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Although the chemistry of copper has a long history [1a-d], the relatively recent discovery of N-

heterocyclic carbene (NHC) as transition-metal supporting ligands has permitted novel vistas to be 

explored in copper reactivity and catalysis [1e,f]. Shortly after the seminal discovery of Arduengo,
 

Raubenheimer reported a neutral copper carbene complex [1e,1f,2]. However, the field remained dormant 

for almost ten years. In the early 2000s, new breakthroughs were achieved: first, the synthesis of NHC-

copper using Cu2O was reported by Danopoulos and followed by the first application in catalysis by 

Woodward [3,4]. The work by Buchwald and Sadighi appeared next, where the first catalysis using a 

well-defined complex was described [5]. 

The first reports in this field were based on systems used to mimic their phosphine relatives. NHCs have 

become ligands of significant interest due to their steric and electronic properties [6,7,8]. Combining the 

NHC ligand family and copper became, for some, an obvious and productive area [6]. Over the last 

decade alone, numerous systems have been developed. Copper-NHC complexes can be divided into two 

major classes: neutral mono-NHC and cationic bis-NHC derivatives: [Cu(X)(NHC)] [9] (X = halide, 

acetate, hydroxide, hydride, etc.) and [Cu(NHC)(L)][Y] (L = NHC or PR3; Y = PF6, BF4) [10].  

The neutral-halide-bearing complexes have been widely used in catalysis, mainly due to their ease of 

synthesis.
9
 In addition to halide-bearing complexes, notable important related compounds have been 

reported: Nolan and co-workers disclosed the first hydroxide derivative [Cu(OH)(IPr)] (IPr = N,N’-

bis(2,6-di-isopropylphenyl)imidazol-2-ylidene) and Sadighi published alkoxides, hydrides and borate 

species, which permitted novel reactivity to be explored [9g-i]. With respect to cationic derivatives, 

homoleptic and heteroleptic bis-NHC complexes have been reported and have been efficiently used in 

catalysis allowing important improvements [10]. In this review, an overview of the two classes and their 

respective catalytic performance will be presented. 

1. Alkenes and allenes functionalization 

1.1. 1,4-Reduction 

 

One of the emblematic reactions catalyzed by copper is undoubtedly the 1,4-reduction of enones 

and enoates. After Arduengo’s seminal work, NHC-copper complexes were successfully used in the 

conjugate additions of diethyl zinc to enones. In 2003, based on their previous report focusing on 

phosphine complexes, Buchwald and Sadighi published the conjugate reduction of α,β-unsaturated 
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carbonyls using a Cu-NHC system (Scheme 1.1) [11]. In the primary investigation of cyclic enones, the 

silane sources presented no significant effect as approximately the same yields were obtained. In this 

transformation, THF or toluene can be used to efficiently perform the reaction with no loss of reactivity. 

Interestingly, with respect to the nature of the α,β-unsaturated ester, the reactivity was completely 

different. After 20 hours, the reduction of ethyl trans-β-methylcinnamate was incomplete, and addition of 

an alcohol solvent increased the reaction rate. In the presence of 4 equivalents of tert-butanol, full 

conversion was reached after only 1 h, with only 0.3 mol% of catalyst. A range of α,β-unsaturated 

carbonyls were investigated. Tri-substituted cyclic enones were also converted in the presence of 

[Cu(Cl)(IPr)]. In the case of phosphine hydride complex, a high catalyst loading and long reaction time 

were required. A high tolerance to functional groups such as nitro was observed, without decomposition. 

The reaction was efficiently performed on tetra-substituted olefins.  
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Scheme 1.1.1: Proposed mechanisms of the 1,4-reduction [11] 

Insight into the catalytic cycle supported an in-situ formation of a hydride species via σ-bond metathesis 

between [Cu(O
t
Bu)(IPr)] and the silane. The conjugate reduction formed a copper enolate intermediate 
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(Scheme 1.1.1). The process involving alcohol leads to the protonation of the copper enolate releasing the 

alkoxide intermediate and the product.  

In 2013, a dual catalysis 1,4-reduction/allylation process involving copper and palladium was 

reported by Riant and Nahra. In this case, [Cu(Cl)(IMes)] was selected for the 1,4-reduction reaction [12]. 

In the presence of a palladium complex, the allylic alkylation occurred leading to an interesting range of 

functional molecules. A similar mechanism as for the conjugate reduction reaction was proposed also 

involving a hydride intermediate. 

1.2. Conjugated additions 

1.2.1. Zinc reagents 

 

In the field of conjugate addition, the use of organozinc reagents is frequently encountered. In this 

context, Alexakis has made a seminal contribution by using a phosphoramidite copper-based system 

enabling an asymmetric conjugate addition. The first efficient copper-NHC system enabling 1,4-addition 

was reported by Woodward [4]. Indeed, rapid formation of the conjugate product was observed by 

exposing cyclohexenone to ZnEt2, a copper source and SIMes (SIMes = N,N’-bis[2,4,6-(trimethyl)phenyl] 

imidazolin-2-ylidene) ligand. This was the first step towards what became one of the most popular 

benchmark reactions in organocopper chemistry. Soon after, a chiral version was reported. However, poor 

enantioselectivities were obtained ranging from 23% to 50% ee [13].
 
The alternative protocol, reported by 

Alexakis, makes use of transmetallation from silver to copper. With only 4 mol% of copper salt and a 

silver complex, enantioselectivity of up to 93% were obtained. In 2005, Mauduit and Clavier reported a 

new class of chiral alkoxy-imidazolium salts.
14

 Interestingly, an unexpected phenomenon was observed 

with Cu(OTf)2 and Cu(eaa)2 (eaa = ethylacetoacetate) in correlation with temperature. Indeed, lowering 

the temperature to -78 °C with Cu(eaa)2 led to a slight decrease of the enantioselectivity, while a 

significant drop was monitored at room temperature. Curiously the opposite effect was obtained with 

Cu(OTf)2. A hypothesis to explain the phenomenon highlights the possible presence of two different 

intermediates depending on the temperature. Regarding the copper sources, CuX2 types are the most 

efficient. By tuning the NHC ligands, the enantioselectivity was affected by the ligand side-chain. The 

presence of a hydroxyl group is required for good enantiocontrol and a slight excess of ligand enhanced 

the enantioselectivity. Most important is the correlation observed between the aromatic moiety and the ee. 

The absence of C2-symmetry in the ligand requires the presence of the mesityl group, which hinders one 

side and favours approach of the substrate from the other side. A less hindered aromatic group (phenyl) 

leads to a dramatic decrease in the ee from 85% to 54%. The presence of a stereogenic centre in the C2 
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position of the alkyl chain is also very favourable. Despite the contributions mentioned above, the scope 

remained limited to a number of organozinc reagents and simple enone substrates [13,14,15].  

Scheme 1.2.1.1: Asymmetric conjugated additions [16] 

In this area, a challenge remained in the formation of quaternary C-C centres. Hoveyda and co-workers 

efficiently overcame this problem by using Ag-NHC species as transfer reagents (Scheme 1.2.1.1) [16]. 

Inactive -substituted cyclic enones were first explored. The complex investigation showed that using 

Ag-NHC with a copper salt led to a more efficient system than the well-defined Cu-NHC alone. Indeed 

the conversion and the ee increased significantly for reaction involving cyclohexenone and diethyl zinc 

(from 72% to 93% ee and 32% to 94% conversion). Based on these conditions, asymmetric conjugate 

additions (ACA) with alkyl and aryl zinc reagents were efficiently performed. However, for diaryl zinc 

reagents, the transformation proceeds slowly compared to dialkyl zinc, but with high enantioselectivity. 

Following this report, the scope was broadened to keto esters [17].  

1.2.2. Grignard reagents 

 

 Grignard reagents are the logical alternative to organozincs as they are less expensive and more 

readily available. Alexakis and co-workers reported methodologies based on Grignard reagents [18].  

Different ligand-types were tested such as C2 symmetric NHCs or unsymmetrical diaminocarbenes 
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(Scheme 1.2.2.1). Interestingly, the chirality can be efficiently transferred in this transformation. As with 

the organozincs, the unsymmetrical NHCs lead to efficient catalysts. No base was required as the 

Grignard reagent plays this role in the activation step. A large range of reactants was efficiently 

converted. Primary Grignard reagents give high ees (up to 96%) while secondary Grignard reagents 

required lower temperatures to provide similar results (-30 °C). Regarding enones, tri-substituted 

cyclohexenones were converted with moderate to good yields and even poorly reactive enones such as 

phenyl cyclohexenone presented good enantioselectivity.  

 

Scheme 1.2.2.1: Conjugated addition using Grignard reagents [18] 

 

Tomioka and co-workers achieved excellent regio- and enantio-selectivity using chiral NHCs bearing two 

methoxy moieties with C2 symmetry (Figure 1.2.2.2) [19]. 

N N

MeOOMe

Ph Ph
BF4

-

Tomioka
 

Figure 1.2.2.2: The Tomioka complex [19] 

 

Alexakis and Mauduit extended the scope to poly-conjugated systems. The unusual 1,4-conjugate 

addition product was observed with chelated NHCs, while most other NHCs and other ligand classes 

favoured the 1,6-conjugate addition. Very desirable building blocks such as chiral alkenes and alkynes 

can be produced using this methodology [20]. 

1.2.3. Aluminium reagents
 

 

 Organoaluminum reagents are an alternative class of substrates for conjugate additions, which has 
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been explored to a lesser extent. Using such reagents, poorly reactive substrates such as small 

cyclopentenones can efficiently be converted. However an activating functionality is required on the 

organoaluminium reagents. Aryl and alkyl silyl-fluorides were used with unsubstituted cyclic enones.  Af 

ew reports based on organoaluminium reagents have been reported by the Hoveyda group (Scheme 

1.2.3.1) [21]. -substituted cyclic enones are efficiently reacted with aryl and alkyl moieties. For the 

challenging -substituted cyclopentanones, highly enantiopure compounds were obtained with ee of up to 

98%.
 

  

Scheme 1.2.3.1: Conjugated addition using aluminum reagents [21] 

In addition, five- or six-membered cyclic enones can also be substituted with silane vinyl aluminum 

reagents. The presence of a silane moiety brings an additional opportunity for further functionalization 

[21]. 

1.2.4. Boron reagents 

 

During the last decade, new opportunities have been created with the utilisation of organoboron reagents. 

The -boration of unsaturated carbonyl compounds was first investigated by Fernandez and co-workers 

(Scheme 1.2.4.1) [22]. Chiral cationic and neutral NHC complexes, such as [Cu(NCMe)(NHC)]BF4 and 

[Cu(Cl)(NHC)], were compared using B2pin2 as the boron reagent. Interestingly, the nature of the anion 

did not affect the enantioselectivity or the conversion. This observation was rationalised by the presumed 

formation of the same catalytic species [Cu(NHC)]
+
. However, the ligand symmetry appeared to impact 

the reactivity. Indeed, C1 symmetric ligands were slightly better than the C2 symmetric ones. Based on 

this methodology, the challenging -unsaturated aldehyde, cinnamaldehyde, was quantitatively 
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converted, but only in 40% ee. The syn-diastereomer was slightly favoured for substituted alkenes, such 

as -methyl ester. 

