	Ratio	$\pm 1\sigma$	Ratio	±lσ	IIIO	Age (Ma)	±lσ	Age (Ma)	±lσ	Age (Ma)	$\pm 1\sigma$	Concordance
PSG3-1	45.0	119	132	0.90	0.0550	0.0045	0.3649	0.0262	0.0499	0.0010	0.2875	409	183	316	20	314	6	99%
PSG3-2	18.0	84.0	118	0.71	0.0572	0.0041	0.3602	0.0254	0.0459	0.0008	0.2529	498	159	312	19	289	5	92%
PSG3-3	27.9	134	152	0.88	0.0542	0.0047	0.3377	0.0283	0.0458	0.0010	0.2565	389	196	295	21	289	6	97%
PSG3-4	18.6	91.8	108	0.85	0.0540	0.0050	0.3337	0.0299	0.0459	0.0010	0.2347	372	209	292	23	289	6	98%
PSG3-5	21.1	108	118	0.92	0.0554	0.0037	0.3524	0.0242	0.0465	0.0011	0.3460	428	150	307	18	293	7	95%
PSG3-6	31.8	149	183	0.81	0.0476	0.0031	0.3177	0.0207	0.0487	0.0010	0.3071	80	148	280	16	306	6	91%
PSG3-7	23.4	107	132	0.81	0.0526	0.0040	0.3240	0.0239	0.0460	0.0010	0.3002	322	174	285	18	290	6	98%
PSG3-8	22.6	102	126	0.82	0.0520	0.0033	0.3276	0.0208	0.0465	0.0010	0.3440	283	153	288	16	293	6	98%
PSG3-9	18.7	77.3	121	0.64	0.0663	0.0051	0.4525	0.0374	0.0504	0.0015	0.3526	817	156	379	26	317	9	82%
PSG3-10	112	74.2	97.8	0.76	0.1122	0.0036	5.3605	0.1810	0.3461	0.0048	0.4117	1836	59	1879	29	1916	23	98%
PSG3-11	31.4	150	208	0.72	0.0535	0.0038	0.3402	0.0223	0.0476	0.0010	0.3246	346	163	297	17	300	6	99%
PSG3-12	15.6	69.9	111	0.63	0.0558	0.0044	0.3649	0.0277	0.0479	0.0011	0.3110	443	174	316	21	302	7	95%
PSG3-13	19.9	95.6	127	0.75	0.0539	0.0049	0.3422	0.0298	0.0475	0.0012	0.2870	369	206	299	23	299	7	99%
PSG3-14	19.4	80.0	134	0.60	0.0623	0.0046	0.3941	0.0284	0.0465	0.0010	0.2967	687	158	337	21	293	6	85%
PSG3-15	12.8	60.0	84.9	0.71	0.0637	0.0059	0.4135	0.0366	0.0475	0.0012	0.2839	731	196	351	26	299	7	83%
PSG3-16	18.4	83.4	90.6	0.92	0.0815	0.0068	0.5083	0.0423	0.0455	0.0012	0.3134	1235	165	417	28	287	7	63%
PSG3-17	20.1	85.1	154	0.55	0.0568	0.0044	0.3708	0.0269	0.0482	0.0010	0.3007	483	175	320	20	304	6	94%
PSG3-18	12.9	58.3	87.8	0.66	0.0522	0.0049	0.3385	0.0312	0.0482	0.0012	0.2647	300	217	296	24	303	7	97%
PSG3-19	12.8	51.8	80.6	0.64	0.0629	0.0053	0.4089	0.0344	0.0473	0.0011	0.2792	706	175	348	25	298	7	84%
PSG3-20	16.3	80.5	108	0.74	0.0563	0.0046	0.3724	0.0330	0.0478	0.0011	0.2689	465	183	321	24	301	7	93%
PSG3-21	18.6	88.0	125	0.71	0.0541	0.0042	0.3450	0.0263	0.0465	0.0011	0.3014	376	174	301	20	293	7	97%
PSG3-22	17.7	83.8	93.7	0.89	0.0704	0.0060	0.4387	0.0346	0.0478	0.0012	0.3220	939	176	369	24	301	7	79%
