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Summary 26 

1. For diving animals, animal-borne sensors are used to collect time-depth 27 

information for studying behaviour, ranging patterns and foraging ecology. Often, this 28 

information needs to be compressed for purposes of storage or transmission. Widely 29 

used devices called Conductivity-Temperature-Depth Satellite Relay Data Loggers 30 

(CTD-SRDLs) sample time and depth at high resolution during a dive and then 31 

abstract the time-depth trajectory using a broken-stick model (BSM). This 32 

approximation method can summarise efficiently the curvilinear shape of a dive, 33 

using a piecewise linear shape with a small, fixed number of vertices. 34 

2. We present the process of abstracting dives using the BSM and quantify its 35 

performance, by measuring the uncertainty associated with the profiles it produces. 36 

We develop a method for obtaining a confidence zone and an index for the 37 

goodness-of-fit (dive zone index, DZI) for abstracted dive profiles. We validate our 38 

results with a case study using dives from elephant seals (Mirounga spp.). We use 39 

Generalised Additive Models (GAMs) to determine if the DZI can be used as a proxy 40 

for an absolute measure of fit, and investigate the relationship between the DZI and 41 

dive shape. 42 

3. We found a strong correlation between the residual sum of squares (RSS) for the 43 

difference between the detailed and abstracted profiles and the DZI and maximum 44 

residual (R4), for dives resulting from CTD-SRDLs (69% deviance explained). On it’s 45 

own the DZI explained a lower percentage of deviance which was variable for 46 

abstracted dives with different numbers of points. We also found evidence for 47 

systematic differences in the DZI for different dive shapes (65% deviance explained). 48 

4. Although the proportional loss of information in the abstraction of time-depth dive 49 

profiles by BSM is high, what remains is sufficient to infer goodness-of-fit of the 50 
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abstracted profile by reversing the abstraction process. Our results suggest that 51 

together the DZI and R4 can be used as a proxy for the RSS, and we present the 52 

method for obtaining these metrics for BSM-abstracted profiles.    53 

 54 

Keywords: animal telemetry, broken-stick model, CTD-SRDL, dive profile, dive type, 55 

dive zone index, elephant seal, data abstraction 56 
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INTRODUCTION  76 

Data abstraction in animal telemetry: needs and consequences 77 

One of the most effective ways to remotely study movement and behaviour in marine 78 

animals is to use animal-borne sensors. Satellite-linked and archival animal 79 

telemetry devices have developed rapidly, driven by questions about the behaviour 80 

and movement of large vertebrates at sea. A range of purpose-built hardware and 81 

software is widely available for deployment on animals. Although animal telemetry 82 

devices are able to record information at high temporal and spatial resolution, in 83 

many cases devices cannot be recovered, which means the data have to be 84 

transmitted. Additionally, it is seldom possible to transmit all data that are collected 85 

during a deployment, because the quantity and resolution of the received telemetry 86 

data are constrained by several factors: the desired observation time, battery life of 87 

the device, bandwidth of the communication system used to relay data, behaviour of 88 

the animal, and the software specifications. This means that not all information that 89 

is recorded can be recovered. Consequently, data abstraction (defined here as 90 

reduction in volume to a simplified representation of the original) is unavoidable for 91 

many types of telemetry device.  92 

 93 

The trade-off between temporal data resolution (i.e., the rate of data sampling and 94 

delivery) and the operational longevity of the telemetry device has driven the 95 

development of efficient software and memory-saving processing algorithms. One of 96 

these is a broken-stick model (BSM), used for the abstraction of two-dimensional 97 

dive trajectories (time-depth dive profiles) on-board telemetry devices prior to 98 

transmission (Fedak et al. 2002). BSMs are change-point models, falling under 99 

piecewise linear approximation, and are used to identify points of abrupt change in 100 
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time-series. The piecewise linear profile of a time-series, generated by an efficient 101 

linear abstraction method, should have low average deviation from the detailed dive 102 

profile. When processing takes place on a small device with limited power for 103 

processing and transmissions, it is advantageous to represent piecewise linear 104 

profiles using a fixed and small number of bits of information, particularly when using 105 

CLS Argos, where message size is fixed (Argos 2011). The algorithm should also be 106 

time-efficient, scale linearly in execution time with dive duration, and consistently 107 

encode biologically relevant information that might enable inferences on dive 108 

function. The BSM fulfils these criteria and was adopted as the default dive 109 

abstraction algorithm on CTD-SRDLs in 2006 (pers. comm. Phil Lovell). The 110 

predecessor of this model placed breakpoints at locations of maximum inflection in 111 

the detailed profile, and while it performed equally well, processing required more 112 

time and energy (Fedak, Lovell & Grant 2001). The BSM was chosen empirically, 113 

because it was found to provide a highly satisfactory compromise between the 114 

priorities described above. However, its performance has not been formally tested, 115 

nor have the consequences of its performance on the biological and ecological 116 

conclusions that are drawn in studies using dive profiles abstracted with the BSM.  117 

 118 

In ecology, change-point models have a long history (MacArthur 1957; MacArthur & 119 