N N

Ph

Ph Ph

[Cu(Cl)(NHC)] or 

[Cu(MeCN)(NHC)]BF4 (1 mol%),

B2pin2 (1.1 equiv.), NaOtBu (3 mol%),

MeOH (2 equiv.), THF, RT, 6 h
R1 R2

O

R1 R2

OBpin

OtBu

OBpin

OiPr

OBpin

73% ee 70% ee

NHC:

 

Scheme 1.2.4.1: Boron reagents in conjugated addition [22] 

 

In 2010, Hoveyda expanded the scope of the transformation to the formation of quaternary chiral centres 

for trisubstituted alkenes of acyclic -unsaturated carboxylic esters, ketones, and alkylthioesters 

[23,24]. In contrast with previously reported articles, the monodentate ligands were more active than 

bidentate ligands. Interestingly, various aryl-substituted unsaturated esters are converted. However, a 

decrease in the reactivity and enantioselectivity was monitored for the ortho-methyl substituted substrate. 

The presence of a halogenated group affected neither the reactivity nor the ee (93% to 96% yield with 

97% to 98% ee). Alkyl-substituted esters were also efficiently transformed into boron reagents. However 

a dramatic drop in the conversion was observed for unsaturated ketones (73 to 89%), but the er remained 

good (82 to 92%). Thioesters presented surprising reactivity; all substrates were obtained with high 

enantiomeric purity (>99%).  

The methodology allowed for the formation of a large number of chiral -boryl carbonyls with high ees. 

More recently, Sawamura has additionally developed a methodology for the enantioselective conjugate 

addition of alkylboranes using bulky NHC ligands [25]. 

1.3. Allylic substitution 

1.3.1. Zinc reagents 

 

Inspired by ruthenium systems, a new class of chiral NHCs was developed by Hoveyda. The 

optically pure NHC-Ag(I) complex was used as transfer reagent to synthesise an air-stable bidentate NHC 

copper complex (Scheme 1.3.1.1) [26]. The addition of alkylzinc reagents to di- and tri-substituted allylic 

phosphates was investigated. The reaction proceeds smoothly with high ees (up to 98%) and yields. By 

tuning the ligand backbone, the chirality induction of these ligands was improved [27]. The ligands show 
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similar results to those previously reported and the silyl-substituted allyl phosphates were efficiently 

converted [28]. 

 

Scheme 1.3.1.1: Use of zinc reagents in the allylic substitution [26] 

1.3.2. Grignard reagents 

 

 The alternative of using Grignard reagents is obviously attractive as accessibility is not an issue. 

The substitution’s regioselectivity is dependent of various factors such as the structure of the allylic 

substrates, the Grignard reagents, the copper salt, solvent and temperature as well as the order of addition 

of reagents. However, further development of the ligand structures should enable catalyst-based control of 

the reaction, including enantioselectivity and regioselectivity. Okamoto reported a novel procedure for 

this transformation using copper-NHC complexes as well as an asymmetric version using chiral ligands 

[29]. Interestingly the steric bulk of the NHC affects the regioselectivity and the rate of the reaction. 

Alkenes bearing leaving groups such as carbonate, acetate, phosphate and chloride gave high γ-

selectivity. However, α-products are predominantly obtained with allylic carbonates in THF, while only γ-

products were formed with allylic chlorides under similar conditions. Primary and secondary alkyl 

Grignard reagents provided γ-products in excellent yield and regioselectivity. In the case of aryl Grignard 

reagents, the α-product was mainly obtained. Regarding allylic substrates, the reaction with di-substituted 

and tri-substituted alkenes having a variety of substituents such as alkyl, aryl, siloxy- and alkoxymethyl 

groups with E- or Z-geometry proceeded in a γ-selective manner. 

In the presence of chiral NHCs, the reactions proceeded to give optically active γ-substituted products in 

low to moderate enantiopurity. Highest ees were obtained for catalysts bearing sterically demanding N-

substituents. Interestingly, the introduction of additional C2-chirality into the NHC resulted in the 
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inversion or decrease of the enantioselectivity. Such phenomena were observed when E-allylic substrates 

were used instead of Z-isomers. 

Scheme 1.3.2.1: Allylic substitution using Grignard reagents [31] 

 Tomioka reported an asymmetric version of this transformation using an air-stable complex [30].
 

Interesting activity was recorded with a γ/α ratio of 67:33 and enantioselectivity of 96% (ee). The 

bulkiness of the ligand improved the regioselectivity. Indeed, introducing a methyl group in the ortho-

position (aryl group on the N-substituent) increased considerably the regioselectivity (from 67:33 to 92:8) 

and the yield but decreased the enantioselectivity. The reaction conditions are compatible with more 

sterically demanding substrates. Based on these observations, the reaction was explored for aliphatic 

systems (Scheme 1.3.2.1) [31]. Investigations of the steric properties of NHC showed that the ortho-

substitution (aryl group on the N-substituent) is key for γ-selectivity (γ/α 92:8) but not for the ee, which 

dropped considerably (76%). Other positions did not influence the reactivity. Concerning electronic 

effects in this reaction, EWG (electron-withdrawing groups) in para-position increased the γ-selectivity, 

while the bulkiness of the substituent led to a decrease in the enantioselectivity. Suitable catalysts can be 

found but this reaction remained dependent on the allylic substrates and the Grignard reagents. Catalysts 

bearing N-benzhydryl groups afforded good results for linear allylic substrates with Grignard reagents 

having an electron-deficient aryl group (up to 86% ee, 88% γ-product) and for branched allylic substrates 

with any Grignard reagents (up to 96% ee, 96% γ-product). Catalysts with N-(4,4’-difluorobenzhydryl) 

moiety performed well in the case of linear allylic substrates with magnesium compounds without 

electron-withdrawing group (up to 87% ee, 84% γ-product). All results highlighted that the γ-selectivity is 

impacted by the electron-deficiency and steric hindrance of the complex, Grignard reagents and allylic 

substrates. The γ-selectivity is likely to be governed by the relative rates of reductive elimination of the γ-
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η
1
-allyl intermediate and isomerisation to the η

3
-allyl intermediate, and the subsequent reductive 

elimination.  

1.3.3. Aluminium reagents 

 

 Catalytic asymmetric allylic alkylation (AAA) has been performed by Hoveyda and co-workers in 

the presence of vinylaluminium reagents (Scheme 1.3.3.1) [32, 33]. Readily available DIBAL-H being 

added to terminal alkynes permits to deliver in situ the vinylmetals. Alkylation is promoted by 0.5 - 2.5 

mol % of chiral copper-NHC complexes. Tri-substituted alkenes bearing sterically demanding groups, 

electron-withdrawing aryl units or an unsubstituted phenyl group undergo the transformation in 82-94% 

yield and 87 to >98% ee. Alkylations of di-substituted olefins proceed in high yield but are less selective 

unless a sterically demanding group, such as a silyl substituent, is present. The catalytic alkylation can be 

performed with vinyl bromides, cyclic alkenes or vinyl alkynes. This method was efficiently used for the 

synthesis of 1,4-dienes containing Z,E-alkenes [33]. Copper-NHC complexes were generated in situ by 

reacting silver-NHC complexes and a copper salt; high selectivity (98%) was observed, with high 

enantiomeric purity for all substrates (between 94:6 and >99:1). A large panel of vinylaluminum reagents 

were converted giving an interesting methodology for allylic alkylation.  

Scheme 1.3.3.1: Asymmetric allylic substitution reported by Hoveyda [32, 33] 

 

1.3.4. Boron reagents 

 

The most interesting alternatives as reducing reagents are boron derivatives as these permit 

milder reaction conditions. Commercially available B2pin2 in reactions with chiral sulfonate-NHC 

afforded the formation of allylboronates with stereogenic centres (Scheme 1.3.4.1). High 

enantioselectivity (E- and Z-substrates favour S- and R-products, respectively) and yield (71 to 97 %) 
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were obtained based on this methodology. During the studies, the effect of the base (NaOMe) was 

monitored [34]. A similar reaction was reported by McQuade using 6-membered NHC copper complexes 

[35]. These systems reached higher conversion and enantioselectivity compared to their imidazole 

analogue ([Cu(Cl)(IMes)]). Interestingly, stereo-convergence was observed. Indeed both systems 

presented a preference for the same face of both E- and Z-alkenes. These observations were clearly in 

contrast with the Hoveyda report. It should be mentioned that McQuade only formed tertiary centres 

whereas Hoveyda formed quaternary centres.  

 

Scheme 1.3.4.1: Allylic substitution via boronic ester or B2pin2 [34, 36] 

 

Allylic substitution of aryl boronic esters was also reported. (Scheme 1.3.4.1) [36]. A trend was found 

between the reactivity and the NHC ligand. Indeed, the best selectivity was obtained with [Cu(Cl)(IMes)], 

while ICy and IAd provided a lower selectivity despite a higher reaction rate. The tert-butoxide analogue 

[Cu(O
t
Bu)(IMes)] was the most active catalyst. Regarding the base, two different systems were efficient. 

In the case of electron-poor species, high yield and selectivity were obtained using KO
t
Bu, meanwhile 

NaO
t
Bu was selected for electron-rich substrates. Steric bulk around the boronic ester did not influence 

the reaction outcome. E- and Z- substituted electrophiles as well as azides, cyanides, chlorides and 

protected alcohols are compatible with the reaction conditions. Hayashi described an asymmetric version 

for monosubstituted allyl phosphates [37]. The impact of the metal alkoxide was investigated and proved 

to be significant. Indeed, NaO
t
Bu gave high selectivity towards γ-substituted compounds with a lack of 

enantioselectivity, whereas NaOMe increased the ees. The N-substituents also affect the γ-selectivity and 

enantioselectivity. Various aryl groups are tolerated. However heteroaryl and alkenylboronate showed a 

loss in the regioselectivity and enantioselectivity but high yields. The methodology was successfully 

applied to the formation of quaternary carbon stereocentres [38]. 

 

 

1.4. Boration and carboboration of alkenes 
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1.4.1 Boration of alkenes 

 

In 2006, Sadighi reported the first well-defined copper boryl complex [Cu(Bpin)(IPr)]. The 

insertion of alkene into the copper-boron bond was investigated. A rapid reaction toward the formation of 

a boron-alkyl was observed when [Cu(Bpin)(IPr)] was exposed to styrene [39].
 
Boration of substituted 

styrene was efficiently performed. Despite a slow reaction rate monitored for the alkyl derivatives, high 

yields were obtained (86%) [40]. This observation was a breakthrough, thus opening doors to novel 

chemistry. In 2009, a racemic version was developed by Hoveyda [41a],
 
using [Cu(Cl)(NHC)] (NHC = 

e.g. SIMes, IMes or ICy), followed by an enantioselective version using chiral NHCs. The investigations 

on the nature of the ligand showed a trend (SIMes: 98%; IMes: 65%; ICy: 13%) with the saturated SIMes 

being the most efficient catalyst (Scheme 1.4.1.1). The presence of an alcohol is required to generate the 

alkoxide species. High regioselectivity (96%) and yield (80%) were observed for the enantioselective 

hydroboration. The boration of sterically hindered olefins was efficiently performed while that of cyclic 

olefins was obtained with lower selectivity (86%).  