PSG3-23	21.6	92.4	143	0.65	0.0578	0.0048	0.3761	0.0306	0.0470	0.0009	0.2271	524	183	324	23	296	5	90%
PSG3-24	142	717	571	1.26	0.0568	0.0025	0.3671	0.0169	0.0463	0.0007	0.3408	483	103	318	13	292	4	91%
PSG3-25	15.0	66.0	90.8	0.73	0.0569	0.0055	0.3545	0.0305	0.0474	0.0012	0.2930	487	215	308	23	298	7	96%
PSG3-26	11.3	54.0	91.8	0.59	0.0679	0.0063	0.4446	0.0374	0.0486	0.0012	0.2985	878	194	373	26	306	8	80%
PSG3-27	15.2	75.6	110	0.69	0.0636	0.0053	0.3785	0.0288	0.0445	0.0010	0.2839	728	177	326	21	281	6	85%
PSG3-28	29.6	143	203	0.71	0.0543	0.0037	0.3351	0.0213	0.0456	0.0009	0.3201	383	149	293	16	288	6	98%
PSG3-29	16.6	77.4	114	0.68	0.0570	0.0050	0.3636	0.0295	0.0481	0.0011	0.2785	500	193	315	22	303	7	96%
PSG3-30	13.5	53.9	74.5	0.72	0.0638	0.0056	0.3996	0.0344	0.0464	0.0012	0.3001	744	185	341	25	293	7	84%
PSG3-31	15.3	75.2	117	0.64	0.0531	0.0036	0.3286	0.0213	0.0456	0.0010	0.3375	345	154	288	16	288	6	99%
PSG3-32	37.7	167	228	0.73	0.0557	0.0033	0.3577	0.0212	0.0471	0.0008	0.2980	439	135	310	16	296	5	95%
PSG3-33	12.5	52.9	75.6	0.70	0.0693	0.0058	0.4443	0.0378	0.0469	0.0014	0.3402	906	173	373	27	295	8	76%
PSG3-34	20.2	88.0	124	0.71	0.0593	0.0046	0.3635	0.0251	0.0462	0.0010	0.3091	589	136	315	19	291	6	92%

Table DR1. Zircon U-Pb isotope data for tuffaceous sandstone Sample PSG3

PSG3-3	5 11.5	54.7	74.3	0.74	0.0663	0.0068	0.3956	0.0388	0.0446	0.0011	0.2584	817	214	338	28	281	7	81%
PSG3-3	6 58.1	34.8	77.9	0.45	0.1063	0.0043	4.7052	0.1983	0.3210	0.0054	0.4027	1737	74	1768	35	1794	27	98%
PSG3-3	7 28.9	136	136	1.00	0.0553	0.0044	0.3620	0.0273	0.0484	0.0011	0.3142	433	181	314	20	305	7	97%
PSG3-3	8 19.6	31.5	43.0	0.73	0.2131	0.0192	1.6076	0.1256	0.0582	0.0022	0.4861	2929	146	973	49	365	13	9%
PSG3-3	9 33.9	161	165	0.97	0.0600	0.0042	0.3724	0.0255	0.0458	0.0010	0.3051	611	154	321	19	288	6	89%
PSG3-4	0 18.6	88.8	115	0.78	0.0537	0.0045	0.3446	0.0268	0.0469	0.0008	0.2294	361	189	301	20	295	5	98%
PSG3-4	1 41.7	205	223	0.92	0.0579	0.0034	0.3616	0.0206	0.0453	0.0008	0.3154	528	130	313	15	286	5	90%
PSG3-42	2 14.7	72.1	96.8	0.74	0.0592	0.0053	0.3676	0.0324	0.0460	0.0012	0.2842	576	199	318	24	290	7	90%
PSG3-4	3 25.3	130	107	1.21	0.0631	0.0049	0.3949	0.0285	0.0455	0.0010	0.2987	722	169	338	21	287	6	83%
PSG3-4	4 14.4	69.4	99.3	0.70	0.0568	0.0053	0.3570	0.0348	0.0458	0.0012	0.2782	483	209	310	26	289	8	92%
