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Abstract8

1. Regression is an important method for characterising the form of natural selection from9

individual-based data. Many kinds of regression analysis exist, but few are regularly em-10

ployed in studies of natural selection. I provide an overview of some of the main underused11

types of regression analysis by applying them all to test analyses of viability selection for12

lamb traits in Soay sheep (Ovis aries). This exercise highlights known problems with exist-13

ing methods, uncovers some new ones, and also reveals ways to harness underused methods14

to get around these problems.15

2. I first estimate selection gradients using generalised linear models, combined with recently-16

published methods for obtaining quantitatively interpretable selection gradient estimates17

from arbitrary regression models of trait-fitness relationships. I then also apply generalised18

ridge regression, the lasso, and projection-pursuit regression, in each case also deriving19

selection gradients. I compare inferences of non-linear selection by diagonalisation of the �20

matrix and by projection-pursuit regression.21

3. Selection gradient estimates generally correspond across di↵erent regression methods. Al-22

though there is little evidence for non-linear selection in the test datasets, very problematic23

aspects of the behaviour of analysis based on diagonalisation of the � are apparent. In addi-24

tion to better-known problems, (i) the direction and magnitude of estimated major axes of25

quadratic selection are biased toward directions of phenotype that have little variance, and26

(ii) the magnitudes of selection of major axes of variance-standardised � are not themselves27

interpretable in any standardised way.28

4. While all regression-based methods for analysis of selection have useful properties, projection-29

pursuit regression seems to stand out. This method can: (i) provide both dimensionality-30

reduction, (ii) be the basis for inference of quantitatively interpretable selection gradients,31

and (iii) by characterising major axes of selection, rather than of linear or quadratic selec-32

tion separately, provide biologically-interpretable inference of non-linear selection.33
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1 Introduction34

Understanding multivariate microevolutionary parameters is currently one of the key challenges35

of evolutionary quantitative genetics (Blows, 2007; Philips & Arnold, 1989; Walsh & Blows,36

2009). It is now well established that univariate and bivariate views of the genetics and selec-37

tion of ecologically-important traits can, and perhaps even generally will, fail to reveal critical38

aspects of microevolutionary processes, including selected axes of phenotype and genetic con-39

straints (Dickerson, 1955; Ro↵ & Fairbairn, 2007). Furthermore, microevolutionary parameters40

of natural populations are likely to vary with many aspects of population structure, including41

age and sex (Lande & Arnold, 1983; Poissant et al., 2008), space (Siepielski et al., 2013), time42

(Bell, 2010; Morrissey & Hadfield, 2012; Siepielski et al., 2009), and environmental conditions43

generally (Carlson & Quinn, 2007; Grant & Grant, 2002; MacColl, 2011). Consequently, char-44

acterisation of key aspects of the evolutionary process is generally very challenging, not only in45

the ecological insight required to conceive data collection strategies and conduct analyses, but46

also in that collection of required quantities of relevant data in realistic conditions and under47

any particular regime of population structure is often very di�cult. Here, I consider methods for48

multivariate selection analysis with special focus on the biological interpretability of inferences49

about multivariate selection from limited data. I consider viability selection of skeletal size,50

mass, horn length, and burden of an ectoparasite in male and female Soay sheep lambs under51

two di↵erent population dynamic regimes.52

The best known pitfall of interpreting tables of statistical results is the problem of multiple53

testing and false positives (Rice, 1989). Less appreciated complexities pertain to statistical54

estimates themselves. Biological interpretation of statistical inferences about natural selection55

generally involves consideration of tables of selection coe�cients. Tables of estimated selection56

coe�cients will generally have very undesirable properties. Many of the aspects of selection in57

which we may be primarily interested are not represented by individual selection coe�cients,58

but rather are obtained by applying mathematical procedures to tables of estimated selection59

coe�cients (gradients, typically). Even when applied to a table of selection coe�cients that60

are obtained by an unbiased method, few properties of tables of selection coe�cients will have61
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desirable statistical properties, and in general, “doing statistics on statistics” can easily generate62

complex statistical artefacts that can appear to represent meaningful and interesting biological63

results.64

A simple illustration of potential biases in interpreting tables of evolutionary quantitative65

genetic parameters arises from the geometric interpretation of the multivariate selection gradient.66