 

Scheme 1.4.1.1: Alkenes boration [39, 40, 41] 

In 2011, Hoveyda reported on the enantioselective hydroboration of disubstituted aryl olefins 

[41b], Once again these experiments were based on the previously described boryl copper complex. The 

ability of chiral NHC-copper complexes to undergo hydroboration was investigated on α-methylstyrene. 

When monodentate complexes were used, almost no stereoselectivity was observed (59:41). However, 

with bidentate derivatives, an increase of the e.r. was recorded (75:25). Interestingly, chiral NHC bearing 
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sulfonate-moiety presented high activity and stereoselectivity (85.5:14.5). The authors argued that the 

flexibility of the N-substituent was the key factor for the transformation, allowing a more favorable 

conformation for the binding of the alkene to the metal center. Lowering the temperature of the reaction 

affected the selectivity (er: 93.5:6.5) without loss of reactivity (96%). Large numbers of α-methylaryl 

olefins were converted with high stereoselectivity (> 98%). Despite these encouraging results, the 1,1-

disubstitued aryl olefins did not proceed the same way and a change of catalyst was required to achieve 

this transformation. In the particular case of allylic alcohols, the 2-substituted allylboronates were formed, 

which is correlated to the fast rate of the Cu-alkoxide elimination vs the Cu-C protonation [42].
 
Recently, 

McQuade has reported on the reactivity of copper(I) fused NHC complex for the boration of styrenic and 

strained alkenes [43].   

1.4.2. Carboboration of alkenes 

 

The preparation of highly functionalized molecules is of significant interest. In this area, 

carboboration is an interesting method leading to substituted vinylboronic esters. In 2008, Suginome and 

co-workers reported a palladium and nickel catalyzed carboboration [44].
 
However, only functionalized 

alkynes (bearing hydroxyl group) were tolerated. Recently, the syn-carboboration of alkynes leading to 

tri- and tetra-substituted vinylboronates was reported based on copper-phosphines complexes [45].
 
In 

2012, Tataki reported the analogous transformation using copper-NHC systems [46a]. [Cu(Cl)(SIMes)] 

(SIMes = N,N’-bis[2,4,6-(trimethyl)phenyl] imidazolin-2-ylidene) was highly efficient in the formation of 

the vinylboronates in moderate to high yields. (Scheme 1.4.2.1).  

Cl [Cu(Cl)(SIMes)] (5 mol%),

KOtBu, B2pin2 (1.3 equiv.), 

DMF, RT
R

R

pinB Ph

SiMe2Ph

pinB Ph

Bpin

pinB Ph

Ph

pinB Ph

85%, 8h 68%, 7h 65%, 1h

3 equiv.

 

Scheme 1.4.2.1: Carboboration of alkenes [46a] 

Vinylboranes and styrenes derivatives were tolerated. Mechanistic studies supported the presence of a Cu-

B species followed by the alkene insertion as part of the catalytic cycle (Scheme 1.4.2.2). Regarding the 

selectivity, a correlation was observed between the insertion of the copper moiety to the more substituted 

carbon and the electronic properties of the substituents. 
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Scheme 1.4.2.2: Postulated mechanism for alkenes carboboration [46a] 

Recently with the development and progress made in the dual catalysis, a methodology was reported 

combining palladium/copper [46b].  The first evaluation was performed used as model styrene, B2pin2, 

phenyl bromide and as palladium source Pd(OAc)2. Regarding the copper species, Cu(OtBu)(IPr) leads 

only to 82%. The chloride analogue in presence of NaOMe gave 95% with high regioselectivity. 

Unfortunately with the lithium base, no activity was recorded, whereas the LiOtBu gave identical results 

than NaOMe. Other carbenes were investigated: 
Cl

IPr gave only moderate activity while the more electron 

donating 
Me

IPr showed better activity. The less sterically demanding IMes gave poor yield and 

regioselectivity. The scope of substrates showed that the reaction proceeds with an high regioselectivity 

and various functional groups were tolerated. Later on, Brown developed a similar strategy using SIMes 

as ligand [46c]. 

1.5. Boration of allenes 

 

Due to the importance of boron species in organic chemistry, intensive studies have been reported 

leading to the formation of such substrates. In the case of hydroboration of allenes, systems based on 

metals have been reported with major drawbacks (low regioselectivity, formation of by-products and the 

need for unstable/reactive boron sources). Methodologies using HBpin or B2pin2 (stable boron reagents) 

are highly attractive. In 2013, Hoveyda reported the protoboration of monosubstituted allenes [47]. It was 

demonstrated that the chemoselectivity of the reaction was dependent on the presence of alkyl or aryl N-
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substituents on the NHC ligands. DFT calculations were undertaken to confirm and corroborate the 

observed trends (Scheme 1.5.1).  

 

Scheme 1.5.1: Effect of the NHC on allenes boration [47] 

Independently, Tsuji reported on the hydroboration of allenes [48a]. Using HBpin or B2pin2, the 

selectivity for allylboranes and alkenylboranes was controlled by the formation of the copper(I) hydride 

or copper(I) boryl intermediates (Scheme 1.5.2). Additionally, by varying the ligand, the selectivity can 

be tuned. In the presence of HBpin, the E and Z allylboranes were formed. However, the NHC copper(I) 

complexes showed lower catalytic activity than bidentate phosphine ligands.  

 

Scheme 1.5.2: HBpin in allenes boration [48a] 

When B2pin2 was used as the boron source, the regioselectivity switched to the Z isomers. Once again, the 

NHC ligand has a direct effect on the selectivity (Scheme 1.5.3). Lowering the temperature gave higher 

yields and selectivity. In light of these results, mono-substituted allenes bearing primary, secondary alkyls 

and aromatic groups were efficiently converted to the boron species. High tolerance of electron-donating 

and electron-withdrawing groups was observed.  



 18 

 

Scheme 1.5.3: HBpin in allenes boration [48a] 

The proposed mechanism is similar to the one described for alkynes (Scheme 1.5.4).  
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Scheme 1.5.4: Proposed mechanisms for the boration of allenes [48a] 

Later that same year, Tsuji broadened the scope of this reaction by performing the borylation of alkoxy-

allenes to afford boryl butadiene [48b]. 

1.6. Carboxylation of alkenes 

 

Copper-NHC systems have been involved in carboxylation catalysis. The use of CO2 as C1 source 

and chemical feedstock is of great interest. A number of processes have been reported allowing formation 

of carboxylic acids or esters. However, in the case of alkenes, a tandem reaction with in situ formation of 

alkylborane followed by the carboxylation has been reported [49]. Using [Cu(Cl)(IPr)], only 35% of 

product was observed with potassium tert-butoxide under ambient atmosphere of CO2 at 70°C. By 

changing the base to LiOMe, which is less bulky, higher yield was reached and with 3 mol% of catalyst 

almost quantitative yield (97%) was obtained. The effect of the cation was investigated showing KOMe 

slightly less efficient than NaOMe or LiOMe. The less bulky [Cu(Cl)(IMes)] gave only 41% conversion, 

probably due to a lower stability of the intermediate. Interestingly, a wide range of functional groups are 

tolerated, such as propargyl, carbonyl, halides and vinyl bromide. Despite these encouraging results, 

diphenylethylene showed no reactivity. The plausible mechanism involves the formation of a boryl 

copper species followed by a CO2 insertion, which is similar to the proposed catalytic cycle for the 

carboxylation of boronic esters.  
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Scheme 1.6.1: Carboxylation of alkenes [49] 

1.7. Hydrothiolation, hydroalkoxylation and hydroamination 

 

 The development of highly atom efficient processes is another grand challenge facing organic and 

organometallic chemistry. One successful example of such achievement is olefin functionalization. 

Indeed, formation of C-S or C-N bond via addition of thiols or amines remains a model of such 

accomplishments [50].
 
A series of articles from the Gunnoe group reported on such reactivity for Cu-

NHC complexes. Based on previously described [Cu(NHR)(NHC)], [Cu(OR)(NHC)] and 

[Cu(SR)(NHC)], hydrothiolation, hydroamination and hydroalkoxylation were possible (Scheme 1.7.1). 

The anti-Markovnikov products were obtained, while other metal systems lead to the Markovnikov 

products. This unusual selectivity was observed in all examined reactions. In the case of the 

hydroamination, primary alkyl and aryl amines as well as sterically demanding alkynes were efficiently 

used. A blank reaction conducted in the absence of copper showed a decrease in the reaction rate by 

1200-fold, highlighting the importance of the copper source. A comparison between the NHC complexes 

and the bis-phosphine copper species [Cu(NHPh)(dtbpe)] (dtbpe = 1,2-bis(di-tert-butylphosphino)ethane) 

showed that, in some cases, the latter outperformed the NHC analogues. Indeed, 95% conversion was 

observed for the aniline in the presence of acrylonitrile after 3 hours with dtbpe, compared to 12 hours for 

the [Cu(NHPh)(IPr)]. Despite this example, the [Cu(NHPh)(IPr)] outshone the other system for di-

substituted cyclohexenones. In the case of n-propyl amine, the SIPr analogue was the most active species. 

The investigations showed the efficiency of all systems, but results were substrates dependent. The 

functional group tolerance for electron-deficient vinylarene remained limited. Meanwhile after 48 hours, 

no reaction was observed for para-substituted compound with EWG (CF3 or Br). The transformation 

required the in situ formation of [Cu(NHBn)(NHC)] by reaction of benzylamine and [Cu(NHPh)(IPr)]. 

This intermediate is the key active species, which enters in the catalytic cycle even in the case of 

unactivated substrates.  

Regarding the hydroalkoxylation, the activity was limited to only a few compounds and long reaction 
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time. This phenomenon is due to the presence of a side-reaction: transesterification. The catalyst 

screening showed two efficient systems: [Cu(OEt)(IPr)] with ethanol and [Cu(OPh)(IPr)] for phenol 

derivatives.  

 

Scheme 1.7.1: Hydrothiolation, hydroalkoxylation and hydroamination catalyzed by Cu-NHC 

complexes [50] 

The last transformation studied was the hydrothiolation. Usually, the presence of sulfur derivatives is a 

serious drawback in catalysis due to catalyst poisoning. However, in Gunnoe’s methodology, several 

thiols were efficiently converted in the presence of mono-, di- and tri-substituted alkenes and styrenes. 

Once again the Anti-Markovnikov regioselectivity was obtained using [Cu(SR)(IMes)] as the most active 

catalyst. For the reaction of benzenethiol with cyclohexenone, quantitative conversion was obtained after 

5 min with the IMes complex vs 8 hours for the IPr analogue.  
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Scheme 1.7.2: Proposed mechanism for the hydrothiolation [50] 

The decrease of the steric hindrance leads to higher activity (IMes > IPr > SIPr). The poor solubility of 

the SIPr explained the low activity measured. Different hypothesis have been developed concerning the 

catalytic pathway. A plausible mechanism was presented for the hydrothiolation (Scheme 1.7.2).  