PSG3-4	5 60.0	300	381	0.79	0.0538	0.0025	0.3455	0.0163	0.0462	0.0007	0.3171	365	112	301	12	291	4	96%
PSG3-4	6 11.1	50.0	84.0	0.60	0.0591	0.0048	0.3700	0.0299	0.0461	0.0011	0.3075	572	178	320	22	290	7	90%
PSG3-4	7 60.4	45.4	33.3	1.36	0.1050	0.0045	4.8545	0.2011	0.3347	0.0055	0.3984	1714	78	1794	35	1861	27	96%
PSG3-4	8 23.1	108	157	0.69	0.0514	0.0042	0.3426	0.0272	0.0486	0.0010	0.2521	261	185	299	21	306	6	97%
PSG3-4	9 18.5	91.0	116	0.79	0.0541	0.0049	0.3450	0.0290	0.0476	0.0010	0.2604	376	201	301	22	299	6	99%
PSG3-5	0 15.0	72.6	85.7	0.85	0.0686	0.0051	0.4166	0.0274	0.0458	0.0011	0.3583	887	154	354	20	289	7	79%
PSG3-5	1 25.9	132	116	1.15	0.0548	0.0045	0.3363	0.0279	0.0456	0.0010	0.2691	406	190	294	21	287	6	97%
PSG3-52	2 14.5	63.5	85.3	0.74	0.0576	0.0053	0.4062	0.0367	0.0514	0.0012	0.2646	522	203	346	26	323	8	93%
PSG3-53	3 43.5	228	221	1.03	0.0553	0.0038	0.3586	0.0248	0.0474	0.0010	0.2958	433	156	311	19	299	6	95%
PSG3-54	4 13.2	62.3	87.9	0.71	0.0564	0.0049	0.3554	0.0311	0.0460	0.0010	0.2516	478	193	309	23	290	6	93%
PSG3-5	5 124	659	404	1.63	0.0507	0.0025	0.3256	0.0157	0.0470	0.0008	0.3516	233	118	286	12	296	5	96%
PSG3-5	6 5.70	28.6	42.5	0.67	0.0769	0.0083	0.4345	0.0458	0.0460	0.0016	0.3291	1120	217	366	32	290	10	76%
PSG3-5	7 22.8	107	135	0.79	0.0549	0.0043	0.3381	0.0265	0.0454	0.0010	0.2706	409	169	296	20	286	6	96%
PSG3-5	8 16.1	74.8	106	0.70	0.0535	0.0050	0.3261	0.0280	0.0458	0.0011	0.2683	350	209	287	21	289	7	99%
PSG3-5	9 17.6	79.3	118	0.67	0.0574	0.0044	0.3652	0.0254	0.0477	0.0009	0.2776	509	201	316	19	300	6	94%
PSG3-6	0 21.8	92.1	128	0.72	0.0557	0.0044	0.3517	0.0257	0.0475	0.0012	0.3385	443	178	306	19	299	7	97%

Samples	Denth (m)	Quartz	Feldsnar	Calcite	Siderite	Clay minerals	Clav mineral assemblage			
	Depui (iii)	Quartz	reidspur	Culeite	Blacific	City initionals	Chlorite	Illite	Kaolinite	
ps5	1460	34	0	0	2	64	35	25	40	
ps7	1465	27	0	0	46	27	5	20	75	
ps8	1470.5	33	0	0	6	61	15	35	50	
ps9	1471.1	38	0	0	2	60	15	25	60	
ps10	1473.9	38	2	0	3	57	20	20	60	
ps11	1476.3	32	0	0	2	66	15	15	70	
ps12	1477.2	30	2	0	2	66	15	20	65	
ps13	1479.4	40	6	2	2	50	20	25	55	
ps14	1480.5	33	3	0	3	61	25	25	50	
ps15	1482.2	33	3	0	3	61	25	25	50	
ps16	1482.4	34	3	0	2	61	20	20	60	
ps17	1483.1	32	2	0	2	64	15	15	70	
ps19	1484.7	34	0	0	0	66	15	15	70	
ps20	1488.5	29	0	0	16	55	10	10	80	
