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Abstract

Cell division is a complex process requiring the cell to have many internal checks so that division may
proceed and be completed correctly. Failure to divide correctly can have serious consequences, including
progression to cancer. During mitosis, chromosomal segregation is one such process that is crucial
for successful progression. Accurate segregation of chromosomes during mitosis requires regulation
of the interactions between chromosomes and spindle microtubules. If left uncorrected, chromosome
attachment errors can cause chromosome segregation defects which have serious effects on cell fates.
In early prometaphase, where kinetochores are exposed to multiple microtubules originating from the
two poles, there are frequent errors in kinetochore-microtubule attachment. Erroneous attachments
are classified into two categories, syntelic and merotelic. In this paper we consider a stochastic model
for a possible function of syntelic and merotelic kinetochores and we provide theoretical evidence that
merotely can contribute to lessening the stochastic noise in the time for completion of the mitotic process
in eukaryotic cells.

1 Introduction

Accurate segregation of chromosomes during mitosis requires regulation of the interactions between chro-
mosomes and spindle microtubules. Equal partitioning of the genetic material is achieved by ensuring that
mitotic spindle forces align all sister chromatids at the cell equator. At the centromere of each sister chro-
matid, kinetochore complexes provide a scaffold for chromosome/microtubule interactions (Cheeseman and
Desai, 2002). Precise genome partitioning requires stable attachment of each sister kinetochore to opposite
spindle poles. This bipolar attachment generates mechanical tension between the two sister cohesin linked
chromatids caused by the pulling force of the mitotic spindle.

In early prometaphase, where kinetochores are exposed to multiple microtubules originating from the
two poles, there are frequent errors in kinetochore-microtubule attachment (Ault and Rieder, 1992). Er-
roneous attachments are classified into two categories, syntelic and merotelic. A chromosome is said to
be syntelically attached if both sister kinetochores are attached to chromosomes nucleated from the same
spindle pole, whereas when a kinetochore is attached to each spindle pole at the same time a chromosome
is considered to be merotelically attached. In contrast to the above described two cases, an amphitelic
attachment is established when a chromosome has each sister kinetochore attached to one spindle pole.

If left uncorrected, chromosome attachment errors can cause chromosome segregation defects which
have serious effects on cell fates. To this end, the cell has developed error-correcting mechanisms which
ensure that all chromosomes become amphitelically attached before the anaphase separation signal is
released. Aurora B, a member of serine/threonine protein kinsases, has been identified as the principal
component of error correcting mechanisms (Carmena and Earnshaw, 2003; Biggins et al., 1999; Cheeseman
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et al., 2002; Francisco et al., 1994; Tanaka et al., 2002). Aurora B is part of the chromosomal passenger
complex (CPC), which also includes the inner centromere protein (INCEP), Survivin and Borealin (Bolton
et al., 2002; Ruchaud et al., 2007). The CPC is thought to contribute to the localization of the kinase
at the inner centromeric regions close to kinetochores, in close proximity to attached microtubules. The
inhibition of Aurora B in vertebrate cells leads to the stabilization of incorrect attachments (Lampson
et al., 2004). Conversely, when Aurora B is activated by removal of its inhibitors it is observed that
erroneous attachments are selectively destabilized (Hauf et al., 2003; Kallio et al., 2002; Ditchfield et al.,
2003). There are several models for how Aurora B might regulate erroneous attachments (for a review see
Maresca and Salmon, 2010; Lampson and Cheeseman, 2011), however the common theme is that Aurora
B phosphorylates kinetochore substrates in the absence of mechanical tension between sister kinetochores,
which destabilizes incorrect attachments until amphitelic attachments are achieved.