 

1.8. Carbene/Nitrene transfer 

 

In the early 2000’s, Pérez and Nolan reported a methodology for carbene and nitrene transfer 

based on copper systems. The preliminary work was focused on transfer to olefins, amines and alcohols 

using the well-known [Cu(Cl)(IPr)] complex [51].
 
The cyclopropanation of styrene in the presence of 

ethyl diazoacetate (EDA) was investigated and a fast formation of the product was recorded with 90% 

conversion after 6 hours. In the absence of styrene, no decomposition of EDA was observed (13 hours no 

decomposition). Regarding the stereoselectivity of the reaction, good cis/trans ratios were observed for 

styrene (32/68) and for cyclooctene (exo/endo: 73/27). The insertion of EDA into the C-H bonds of 

cyclohexane and 2,3-dimethylbutane was also attempted using the [Cu(Cl)(IPr)] complex and its gold 

analogue [52]. In the cyclohexane case, both gold and copper complexes were not active in the absence of 

NaBAr4, which indicates that a cationic complex is needed for this transformation. With 2,3-

dimethylbutane, the gold congener was the most active catalyst with 90%
 
conversion while the copper 

only led to a 48% conversion.
 
Interestingly, a reversed regioselectivity was noticed: the insertion into 

tertiary C-H bond occurred with copper and into primary C-H bond with gold. 
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When the role and effect of halide and NHCs were examined for the C-H insertion reaction, the chemo- 

and the regioselectivity observed with 2,3-dimethylbutane highlighted the importance of the counter-

anions. Indeed, BAr4 (BAr4 = tetrakis-(3,5-bis(trifluoromethyl)phenyl)borate) showed a 48% conversion, 

while quantitative conversion was obtained for the PF6 derivative along with a higher regioselectivity 

towards the tertiary C-H insertion product.  

Cyclopropanation

R(CN2)R'

Aziridination
R'X=NR

N

R

R
R'

 

Scheme 1.8.1: Cyclopropanation and aziridination [51, 54] 

In 2005, the cyclopropanation on a wide range of substrates including substituted diazoacetates 

was reported by Narayan [53]. Later, Appella studied the aziridination reaction allowing nitrene transfer 

(Scheme 1.8.1) [54]. In this process, the halide abstraction reagent was no longer necessary. The 

investigation of the copper-carbene complexes highlighted Cu(II) species as the most efficient for such 

transformations. However, in the absence of NHC ligand, no product was detected. The optimal 

conditions were found in the presence of a 1,3-diketone specifically dibenzoylmethane (DBM). More 

recently, an extended scope to non-aliphatic alkenes and various functional groups was reported based on 

di- and tri-nuclear cationic Cu species [55]. Despite the ability to act as carbene transfer agents, the 

reactivity of tri-nuclear copper complexes remained inferior compared to the mono- and dinuclear 

analogues [56]. 

2. Reactivity of Alkynes 

2.1. Formation of allenes 

 

In organic chemistry, allenes are valuable reactive entities which can undergo several transformations 

[57].
 
In its copper incarnation, these are usually synthesised using Stryker’s reagent [58], however an 

alternative was investigated by Krause and Lipshutz based on copper-NHC complexes (Scheme 2.1.1) 

[59]. The well-known IBiox class of ligands, developed by Glorius, as well as the most common NHCs 

were studied for the α-hydroxyallene formation [60]. Regarding the NHC effect, ICy, SIMes and IBiox7 

were the most active species in the allene formation, but poor results were measured with SIPr, IPr and 
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IMes analogues (ICy = N,N’-bis(cyclohexyl)imidazol-2-ylidene; SIMes = N,N’-bis(2,4,6-trimethylphenyl) 

imidazolidin-2-ylidene; SIPr = N,N’-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene; IMes = N,N’-

bis(2,4,6-trimethylphenyl)imidazol-2-ylidene). In the absence of ligand, the SN2’ substitution product was 

observed as well as side-reactions, leading to a mixture of diastereoisomers. The chirality is dependent on 

the ligand and the copper source. The IBiox was the optimal ligand combining good yield and 

diastereoselectivity. The chirality transfer was monitored and highlighted the anti-selective SN2’ 

reduction. Electron-rich and electron-poor arenes, enynes and esters were converted with complete 

chemoselectivity. Regarding the catalytic cycle, two pathways were proposed. One based on the SN2’ 

substitution observed by Alexakis [61], the second involving the formation of a π-complex, usually 

observed for SN2’ substitution of allylic electrophiles. The latter justifies the anti-stereoselectivity.  

 

 
Scheme 2.1.1: Formation of allenes using IBiox7 [59] 
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Scheme 2.1.2: Proposed mechanisms for allenes formation [63] 

 

In 2009, Krause proposed a variant of this transformation allowing the formation of allenes from 

propargylic carbonates [62]. Once again, the IBiox-based systems outperformed the common NHCs. A 

DFT study was perform to probe the mechanism of this transformation (Scheme 2.1.2) [63].
 

Two years ago, Lalic reported an asymmetric version leading to chiral allenes using propargylic 

phosphates (Scheme 2.1.3) [64]. In this case, the investigations showed [Cu(Cl)(ICy)] (ICy = N,N’-

dicyclohexylimidazol-2-ylidene) as the optimal catalyst for the arylation and alkylation of propargylic 

phosphates, via a SN2’ substitution. This reactivity was linked to the intrinsic selectivity during the 

substitution step. Indeed, no racemisation occurred with the phosphate and allene. The presence of lithium 

tert-butoxide was required to afford the allenes without side-reactions. Silyl and phenyl ethers, alkyl 

chlorides, thioacetals and aryl bromides proceed with high regioselectivity. Interestingly, no inhibition 

was observed with bulky substituents at the -position of propargylic phosphates. As for the alkylation, 

the arylation occurred via SN2’ substitution.  
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Scheme 2.1.3: Asymmetric synthesis of allenes [64] 

 

A plausible mechanism was proposed involving a transmetalation step followed by an anti-selective 

substitution. Later on, Hoveyda successfully developed the enantioselective allylation of boroallenes to 

access enantiopure monosubstituted allenes [65]. 

2.2. Boration of alkynes 

 

As previously described, hydroboration of multiple carbon-carbon bond is a straightforward 

process to access organoboranes [66]. These potent reagents find many applications, such as in the 

Suzuki-Miyaura cross-coupling reaction. In 2011, Hoveyda and co-workers published a highly efficient 

and selective process for the hydroboration of terminal alkynes [67,68]. The N-substituents of NHC 

ligands allowed to control the selectivity. Indeed, the presence of aryl group favored the α-vinylborane 

(up to >90%), while alkyl derivatives led predominantly to the -product (up to >98%)(Scheme 2.2.1). 

Interestingly, [Cu(Cl)(SIMes)] was more selective catalyst at low temperature. During the investigation of 

the reaction scope, different behaviors were observed. For propargylic alcohols, the transformation 

occurred in the absence of additive (methanol). The low acidity of amines did not allow the deprotonation 

of the vinylcopper intermediate. The α-vinylboranes were obtained in high selectivity and purity for aryl 

and heteroaryl-susbtituted terminal alkynes. EWG were tolerated leading to high selectivity, but the IPr 

catalyst is necessary in this case. The -hydroboration product was obtained using the [Cu(Cl)(IAd)] 

catalyst. Regarding alkyl-substituted alkynes, moderate to good yields were observed (50-86%). Aryl-

derivatives gave better selectivity. Insight into the mechanism identified several decisive factors for the 

formation of α- or -product. Indeed, the steric and electronic properties of the NHC and the alkyne 

substituents are two fundamental parameters affecting the selectivity. The more basic complex favours 

preferentially the -product, whereas the less donating NHC promoted the α-vinylboration. 
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Scheme 2.2.1: Alkynes boration [67,68] 

 

In 2012, Tsuji and McQuade independently published on the hydroboration of internal alkynes 

(Scheme 2.2.2) [69, 70]. In Tsuji’s methodology, the α-product was obtained using IPr
Cl

 ligand [69]. Aryl 

esters and amines were converted with high regioselectivity. Electron-withdrawing and electron-donating 

groups were tolerated. In the case of alkenyl derivatives, a drop in the selectivity was noticed. In parallel, 

McQuade’s systems involved two types of NHC complexes with different selectivities [70]. The use of 5-

membered-ring NHCs led to high selectivity for the α-boration. Amines and silyl-protected alcohols were 

efficiently converted, while primary ethers resulted in poor selectivity (85/15). In the presence of the 6-

membered NHC complex, the -product was the major product.  
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Scheme 2.2.2: Boration of alkynes reported by McQuade [70] 

 

Recently, Cazin and co-workers reported an aerobic version for the formation of tri- and tetra-

substituted vinylboronates. [Cu(Cl)(IMes)] catalyzed the α- and -hydroboration as well as the 

carboboration. Indeed, using B2pin2 as the boron source, the selectivity was enhanced towards the -

substituted derivative, while HBpin gave the α-product [71]. 

Two mechanisms were proposed for the hydroboration as described below (Scheme 2.2.3). 

 

Scheme 2.2.3: Proposed mechanisms for the hydroboration of alkynes [70] 
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 2.3. Carboxylation and boracarboxylation 

2.3.1. Boracarboxylation of alkynes 

 

CO2 is an abundant and nontoxic carbon source. The use of this renewable material as a building 

block in straightforward processes to access functionalised compounds is highly desirable and remains 

challenging [72]. Indeed, the heterocarboxylation in which CO2 and a heteroatom are simultaneously 

introduced represents an extremely valuable and green method of molecular assembly. In 2012, Hou and 

co-workers reported a combination of carboxylation and borylation (Scheme 2.3.1.1) [73]. To study the 

boracarboxylation, different copper-NHC complexes were tested. Low conversions were observed using 

[Cu(Cl)(IPr)], whereas less sterically demanding NHC ligands such as IMes showed a significant increase 

in catalytic activity (73%). The saturated analogues presented better results with 81%. At room 

temperature, a loss of activity was observed (26%). Regarding the alkynes tolerance, all substrates 

afforded the cyclic compound in good to excellent yields. Different functionalities were transformed, such 

as esters or haloalkynes. However, in the case of unsymmetrical alkynes with alkyl and aryl moieties, the 

boryl group was exclusively set up on the carbon bearing the alkyl group, supposedly due to steric 

hindrance.  