MacArthur 1961) and have seen application in a range of fields, e.g., in 120 

oceanography to reduce data volume (Rual 1989), to identify edge effects in plant 121 

communities (Toms & Lesperance 2003), to locate ontogenetic shifts in southern 122 

elephant seal diet using stable isotopes (Authier et al. 2012) and in a Bayesian 123 

context applied to allometric relationships between tree height and diameter 124 

(Beckage et al. 2007). We illustrate the use of the BSM for dive abstraction with a 125 
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time-depth dive profile as an example (Figure 1). We call abstracted those dive 126 

profiles that have been processed and reduced in resolution using this algorithm. We 127 

call detailed those dive profiles that are recorded at regular and frequent time 128 

intervals, at the sampling resolution of the device.  129 

 130 

Assessing uncertainty in abstracted dive profiles from elephant seals 131 

(Mirounga sp.) as a case study 132 

The need for abstraction becomes critical for deployments on wide-ranging marine 133 

species, such as seals and turtles, when geographic and temporal data coverage is 134 

of interest, and when devices cannot be recovered. For elephant seals and other 135 

phocid seals for example, complete time-series of year-round locations and 136 

behaviour may be more biologically interesting than detailed information over short 137 

periods, and more useful for understanding their life-histories (McConnell, Chambers 138 

& Fedak 1992; Hebblewhite & Haydon 2010). Until now, the uncertainty associated 139 

with abstracted profiles has not been quantified and the implications for ecological 140 

studies that use abstracted profiles have not been assessed. 141 

 142 

Abstracted profiles are, by construction, information-poor versions of the detailed 143 

trajectories, but since the abstraction process is known in the case of CTD-SRDLs, it 144 

is possible to reverse the deterministic steps and retrieve some of the information. 145 

Historically, once the abstraction was completed, the high-resolution time-depth 146 

profile was overwritten, but current tags store all information that they record, and 147 

this can be accessed if the tag is retrieved. Here, we show that it is possible to 148 

construct a 100% confidence zone around an abstracted profile (i.e., upper and 149 

lower depth limits at each time point within which the true depth must lie) and 150 
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compare the zone for different dives. This confidence zone is hereafter referred to as 151 

the dive zone, and the relative measure of maximum deviation of the abstracted 152 

profile, from the detailed profile, is referred to as the dive zone index (DZI).  153 

  154 

The consequences of the abstraction regime by BSM are investigated here using 155 

detailed and abstracted dive profiles, from northern (M. angustirostris) and southern 156 

elephant seals (M. leonina), as a case study. Elephant seals are large-bodied, long-157 

lived and abundant marine mammals. They spend many months at sea in the open 158 

ocean and in coastal or marginal ice zones (McConnell et al. 1992; Jonker & Bester 159 

1998; Campagna et al. 2007; Bailleul et al. 2007; Biuw et al. 2010). They frequently 160 

visit high latitudes for extended periods, diving deeply and almost continually, 161 

returning to land twice a year to breed and moult. CTD-SRDLs are regularly used in 162 

studies of their movement and diving behaviour, and that of other wide-ranging 163 

phocid seals.  164 

 165 

The characterisation of dives into types, based on dive parameters, has been a 166 

popular approach to the study of diving behaviour (Hindell, Slip & Burton 1991; 167 

Schreer & Testa 1996; Schreer, Kovacs & O’Hara Hines 2001; Baechler 2002). In 168 

general, the identification of types or groups of behaviour is useful for comparing 169 

behavioural patterns and activity budgets between individuals and in different spatial 170 

and temporal contexts, and is carried out using a wide range of methods including 171 

empirical methods, machine learning, and state-space methods, to name a few (e.g., 172 

Fauchald & Tveraa 2003; Thums, Bradshaw & Hindell 2008; McKellar et al. 2014). 173 

BSM dives are used widely in studies of diving behaviour and physiology (e.g., 174 

McConnell et al. 1999; Biuw et al. 2007, 2010; Bailleul et al. 2007), without 175 
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considering or accounting for uncertainty in the abstracted dive profiles. Ignoring the 176 

uncertainty in BSM-derived time-depth profiles may lead to incorrect inferences if the 177 

BSM output has substantial error associated with it, and if dives with different shape 178 

characteristics differ systematically in the amount of error associated with them. This 179 

computationally expedient method has been thought to perform well at capturing 180 

biologically relevant aspects of time-depth dive profiles, but this impression has, to 181 

date, remained anecdotal. 182 

 183 

Aims and questions 184 

In this paper we aim to explain the BSM for dive profile abstraction, provide a 185 

method that extracts as much information as possible from abstracted dive data, and 186 

improve the interpretability of abstracted dive profiles. To do this we 1) present an 187 

overview of the process by which the BSM generates abstracted dive profiles; 2) 188 

assess the performance of the BSM for dive profile representation, by comparing 189 

detailed and abstracted time-depth dive profiles from elephant seals, as a case 190 

study; 3) present a three-step method for obtaining, post hoc, the depth limits on the 191 

detailed dive (i.e., the dive zone) based on its BSM abstracted profile; 4) develop an 192 

index of goodness-of-fit of abstracted dives (i.e., DZI) and use detailed dive profiles 193 

to validate it; and 5) use this index to determine if there are systematic differences in 194 

the amount of error associated with different dive types, following (Hindell et al. 195 

