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The concept of slow light in photonic crystal (PhC) 
waveguides has been explored over the last decade both 
from a fundamental point of view and for practical 
applications. Slow light PhC waveguides have been used 
for applications such as optical delay lines [1] and 
enhanced light matter interaction both for linear [2] and 
nonlinear [4-5] applications. 

Planar PhC waveguides are generally realised by 
creating a line defect in the PhC lattice and are commonly 
known as the W1 PhC waveguide [6]. Interest in PhC 
waveguides arises from the fact that the group index can 
be very large near the band edge of its dispersion relation, 
which results in slowing down of optical pulses. However, 
simple W1 waveguides suffer from high group velocity 
dispersion close to the bandedge. This is very detrimental 
for many applications, causing, for example, pulse 
broadening. To overcome this problem, PhC waveguide 
designs have been proposed and realised in which the 
band structure is modified, creating a flat group velocity 
curve around the operating wavelength [7,8]. While these 
designs have enabled a host of key results [9] it has been 
realised that optical loss has a serious effect on slowlight, 
placing limits on the values that may be attained [10]. In 
this paper, we quantify the effects of loss on slow light 
propagation and describe a powerful new approach to 
model slow light photonic crystals. 

The Finite Difference Time Domain (FDTD) method is 
a very powerful numerical technique for modelling optical 
components. In the past, FDTD has been used to calculate 
the dispersion relation of PhCs, as well as estimating 
transmission behaviour of PhC waveguides; however 
obtaining information on the group index is problematic. 
Time of flight methods have been used but are 
computationally intensive due to the need to make 
simulations at a large number of wavelengths [11]. Plane 
wave expansion methods, in which the group index is 
determined from the band structure are most popular but 
essentially use an idealised device and cannot determine 
the group index for lossy (realistic) systems. Here we 

propose and demonstrate a new method for calculating 
the group index spectrum using the FDTD method. By 
deliberately introducing material loss, we can extract the 
group delay from the resulting change in transmission 
providing insights into the effects of loss on slow light 
waveguides and a simple and effective method for 
determining the group index.  

In this work, all the simulations were carried out using 
the RSOFT Fullwave module, commercially available 
software for FDTD analysis. The waveguide structure is 
shown in figure 1. The W1 waveguide is defined in a 
triangular lattice of air holes in silicon by removing one 
row of holes from the lattice. To launch and measure the 
light, source and monitor are placed on the access 
waveguides on either side of the PhC waveguide. For the 
initial studies we made a 2D FDTD analysis. The lattice 
constant (a) and the hole radius (r) are chosen to be 
414nm and 0.29a respectively. The length of the W1 
waveguide is 40μm. The effective index of Si is chosen to 
be 2.7 at λ = 1550nm. Within the wavelength range of 
interest, the waveguide exhibits a single TE polarized 
(dominant electric field is in the plane of PhC) mode. In 
order to calculate the group index curve, we first calculate 
the transmission spectrum of the waveguide, shown as 
the red curve in figure 1. We then calculate the 
transmission spectrum of the waveguide after increasing 
the material loss (PhC region only) (related to the 
approach of [12]), shown as the green curve in figure 1. It 
is quite apparent from the two spectra that the deviation 
between them increases as the band edge is approached. 
For a given wavelength, the transmitted intensity in two 
cases can be written as follows: 

  𝑇1 = 𝑇0𝑒
−𝛼𝑙   (1) 

  𝑇2 = 𝑇0𝑒
−(𝛼+𝛼𝑎𝑏𝑠𝑙) (2) 

where T0 is the intensity of the launched light, T1 is the 
intensity of the transmitted light and T2 is the intensity 
when additional loss has been introduced. In these 
equations only the losses incurred in the PhC region are 
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considered, and losses due to the access waveguides and 
coupling losses are ignored since they are common to both 
cases. α is the attenuation coefficient, which might include 
scattering losses, free carrier absorption and so on, of the 
device being studied and αabs is the absorption coefficient 
introduced via material absorption and used to probe the 
group delay. l is the length of the PhC waveguide.  

Following [6], for low material loss the absorption 
coefficient varies linearly with the material extinction 
coefficient and can be approximated as: 

  𝛼𝑎𝑏𝑠 =
4𝜋𝑛𝑔𝑓

𝜆0𝑛
(𝜅 + 𝛥𝜅)  (3) 

where ng is the group index, f is the fractional electric field 
energy inside the silicon, κ is the material extinction 
coefficient) Δκ is the introduced material extinction 
coefficient), λ0 is the free space wavelength and n is the 
refractive index of silicon. Rearranging equations (1)-(3), 
we can write the group index as: 

  𝑛𝑔 =
𝜆0𝑛

4𝜋𝑓𝛥𝜅𝑙
𝑙𝑛 (

𝑇1

𝑇2
) (4) 

For our analysis we have chosen λO at 1550nm and 
using 2D mode analysis we found that f is 92% around the 
operating wavelength. Here we used Δκ=0.0001. The 
calculated group index spectrum is shown in blue in figure 
1. The spectrum shows the expected rapid increase in 

group index as the band edge is approached. 

Fig. 1.  Simulated transmission spectra and calculated group 
index spectrum for a W1 waveguide (schematic shown in the 
inset). 