 

 
Scheme 2.3.1.1: Borocarboxylation of alkynes [73] 
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Insight into the catalytic cycle involved the in situ formation of the tert-butoxide copper catalyst (Scheme 

2.3.1.2). The boron source B2pin2 generated the borylcopper complex [Cu(Bpin)(SIMes)]. Then, the 

alkyne insertion into the Cu-B bond in a syn fashion affords the boryl alkenylcopper species. The 

nucleophilic attack of the alkenyl copper by CO2 is followed by the transmetalation to generate the final 

product.  
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Scheme 2.3.1.2: Proposed mechanism for the boracarboxylation [73] 

2.3.2. Hydrocarboxylation of alkynes 

 

Although nickel has been extensively studied as catalyst for hydrocarboxylation of alkynes [74],
 

and requires
 
highly unstable reducing reagents such as zinc or aluminium, an alternative method with 

copper-NHC has been developped by Tsuji (Scheme 2.3.2.1) [75]. In the presence of silane, unsaturated 

carboxylic acids were formed. Internal alkynes were converted using the commercially available 

HSi(OEt)3. In the presence of sodium tert-butoxide and [Cu(Cl)(IPr)], only traces of the desired 

compound were obtained. Interestingly, the IMes ligand permitted a 49% conversion, but a significant 

amount of the hydrogenated derivative was observed. An important halide effect was measured. Indeed 

the [Cu(F)(IPr)] allowed an important decrease of the side-product with only 3% observed, but it is 

accompanied by a slight decrease of the conversion. However, a more effective species was obtained with 

IMes. The stereoselectivity was displaced toward the formation of the E isomer. The silane source was 

efficiently replaced by a more environmentally friendly reducing reagent, PMHS 

(polymethylhydrosiloxane). Regarding the scope investigation, alkynes bearing electron-poor and 

electron-rich aryl moities were efficiently hydrocarboxylated.  
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Scheme 2.3.2.1: Hydrocarboxylation of internal alkynes [75] 

Studies toward understanding the catalytic cycle appear to confirm the formation of the hydride 

intermediate (Scheme 2.3.2.2). An alkenyl copper complex was obtained by reacting the [Cu(H)(NHC)]  

and the alkyne. The next step consists of the CO2 insertion into the Cu-C bond. More recently, DFT 

calculations studies undertaken by Lin and coworker supported this mechanism [76]. 
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Scheme 2.3.2.2: Hydrocarboxylation mechanism [76] 
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2.3.3. Methylative and hydrogenative carboxylation of alkynes 

 

Catalytic functionalization in which CO2 unit and another group are incorporated into alkynes is a 

powerful tool to access highly functionalized molecules using potentially simple synthetic steps. After the 

previously described reactions (hydrocarboxylation or boracarboxylation), it became of great interest to 

develop new methodologies based on CO2 insertion and functionalization [77]. In 2013, Hou reported a 

copper catalyzed methylative and hydrogenative carboxylation (Scheme 2.3.3.1) [78]. First the 

examination of the alkenylaluminium intermediate in the absence of the copper source did not afford the 

carboxylate species. Interestingly, the presence of a catalytic amount of [Cu(Cl)(IPr)] leads to the 

formation of the desired product at ambient temperature under atmospheric pressure of CO2. At higher 

temperature, a significant drop in the conversion was observed (86%). Under similar conditions, CuCl 

and IPr salts gave a much lower yield (8 and 28%). Interestingly, retention of the stereoconfiguration of 

the alkenylaluminium was observed leading to the hypothesis that the regio- and stereoselectivity of the 

reaction is controlled by the methylalumination step. The methylative carbonylation of internal alkynes 

bearing ether groups was efficiently achieved in high yield using scandium as co-catalyst. 

 

Scheme 2.3.3.1: Hydrogenative and methylative carboxylation of alkynes [78] 

Interestingly, the anti-configuration was obtained when trimethylsilyl-substituted alkynes were 

used. In the case of terminal alkynes, the scandium was replaces by a zirconium catalyst, well-known for 

methylalumination [79]. For all products obtained, the CO2 unit was introduced on the less hindered 

carbon. Finally, the hydrogenative carboxylation of terminal alkynes was studied. In this case, a 

nickel/copper system was required. Indeed, the nickel catalyst performed the hydroalumination, while the 

copper allowed the CO2 insertion. For all reactions, the carboxylation occurred in a cis-fashion. However, 

when [Ni(Cl)2(PPh3)2] was replaced by [Ni(Cl)2dppp] (dppp = 1,3-bis(diphenylphosphino)propane), the 

selectivity was switched and the branched carboxylation products were obtained.  



 33 

 

Scheme 2.3.3.1: Plausible mechanism for carboxylation of alkynes [79] 

A plausible mechanism was described involving a transmetallation step between the Cu-NHC and the 

alkenylaluminium species (Scheme 2.3.3.2). Then, CO2 insertion occurs into the M-C bond. A second 

transmetallation step releases the product as well as regenerates the alkenyl copper intermediate.   

2.3.4. Carboxylation of alkynes 

 

Carboxylation of terminal alkynes is an efficient method to access alkynyl carboxylic acids [80]. 

In 2010, Lu and co-workers reported a methodology for the carboxylative coupling using allylic 

chlorides. The well-defined [Cu(Cl)(IPr)] was highly active for the conversion of phenylacetylene with a 

91% yield of the desired product. Interestingly, 92% of the catalyst was recovered at the end of the 

reaction. In the absence of CO2, no product was detected. The IMes derivative gave only 51% yield. 

Interestingly, an important requirement was noticed, the pressure of CO2 had a profound effect on 
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conversion. High pressure is beneficial avoiding any side-reaction and increases the reaction rate. A 

variety of alkyl and aryl alkynes in the presence of cinnamyl chloride were efficiently carboxylated with 

good to excellent yields. High tolerance toward functional groups such as ether, ester and cyano was 

observed. In the case of heteroaryl alkynes modest yields were obtained. Different allylic chlorides were 

efficiently transformed. Independently, Zhang reported an alternative methodology for the formation of 

propiolic acids based on copper-NHC complexes [81]. The catalyst system based on CuCl and TMEDA 

efficiently promotes the reaction at ambient temperature and atmospheric pressure of CO2. But a strong 

base such as Cs2CO3 was required for alkyl substrates. The presence of EWG on the phenyl ring inhibits 

the reaction. To overcome this limitation, poly-N-heterocyclic carbenes (PNHC) were used. An increase 

in reactivity was monitored. Thus, with 10 mol% of poly-NHC ligand and CuCl, electron-deficient 

derivatives were carboxylated (RT and 1 bar of CO2). The reaction mechanism proposed involved a dual 

function of the PNHC ligand (Scheme 2.3.4.1). Indeed, the copper-PNHC allowed the formation of an 

acetylide, whereas the free ligand facilitated the CO2 insertion leading to the formation of PNHC 

carboxylate. The proximity of these two species allowed the transfer of the CO2 unit from the NHC to the 

metal center and the C-C bond formation. A metathesis step releases the final product [82]. 

 

Scheme 2.3.4.1: Carboxylation of alkynes using copper poly-NHC complexes [82] 
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2.4. Semi-hydrogenation of alkynes 

 

Semi-hydrogenation of alkynes is a worthwhile process leading to (Z)-alkenes. Heterogeneous 

catalysts have been widely used for this transformation. The most famous example remains the Lindlar 

catalyst (Pb-poisoned Pd) [83]. However, this system suffers from several drawbacks such as Z/E 

isomerisation, low chemoselectivity and lack of reproducibility. Few years ago, Tsuji published a Cu-

NHC methodology for the semi-hydrogenation of non-polar carbon-carbon triple bonds (Scheme 2.4.1) 

[84]. Terminal alkynes were successfully reduced to alkenes. The NHC effect was evaluated based on IPr, 

IPr
Me

 and IPr
Cl 

ligands. When compared with the Xanphos ligand, the NHC-based complexes 

demonstrated higher activity, especially [Cu(Cl)(IPr
Cl

)], which afforded styrene (92% yield) without the 

formation of ethylbenzene. An over-reduced compound (89% yield) was observed in the presence of the 

Lindlar catalyst. Various substrates were efficiently converted to the alkenes without formation of the 

alkane derivatives.  

 

Scheme 2.4.1: Semi-hydrogenation of terminal alkynes [84] 

Independently, Lalic reported on a similar approach based on Sadighi’s work (Scheme 2.4.2) [85]. Their 

initial investigations on the reduction of alkynes were unsuccessful. Indeed, when [Cu(O
t
Bu)(ICy)] was 

used as catalyst in the presence of triethoxysilane, tert-butanol and the alkyne, only an incomplete 

conversion toward the alkene was observed (19%). Three side-reactions were identified during the 

process. The first involved the reaction between the silane and the alcohol. Interestingly, changing ICy for 

IPr decreased the rate of this transformation. The second outcome was the fast formation of the copper 

acetylide complex, which is an inactive species for the hydrogenation. To overcome this phenomenon, 
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PMHS (polymethylhydrosiloxane) was used, which increases the rate of the silicon-copper hydride 

transmetallation allowing the formation of the alkenyl copper complex. However, this latest species might 

deprotonate the alkyne to favour once again the acetylide copper complex formation. Interestingly, the 

presence of a more acidic alcohol leads to higher conversions. Based on these observations, terminal 

alkynes were selectively converted to the desired alkene. A variety of functional groups were presented 

such as nitroarenes, sulfonates or ketones and no over-reduced product was detected. Nevertheless, in the 

case of internal alkynes, the previously described conditions were not efficient. However, when replacing 

iso-butanol by a less acidic alcohol such as tert-butanol, an increase of the conversion was observed. 

During examination of the scope, only the Z-isomer was detected. No presence of alkane derivatives was 

observed.  

 

Scheme 2.4.2: Side-reactions observed by Lalic during alkyne semi-reduction [85] 

Recently, a copper catalyst generated in-situ was reported [86]. Quantitative conversion was observed 

with the use of Cu(OAc)2·H2O and IPr·HCl in the presence of potassium tert-butoxide. However, copper 

halide salts such as CuI or CuCl generated low to moderate yields (3 to 69%). Interestingly, a minimal 

impact was correlated to the silane source (with 96% and 100%, for the triethoxysilane and PMHS 

respectively). Despite these interesting results, some over-reduced product was identified for substrates 

bearing electron-withdrawing groups. 

The plausible mechanism for semi-hydrogenation involves the formation of [Cu(H)(NHC)] (Scheme 

2.4.3). Indeed, the copper-alkoxy species reacts with the silane and leads to the formation of the hydrido-

copper(I) complex. The hydrocupration of the alkyne leads to an alkenyl copper intermediate, which in 

the presence of an alcohol releases the Z-alkene and regenerates the active species, the alkoxide copper 

complex.  
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Scheme 2.4.3: Postulated mechanism for the hydrogenation of alkynes [86] 

2.5. A
3
 coupling  

 

Multicomponent reactions are powerful tools allowing access to highly functionalized scaffolds. 

During the last decade, A
3
 coupling (Amine - Alkyne - Aldehyde) has drawn significant attention and 

represents one of the most interesting examples of atom-efficient transformation. The reaction of an 

amine, alkyne and aldehyde favoured the formation of propargylamine derivatives, which are 

predominantly used as building blocks for biological molecules. Many groups have explored the 

chemistry of propargylamines using metal-based systems such as copper or silver salts. In 2008, Wang 

reported a silica-supported copper-NHC-catalyzed A
3
 coupling (Scheme 2.5.1) [87a]. The comparison 

with the common neutral derivatives showed that both systems were highly active with 95% conversion 

after 24 hours under solvent-free conditions. Nonetheless, the following studies were conducted on the 
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SiO2-NHC-Cu complex. The catalytic activity was clearly influenced by the solvent. Polar solvents such 

as acetone or dichloromethane enhanced the reactivity leading to quantitative conversion, while toluene, 

acetonitrile and tetrahydrofuran (THF), previously reported as highly efficient in the presence of copper 

salts, gave low yields. The role of the solvent is unclear at this point. The reaction scope showed a high 

tolerance to functional groups. Cyclic/acyclic and heterocyclic amines were efficiently reacted under 

standard conditions. Nevertheless, moderate yields (43%) were observed for primary aliphatic amines, 

whereas aromatic analogues, such as anilines, provided the desired products in good yields. Regarding the 

aldehyde reactivity, aliphatic as well as cyclic/acyclic derivatives presented high reactivity. Besides the 

reactants, the catalyst remains the major variable. The heterogeneous nature of this specific system makes 

its recyclability without significant loss of catalytic activity a great contribution to the A
3
 coupling 

reaction.  