1991).  196 

 197 

We recast these five aims as research questions: 1) How does the BSM work for 198 

dive profile abstraction? How does the representation of the detailed dive change 199 

with increasing BSM points? 2) Is the sample of study dives representative?  200 
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3) What can we learn from abstracted dives? 4) How is the DZI derived? And, 5) Can 201 

the DZI be used as a proxy for the RSS? Does the DZI vary systematically between 202 

dive types? 203 

 204 

MATERIALS AND METHODS 205 

How does the BSM work for dive profile abstraction? 206 

The BSM is an iterative process. For time-depth dive profiles, it is based on 207 

minimising the vertical distance (i.e., difference in depth) between the detailed 208 

trajectory recorded by the tag and the abstracted dive profile being proposed, at the 209 

sampling resolution of the dive (for CTD-SRDLs 4s, 8s, 16s or 32s). We call these 210 

vertical distances residuals (Figure 1). The basic principle of the model is that at 211 

each iteration, the residuals are calculated, and the point with the biggest residual is 212 

added to the abstracted profile. At the first iteration, which we call step zero, the 213 

abstracted profile consists only of the start and end points of the dive, forming a 214 

straight line at what the tag perceives to be zero depth. This corresponds to a depth 215 

buffer at the surface (0-6 m), which is intended to exclude any less interesting 216 

shallow undulations from the dive record, that would compete with regular deep 217 

dives for transmission. The distance from this straight line to the detailed profile is 218 

measured at each time point and the point at which the piecewise linear abstracted 219 

profile deviates most from the detailed profile is added to the abstracted profile, 220 

creating two new line segments. This is called a breakpoint. This step creates a new 221 

piecewise linear profile comprising I+2 points, connected by linear segments, and 222 

completes one iteration of the model (Figure 1).   223 

 224 

The maximum residual (RI) is calculated for each of the resulting line segments and 225 
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the point with the greatest departure is selected as the next breakpoint and added to 226 

the profile. This process is repeated until the desired number of breakpoints is 227 

reached, and the resulting piecewise linear abstracted profile has been constructed. 228 

When the abstraction process is complete, the abstracted time-depth dive profile 229 

includes I+2 time points (T1 to TI), and the corresponding I depth points (D1 to DI). 230 

The first and last points, (T0,TI+1, D0 and DI+1) are not transmitted. At T0 time is 231 

considered to be zero and at TI+1 the time elapsed since the beginning of the dive 232 

will equal the dive duration. Similarly, at D0 and Di+1, the depth will both be 0-6 m. 233 

The order in which the time-depth points were selected is not stored or transmitted.  234 

 235 

How does the representation of the detailed dive change with increasing BSM 236 

points? 237 

Using detailed dives from four high-resolution datasets, each representing a 238 

continuous dive record from one individual (10943, 12454, 12453 and 12451 in 239 

Table 1), we estimated the proportion of high-resolution samples that was 240 

represented by the number of BSM points in the corresponding abstracted dive 241 

profile (Table 2). We generated an abstracted profile with 3-12 BSM points for each 242 

study dive. This resulted in a dataset of 2400 proportions, from 240 dives.  243 

 244 

Is the sample of study dives representative?  245 

Four iterations of the BSM are carried out on-board CTD-SRDLs, resulting in a dive 246 

profile consisting of six time-depth points: two at the surface, and four at depth, at 247 

irregular times, which vary from dive to dive. The number of iterations of the BSM 248 

algorithm to be carried out on CTD-SRDLs was chosen as the minimum sufficient 249 

number to convey the geometric shape of the dive profile, while keeping the number 250 
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of computations low (Fedak et al. 2001).  251 

 252 

We confirmed that the sample of detailed dives from the four individuals was 253 

consistent with elephant seal diving behaviour in general. To do this, the DZI was 254 

calculated for a sample of 4,000 abstracted dives from 45 southern elephant seals 255 

instrumented in four different field seasons (1,000 dives each from two post-moult 256 

deployments and two post-breeding deployments; ct40, ct45, ct49, ct58) over two 257 

years at the island of South Georgia, South Atlantic (Table 1). The resulting 258 

distribution of DZI was visually compared with the distribution of DZI for the detailed 259 

dives (Appendix S2, Figures S2.1 and S2.2).  260 

 261 

What can we learn from abstracted dives? 262 

The process by which abstracted dive profiles arise when they are collected by CTD-263 