Eukaryotic cells employ a highly sensitive surveillance mechanism, called the spindle-assembly check-
point (SAC), which enforces that anaphase onset is delayed until the very last chromosome has achieved
amphitelic attachments (Musacchio and Salmon, 2007; Maresca and Salmon, 2010). The signaling molecules
that comprise the SAC are localized and regulated at kinetochores and Aurora B has been suggested to
play a role in the SAC. Anaphase initiation requires the activation of the anaphase-promoting complex
/cyclosome(APC/C), which targets the mitotic substrates cyclin B and securin for degradation. The SAC
pathway generates a signal that blocks the activation of the APC. More specifically, the SAC negatively
regulates the ability of an APC/C cofactor, called CDC20, to activate the polyubiquination of cyclin B
and securin. By controlling Cdc20 activity the SAC can prolong metaphase until all chromosomes are cor-
rectly attached. At a molecular level, APC/C inhibition is achieved with the help of four protein complex,
known as the mitotic checkpoint complex (MCC), which is composed of checkpoint proteins Mad2, BubR1,
Bub3 and Cdc20 (Musacchio and Salmon, 2007). Aurora B affects MCC formation by destabilizing the
localization of BubR1, Mad2 and Cenp-E at centrosomes (Ditchfield et al., 2003; Morrow et al., 2005).
The process of SAC signal formation is not well understood and models which propose a role for Aurora
B have been proposed in an effort to clarify the role of various kinetochore signaling proteins in anaphase
onset control (see, e.g., Mistry et al. (2008) and references therein).

In this paper, we investigate how chromosome attachment errors and error-correcting mechanisms
control the noise in the time for completion of the mitotic process. In particular, we provide theoretical
evidence that a tightly controlled strictly positive rate of erroneous attachments facilitates a more accurate
timing of the mitotic process than in the complete absence of attachment errors. The plan of the paper
is the following. In section 2, we briefly introduce the model of Mistry et al. (2008) on the dynamics of
merotelic and syntelic kinetochore attachments. In section 3, we present a complete analytical derivation
of the dependence of the (stochastic) time T at which all kinetochores become amphitelically attached on
the system parameters and present numerical computations that corroborate these results. Finally, we
conclude with a discussion of our results in section 4.

2 The mathematical model

Following Mistry et al. (2008), we consider a continuous time Markov jump process that is associated with
the graphical representation of the possible kinetochore attachment transitions shown in Figure 1. The
vertices of this graph correspond to the possible attachment states of the kinetochore pairs with directed
edges connecting two vertices if kinetochore pair attachments can transition between the corresponding
states.

As seen in Figure 1, the possible kinetochore attachment transitions are:

U
k1−→M, U

k2−→ S, U
k3−→ C, S

k4−→ C, and M
k5−→ C,
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Figure 1: Network diagram showing the possible states each kinetochore unit could be in at any given
time and how they can move from state to state. In particular, each kinetochore pair can be in one of the
following states: unattached (U), syntelic (S), merotelic (M), or amphitelic (C).

where the parameters k1, k2, . . . , k5 correspond to the rate constants at which a kinetochore pair transitions
between the corresponding attachment states. We denote the state vector at time t > 0 as

X(t) = (XU (t), XS(t), XM (t), XC(t)) , (1)

where XU , XS , XM , and XC are integer-valued stochastic processes representing the number of the 46
possible kinetochore pairs in the unattached (U), syntelic (S), merotelic (M), and amphitelic (C) attachment
states, respectively. Throughout the paper, the initial value of the state vector is given by X(0) =
(46, 0, 0, 0).

We define P (x, t) to be the joint probability that X(t) = x at time t. Hence, P (x, t) denotes the
probability that the state of the system at time t is given by x = (x1, x2, x3, x4), where for each i ≤ 4, xi
is a non-negative integer and