O

HR1

H
N

R2R2

[SiO2-NHC-Cu] (2 mol%)

RT, 24 h
R1

N
R2 R2

R
R

Aryl alkynes

 

Scheme 2.5.1: SiO2-NHC-Cu(I) system catalysing A
3
 coupling [87a] 

More recently, Navarro and co-workers have reported on the synthesis of propargylamines, using 

[Cu(X)(NHC)] (X = Cl, NHC = IPr, SIPr, IMes and SIMes) (Scheme 2.5.2) [87b]. A significant effect of 

the N-substituent was observed. IPr and its saturated analogue (SIPr) produced the best results (82 and 

94% conversion respectively), compared to IMes and SIMes, which almost showed no activity (4 and 7% 

conversion). A minimal impact was observed with the saturation of the NHC backbone. Additionally, a 

relatively small decrease in the reactivity is measured by replacing a chloride with an iodide. An attempt 

to rationalize the halide effect involves the first step of the proposed mechanism. The acetylide copper(I) 

formation will be favoured by the presence of chloride vs. iodide.  
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Scheme 2.5.2: Neutral copper(I) complex efficient catalyst for the formation of propargylamines 

[87b] 

Overall, the copper-NHC complexes are efficient systems for this multicomponent coupling. The aliphatic 

aldehydes are efficiently converted to the corresponding propargylamines. Despite these good results, 

aromatic aldehydes showed a lack of reactivity, necessitating longer reaction times (1 to 2 days), a higher 

catalyst loading (3 mol%) and higher temperatures (50 to 70 ºC vs. RT).  

2.6. Alkynylation of ketones  

 

The alkynylation of ketones represents a potentially very powerful synthetic method. Recently, 

Carreira described the alkynylation of ketones leading to the formation of Efavirenz, an anti-HIV drug 

[88]. McQuade and Seeberger have reported copper-NHC catalysis for alkynylation of ketones (Scheme 

2.6.1) [89]. [Cu(Cl)(IPr)] and [Cu(Cl)(IMes)] were compared. Despite the fact that both complexes 

catalyzed efficiently the transformation, the more hindered NHC (IPr) showed better catalytic activity. 

The comparison with CuCl salt highlighted the crucial importance of the presence of a ligand (CuCl = 0% 

conversion). In the absence of a base (NaO
t
Bu), no product was detected.  
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Scheme 2.6.1: Hydrogenative carboxylation of alkynes [89] 

The formation of the copper(I) alkoxide is essential for the production of trifluoromethylpropargylic 

alcohols. Indeed, NaO
t
Bu has a double role: to favor the formation of this intermediate and also facilitate 

the proton transfer step. An excess of alkynes was required to achieve higher yields. Various terminal 

alkynes were converted with moderate to good yields. Interestingly the electronic properties of alkynes 

and ketones are a determining parameter. Indeed, when phenylacetylene was reacted with 2,2,2-

trifluoromethylacetophenone a higher temperature was required to reach 86% yield. The system was 

tested under continuous flow conditions. The first issue encountered was the solubility of the additive 

(NaO
t
Bu) and that of the catalyst in tetrahydrofuran (THF). These problems were overcame by combining 

three solvent DMF, benzene and THF (2:3:1). 

2.7. [3+2] Cycloaddition: Synthesis of triazoles 

 

 Since the seminal discovery of Huisgen, the 1,3 dipolar cycloaddition represents the most 

straightforward methodology for the formation of 1,2,3-triazoles. However, the process reported required 

harsh conditions and both regioisomer 1,5 and 1,4-disubstituted triazoles were initially formed. In 2002, 

Sharpless and Medal reported the first copper-catalyzed system for the [3+2] cycloaddition [90]. 

Interestingly, only the 1,4-disubtituted derivatives were formed. Since this report, the number of 

publications on this reaction grew exponentially, however, some major drawbacks still persisted and to 

circumvent these, copper-NHC complexes were employed.  

The neutral copper complexes were the first investigated for this transformation (Scheme 2.7.1) [91,92]. 

Their efficiency was mainly proven on terminal alkynes, where low catalyst loadings were achieved. 

Testing different NHC highlighted an important effect of the ligand. Indeed, while [Cu(Cl)(IMes)] 

showed almost full conversion, an significant decrease in the conversion was recorded with [Cu(Cl)(IPr)]. 

The saturated analogues presented better catalytic activity on internal as well as terminal alkynes. N-

moieties also affected the system. Indeed, the adamantyl species was the most effective compared to other 
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analogues. Nevertheless, the impact of the halide should not be ignored. A trend in the activity was 

observed as I > Br > Cl.  

 

[Cu(Br)(SIMes)] (0.8 mol%)

Solvent free
R N3 R1

N N
N
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N N
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20 min, 98% 2 h, 91% 25 min, 93% 5 h, 95%  

Scheme 2.7.1: Formation of triazoles using neutral NHC copper(I) complexes [91,92] 

 

Recently, with the importance gained by abnormal NHCs, new evaluations of this NHC ligand motif were 

performed in the [3+2] cycloaddition reaction [93]. Mandal and co-workers reported the reaction using 

abnormal systems. These new abnormal Cu-NHC complexes showed high efficiency under similar 

conditions as those previously reported for the normal NHC species. Recycling tests showed a significant 

longevity with 10 successive catalytic runs performed before complete loss of reactivity. However, 

already after the 7
th
 cycle an increase in the time reaction was observed. aNHC (aNHC = abnormal NHC) 

or NHC copper complexes catalyzed efficiently the [3+2] cycloaddition with high TON and low catalyst 

loading. 

N

N Ph

Cu

Cl

Ph

iPriPr

iPr

iPr
 

Figure 2.7.1: aNHC copper(I) complex reported by Mandal [93a] 

 

In parallel to reports on neutral complexes, cationic bis-NHC copper species were also investigated [10]. 

In 2008, Nolan and Díez-González studied the effect of homoleptic cationic copper systems in the 

preparation of triazoles (Scheme 2.7.2) [10a]. Interestingly, the reactivity of such species proved higher 

than that of their neutral analogues. The SIMes derivative presented poor activity, which was in contrast 

with report on the neutral analogue. [Cu(ICy)2][PF6] outperformed all other systems at low loadings and 

in the absence of solvent. The heteroleptic bis-NHC and the mixed NHC/phosphine derivatives developed 
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by Cazin and co-workers were strongly active in the formation of 1,4-disubstituted regioisomers [10b]. 

Once again, the N-aryl ligand seemed to disfavour the transformation, highlighting the N-alkyl NHC or 

phosphine complexes as better alternative. However the latter required higher temperatures to achieve 

catalytic activity comparable with that obtained with the bis-NHC complexes. Exceptional TON numbers 

were reached (194,000 with a few ppm of Cu). The catalytic performance showcases the flexibility of the 

ligand as key in determining the efficiency of the transformation.  

  
Scheme 2.7.2: Cycloaddition reactions [10] 

 

The mechanistic studies reported by Nolan and Cazin highlighted the importance of a key step: the release 

of one NHC ligand. Indeed, mechanistic studies support the formation of a copper acetylide species and 

the liberation of an imidazoli(ni)um salt (Scheme 2.7.3). After reaction of the Cu-CCPh with the azide, 

the NHC salt reacts to help the release of the product and regeneration of the bis-NHC copper complex. 

Interestingly, in the case of the mixed NHC/phosphine species, the phosphine was not the leaving group 

as expected. A phosphine copper acetylide complex was observed and isolated. The following steps 

remained as proposed in the initial mechanism.   
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Scheme 7.2.3: Catalytic cycle for the formation of triazoles [10b] 

 

 

3. C-H bond activation and functionalization of aryl and 

heterocyclic compounds 

3.1. Carboxylation and carbonylation (via boronic acids, C-H activation): CO2 

insertion  

 

Commonly, methodologies to access carboxylic acids with CO2 require the presence of organolithium or 

organomagnesium halides. However, these methods have a major drawback, which is their low functional 

group tolerance.  

 
Scheme 3.1.1: Direct carboxylation [94] 
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Nolan and co-workers synthesized the first copper-NHC hydroxide complex [9g]. This new species was 

first used as a synthon for the synthesis of [Cu(R)(IPr)] derivatives via stoichiometric C-H activation. 

These initial studies were followed by the use of the hydroxide derivative as a powerful catalyst for direct 

carboxylation of N-H and C-H bonds (Scheme 3.1.1) [94]. The complex showed high selectivity for N-H 

and C-H bonds (with a pKa below 27.7). A large panel of aryl carboxylic acids was prepared, as well as 

heterocyclic compounds. Independently, Hou developed a methodology leading to a range of heterocyclic 

esters (Scheme 3.1.2) [95].  

 

Scheme 3.1.2: Carboxylation system reported by Hou [95] 

In both systems, the C-H bond activation is followed by CO2 insertion and an excess of a strong base is 

required (Scheme 3.1.3) [95]. The IPr ligand was the most efficient NHC-basedligand, with a high 

reactivity for boronic and aryl compounds. More recently, the carboxylation was conducted using 

abnormal NHC copper complexes [96]. The catalytic activity of copper (I) species proved interesting 

[97]. A plausible mechanism for this transformation was described involving C-H activation and CO2 

insertion steps. This has great potential and much remains to be done in this area.  
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Scheme 3.1.3: Mechanism of the carboxylation of C-H bonds [95] 

 

3.2. Oxidative coupling 

 

In Nature, large ranges of biaryl compounds are formed via oxidative coupling. To mimic Nature, 

metal complexes have been used, including ruthenium, iron or copper [98]. However, side-reactions 

leading to the formation of homocoupling or over-oxidised products are an issue. In 2013, copper-NHC 

complexes were used for the oxidative coupling of naphtols (Scheme 3.2.1). [Cu(Br)(IPr)] and 

[Cu(Br)(SIMes)] were used to perform the coupling of methyl esters and naphtols with Oxone [98g]. 