The length of the gradient, or its vector norm, denoted ||�||, represents an important aspect67

of the total strength of multivariate directional selection. In multivariate studies, geometric68

properties such as ||�|| are often integral to the best theory that we can apply to understanding69

how selection and genetics interact to generate evolutionary trajectories (Hansen & Houle, 2008;70

Walsh & Blows, 2009). However, the length of an estimated selection gradient vector – even71

one composed of individually unbiased component selection gradient estimates such as those72

generated by multiple regression analysis (Lande & Arnold, 1983; Morrissey & Sakrejda, 2013)73

– is biased in a potentially biologically misleading way.74

A simplified model is instructive. Consider a vector of k selection gradients, with equal75

absolute values of b, i.e., the true value of selection for each trait (for whatever scaling of76

phenotype has been deemed appropriate for the study) is equal. Consider that this true selection77

gradient is estimated with error. Assume that each estimated selection gradient �̂i is drawn78

from a normal distribution according to �̂i ⇠ N(bi, s2), so, each estimated gradient is unbiased,79

sampling errors are independent, and standard errors, s, are equal across estimates. The true80

norm of � is
p
kb

2. The expected value of the sum of squared estimated elements of � is k(b2+s

2),81

as opposed to the sum of the true squared elements, which is kb2. An exact expression for the82

expected value of the norm of �̂ is not easily obtained. However, since
p
x is a monotonic83

function of x, it follows from k(b2 + s

2) � kb

2 that E[||�̂||] must be greater than ||�||, i.e.,84

upwardly biased, whenever s > 0.85

A first order approximation for E[||�̂||] is thus
p
k(b2 + s

2), and this allows us to start to86

get a handle on the nature of this upward bias. Bias is normally expressed as the di↵erence87

between the expected value of an estimator, e.g., E[x̂], and the true value of the estimator’s88

target estimand, x. Here, where both the true and estimated values of the length of a vector89

must be non-negative, a proportional approach may be more intuitive. We can express E[||ˆ�||]
||�||90
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(which will have a value of 1 in the absence of bias) in terms of the proportional sampling error,91

p = s
b . Substituting pb for s in the expressions above and simplifying gives92

E[||�̂||]
||�|| ⇡

p
1 + p

2

.

This again indicates that estimates of the length of �, given individually unbiased component93

elements of �̂, will be upwardly biased1. Furthermore, this expression illustrates that the problem94

is severe. Since standard errors of selection gradients are generally as large as most selection95

gradients (so p ⇡ 1; remembering that the distribution of selection gradients in the literature also96

provides an upwardly biased impression of the average magnitude of selection; Hereford et al.97

2004), upward bias in the estimated strength of multivariate directional selection on the order of98

40% should be expected. Also, the assumptions of the instructive example should not hinder the99

generality of its interpretation. The basic principle will hold for arbitrary distributions of true100

values of selection gradients. Furthermore, sampling covariances among elements of �̂, as arise101

from phenotypic covariances, will cause larger biases than the simple calculation suggests. This102

is the principle of variance inflation under multicolinearity, which has recently been reviewed by103

Dormann et al. (2013) in the context of ecological statistics.104

The goal of this study is to explore a variety of approaches to selection analysis, in order to105

determine what methods hold the most promise for making robust inferences of di↵erent aspects106

of multivariate selection. I apply a range of regression methods to analyses of multivariate107

selection of Soay sheep lamb traits, including generalised linear models, regularised generalised108

regression models, and projection-pursuit regression. I use a recently-described approach for109

obtaining selection gradient estimates from general fitness functions (Morrissey & Sakrejda,110