∑4
i=1 xi = 46. In this context, the master equation (Gardiner, 1985) that

governs the evolution of P (x, t) is

d

dt
P (x, t) =

5∑
i=1

ai(x− νi) · P (x− νi, t)−
5∑
j=1

aj(x) · P (x, t), (2)

where ai(x − νi) can be understood as the probability per unit time of a transition from state x − νi
to state x. In the chemical literature the rate functions ai are usually referred to as the propensities of
the corresponding transitions (see, e.g., Gillespie, 2007). In general, the relation between the propensities
ai and the deterministic kinetic rate constants ki depends on the order of the corresponding reaction
schemes (Highham, 2008). In the case of the first order transitions shown in Figure 1, we have that
ai(x − νi) = kiNi(x − νi), where Ni(x − νi) is the number of kinetochores acting as the substrate of the
i-th reaction scheme. The “stoichiometric vector” νi represents the change in population that occurs when
the i-th reaction fires (Gillespie, 2007). Specifically, in what follows we consider the five transitions shown
in Figure 1 given by:

ν1 = (−1, 0, 1, 0), ν2 = (−1, 1, 0, 0), ν3 = (−1, 0, 0, 1), ν4 = (0,−1, 0, 1), and ν5 = (0, 0,−1, 1). (3)

The master equation (2) along with the specified “connectivity” of the system provided by (3) uniquely
determine a continuous time Markov jump process, the analysis of which is the main focus of this paper.
More precisely, in what follows we analyze the dependence of the distribution of the time T at which all
kinetochores reach the amphitelic state (C) on the kinetic parameters of the model. We subsequently use
these results to understand how stochastic fluctuations of T are controlled by the system.
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3 Results

We focus on the question of how fluctuations in the random time T at which all kinetochores become
amphitelically attached are controlled by the system parameters. We address this question in two different
ways. First we derive analytically the probability distribution of T in Section 3.1, and then in Section 3.2
we employ a stochastic simulation algorithm that allows us to perform statistics on numerically generated
ensembles of independent realizations of the process under consideration.

3.1 The distribution of the absorption time T .

In this section, we derive analytically the probability distribution of the time it takes the process to get
absorbed at the state (0, 0, 0, 46). The latter corresponds to the configuration of the system where all 46
kinetochores are amphitelically attached. As specified in Section 2, we assume that the system is initially at
state (46, 0, 0, 0) with probability one. In addition to the state vector given by (1), we define the auxiliary
random vector

γ(t) = (γ1(t), γ2(t), . . . , γm(t)),

where m = 46 is the number of kinetochores and each random variable γi(t) ∈ {U,M,S,C} gives the
attachment state of the corresponding kinetochore pair at time t ≥ 0.

The amount of time it takes for all 46 kinetochore pairs to reach the amphitelic attachment state is
formally defined as

T = inf {t > 0 : X(t) = (0, 0, 0, 46)} ,

where we use the standard convention that the infimum over an empty set is infinity. The hitting time T
can also be represented as

T = sup
i≤m

Ti,

where
Ti(state) = inf {t > 0 : γi(t) = state}

with state ∈ {U,M,S,C} . Correspondingly, for the distribution function of T we have

P (T ≤ t) = P (Ti ≤ t,∀ i = 1, 2, . . . ,m).

Using the fact that the kinetochore pairs are assumed to be identical and act independently, this yields

P (T ≤ t) =
[
P (T1 ≤ t)

]m =
[
1− P (T1 > t)

]m
Hence,

P (T > t) = 1−
[
1− P (T1 > t)

]m
, (4)

which gives the probability that all kinetochore pairs have not reached the amphitelic attachment state by
time t. Therefore, we only need to calculate P (T1 > t), the probability that the first kinetochore pair has
not reached the amphitelic attachment state by time t > 0, in order to determine the tail of the probability
distribution of the hitting time T .

In order to compute the distribution of T1 we introduce the events that the first kinetochore pair reaches
the amphitelic attachment state through the merotelic attachment state as

A = {T1(M) <∞, T1(S) =∞},

through the syntelic attachment state as

B = {T1(M) =∞, T1(S) <∞},
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and by going directly to the amphitelic attachment state as

C = {T1(M) =∞, T1(S) =∞}.