ps21	1490	32	2	0	4	62	20	20	60	
ps26	1505	10	0	2	0	88	10	10	80	
ps27	1506	14	0	0	0	86	15	10	75	
ps28	1514.7	38	0	0	2	60	15	10	75	
ps29	1518.6	32	2	0	0	66	15	5	80	
ps30	1522.8	32	0	0	2	66	15	10	75	
ps31	1524.5	4	0	0	0	96	10	10	80	
ps33	1527	2	0	0	32	66	30	0	70	
ps34	1529.5	46	0	0	5	49	20	5	75	
ps35	1529.6	4	0	0	0	96	35	10	55	
ps36	1531.5	24	0	0	0	76	65	20	15	
ps37	1532	29	0	0	2	69	55	15	30	
ps38	1535.6	29	2	0	0	69	25	25	50	
ps42	1545	39	3	0	2	56	25	25	50	
ps52	1564.8	34	2	0	0	64	25	25	50	
ps53	1585	35	0	0	0	65	20	25	55	
ps54	1587.7	40	2	0	2	56	15	25	60	
ps55	1587.8	43	2	0	2	53	15	30	55	
ps58	1590	35	2	0	2	61	10	20	70	

Table DR2. XRD mineralogical composition of the Lower Permian samples from southeastern North China

		5	· · /		U.	1 / 0		2				1						
Sample	Depth (m)	Lithology	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	Na ₂ O	K ₂ O	TiO ₂	MnO	P_2O_5	LOI	Total	Rb	Sr	Ва	Zr
ps5	1460	mudstone	57.02	24.15	5.1	0.16	0.67	0.45	1.61	0.91	0.01	0.04	9.77	99.94	91.8	122.5	464	196
ps7	1465	siltstone	28.97	8.13	37.47	1.04	1.21	0.29	0.63	0.38	0.43	0.171	21.3	100.05	36.8	66.2	216	163
ps8	1470.5	mudstone	54.39	20.58	8.68	0.22	0.76	0.53	2.39	0.83	0.3	0.062	10.6	99.42	150.5	119.5	630	185
ps9	1471.1	mudstone	61.38	21.06	4.71	0.14	0.76	0.55	2.32	0.97	0.13	0.041	7.89	100	139	109.5	581	216
ps10	1473.9	mudstone	59.23	21.15	5.63	0.28	0.85	0.53	2.01	0.98	0.07	0.139	8.92	99.85	119.5	121	500	246
ps11	1476.3	mudstone	55.47	26.15	3.36	0.14	0.56	0.49	1.65	0.85	0.01	0.063	10.75	99.56	91.8	149	512	169
ps12	1477.2	mudstone	54.45	27.14	3.16	0.15	0.52	0.52	1.46	0.79	0.01	0.054	11.65	99.95	82.9	138	503	165
ps13	1479.4	siltstone	63.8	20.58	2.77	0.35	0.73	1.07	1.77	0.94	0.01	0.074	7.37	99.53	91.7	145	471	367
ps14	1480.5	siltstone	58.79	21.45	5.02	0.35	1.06	0.84	2.23	0.88	0.09	0.083	9.07	99.95	113.5	149.5	566	196
ps15	1482.2	mudstone	59	19.83	6.07	0.57	1.06	0.89	2	0.84	0.11	0.099	9.13	99.66	99.6	138.5	489	215
ps16	1482.4	mudstone	58.3	22.2	4.03	0.31	0.93	0.8	2.23	0.91	0.05	0.083	9.23	99.14	115	157.5	573	216
ps17	1483.1	mudstone	60.29	23.96	2.32	0.17	0.61	0.58	2.16	0.99	0.01	0.043	8.76	99.95	94.2	147	510	225
ps19	1484.7	mudstone	56.19	27	2	0.14	0.4	0.51	1.22	0.79	0.01	0.028	11.35	99.69	50.4	149.5	419	184
ps20	1488.5	mudstone	46.74	18.9	14.79	0.38	0.86	0.57	1.49	0.82	0.19	0.139	14.55	99.49	68.6	169.5	421	293