2013) to obtain quantitative inferences of selection gradients from each of these analyses. I also111

explore the properties of estimated major axes of quadratic selection, and of selection analysis112

of principle components of the multivariate phenotype. These methods all provide tables of113

selection gradients that may di↵er in bias, and other aspects of informativeness, with respect to114
1
This approximation for the proportional bias is itself somewhat upwardly biased. If selection gradients can be scaled such that

their standard errors are equal to one (as a hypothetical instructive situation), the expected norm of the estimated selection gradient

vector is given by the expectation of a chi distribution. This does not lead to a simple informative expression, but numerical analysis

shows that the approximation

E[||�̂||]
||�|| ⇡

p
1 + p2 upwardly estimates the bias by about 10% for k and p ⇡ 0.7, and is otherwise a

close depiction of bias.
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di↵erent aspects of multivariate selection.115

2 Methods and Results116

2.1 Example study system and data117

Soay sheep on Hirta, St Kilda, in the Outer Hebrides, have been monitored in an individual-based118

study since 1984 (Clutton-Brock & Pemberton, 2004). The portion of the phenotypic data used119

here are collected each August, when a large portion of the Soay sheep resident in the Village120

Bay study area are captured. I analyse body mass (kg), hind leg length (mm), horn length121

(mm), and number of keds (Melophagus ovinus), an ectoparasite, of lambs measured in August.122

Aspects of size have previously been shown to be related to survival (e.g., Clutton-Brock et al.123

1992; Milner et al. 1999), and to have complex phenotypic and genetic covariances with lifetime124

fitness (Morrissey et al., 2012a). Horn size is also closely related to aspects of both survival and125

reproduction (Coltman et al., 1999; Johnston et al., 2013; Robinson et al., 2006). Although keds126

cause some skin irritation (Wilson et al., 2004) their presence or prevalence has not previously127

been related to fitness, and this parasite does not appear to impact negatively on other aspects128

of sheep performance. I focus on traits in lambs, and furthermore restrict the dataset to those129

individuals with the normal horn morph (Clutton-Brock & Pemberton, 2004).130

The month, and usually day, of death is known for nearly all individuals, allowing us to131

determine viability from the time of measurement in August through to one year of age, defined132

operationally as 1st April in the year following birth. The Soay sheep population experiences a133

wide range of over-winter survival rates, with pronounced crashes in some years (Clutton-Brock &134

Pemberton, 2004). For all selection analyses, I therefore divide the dataset into four subsets, for135

male and female lambs in crash and non-crash years. Cohorts born in springs prior to overwinter136

crashes are: 1988, 1991, 1994, 1997, 2004 and 2011. Sample sizes and mean survival rates are:137

males in non-crash years: n = 633, W̄ = 0.687, females in non-crash years: n = 213, W̄ = 0.803,138

males in crash years: n = 281, W̄ = 0.359, and females in crash years: n = 117, W̄ = 0.470.139

Sample size is smaller for females because the expression of the horn polymorphism is sex-specific,140

and fewer females have normal horns (Clutton-Brock & Pemberton, 2004). Means, variances,141



Morrissey, options for multivariate selection analysis 7

and correlations among traits in each sex and environmental condition are given in table 1. All142

traits, i.e., mass, leg length, horn length, and log ked number, were standardised to unit variance143

within each of the four datasets.144

2.2 General strategy for selection gradient estimation145

Analyses in sections 2.3 - 2.7 all use a common framework for selection gradient estimation.146

In each case, the relationship between multivariate phenotype and expected individual fitness,147

E[Wi] = f(zi), is first determined using a generalised regression model. Subsequently, pop-148

ulation mean fitness, given the sample of phenotypes z and the function f(z) is obtained by149

W̄ = 1

n

Pn
i f(zi). The first and second partial derivatives of population mean fitness with re-150

spect to population mean phenotype are then calculated by numerical methods. When scaled151

by dividing by population mean fitness, these derivatives provide estimates of directional and152

quadratic/correlational selection gradients, i.e., �i =
� ¯W
�z̄i

W̄

�1, and �i,j =
�2 ¯W
�z̄i�z̄j

W̄

�1, respectively.153

This method is described in detail in Morrissey & Sakrejda (2013). Where appropriate, stan-154

dard errors were calculated and statistical hypothesis tests were applied using the parametric155

bootstrap method also described in Morrissey & Sakrejda (2013). All traits were standardised156

to unit variance.157

The Morrissey & Sakrejda (2013) method for obtaining selection gradients estimates from158

arbitrary inferences of E[Wi] = f(zi), directly calculates the partial derivatives of population159

mean fitness with respect to population mean phenotype, scaled to the relative fitness. These160

quantities are returned regardless of the distribution of phenotype. For example, if the distri-161

bution of one or more traits is skewed, the estimates of � and � will still reflect the first and162

second partial derivatives of mean relative fitness with respect to phenotype. This definition of163