Hence, the tail end of the probability distribution of the hitting time T1 is given by

P (T1 > t) = P
(
T1(M) + T1 − T1(M) > t | A

)
· P (A)

+ P
(
T1(S) + T1 − T1(S) > t | B

)
· P (B) + P

(
T1 > t | C

)
· P (C)

= P
(
T1(M) + T1 − T1(M) > t | A

)
· k1

k0

+ P
(
T1(S) + T1 − T1(S) > t | B

)
· k2

k0
+ P

(
T1 > t | C

)
· k3

k0
, (5)

where
k0 = k1 + k2 + k3.

Notice that T1(M) and T1− T1(M) are independent under the conditional measure P (· | A). Similarly,
T1(S) and T1 − T1(S) are independent under the conditional measure P (· | B). We now consider the
conditional probability,

P
(
T1(M) > t | A

)
=
P
(
T1(M) > t,A

)
P (A)

,

which determines the probability that the first kinetochore pair transitions to the merotelic attachment
state at some moment in time after time t given event A occurs. Since, P (A) = k1/k0 and the event A
occurs when the reaction scheme U →M fires before U → S and U → C, we obtain:

P
(
T1(M) > t | A

)
=
k0

k1

∫ ∞
t

k1e
−k1ada

∫ ∞
a

k2e
−k2bdb

∫ ∞
a

k3e
−k3cdc =

k0

k1

∫ ∞
t

k1e
−k0ydy = e−k0t.

Following a similar derivation as above,

P
(
T1(M) > t | A

)
= P

(
T1(S) > t | B

)
= P

(
T1 > t | C

)
= e−k0t. (6)

We note that (6) is a manifestation of a general property of a collection of independent exponential random
variables. Therefore,

P (T1 > t | A) = P
(
T1(M) + T1 − T1(M) > t | A

)
=
∫ ∞
t

fa(τ)dτ, (7)

where the continuous probability density fa(t) is determined by the convolution integral:

fa(t) =
∫ t

0
k0e
−k0τk5e

−k5(t−τ)dτ = k0k5e
−k4t

∫ t

0
e−(k0−k5)τdτ =

k0k5

k0 − k5

(
e−k5t − e−k0t

)
. (8)

It follows from equations (7) and (8) that

P (T1 > t | A) =
k0

k0 − k5
e−k5t − k5

k0 − k5
e−k0t.

Similarly,

P (T1 > t | B) =
k0

k0 − k4
e−k4t − k4

k0 − k4
e−k0t,

and
P (T1 > t | C) = e−k0t

5



Figure 2: Plot showing 10,000 realizations of the time it takes for all sister kinetochores to form amphitelic
attachments. The red line represents the empirical mean of these realizations and can serve as an estimation
of the mean hitting time T (see text for details).

from equation (6).
Thus, in lieu of (5) we obtain the probality distribution

P (T1 > t) =
k1

k0 − k5
e−k5t +

k2

k0 − k4
e−k4t −

( k1k5

k0(k0 − k5)
+

k2k4

k0(k0 − k4)
− k3

k0

)
e−k0t.

Plugging this expression into (4) yields an explicit expression for the distribution function of T . The
biological implications of the latter are delineated in the following sections. We note that extensions of the
analysis presented in this section for more complex models that include explicitly the effect of Aurora B,
such as the models discussed by Mistry et al. (2008), are highly non-trivial, and hence numerical approaches
like the one presented in the following section become crucial.

3.2 Simulations and numerical results

In this section, we employ the Gillespie simulation algorithm (Gillespie, 2007; Gillespie, 1976) to compute
an ensemble of independent realizations of the master equation (2). This allows us, among other things, to
numerically approximate the distribution of the hitting time of the amphitelic state, i.e., of the state where
all kinetochores are amphitelically attached. As we will see, the results of the numerical computations
corroborate the analytical derivation of Section 3.1.