SRDL, is known, therefore it is possible to reverse the deterministic steps and obtain 264 

limits to the depth at which the trajectory could have passed, before it was 265 

abstracted. The information required to build the dive zone (the 100% confidence 266 

zone for depth) includes the 1) temporal resolution at which the dive was recorded 267 

by the tag, the I+2 locations, in time and depth (including maximum dive depth), 2) 268 

the residual associated with the final, I+1th breakpoint, and critically, 3) the order in 269 

which breakpoints were selected during abstraction. The temporal resolution of the 270 

detailed dive data is known from the duration of the dive, and the locations are 271 

received in the satellite transmissions, but the residuals and the order in which the 272 

breakpoints were added need to be determined. Constructing the dive zone involves 273 

three steps.  274 

 275 
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First, to find the order in which points were added to the profile, the BSM must be 276 

applied to the already abstracted dive trajectory (Figure 2). At each of the I iterations, 277 

one of the breakpoints is selected as the point of greatest deviation hence retrieving 278 

the order in which the breakpoints were added.  279 

 280 

Second, to determine the limits of the zone, the residuals corresponding to the 281 

breakpoints need to be calculated. It is tempting to assume that the residual 282 

associated with the Ith breakpoint, RI, applies to all segments in the final profile, 283 

determining the limits of the dive zone. This is not the case. The limits of the dive 284 

zone at each iteration of the model interact with those from previous iterations. As 285 

breakpoints are added to the profile, the dive zone changes shape and size. 286 

Although the dive zone will always get smaller with subsequent iterations of the 287 

algorithm, this geometric effect means that the dive zone needs to be constructed 288 

based on all iterations of the model, up to the last one. Furthermore, the resulting 289 

dive zone at the final iteration is not symmetric around any segments in a profile and 290 

all breakpoints touch the limit of the dive zone (Figure 3).  291 

 292 

The depth points selected by the BSM are coded before transmission according to a 293 

pseudo-logarithmic mantissa and exponent representation. With this representation, 294 

resolution can be made proportional to the scale of the number being represented, 295 

making it useful for depth. Data are then truncated during the decoding process, 296 

once they are received. As a consequence, the received depth measurements are 297 

binned (i.e. each reported depth has an upper and lower bound) and bin width 298 

increases with depth. Bin width is usually smaller than the dive zone height at each 299 

breakpoint. As a result, the dive zone is truncated near the deepest point(s) of the 300 
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dive where the depths along the line segment near the bottom of the dive exceed the 301 

known accuracy of the greatest depth reached during the dive. This is justified since 302 

we know that no point in the true profile can be deeper than the maximum depth 303 

recorded by the tag. Depth is also truncated at each breakpoint, for the same 304 

reason, so the dive zone appears “pinched” at each breakpoint (Figure 3).  305 

 306 

When the Ith iteration is complete, it is known with certainty that there were no points 307 

in the detailed trajectory that had a greater residual than the one corresponding to 308 

the last point (Figure 2). All other depth points in the true trajectory will now have a 309 

smaller vertical distance to the abstracted profile.  310 

 311 

Third, to construct the dive zone, a number of equally spaced time points need to be 312 

selected at which to sample vertical sections of the time-depth space. The resolution 313 

of time points should not exceed the resolution at which depth data were collected by 314 

the tag. At each of these time points (t, …, tmax) the estimated lower, Lt, and upper, 315 

Ut, depth bounds define the depth interval through which the true trajectory passed 316 

with 100% confidence (Figure 3). Computer code for all algorithms described was 317 

written in R (R Core Team 2013) and can be found in the supplementary material 318 

(Appendix S1). 319 

 320 

How is the DZI derived?  321 

The approximation of a non-linear path will improve as the number of points (N) that 322 

are used to approximate it increases. This should be reflected in a reduction in the 323 

size of the maximum residual at the last iteration, as the number of BSM iterations 324 

increases. In absolute terms, a small value for RI means that the biggest vertical 325 
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outlier in the true path was a small distance away from the abstracted path, which 326 

might suggest a better fit. However, RI is affected by the depth, duration and 327 

sinuosity of the detailed dive trajectory, and does not follow a strictly decreasing 328 

relationship with the number of iterations of the model. When detailed dive data are 329 

not available, a reliable and unbiased way of measuring goodness-of-fit is required to 330 

assess the accuracy of abstracted profiles, irrespective of depth and duration. On its 331 

own RI does not provide an objective way of assessing goodness-of-fit over the 332 

whole dive, because it depends on the maximum depth of the dive and the slopes 333 

and lengths of the segments that make up the abstracted profile. The mean dive 334 

zone height should be a better measure of fit, because it does contain information on 335 

the whole dive, and includes the geometric effects that result from the slopes and 336 

lengths of the segments that make up the abstracted dive, though importantly, it also 337 

does not include information on sinuosity. However, to be comparable between dives 338 

it needs to be standardised by dive depth and dive duration. This is the basis for the 339 

construction of the DZI. 340 

 341 

The DZI is calculated using the sum of the differences between the upper, U, and 342 

lower, L, limits of the dive zone at each time step, t, in a dive. The sum of these 343 

heights is divided by the product of the maximum dive depth, maxdep, and the 344 

number of depth points that were recorded by the tag for the dive prior to abstraction, 345 

tmax. This quotient ranges between 0 and 1, where values close to 0 indicate a 346 

narrow zone around an abstracted dive and are desirable, and values close to 1 347 

indicate a wide zone around an abstracted dive and relatively low confidence in the 348 

abstracted dive profile.  349 

��� = ∑ � − "  #$% &'
()*+,- ∗ /()* 
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Equation 1 350 