� relates to evolutionary change via �z̄ = G� under the assumption that breeding values are164

multivariate normal (see proof in appendix). In contrast, the estimates of � and � provided165

by the familiar regression analysis described by equation 16 in Lande & Arnold (1983), will not166

predict evolutionary change when the phenotype is not multivariate normal, even if breeding167

values are MVN.168

The shape of f(zi), as obtained by generalised regression analysis, will be determined in part169
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by the link function. If f(zi) is a linear function on the linear predictor scale, i.e., takes the form of170

E[Wi] = link

�1(µ+
Pk

j bjzi,j), then the curvature will be entirely determined by the shape of the171

link function. Estimates of � obtained from such a model of the fitness function will generally172

provide robust inference of directional selection, but estimates of � should not generally be173

interpreted biologically. When quadratic, or otherwise curved (e.g., spline) generalised regression174

models are used for f(zi), the link function will generally have very little e↵ect on estimates of175

either � or �. For example, models of binary outcomes (e.g., survival) could equally be fitted176

using logit or probit link functions. For any given dataset, the parameters of f(zi) will di↵er177

between models using the logit and probit link functions, but the shape of f(zi) on the expected178

fitness scale, and therefore estimates of � and �, will typically di↵er trivially.179

All analyses in the present work consider relatively simple distributions of fitness. In particu-180

lar, all analyses and empirical examples involve a binary (survival) fitness response. The method-181

ological focus is thus on aspects of inferring selection of the multivariate phenotype. These issues182

should be seen as complimentary to other ongoing avenues for methodological development of183

methods for the analysis of natural selection. The work here is hopefully complimentary to,184

for example, methods for using information about the life cycle to construct sensible models of185

variation in fitness (Geyer et al., 2007; Shaw & Geyer, 2010), e↵orts to characterise selection in186

a demographic context (Engen & Saether, 2014; Engen et al., 2012; Morrissey et al., 2012b), and187

application of theory to disentangle purely correlative from direct and indirect e↵ects of traits188

on fitness (Morrissey, 2014).189

2.3 Selection di↵erentials and multiple regression-based estimation of selection gra-190

dients191

I obtained variance-standardised directional selection di↵erentials S for each trait by calculating192

the di↵erence between mean phenotype weighted by fitness and mean phenotype before selection.193

I obtained quadratic selection di↵erentials as C = �P + SS

T , where �P is a matrix of trait194

variances and covariances, weighted by relative fitness, minus the variance and covariances before195

selection, and S is the vector of directional selection di↵erentials. I obtained standard errors and196

p-values of selection di↵erentials by case bootstrapping.197
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I obtained standardised directional and quadratic selection gradients by first fitting gener-198

alised linear models (glm) with a binomial responses, using the R package mgcv (Wood, 2006),199

and (linear predictor scale) linear, quadratic, and interaction e↵ects for all traits and trait combi-200

nations, for each of the four datasets. I then obtained the selection gradient estimates from these201

fitted models (see section 2.2), as implemented in the R package gsg (Morrissey & Sakrejda,202

2013), with standard errors and p-values, using a parametric bootstrap.203

Survival covaries positively with mass and leg length in both sexes and in both environmental204

conditions (table 2a). In crash years only, but in both males and females, survival covaries205

positively with horn size as well. No consistent patterns occur in changes in variances and206

covariances due to selection, over and above those necessarily associated with changes in the mean207