As explained in Section 2, because of the small numbers of chemically interacting species in the system,
we treat the evolution of the latter as a Markovian stochastic process, rather than as a deterministic process
(Highham, 2008), and use the standard master equation formalism (Gardiner, 1985; van Kampen, 2007). In
this context, Monte Carlo methods are commonly used to generate realizations of the underlying stochastic
process. For chemical reaction networks this is frequently done using one of the two stochastic simulation
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algorithms, called the direct method and first reaction method, respectively, developed by Gillespie (1976).
Modern variations of these algorithms, aimed at improving the computational performance, include the
methods developed by Gibson and Bruck (2000), Cao et al. (2004) and E et al. (2005), among others. In
the following, all simulations have been performed with an in-house implementation of Gillespie’s direct
method. The latter is computationally efficient for generating numerical realizations of (2).

Our main focus in the numerical computations that follow is the dependence of the first two moments
of the all-amphitelic hitting time on the kinetic parameters associated with kinetochore transitions. While
it would be of interest to explore the relationships between all five of the parameters k1, k2, k3, k4,
and k5, we note that we narrowed our focus to the relationship between the parameters k1 and k3 for the
purpose of this paper. We allowed the parameter that governs transitions from the unattached to merotelic
attachment states, k1, to take on values in the range 0.01 min−1 to 0.25 min−1, and the parameter that
governs transitions from the unattached to amphitelic attachment states, k3, to take on values in the range
0.01 min−1 to 0.5 min−1. The rest of the kinetic parameters were set to the values adopted by Mistry
et al. (2008). A simulation was then conducted by choosing a value in the range above for the parameters
k1 and k3 and performing 10,000 realizations using Gillespie’s direct method on these parameter values.

Following the assumptions outlined in Mistry et al. (2008), each realization started with all 46 kine-
tochore pairs in the unattached state and then proceeded by updating the populations of the kinetochore
attachment types in the previous time step according to Gillespie’s direct method, with possible transitions
following the network diagram in Figure 1. A realization was then deemed to have finished when all 46
kinetochore pairs reached the amphitelic state. The amount of time required to reach this state, i.e. the
hitting time for the specific realization, was then recorded. This process was repeated for each of the 10,000
realizations. The results for all realizations for a specific choice of parameter values are shown in Figure 2.

The data in Figure 2 (and similar data sets for other combinations of parameter values) were used
to compute the empirical mean µ and empirical standard deviation σ of the all-amphitelic hitting time
distribution. Moreover, for each choice of values for k1 and k3, µ and σ were used to quantify the stochastic
fluctuations in the time at which the system reaches the all-amphitelic state. Two measures commonly em-
ployed in the stochastic chemical kinetics literature for quantifying noise/fluctuations include the coefficient
of variation (see, e.g., Laurenzi, 2000; Kepler and Elston, 2001; Elowitz et al., 2002; Swain et al., 2002) and
the Fano factor (Thattai and van Oudenaarden, 2001; Ozbudak et al., 2002; Blake et al., 2003). The former
is defined as the standard deviation divided by the mean, whereas the latter is defined as the variance σ2

divided by the mean.
Ensembles of 10,000 realizations were generated for all possible combinations of values in the range

of the parameters k1 and k3 described above, and the respective coefficients of variation were calculated
for all possible pairs of parameter values. The results of these simulations are plotted in Figure 3(a).
Moreover, Figure 3(b) shows the values of the coefficient of variation over the same range of values for the
parameters k1 and k3 as computed by using the analytically derived probability distribution for the hitting
time, discussed in Section 3.1.

The comparison of Figures 3(a) and 3(b) clearly shows that both the stochastic simulation approach
based on Gillespie’s direct method and the analytical derivation of Section 3.1 return similar results.
Recall that the parameters k1 and k3 correspond to transitions from the unattached to the merotelic and
amphitelic attachment states respectively. The results show that noise in the all-amphitelic hitting time
for this system is minimized when k1 ≈ 0.15 min−1 and k3 ≈ 0.07 min−1. The model also predicts that
the noise in the hitting time is much more dependent on the values of the parameter k3. This can be seen
in the much steeper increase in values of the coefficient of variation along the k3 axis versus the k1 axis.