Good yields were obtained in both cases (63-67%). When Oxone was replaced by molecular oxygen, 77% 

yield was obtained. Adding diethyl malonate (DEM) (50 mol%) leads to quantitative conversion and 

excellent yield (98%). Different 1,3-dicarbonyls were tested, that led to similar or lower yields than with 

diethyl malonate. It is supposed that DEM acts as a ligand and slows the over-oxidation of 2-naphtol. C1-

symmetric binols were prepared using these conditions. A large range of naphtols was efficiently 

converted to the binols. 
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Scheme 3.2.1: Oxidative coupling leading to the formation of BINOLs [98] 

3.3. Thiolation 

 

Recently, thiolation of benzothiozale and azole derivatives has been achieved using NHC and 

aNHC copper(I) complexes (Scheme 3.3.1) [99]. Cu(IPr) complexes was the most efficient complex 

leading to 95% yield after 3 h, while the IMes reached only 85% after 6 hours. The aNHC ligands were 

also quite efficient. Interestingly, the presence of oxygen was necessary for the reaction. Different thiol 

derivatives were tested. Depending on the functional group, moderate to good yields were obtained.  

 

Scheme 3.3.1: Thiolation of benzothiazole derivatives [99] 
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3.4. C-H bond arylation 

 

Cross-coupling reactions are the most common method to access highly valuable and functionalized 

molecules. With the new research based on the C-H activation, direct arylation of such bond became of 

great interest. Recently, Cazin and Lesieur reported cooperative palladium/copper catalysis [100]. A 

combination of Pd(Cl)(cin)(SIPr) and Cu(OH)(IPr) leads to 14% of the coupling product from 

pentafluorobenzene and 4-chlorotoluene. The chloride analogue gave identical result. By interchanging 

the carbene ligand with the Cu(Cl)(ItBu) in presence of CsOH gave 93% conversion and 90% isolated 

yield. In absence of one of the other catalyst, no activity was recorded. Under the optimized conditions, 

the system performed efficiently with aryl chlorides as well as bromides. These results support the fact 

that the oxidative addition is not the limiting step of the reaction. High activity was observed in the case 

of electro-donating and withdrawing aryl halides. Fluoroarenes were efficiently coupled to aryl halides. 

Interestingly the highly challenging and sterically hindered tetra-ortho-substituted compounds were 

efficiently observed while using the bulky IPr* palladium complex. The C-H bond of various heterocyclic 

compounds were efficiently activated and functionalized.  
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Scheme 3.4.1: Arylation developed by Cazin [100] 

A proposed mechanism was described. Regarding the copper catalytic cycle, the first step involves the in 

situ formation of the hydroxyl synthon followed by the C-H activation leading to the formation of the 

copper-aryl complex. At this stage, the transmetallation with the palladium-aryl intermediate occurs.  

 

4. Carbon-Heteroatom bond reactivity 

4.1. Carboxylation of boronic esters 
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This area was greatly stimulated by reports from Sadighi and co-workers on the reactivity of 

copper-NHC complexes for the reduction of CO2 to CO [101]. Subsequently, DFT studies undertaken by 

Marder showed that such reductions occur through CO2 insertion into the Cu-B bond, to form a Cu-CO2-

boryl species [102]. This is followed by boryl migration and CO release. Importantly, CO2 insertion also 

occured in copper-NHC alkyl systems, but the energy barrier does not favor the migration and the CO 

elimination.  

A few years ago, Hou and co-workers identified [Cu(Cl)(IPr)] as an active copper catalyst for the 

transformation of boronic esters into the corresponding carboxylic acids (Scheme 4.1.1) [103]. A wide 

range of aryl and alkenyl boronic esters were efficiently transformed with good to excellent yields.  

R B

O

O
[Cu(Cl)(IPr)] (1 mol%) 

KOtBu (1.05 equiv.)

THF, reflux, 24 h
R COOHCO2

(1 atm.)

MeO

CO2H CO2H CO2H

NO2

CO2H

O
O

O
CO2H

CO2H

97% 79% 98%

73% 85% 73%  

Scheme 4.1.1: Carboxylation of boronic esters [103] 

Stoichiometric reactions established the mechanism for this transformation (Scheme 4.1.2). A σ-bond 

metathesis step between [Cu(Cl)(IPr)] and potassium tert-butoxide formed the alkoxide derivative. 

[Cu(O
t
Bu)(IPr)] reacts with the boronic ester to give a [Cu(Aryl)(IPr)] intermediate which is followed by 

CO2 insertion. A second σ-bond metathesis step regenerates the active species and releases the 

carboxylate.  
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Scheme 4.1.2: Mechanism of carboxylation of boronic esters [103] 

Recently, a pH responsive-NHC copper complex was reported (Scheme 4.1.3). Amine-functionalized 

[Cu(X)(SIPr)] complexes were synthesized, which will ideally allow the separation of the catalyst and the 

product at the end of the reaction. The presence of a morpholine group permits to switch from 

monophasic to biphasic conditions, by protonation, to form an ammonium salt. The insoluble catalyst can 

then be removed by centrifugation. The introduction of a fresh batch of substrate and base leads to 

catalyst regeneration, and thus allows further cycles. When compared, the chloro-derivative was more 

active than its I and Br analogues, and could undergo 4 cycles with a slight decrease in the catalytic 

activity [104]. 
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Scheme 4.1.3: Carboxylation using pH-responsive NHCs [104] 
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4.2. Reactivity of CO2 

 

In 2005, Sadighi and co-workers showed copper-NHC complexes as efficient systems for the reduction of 

CO2 to CO (Scheme 4.2.1). The [Cu(Bpin)(IPr)] complex, in the presence of CO2, formed a new complex 

identified as [Cu(OBpin)(IPr)]. During the reaction, an oxygen abstraction occurred leading to the release 

of CO gas. Interestingly, addition of B2pin2 regenerates the boryl complex with concomitant formation of 

pinB-O-Bpin.  

[Cu(Bpin)(IPr)]

[Cu(OBpin)(IPr)]

CO2

CO

O(Bpin)2

B2pin2  

Scheme 4.2.1: Reduction of CO2 [101] 

In the absence of copper, no transformation was observed. Higher turnover numbers were achieved by 

increasing the temperature. Indeed, with 0.1 mol% of [Cu(O
t
Bu)(IPr)], quantitative conversion was 

recorded after 20 hours at 100°C (1000 TONs). The use of a less sterically demanding ligand such as ICy 

leads to 81% conversion at room temperature after 1 hour due to the low stability of the boryl complex. 

However lowering the temperature to 0°C promoted efficiently the reaction with a turnover frequency of 

100 turnovers per hour which is superior to that of the IPr analogue [101]. 

Recently, Hou and co-workers reported the hydrosilylation of carbon dioxide using a copper-alkoxide 

complex (Scheme 4.2.2). [Cu(O
t
Bu)(IPr)] was placed in the presence of CO2 and triethoxysilane at 

100°C. Full conversion toward the silyl formate was recorded after only 1 hour. Interestingly, the reaction 

proceeded even at lower temperatures. Indeed at room temperature, the methodology was still efficient 

but a longer reaction time was required (almost 10 hours). The presence of a less hindered NHC such as 

IMes involved a lower conversion but the complex remained effective. A plausible mechanism was 

proposed involving the formation of a hydride species. The CO2 insertion promotes the formation of a 

copper formate complex, which by reaction with the silane releases the hydrosilylated product [105]. 
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Scheme 4.2.2: Hydrosilylation of CO2 [105] 

In parallel, Nozaki proposed a process for the hydroboration of CO2, which leads to the formation of 

formic acid, after protonolysis. [Cu(O
t
Bu)(IPr)] was reacted with pinalcolborane (HBpin) under CO2 

atmosphere at 35°C. Under such conditions, an 85% yield of formic acid was obtained. Interestingly, the 

addition of an alkoxide base is not necessary in this system. When pinalcolborane was replaced by 

catecholborane, the formation of formic acid was not observed. The IMes analogue showed lower 

reactivity. Stoichiometric reactions were conducted to gain insights into the catalytic cycle. By reacting 

HBpin with [Cu(O
t
Bu)(IPr)], [Cu(H)(IPr)] was generated despite its low stability in solution, along with 

t
BuO-Bpin. Under CO2 atmosphere, the hydride species was converted to a new complex identified as 

[Cu(CO2H)(IPr)]. Nevertheless, the copper formate in the presence of HBpin did not allow the 

observation of the first intermediate. Interestingly, [Cu(CO2H)(IPr)] was catalytically active for the 

hydroboration of CO2. These results lead to the proposed mechanism described in Scheme 4.2.3. This 

process was efficiently applied for the N-formylation of amines [106]. 
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Scheme 4.2.3: Hydroboration of CO2 [106] 

4.3. Carbonylation 

 

In 2007, Xia made a seminal contribution to the area of carbonylation catalysis by using a cheap metal 

and stable species: [Cu(I)(IPr)] (Scheme 4.3.1) [107]. Carbonylation of aryl iodides with amines was 

efficiently conducted. The investigation clearly showed the need for a NHC salt in addition to the copper 

complex for the success of the reaction. Interestingly, a trend was noticed regarding the halide; with 

reactivity observed in the following order I > Cl > Br. It was noticed that the presence of bulky NHCs 

enhanced the catalytic activity. When the cationic derivative [Cu(IPr)2][BF4] was tested, a double 

carbonylation occurred [108]. The presence of NaI as additive leads to almost quantitative conversion. It 

was postulated that the bis-NHC copper(I) complex was the active species in the carbonylation. During 

examination of the reaction scope, various aryl iodides and amines were converted. Functional groups 

such as bromo- or nitro- were tolerated. 
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Scheme 4.3.1: Double carbonylation [107] 

4.4. Hydrosilylation 

 
In organometallic chemistry, the reduction of ketones is an emblematic reaction, particularly with 

copper hydride species. In 1988, Stryker reported the first well-known hydride copper species, also 

known as the Stryker reagent [Cu(H)(PPh3)]6 (PPh3 = triphenylphosphine) [109]. In a series of articles, 

this hexamer was utilized for the reduction of carbonyl derivatives [109b]. However, several drawbacks 

were noted mainly regarding the stability of the active species [Cu(H)(PPh3)]. An excellent alternative to 

‘Stryker’s reagent’ was found in copper-NHC complexes [109, 110, 111]. Nolan and co-workers first 

investigated the well-defined [Cu(Cl)(IPr)] for the hydrosilylation of  simple ketones toward the 

formation of the silyl ethers (Scheme 4.4.1) [110]. High yields were obtained under mild conditions. 

Nonetheless, some limitations were noted especially for more hindered ketones, where harsher conditions 

were necessary. Tuning the NHC permitted the use of the optimal complex applicable to different classes 

of carbonyl substrates. The ICy ligand (ICy = N,N’-dicyclohexylimidazol-2-ylidene) was suitable for 

hindered ketones, whereas SIMes (N,N’-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidene) proved 

appropriate for the hydrosilylation of heteroaromatic ketones (Scheme 4.4.1) [110]. 
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Scheme 4.4.1: Hydrosilylation of ketones [110] 

Later, a series of bis-NHC copper systems were developed and examined for the hydrosilylation of 

ketones [110c]. The catalytic activities showed the influence of the ligand but also that of the 

counteranion (BF4 and PF6) (Scheme 4.4.2). Interestingly, these cationic complexes were more efficient 

than their neutral analogues under similar conditions. Further studies showed that milder reaction 

conditions (lower temperature, reduced amount of silane, shorter reaction time) lead to the formation of 

the silylated compounds. Insight into the mechanism presented the dissociation of one NHC as a key 

catalytic step.  