(Endler, 1986; Lande & Arnold, 1983), with the exceptions of some marginally non-significant208

values, and one nominally significant value (i.e., without accounting for multiple tests) for the209

change in the covariance of horn length and ked number.210

Selection gradients revealed that covariance of survival with mass and leg length is primarily211

directly attributable to variation in mass in non-crash years (table 2b). Also in non-crash212

years, horn length has negative direct e↵ects on survival, again in both sexes, i.e., the slightly213

positive and non-significant covariances of horn length and survival arise via opposite e↵ects of214

correlated selection of mass, and direct selection of horn length. Inference of the direct causal215

structure of selection in crash years appeared to be hindered in part by smaller sample sizes216

for crash years, compared with the relatively high degree of correlation of phenotypic traits217

(which happened across conditions; table 1). Importantly, this should not be taken as a lack of218

statistically significant selection: the covariances of traits and fitness (table 2a), arise somehow,219

and multiple regression analysis can only attribute this covariance to the traits that are included220

in the analysis. Thus there is significant selection, but there is also a statistical failure to221

robustly partition total selection into direct e↵ects among the available predictor variables. This222

alone is an important property of a table of multiple regression coe�cients, and potentially an223

interpretive trap (see also discussion in Mitchell-Olds & Shaw 1987); non-significance of each224

gradient in isolation (table 2b) does not correspond to non-significance of total selection (table225

2a).226
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2.4 Major axes of the quadratic approximation of the fitness surface227

I further investigated multivariate quadratic selection following methods discussed and promoted228

by Philips & Arnold (1989) and by Blows (2007). To characterise the major orthogonal axes of229

quadratic selection, I performed canonical rotations of each matrix of estimated quadratic and230

correlational selection gradients231

� = M⇤M

T (1)

where M is a matrix of orthogonal eigenvectors, and ⇤ is a diagonal matrix containing the232

associated eigenvalues. Values in ⇤ are interpreted as the quadratic selection gradients of the233

new independent axes of the quadratic component of the relative fitness surface.234

I constructed null distributions of the magnitudes of the eigenvalues of the rotated � matrices235

using an algorithm very similar to that suggested by Reynolds et al. (2010). I first generated 1000236

datasets with the original phenotypic data (separately for each combination of sex and crash vs.237

non-crash conditions) and permuted values of fitness. I then re-fitted the multivariate quadratic238

logistic regression model, and for each logistic model fitted to the permuted fitness data, I re-239

calculated the associated selection gradients, as above. From each set of selection gradients for240

each permuted dataset, I rotated the � matrix and recorded the eigenvalues (i.e., the quadratic241

selection gradients of the diagonalised estimated � matrix), ordered by their absolute values.242

Statistical hypotheses tests associated with the comparison of observed values to permuted values243

are given in table 3.244

Some authors have reported statistical hypothesis tests of selection along axes with smaller245

eigenvalues. While there is potentially some value in considering statistical hypothesis tests of246

minor axes, when larger axes are non-significant, it is not clear that any interpretive gain could247

outweigh the dangers of multiple testing. In the present analyses, across 16 tests of four axes of248

quadratic selection, in each of both sexes and both crash and non-crash years, no permutation-249

based tests of any axis were statistically significant at a marginal value of 0.05 (table 1).250

The major axis of the diagonalised � matrix in both sexes and in both environments involved251

loadings of mass and leg length in opposite directions (table 1). In other words, the main axis of252

estimated selection was aligned in the direction of phenotype that had the least variance. This253
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is probably an artefact of the fact that selection is most di�cult to characterise in this direction,254

and therefore sampling error will produce the largest errors in the direction of phenotype with255

the least variance. A second interpretive di�culty is apparent in figure 1. Even though the256

analysis is conducted on unit variance-standardised values of phenotype, the major axes of �257

cannot be interpreted with the benefits that come from variance standardisation. Despite the258

fact that the first axes represent much greater absolute curvature than the second axes in each259

case (table 3), the amount of variation in fitness associated with the first two axes - over the260

distribution of phenotype in those directions - is very similar in two cases (figure 1a,c), and in261

two cases the variance in fitness associated with the second estimated axis is clearly greater that262

that associated with the first (figure 1b,d).263

2.5 Regularised regression-based selection gradient estimates264

Elastic net regularisation (Zou & Hastie, 2005) is a general form of biased regression estimation265

that includes ridge regression (Tikhonov & Arsenin, 1977) and least absolute shrinkage and266

selection operator (“the lasso”; Tibshirani 1996) as special cases. Where least squares regression267

obtains estimated regression coe�cients b by minimising ||y �Xb||2, the elastic net minimizes268