Figures 4(a) and 4(b) show the dependence of the coefficient of variation and Fano factor, respectively,
on parameter k3 when k1 = 0.1 min−1. As can be seen, both measures predict a nonlinear dependence of
noise on the rate of transition from the unattached to the amphitelic state, albeit they provide a different
value of k3 for which the noise is minimized and the timing of the process is most accurate. This is expected,
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Figure 3: Plots showing the dependence of the coefficient of variation for the hitting time T on k1 and k3,
as computed (a) numerically by the Gillespie method and (b) analytically by the approach taken in section
3.1.

Figure 4: Plots showing the dependence on parameter k3 of (a) the coefficient of variation and (b) the
Fano factor for the hitting time T .
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Figure 5: Plots showing the dependence of (a) the mean hitting time and (b) the standard deviation of
the hitting time on parameter k3.

as it has been pointed out by various authors that the coefficient of variation and the Fano factor can lead
to different conclusions with respect to noise (see, e.g., Swain et al., 2002; Gadgil et al., 2005). Nonetheless,
both measures predict that merotely can contribute to lessening the noise in the time for completion of
the mitotic process.

In addition to computing the dependence of the coefficient of variation and Fano factor on k3, we
investigated whether the variation of these quantities depends on variations of the mean hitting time only,
i.e., whether or not there is an essential dependence of the standard deviation on k3. Figure 5 clearly
shows that both mean and standard deviation of the hitting time distribution decrease as the parameter k3

increases, and hence neither the mean nor the standard deviation alone is the dominant factor for variations
in the level of noise when varying parameter values.

4 Discussion

Cell division is a complex process requiring the cell to have many internal checks so that division may
proceed and be completed correctly. Failure to divide correctly can have serious consequences, including
progression to cancer. During mitosis, chromosomal segregation is one such process that is crucial for
successful progression. Accurate segregation of chromosomes during mitosis requires regulation of the in-
teractions between chromosomes and spindle microtubules. These chromosome/microtubule interactions
are controlled by kinetochore complexes which provide a scaffold at the centromere of each sister chromatid,
and progression through mitosis depends upon the stable attachment of each sister kinetochore to oppo-
site spindle poles. This process of kinetochore-microtubule attachment is prone to errors and erroneous
attachments are classified into two categories - syntelic and merotelic. In the former category, a chromo-
some is said to be syntelically attached if both sister kinetochores are attached to chromosomes nucleated
from the same spindle pole. In the latter category, a chromosome is said to be merotelically attached if
a kinetochore is attached to each spindle pole at the same time (in contrast to the above described two
cases, an amphitelic attachment is established when a chromosome has each sister kinetochore attached to
one spindle pole).
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In this paper, we have developed a stochastic model of kinetochore attachment transitions. Following
Mistry et al. (2008), we considered a continuous time Markov jump process that is associated with all pos-
sible kinetochore attachment transitions and derived a system of stochastic differential equations governing
the evolution in time of the probability of being in one of the possible attachment states of kinetochore
pairs i.e. unattached (U), syntelic (S), merotelic (M), and amphitelic (C).

Having developed the model, we first derived specific expressions for the dependence of the distribution
of the time T , at which all kinetochores reach the amphitelic state, on the kinetic parameters of the model.
Next, we used the Gillespie simulation algorithm to compute an ensemble of independent realizations of the
master equation (2). This enabled us to numerically approximate the distribution of the hitting time of the
amphitelic state where all kinetochores are amphitelically attached. Our computational results appeared
to verify the analytical results we had obtained.

One of the key results from our model is that the process of merotely (i.e. erroneous attachment)
can contribute to a lessening of the noise in the time for completion of the mitotic process. Specifically,
both our computational and analytical results show that, paradoxically and counter-intuitively, a tightly
controlled strictly positive rate of erroneous attachments facilitates a more accurate timing of the mitotic
process than in the complete absence of attachment errors.
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