 351 

Can the DZI be used as a proxy for the RSS? 352 

When detailed dive data are available, goodness-of-fit can also be assessed using 353 

the sum of squared residuals (RSS) between the detailed and abstracted depths,  354 

011 = 2 (3 − 4 )5
 #$%

 &'
 

Equation 2 355 

where Tt is the tth depth in the detailed profile and At is the tth depth in the linearly 356 

interpolated abstracted profile. The RSS, an absolute measure of fit for detailed dive 357 

profiles, was compared to the DZI, the relative measure of fit developed here for 358 

abstracted dives, and the biggest residual at the last iteration of the BSM, RI to 359 

describe the relationship between them and determine if they could be used as a 360 

proxy for the RSS. 361 

 362 

To do this, the RSS, DZI and RI were calculated for abstracted profiles with 3-12 363 

BSM points for each of the 240 study dives (n=2400). RSS is a non-zero real 364 

number, so a Generalized Additive Model (GAM) with a Gamma distribution and a 365 

log link function were used, fitted with mgcv in R (Wood 2000, 2011). We wanted to 366 

know if the DZI could be used as a proxy for the RSS in already abstracted dives 367 

received by CTD-SRDL, but we were also interested to know if the amount of 368 

deviance explained by the DZI changed with increasing breakpoints. Hence, we 369 

fitted a model to a subset of the data representing six breakpoints, and did model 370 

selection to find the best model, but also fitted a model to a subset of the data 371 

representing each number of breakpoints explored in this study (three to twelve) 372 
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including only DZI as a covariate without doing model selection. 373 

 374 

In the first case, RSS was modelled with DZI and R4 as explanatory variables, and 375 

individual seal as a random effect. In the second case, RSS was modelled with DZI 376 

as the only explanatory variable, and individual seal as a random effect, as above. In 377 

both cases, the relationship between the RSS and the covariates was non-linear, so 378 

they were fitted as smooth functions with a shrinkage smoother (“cs”) as the basis 379 

function and k=4 knots. The number of knots was found to be sufficient using 380 

standard mgcv checks. This basis allows for the smooth coefficients to be shrunk to 381 

zero and effectively removed from the model when there is no relationship with the 382 

response. We specified a gamma parameter value of 1.4 to reduce the chance of 383 

overfitting. The random effect was fitted using the “re” smooth, as described above. 384 

We used restricted maximum likelihood (REML) as the fitting method (Wood 2011).  385 

 386 

Does the DZI vary systematically between dive types? 387 

The availability of detailed dive data (depth sampled every 4s) made it possible to 388 

investigate the effects of the abstraction process, develop methods to reverse the 389 

abstraction and quantify goodness-of-fit. Detailed data were taken from a high 390 

temporal resolution dataset recorded by a specially configured archival SRDL 391 

deployed on a northern elephant seal after the moult at Año Nuevo, California, and 392 

recovered six months later (Table 1). These dives were chosen by eye, as being 393 

representative of the six functional or behavioural characterisations sometimes used 394 

to classify elephant seal dives into types; U-shaped dives (U), V-shaped dives (V), 395 

square-bottom dives (SQ), wiggle dives (W), root-shaped dives (R) and drift dives 396 

(DR), after Hindell, Slip, and Burton (1991). Ten dives of each type from each 397 
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individual were included in the case study. No detailed dive data from southern 398 

elephant seals were used, but several datasets of abstracted dives were available. A 399 

sample of over 22,000 abstracted dives that had already been classified into types 400 

were used to investigate systematic differences in goodness-of-fit between dive 401 

types (Table 1). 402 

 403 

The classification of abstracted dives into types was done using the random forest 404 

tree-building method (Breiman 2001). Random forest is a machine learning tool; we 405 

used an implementation in the randomForest library in R (Liaw & Wiener 2002). A 406 

supervised version of the method was used to classify dives, whereby 3,000 dives, 407 

14% of the dataset, were classified based on visual cues, and used to train the 408 

remaining dives. The overall “out-of-bag” error, an unbiased estimate of classification 409 

error, was 3.6%. This represents the aggregate of the prediction error rate at each 410 

bootstrap iteration (Liaw & Wiener 2002). The variables supplied to the function for 411 

classification were maximum dive depth, bathymetry and fifteen dive parameters 412 