(||y �Xb||2 + ↵||b||2 + (1� ↵)||b||). When ↵ = 1, the analysis is a ridge regression, and when269

↵ = 0, the analysis is the lasso.270

Both ridge regression and the lasso thus minimise penalised sums of squares, with the goal271

of maximising predictive ability, rather than fit to the sample data. In practice, ridge regression272

reduces the overall magnitude of regression coe�cients, relative to least-squares regression, and in273

particular, gives more plausible values for regression coe�cients associated with highly correlated274

predictor variables. The lasso also produces shrunken values, but will generally shrink di↵erent275

coe�cients to a much greater extent, in particular, potentially assigning zero values to coe�cients276

associated with variables that have no probable predictive ability. Ridge regression and the lasso277

therefore have properties that may be desirable overall, and that can be particularly desirable278

when predictors are highly correlated, as is often the case in selection analysis.279

I used generalised elastic net (with ridge regression and the lasso, and a combination of280

the two with ↵ = 0.5) regression to estimate selection gradients, as above, by first estimating281
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fitness functions, and then obtaining selection gradient estimates from those functions. I used282

the function cv.glmnet() in the R package glmnet (Friedman et al., 2008) to fit the ridge283

regression, lasso and elastic net regressions (↵ = 0.5) with binomial responses by generalised284

cross-validation, and used those estimated regression coe�cients based on the penalty parameter285

� that minimised the cross-validation score. All estimated selection gradients derived from these286

models of the fitness function are given in table 4.287

In non-crash years, results of lasso, ridge, and elastic net regressions yielded selection gradients288

(table 4a) that largely match gradients obtained from glm-based inferences of the fitness functions289

(table 2b). Gradient estimates that are near zero and not statistically significant in glm-based290

analysis are often shrunken to zero or very near zero by the lasso, and substantially shrunken291

by the ridge regression, with the elastic net yielding intermediate results.292

When applied to data from crash years, where partitioning of direct e↵ects proved more293

di�cult in the glm-based analysis, the regularised regression yielded inferences that may be294

somewhat more useful. For example, mass was identified as being under positive selection.295

It does not make sense to try to obtain standard errors or p-values, for example, using the296

bootstrap, as above, for regularised regression analyses. To some extent, the “significance” of297

each coe�cient is represented in its estimated value, in the degree to which it is shrunken,298

especially for coe�cients with non-zero values in lasso regression. For sequential model-building299

exercises, new experimental methods can provide p-values for the lasso (Lockhart et al., 2013).300

As a visual measure of the total strength of directional and quadratic multivariate selection,301

I predicted expected absolute fitness (survival) for each individual from the fitted glm and ridge302

regression models. The distributions of expected absolute fitness are shown in figure 2. This303

provides a overall picture of the amount of variation in fitness that is associated with regression-304

based inference about selection. The distributions of expected fitness from the glm, suggests that305

on the basis of just four traits out of the entire multivariate phenotype, one could essentially306

predict death or survival for many individuals with near certainty. On the other hand, the ridge307

regression represents a seemingly more appropriately modest inference of the predictive power308

of a handful of traits. This does not demonstrate that the non-regularised regression analysis is309

somehow wrong; rather, it is another way of illustrating ways in which alternative methods may310
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have more reasonable interpretations for some purposes.311

2.6 Selection of major axes of P312

An alternative and common (e.g., Bolnick & Lau 2008; Grether 1996; Schluter & Smith 1986)313

means of reducing the dimensionality of a selection analysis is to consider only the relationship314

between major axes of phenotypic variation and fitness. For each dataset, I applied a spectral315

decomposition of the phenotypic correlation matrix, and then rotated the phenotypic data onto316

the two largest axes (largest eigenvalues) of P. Specifically, given the first two eigenvectors317

of the distribution of phenotype, L
2

, and the original phenotypic records z, the new ‘traits’318

representing loadings of the first two major axes of phenotype are z

2

= zL

2

. I then estimated319

selection gradients of z
2

by first fitting a glm with linear, quadratic and interaction terms, and320

then obtained selection gradients from this function, as above, and also generated standard errors321