In an ideal, lossless photonic crystal, the group index 
goes to infinity as the photonic band edge is approached; 
however, it has been shown that the presence of loss can 
strongly modify the dispersion curve [13]. Pedersen et al 
[10] have identified the limits imposed on the maximum 
attainable group index by such loss induced modifications 
and described the effect as a “smearing” of the photonic 
density of states. In figure 2, we indeed observe a 
divergence between the group index curves calculated in 
the presence of loss and that calculated for lossless case as 

the band edge is approached. It should be noted that we 
have chosen to use the richer group index curve of 
dispersion engineered PhC waveguides [8] for this 
demonstration. As the loss increases, the maximum group 
index reached drops noticeably in good qualitative 

agreement with [10]. 

Fig. 2. Transmission spectra (dashed line) and corresponding 
group index spectra (solid line) with varying material loss (κ) for 
a dispersion engineered PhC waveguide. For all the cases the Δκ 
value was 0.0001. We follow the approach proposed in [Li2008] to 
achieve flat band response, by shifting the two rows of holes 
adjacent to the center of the waveguide by s1=0.12a and s2=-
0.08a respectively. 

We find, for example, that the group index has a 
maximum value of ~100 for κ=0.001, which corresponds 
to a loss of around 20,000dB/cm (Eq3). Figure 2 clearly 
shows a limiting group index for each κ values indicating 
that there is a threshold value of the ng−κ product; above 
which the smearing of the optical density of states 
becomes important [10]. Importantly, this value is orders 
of magnitude greater than that encountered in state of the 
art devices [14].  
To further investigate this,,, we have calculated group 
index spectra with different probing material losses (Δκ) 
and PhC lengths (l). The transmission spectra and the 
group index curves are shown in figure 3. Figure 3a shows 
the transmission spectra with and without material losses 
and its corresponding group index curves. Figure 3b 
shows the transmission spectra for device length of 40μm 
and 80μm and corresponding group index curves. It is 
clear from the group index spectra that these material 
losses and device lengths have no appreciable effect on the 
calculation. 
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To further verify our method, we compared the 
experimentally measured group index curve of a 
fabricated PhC waveguide with group index curves 
calculated using 3D FDTD and plane wave expansion 
(PWE) method. For the experimental demonstration we 
choose a triangular PhC with lattice period of a=420nm 
and hole radius of r=114nm in a 220nm layer of silicon 
suspended in air. We considered an engineered PhC 
waveguide with s1 and s2 of 50nm and -16nm 
respectively. For the FDTD calculation we choose the 
refractive index of silicon to be 3.47, the device length was 
20μm and the material loss κ=0.001. For the 3D PhC 
waveguide, the fractional electric field energy inside the 
silicon is found to be 95.6%. The fabrication of the PhC 
waveguides started from a silicon-on-insulator substrate 
with 220nm of top silicon layer with 2μm of buried oxide.  

Fig. 3. (a) Transmission spectra and corresponding group 
index spectra with varying material loss (Δκ). (d) 
Transmission spectra and corresponding group index 
spectra with varying length of PhC waveguide 
 
The PhC patterns were transferred into the silicon layer 
using ebeam lithography and subsequent etching using 
reactive ion etching (RIE). Details of the fabrication steps 
can be found in [15]. To create the suspended membrane 
of the PhC waveguide, the buried oxide underneath the 
PhC was selectively removed by wet etching with 

hydrofluoric acid. Finally, the sample was cleaved to form 
optical facets for measurement using the end-fire 
technique. We used a similar technique as reported in [16] 
to measure the group index curve of the fabricated PhC 
waveguides. Figure 4 shows the experimental (green 
curve) and calculated group index curves using 3D FDTD 
(green) and PWE (black) methods. There was a 5nm and 
15nm shift between the experimental and 3D FDTD 
curves and PWE curves respectively, as slight variation 
between designed and fabricated hole size is unavoidable. 
It is clear from Fig. 5 that three-dimensional FDTD 
results are in good agreement with experimental results. 
Here one can notice fringes occurring in the calculated 
group index curve, which arises from the fringes in the 
transmission spectra (also noticeable in figures 1, 2 and 3). 
These fringes are caused by the Fabry-Perot (FP) cavity 
formed at the interfaces between the PhC waveguide and 
the access waveguides. For example, consider a cavity 
with length 20μm and a group index of 40. In this case the 
expected fringe spacing is ~3nm. This agrees with the 
~3nm fringe spacing observed in figure 4b at a 
wavelength of 1595nm. It should be noted that the fringe 
spacing is larger in the simulated case as the cavity length 
is much shorter than that of the fabricated sample.  

Fig. 4. Group index spectra for an engineered PhC waveguide, 
with s1 = 50nm, s2 = -16nm, measured (red solid line), calculated 
using PWE method (balck dashed line) and using FDTD method 
(green solid star line). 

In conclusion, we have carried out a numerical study to 
demonstrate how the group index of PhC waveguides can 
be extracted from their transmission spectrum using the 
FDTD method. The 2D simulations are carried out for 
varying material loss and varying length of the PhC 
device for both W1 and dispersion engineered PhC 
waveguides. We have accessed regimes of high group 
index and high optical loss that are not experimentally 
accessible and quantified the limits on slowlight due to 
loss induced smearing of optical density of states. For the 
group index and loss values typically encountered in state 
of the art devices, we find excellent agreement between 
simulated and experimental results making our approach 



an excellent tool for the design of slow light photonic 
crystal waveguides. 
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