(Photopoulos 2007). This method has been found to work well for dive classification, 413 

using both detailed and abstracted dive data (Thums et al. 2008). 414 

 415 

The DZI and R4 were also calculated for the each dive in the dataset. The DZI used 416 

as the response variable in GAM with a quasibinomial distribution and a logit link 417 

function, dive type as a factor variable, R4 as a smooth covariate using “cs” basis 418 

function (k=4 knots, checked as above) and individual animal as a simple random 419 

effect using the “re” smooth. The model was fitted using the REML method and 420 

gamma was specified as 1.4, as above. 421 

 422 
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Model assessment was done based on inspection of the residuals, the relationship 423 

between the observations and the fitted values for each model, and the percentage 424 

of deviance explained. 425 

 426 

RESULTS 427 

In the introduction, we outlined five questions relating to the BSM for dive profile 428 

abstraction, the usefulness of the DZI as a goodness-of-fit measure and the validity 429 

of our assessment of it as such: 1) How does the BSM work for dive profile 430 

abstraction? How does the representation of the detailed dive change with 431 

increasing BSM points? 2) Is the sample of study dives representative? 3) What can 432 

we learn from abstracted dives? 4) How is the DZI derived? And, 5) Can the DZI be 433 

used as a proxy for the RSS? Does the DZI vary systematically between dive types? 434 

  435 

1) The BSM algorithm for dive profile abstraction is illustrated in Figure 1 and 436 

animated in Appendix S2 of the supplementary material. The proportion of detailed 437 

samples in a dive increases with the number of breakpoints in the abstracted profile, 438 

and depends on dive duration. Overall, the proportion of a dive represented by its 439 

abstracted profile is very low, starting at 1% with three breakpoints and reaching 4% 440 

with twelve, and increases by a constant 0.33% for each breakpoints added (Table 441 

2). The mean relationship was similar for all animals but there were differences in the 442 

variability in the relationship (Figure 4). 443 

 444 

2) Variability between the samples of abstracted and detailed dives was expected, 445 

due to individual variability and the different regions where data were collected. 446 

However, visual comparison of the distributions of DZI from the different samples did 447 
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not suggest any striking differences (Appendix S2, Figures S2.1 and S2.2, 448 

Supplementary material).  449 

 450 

3) Even though the detailed trajectory cannot be recovered unless the device is 451 

physically recovered, the order in which breakpoints were added to the profile and 452 

the 100% confidence limits to the detailed profile, which we call the dive zone, can 453 

be calculated from abstracted dives. This makes it possible to derive the DZI (Figure 454 

3). 455 

 456 

4) The derivation of the DZI is based on the maximum depth of the dive, its duration 457 

and the upper and lower limits to the dives zone. 458 

 459 

5) There was a strong, positive relationship between the RSS and the DZI together 460 

with R4. We found that the DZI, R4 and a random effect for individual explained 69% 461 

of the variability in the RSS for abstracted profiles with six breakpoints (deviance 462 

explained) (Figure 5). On its own, the DZI explained a variable proportion of 463 

deviance for abstracted dives with differing numbers of breakpoints, but there was an 464 

overall positive relationship with increasing breakpoints for dives with four or more 465 

breakpoints (Figure 6). The DZI varied substantially between dive type and had an 466 

increasing relationship with R4 (Figure 7). The dive type associated with the biggest 467 

DZI values were square dives (SQ) and both V-shaped (V) and drift dives (DR) had 468 

the smallest DZI, under the model (Figure 8). Dive type and R4 together explained 469 

65% of the variability in the DZI (deviance explained), having accounted for 470 

individual variability by fitting a random effect for individual.  471 

 472 
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DISCUSSION  473 

Change-points models are used in many fields, from neuroscience and epidemiology 474 

to genetics and finance, to identify changes in time-series. One of these, the BSM, 475 

was adopted on board CTD-SRDLs, as a working solution to the problem of linearly 476 

approximating a non-linear path in the vertical dimension with as little information as 477 

possible, while aiming to retain biologically relevant content. Until now, the 478 

approximation error associated with abstracted profiles had not been investigated. 479 

We provide a way of calculating and summarizing the error associated with dive 480 

profiles derived using the BSM, in order to assess the information content of 481 

abstracted dives. Our results suggest that BSM-abstracted dive profiles do, in fact, 482 

retain enough information to estimate goodness-of-fit of the abstracted profile to the 483 

detailed profile. The strong, positive relationship between the DZI and R4, and the 484 

RSS is evidence for this. It means that researchers using BSM-abstracted dive 485 

profiles to make inference about animal behaviour and diving ecology can now 486 

calculate the DZI and R4 and incorporate a relative measure of error into their 487 

analyses.   488 

 489 

With the BSM, as with other linear approximation methods, the number of iterations 490 

is critical to the quality of the abstracted dive. Our results confirm the findings of a 491 

preliminary investigation during tag development, regarding the adequacy of different 492 

numbers of iterations, that resulted in the standard use of four iterations of the 493 

algorithm for dives collected by CTD-SRDLs. That study found that the information 494 

gained in the transmission of a fifth breakpoint is relatively small, and that it would be 495 

more useful to receive a measure of the variance of the detailed dive, either for the 496 

whole dive, or each segment, which is supported by the results presented in this 497 
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paper.  498 