ps21	1490	mudstone	58.46	20.56	5.71	0.28	0.85	0.68	1.84	0.87	0.08	0.122	10.4	99.91	84.8	169.5	457	243
ps26	1505	mudstone	38.09	26.81	2.48	0.2	0.43	0.41	0.54	0.53	0.01	0.029	29.6	99.17	23.1	140.5	327	231
ps27	1506	mudstone	41.13	28.87	2.05	0.15	0.42	0.46	0.63	0.58	0.01	0.027	24.6	98.97	26.4	156.5	373	253
ps28	1514.7	mudstone	62.11	22.58	3.29	0.1	0.45	0.45	1.12	1.05	0.01	0.053	8.57	99.84	58.6	130.5	375	374
ps29	1518.6	mudstone	53.75	30.38	1.65	0.12	0.22	0.38	0.42	0.99	0.01	0.032	12.1	100.1	19.3	140	263	313
ps30	1522.8	mudstone	58.21	25.44	3	0.08	0.37	0.3	1.17	1.03	0.03	0.054	9.8	99.56	63.6	162	319	277
ps31	1524.5	mudstone	44.5	37.33	1.33	0.08	0.24	0.31	0.95	0.99	0.01	0.061	13.85	99.69	40.6	186	385	335
ps33	1527	mudstone	32.22	27.56	19.32	0.13	0.34	0.16	0.18	1.01	0.16	0.033	18.25	99.39	8.2	78.4	103	411
ps34	1529.5	mudstone	67.09	18.4	4.48	0.03	0.19	0.13	0.27	0.65	0.02	0.033	7.88	99.18	11.5	74	103.5	310
ps35	1529.6	mudstone	42.34	35.51	5.65	0.26	0.22	0.22	0.33	1.35	0.01	0.243	13.5	99.67	15.2	205	273	583
ps36	1531.5	mudstone	48.17	23.79	16.36	0.18	0.81	0.33	1.15	0.86	0.01	0.196	7.72	99.65	53.6	351	374	231
ps37	1532	mudstone	51.02	23.73	12.35	0.14	0.68	0.25	1.11	0.84	0.02	0.12	9.09	99.41	53.1	230	312	252
ps38	1535.6	mudstone	56.98	25.51	3.04	0.19	0.63	0.76	1.52	0.98	0.01	0.081	9.71	99.49	60	253	713	412
ps41	1538	fine-grained	63.02	20.29	3.25	0.91	0.7	1.8	1.96	0.75	0.01	0.132	6.96	99.89	65.9	265	704	207
ps42	1545	mudstone	60.76	23.51	1.98	0.08	0.49	0.75	1.8	0.9	0.01	0.048	8.98	99.39	83.9	171.5	551	296
ps52	1564.8	mudstone	53.63	26.74	1.48	0.07	0.49	0.69	1.94	0.74	0.01	0.056	13.85	99.74	89.5	130.5	431	210
ps53	1585	mudstone	46.65	23.11	1.32	0.07	0.39	0.43	1.37	0.72	0.01	0.071	25.5	99.68	65.9	142.5	285	224
ps54	1587.7	mudstone	62.46	23.16	1.17	0.1	0.36	0.44	2.06	0.91	0.01	0.027	8.96	99.71	79.3	121	526	482
ps55	1587.8	mudstone	62.32	22.4	1.29	0.12	0.37	0.4	2.14	1.02	0.01	0.031	9.13	99.29	83.3	119.5	520	579
ps58	1590	mudstone	60.55	22.12	1.31	0.05	0.4	0.4	1.88	0.69	0.01	0.038	12.35	99.85	68.5	94.9	432	279
ps60	1594.5	fine-grained	50.49	15.18	12.91	1.09	1.79	0.84	2.09	0.65	0.29	0.132	13.8	99.35	81.8	199	492	274

Table DR3. Whole-rock major element (%) and trace element (ppm) geochemistry of the Lower Permian samples from southeastern North China