R1 R2

O

R1 R2

OSiR3 [Cu(NHC)2]+BF4
- (3 mol%)

HSiR3 (2 equiv.)

NaOtBu (12 mol%)

N N
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iPr

iPr

IPr
THF, RT

N N

ICy
Hindered substrates

THF, 55 °C
  

Scheme 4.4.2: Hydrosilylation using cationic copper(I) complexes [110c] 

Mechanistic studies were carried out on neutral and cationic Cu systems [110, 111b]. Regarding 

[Cu(Cl)(NHC)] complexes, the proposed mechanism involves the in situ formation of [Cu(O
t
Bu)(NHC)] 

(Scheme 4.4.3). The hydrido-copper(I) complex is then formed by σ-bond metathesis between the tert-

butoxide copper complex and the hydrosilane. The active species [Cu(H)(NHC)] is highly unstable and 

quickly reacts with the carbonyl followed by a σ-bond metathesis with the silane, affording the expected 

silyl ether. In the case of the cationic analogues, the first step involves the dissociation of one NHC, 

which is displaced by the tert-butoxide moiety: the direct precursor for the active species. The hydrosilane 
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is activated by the nucleophilic NHC, allowing the formation of the silyl ether. The rate-determining step 

was the activation of the silane.  
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R3SiH
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O
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H
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R1 R2

 

Scheme 4.4.3: Proposed mechanism for the hydrosilylation of ketones [110] 

Later on, Riant and Leyssens reported on the hydrosilylation of ketones using their copper-NHC 

bifluoride complexes. Interestingly, these complexes readily catalyse the desired reaction without the 

requirement of any activating substances (e.g., MOtBu). The same group went on to fully disclose the 

mechanism of the hydrosilylation reaction of ketones via DFT, experimental and kinetic methods, using 

these bifluorides as probes [111c-e]. 

4.5. Boration of ketones and aldehydes 

 

Since the report by Sadighi of the synthetic feasibility of [Cu(Bpin)(IPr)] [101], the probable insertion 

into a metal-boron bond has become an attractive potential catalytic feature. To explore this reactivity, the 

boration of carbonyl substrates attracted significant attention. First, the reaction of aldehydes was 

examined using bis(pinocolato)diboron as a boron source and [Cu(O
t
Bu)(IPr)] as the catalyst [112]. The 

evaluation of the carbene ligands influence pointed out that the steric hindrance considerably affected 

catalytic efficiency. Indeed, smaller NHCs such as ICy were more effective than larger congeners. As a 

result, [Cu(O
t
Bu)(ICy)] was selected to examine the reaction scope. A large range of substrates was 

converted in high yields (Scheme 4.5.1). Aliphatic aldehydes bearing primary, secondary and tertiary 

alkyl substituents were efficiently converted. The presence of chloride and bromide did not interfere in 
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the formation of the diboronated compound and electron-withdrawing as well as electron-donating groups 

were tolerated. 

 

Scheme 4.5.1: Boration of carbonyl derivatives [112, 113] 

Interestingly, for ketone derivatives, the chloride complex [Cu(Cl)(ICy)] was used. The reaction rate was 

improved by adding NaO
t
Bu, which generates the tert-butoxide derivative in situ and thus complete 

conversions were reached. The complex being highly moisture sensitive, the addition of drying agents 

was an interesting solution to reach higher conversions. However, no improvement in the TON was 

observed and the combination of molecular sieves and MgSO4 inhibited the reaction. Other bases such as 

NaHCO3 increased the efficiency of the catalyst, however further optimisation did not result in full 

conversion. These observations suggested coordination of the diboron reagent by the base, which 

regenerates the active boryl-species. Boration of cyclic and dialkyl substrates gave moderate to high 

yields (51-81%). Various functional groups were tolerated: furans, alkenes, esters, and nitriles.  

4.6. Olefination of carbonyl derivatives 

 
For decades, the transformation of carbonyl compounds into olefins was based on rhodium 

catalyzed transformations [114]. The methodology developed by Lebel and Nolan was based on the use of 

[Cu(Cl)(NHC)] to achieve olefination (Scheme 4.6.1) [115]. The scope encompasses a large variety of 

substrates with successful functionalization of aliphatic alkenes, dienes, styrenes and heteroarenes. The 

copper-NHC systems presented high tolerance even with base sensitive substrates, whereas Wilkinson’s 

catalyst underwent decomposition with nitro-substituted substrates. While 5 mol% of [Cu(Cl)(NHC)] was 

used, the catalyst concentration can be lowered to 0.5 mol% providing that the amount of isopropanol is 

increased.  
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Scheme 4.6.1: Olefination of carbonyl compounds using [Cu(Cl)(NHC)] [115] 

The best results were obtained when THF or 1,4-dioxane were used as solvent. Nevertheless, no 

important effect was observed when different NHCs were compared. Indeed IMes, ICy and IPr 

derivatives reached 95% conversion of the cinnamaldehyde under similar conditions. However, the 

methodology was substrate dependent. In the case of styrene derivatives, [Cu(Cl)(IMes)] was more 

efficient compared to the IPr complex. Copper salts were also examined and in some cases, such as 4-

bromostyrene, Cu(I) salts surpassed or equaled the NHC system. However, for most of the styrene 

derivatives or ketones, the copper-NHC complexes were more efficient. 

4.7. Cross-coupling 

 

During the last century with Ullmann’s and Goldberg’s discoveries, copper has been one of the most 

successful catalyst for cross-coupling reactions [116]. However, the spotlight for cross-coupling catalysis 

has long rested on palladium, as milder reaction conditions could be used with the latter [117]. The 

emergence of NHC ligands and their extraordinary efficiency in catalysis brought back interest in copper 

as an alternative to expensive metals for cross-coupling reactions. In this field, Biffis has developed a 

trinuclear copper complex and studied its catalytic activity as well that of [Cu(Cl)(IPr)] (Scheme 4.7.1) 

[118]. The neutral linear complex was inactive in the Sonogashira cross-coupling, but some reactivity was 

observed in the arylation reaction. Nonetheless, the trinuclear copper species surpassed the mononuclear 

analogue, with 10 times less catalyst to obtain comparable reactivity. Aryl iodides, bromides and 

chlorides were efficiently converted. Interestingly, a decisive role in the catalytic activity was played by 

the substituents on the aryl. No trend was directly correlated to the electron-withdrawing properties. 

However, a decrease in the activity was observed for amide and azole substrates, which might be due to 

partial catalyst deactivation.  
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In the case of the Sonogashira reaction, a significant solvent effect was observed. Indeed, a slightly better 

conversion was obtained in DMSO, but a side-reaction was promoted: the homocoupling of the arene. 

However, combining the trinuclear species and DMF led to a quantitative conversion to the desired 

product.   
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Scheme 4.7.1: Cross-coupling reactions [118]  

More recently, Whittlesey has also reported on tri-nuclear copper complexes bearing a single oxygen 

atom [119]. These were prepared using a tripodal class of ligand with a larger spacer. Ullman and 

Sonogashira couplings were carried out [120, 121].  Recently, Navarro and co-workers reported a 

collaborative copper/palladium methodology [122]. In combination to Pd(SIPr)(Cl)2(TEA) complex, the 

activity of Cu(Cl)(NHC) complexes was evaluated for the coupling of 3-bromotoluene and 

phenylacetylene. In the case of saturated carbenes, such as SIPr and SIMes, higher yields (94% and 67%, 

respectively) were observed compared to the unsaturated analogues (IPr and IMes, 16% and 34% 

respectively). Regarding the base effect, the most efficient system was K2CO3 in combination with 

DMSO as solvent. Other bases were evaluated, however, low or no activity was observed. A variety of 

aryl bromides were coupled with aryl alkynes. Electron-rich, electron-poor but also heterocyclic halides 

were converted with good to excellent yields (49% to 95%). In the case of substituted alkynes, excellent 

yields were observed for electron-donating group, whereas poor results were obtained for electron-

withdrawing group. Interestingly, the presence of the Glaser homocoupling product was not recorded.  

4.8. Fluorine chemistry 

 

The introduction of fluorine into molecules can modify their physicochemical properties and the 

number of articles on such subject is increasing exponentially. Thirty percent of the pharmaceutical 

molecules contain fluorine. Various methodologies have been developed principally based on readily 

commercially available fluorinated reagents. Until now, the Baltz-Schiemann or the Halex reactions are 
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the usual processes for preparation of aromatic compounds [123]. For aliphatic systems, the presence of 

electrophilic or nucleophilic fluorination reagents is necessary. Despite the low price of such reagents, 

harsh conditions as well as the limited functional group tolerance remain an important hurdle.  

In 2008, the Vicic group made the first breakthrough with the isolation of [Cu(CF3)(NHC)], 

obtained by reacting the tert-butoxide species in the presence of the Rupert-Prakash reagent (Me3SiCF3) 

[124].
 
Saturated and unsaturated copper-NHC complexes were efficiently obtained. These new species 

were used as a trifluoromethylation reagents for aryl iodides. However, a stoichiometric amount of the 

copper species was required (Scheme 4.8.1). Indeed the catalytic version showed no product formation. 

Nonetheless, another role of such complexes was disclosed as decarboxylative trifluoromethylation 

reagents [124b]. Indeed, these species are an alternative to expensive fluorinated compounds and Vicic 

reported a series of systems based on OCOCF3 compounds.  

 

RT, DMF
R X R CF3

CF3 CF3

MeO
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Scheme 4.8.1:  NHC-copper catalyzed trifluoromethylation [124]  

In 2012, Riant and co-workers described a copper bi-fluoride complex, prepared from the alkoxide 

species. The cationic derivatives with the formula [Cu(NHC)2][HF2] were also developed (Figure 4.8.1) 

[111c-e]. Both neutral and cationic complexes present good air-stability in the solid state, but moderate in 

solution compared to mono-fluoride [125] congener [Cu(F)(IPr)]. Remarkably, catalytic activity was 

tested in several transformations such as in the reduction of ketones, the 1,4-conjugated borylation or 

silylation and the diastereoselective allylation. This complex family holds great promise. 

N N

Cu

F

H
F  
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Figure 4.8.1: Bi-fluoride complex [111c-e] 

Recently, Lalic and co-workers reported a highly efficient copper-catalyzed fluorination of alkyl triflates, 

using KF as a fluoride source. The reaction was performed at 45 
o
C using 2 mol% of [Cu(OTf)(IPr)]. The 

fluorination reaction was compatible with a wide range of functional groups including alkyl tosylates and 

alkyl bromides [126]. 

CONCLUSION 

Over the last decade, copper-NHC chemistry has evolved considerably, opening novel spheres of 

reactivity to this relatively inexpensive metal. Numerous reactions have been developed or rediscovered 

with important improvements due to the properties of the copper-NHC complexes. The neutral or cationic 

species were highly efficient in several reactions. Asymmetric reactions were efficiently conduced based 

on chiral NHC ligands. Exceptional results were observed in the realm of regio-, chemo- and enantio-

selectivity. Organocopper chemistry is still evolving and the ability of the Cu-NHC family to activate and 

functionalize C-H and C-C bonds bodes well for a very bright future of the area. 
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