 499 

It is worth noting that although the BSM can efficiently summarise a curvilinear 500 

trajectory, using a piecewise-linear shape, profiles resulting from low iteration 501 

numbers, may mask important biological features even if they closely approximate 502 

the detailed trajectory. Our methods do not provide means for assessing the 503 

biological content of abstracted dives, since the detail lost, however small, might be 504 

the most biologically interesting. For example, a useful feature of the BSM is that it is 505 

efficient at identifying long sections where the trajectory has low variability. In the 506 

case of dives, these are often the descent and ascent phases, leaving only two 507 

points to confer information about the bottom phase of the dive, which is arguably 508 

the most interesting biologically. Dives with low variability in change in depth in the 509 

bottom phase, also have the lowest DZI, as we found here for drift dives (DR type). 510 

However, when classifying abstracted dives with a method like a random forest 511 

algorithm, ancillary behavioural data are necessary for validating classes as being 512 

functionally distinct, in addition to being phenomenologically distinct.  513 

 514 

Large numbers of dive profiles are collected using CTD-SRDLs from many different 515 

species (over 21 million profiles since 1991, SMRU 2012, unpublished data) and 516 

used to make inferences about the biology and behaviour of the instrumented 517 

animals. It seems essential that a method for assessing the accuracy of these 518 

abstracted dives, at least statistically if not biologically, is made widely available. The 519 

methods we have presented here make that possible. They also provide a way of 520 

carrying out a “pilot” analysis when detailed dive data are available. The differences 521 

in diving behaviour between species, and habitats, may render different numbers of 522 
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breakpoints appropriate for the questions being asked. When detailed dive data are 523 

available, the result of dive abstraction with different number of iterations can be 524 

investigated to achieve the best result for a specific study, prior to deployment. 525 

Together, these uses for our methods may help make more robust the behavioural 526 

conclusions we can draw from telemetry data. 527 

 528 

More generally, through this work we have developed a method for quantifying 529 

uncertainty in the fitted values for BSMs, when the original time-series is no longer 530 

available. This method could be applied to any situation where the original time-531 

series data are not longer available. This could be useful in situations where large 532 

amounts of data are being generated and cannot be stored or transmitted at the 533 

original resolution. We demonstrate that measures of fit like the DZI and R4 have a 534 

strong correspondence to the RSS and could therefore be used instead.  535 

 536 
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Figures and Tables  

 

Table 1. Deployment information and morphometrics for the detailed datasets from a northern and three southern elephant seal (a 

sample of 60 study dives was taken from the dive record of each seal), and the abstracted dataset(s) from 45 southern elephant 

seals. For “ct” deployments, length is given as the mean (standard error) of all animals of each sex. For deployments 12454, 

12453, 12451, two length measurements were available for each animal, so we present the mean (standard error) of the two 

measurements. Only one length measurement was made during deployment 10943. 

Deployment Species  Deployment location Period (UTC) Sampling regime Morphometrics Sex Dive duration 

10943 
M. angustirostris  

1 adult male 
Año Nuevo CA, USA 

23/08/2008 to 

16/02/2009  

Time and depth 

every 4s ** 

Length: 350.0 cm  

Axial Girth: 295.0 cm 
M 24.95 min (0.77) 

12454 
M.leonina 

1 adult female 
Kerguelen Islands 

30/10/2012 to 

15/02/2013 

Time and depth 

every 4s 

Length: 235.5.0 cm (6.5)  

Weight: 258 kg 
F 19.18 min (0.63) 

12453 
M.leonina 

1 adult female 
Kerguelen Islands 

20/10/2012 to 

11/02/2013 

Time and depth 

every 4s 

Length: 271.5 cm (6.5)  

Weight: 425 kg 
F 23.48 cm (0.67) 

12451 
M.leonina 

1 adult female 
Kerguelen Islands 

30/10/2012 to 

15/02/2013 

Time and depth 

every 4s 

Length: 234.0 cm (1.0)  

Weight: 275 kg 
F 18.52 min (0.64) 

ct1 
M. leonina 

6 adult females 

Husvik,  

South Georgia Island 

06/01/2004 to 

25/08/2004 
CTD_GEN_07B* Length: 242.5 cm (6.7) F 23.96 min (0.07) 

ct8 

M. leonina 

7 adult females 

4 adult males 

Husvik,  

South Georgia Island 

13/01/2005 to 

31/10/2005 
CTD_GEN_07B 

Length: 255.7 cm (2.0) 

Length: 301.3 cm (8.5) 

F 

M 
36.59 min (0.25) 

ct40 

M. leonina 

5 adult females 

5 adult males 

Husvik,  

South Georgia Island 

28/01/2008 to 

09/12/2008  
CTD_GEN_07B 

Length: 250.5 cm (13.0) 

Length: 343.6 cm (24.4) 

F 

M 
27.47 min (0.38) 

ct45 
M. leonina 

10 adult females 

Husvik,  

South Georgia Island 

17/10/2008 to 

01/02/2009 
CTD_GEN_07B Length: 248.7 cm (2.9) F 19.77 min (0.18) 

ct49 

M. leonina 

11 adult females 

1 adult male 

Husvik,  

South Georgia Island 

28/01/2009 to 

12/01/2010 
CTD_GEN_07B 

Length: 240.5 cm (4.0) 

Length: 237.00 cm 

F 

M 
25.92 min (0.35) 
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ct58 
M. leonina 

13 adult females 

Husvik,  

South Georgia Island 

22/10/2009 to 

05/02/2010 
CTD_GEN_07B Length: 249.5 cm (3.2) F 18.97 min (0.19) 

* CTD_GEN_07B is the parameter specification with which the instruments were programmed. 

** This tag sampled time and depth at 1Hz but resolution was reduced to one sample every 4s for consistency other time-

depth data. The tag operated on a three-day duty cycle (3 days on, 3 days off). 

 

 

 

 

 

 

 

  

Page 30 of 40Methods in Ecology and Evolution



 

Photopoulou et al. Efficient abstracting of dive profiles 31

Table 2. Observed mean proportion of detailed depth samples from individuals 10943, 12454, 12453, 12451 represented by an 

abstracted profile of a given number of BSM points (standard error, SE), and mean DZI (standard error, SE). The grey row 

highlights the case of a dive profile with 6 points, produced by 4 iterations of the BSM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of BSM 
points 

Mean proportion of depth 
samples represented by 
abstracted profile (SE) 

Mean DZI (SE) 

3 0.010 (0.0002) 0.993 (0.0002) 

4 0.013 (0.0003) 0.549 (0.0156) 

5 0.017 (0.0003) 0.303 (0.0103) 

6 0.020 (0.0004) 0.158 (0.0048) 

7 0.023 (0.0005) 0.110 (0.0036) 

8 0.027 (0.0005) 0.085 (0.0030) 

9 0.030 (0.0006) 0.071 (0.0026) 

10 0.033 (0.0007) 0.060 (0.0023) 

11 0.037 (0.0007) 0.051 (0.0019) 

12 0.040 (0.0008) 0.044 (0.0017) 
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Figure 1. Step-wise illustration of time-depth dive profile abstraction for a dive from elephant seal 10943 (see Table 1) using a broken-stick model. With this 

abstraction regime, highly resolved time-depth measurements are processed to generate abstracted dive profiles made up of I+1 consecutive line segments 
that approximate the true, non-linear time-depth trajectory travelled. This is achieved through I (=4, here) iterations of the algorithm. The red lines represent 
the true time-depth dive path, the solid black lines represent the abstracted dive path and the dashed lines represent the residuals for the abstracted dive 
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path, at each iteration of the algorithm. The numbers represent the order in which points are added to the abstracted profile. Points 0 and 5 mark the 
beginning and end of the dive. The dashed black lines represent the residuals that are calculated at each time step between the true and abstracted dive. 
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Figure 2. Step-wise illustration of the calculation of the order in which breakpoints were added to a time-depth dive profile abstracted using the BSM, received 
from CTD-SRDLs telemetry devices. The black line represents the abstracted time-depth dive profile received from the device. The red points represent 
known breakpoints. The solid red lines the proposed BSM abstracted dive path at each iteration of the model, and the dashed red lines represent the 
residuals that correspond to known breakpoints. 
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Figure 3. Step-wise illustration of the construction of the dive zone and its evolution as points are added to the abstracted dive profile. We use an example 
dive from individual 10943 (see Table 1), with up to ten iterations of the broken-stick model, i.e., using 3-12 points, in total. 
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Figure 4. The relationship between the proportion of high-resolution time-depth samples and the number of 
BSM points in the abstracted dive profiles of 240 case study dives from a northern elephant seal and three 
southern elephant seals (see Table 1). Abstracted profiles with 3-12 points in total were generated for each 

of the study dives and compared with the full resolution profile. The coloured areas incudes minimum and 
maximum observed range of the relationship for each individual.  
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Figure 5. Smooth functions of the covariates in a Generalized Additive Model with log(RSS) as the response, 
DZI a smooth covariate, and individual dive as a random effect. The data used to fit this model were 

abstracted dive profiles of 4,000 study dives from 45 southern elephant seals instrumented at South Georgia 
Island in 2008 and 2009. The grey area includes two standard errors for the fitted relationship.  
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Figure 6. The relationship between the percentage of deviance explained by a model for RSS with DZI as the 
explanatory variable and individual seal as a random effect, and the number of breakpoints in the dives 

being considered.  
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Figure 7. Smooth functions of the covariates in a Generalized Additive Model with dive zone index as the 
response, dive type as a factor variable, the residual as the final iteration of the BSM as a smooth covariate, 

and individual seal as a random effect. The data used to fit this model were abstracted dive profiles of 
22,305 study dives from 17 southern elephant seals instrumented at South Georgia Island in 2004 and 

2005. The grey area includes two standard errors for the fitted relationship.  
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Figure 8. The fitted relationship between the dive zone index (DZI) and the residual at the final interaction 
of the broken stick model (R4) for each dive type. These are the predictions based on a Generalized Additive 
Model, with R4 as smooth covariate, dive type as a factor variable, and individual seal as a random effect. 

The data used to fit this model were abstracted dive profiles of 22,305 study dives from 17 southern 
elephant seals instrumented at South Georgia Island in 2004 and 2005.  
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