and applied statistical hypothesis tests using the parametric bootstrap. Variance-standardised322

selection gradient estimates pertaining to the major axes of P are given in table 5. These323

estimates are interpretable as the selection intensities of the main axes of phenotype as defined324

by the correlation structure of the traits. A variety of other standardisations are possible. Each325

would require di↵erent interpretation, and each may reveal di↵erent information about natural326

selection.327

In these datasets, estimating selection of compound axes of phenotype does not provide very328

meaningful inference of multivariate selection. In the example analyses, this practice revealed a329

pattern of “bigger is better” across all traits, i.e., there would appear to be positive selection of330

an axis onto which all three of the morphometric traits load positively. This fails to elucidate331

patterns that are otherwise easily obtained (tables 2 and 4). In particular, the “bigger is better”332

result that arises from analysis of principle components of phenotype conflicts with two important333

findings: (i) Mass, rather than structural size is more proximally related to fitness, certainly in334

non-crash years, and probably overall, and (ii) while large horns appear to be positively selected335

via their loading of the directionally selected first ‘size’ axis of phenotype, horns are probably336

either detrimental or unrelated to lamb survival in most circumstances (tables 2 and 4).337
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2.7 (Generalised) projection-pursuit regression-based selection gradients and fit-338

ness surface estimation339

The use of projection-pursuit regression (Friedman & Stuetzle, 1981) to estimate fitness functions340

has been little-used since its introduction to the field by Schluter & Nychka (1994). This method341

reduces the dimensionality of the problem by seeking the orthogonal axes of the multivariate342

phenotype that maximise the explained variation in fitness. Each axis is characterised by a ridge343

function, typically characterised by a semi-parametric smooth regression function. Briefly, the344

response variable (or its linear predictor) is modelled as link(E[y]) = µ+
Pk

i fi(biX)+ei, where345

fi() are the ridge functions associated with the estimated axes of phentoype that best explain y,346

as defined by b; in the notation employed here for fitness functions, y = W and X = z. Both b347

and the parameters of the arbitrary ridge functions fi() are estimated, simultaneously yielding348

inference of the axes of phenotype that are selected, and of the form of selection. A complete349

description of the method, with specific application to inference of fitness functions, is given in350

Schluter & Nychka (1994).351

I implemented a generalised projection-pursuit function (gppr) by wrapping the function352

ppr(), in the R package stats in an iterative re-weighting function. I used cubic regression353

spline regressions fitted by generalised cross validation for the ridge functions (matching the354

implementation by Schluter & Nychka 1994). I characterised each fitness function with gppr355

functions with one and two main axes. As above, I extracted selection gradient estimates from356

the inferred fitness functions following Morrissey & Sakrejda (2013). The gppr function, gppr(),357

and a function to obtain selection gradients from gppr analysis, gppr.gradients(), are included358

in version 2.0 of the R package gsg (originally described in Morrissey & Sakrejda 2013). I359

obtained estimates of the selection gradients of the major axes of selection as determined by360

gppr by rotating the phenotypic data onto the axes identified in the gppr analysis, and then361

refitting the model using gam() in mgcv, with univariate splines for each axis. I then recovered362

the selection gradients of these axes using gam.gradients() in gsg.363

Because familiar hypothesis testing is not directly compatible with models fitted by cross-364

validation, I applied a randomisation procedure to help give an idea of how much variation was365
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explained by the gppr models, over and above statistical noise. I made 1000 datasets for each366

sex and environmental condition, each with the available sample size and observed distribution367

of phenotype, but with randomised survival records. I then applied the gppr analyses with368

one and two ridge functions, predicted individual absolute fitness for each fit, and recorded the369

variance in predicted absolute fitness for each fitted function for each randomised dataset. I then370

compared the variance in predicted absolute fitness, and the di↵erences in predicted absolute371

fitness between models with one and two dimensions, between the randomised datasets and the372

real datasets.373

The gppr analyses revealed largely directional and linear selection (figure 3). The only sug-374

gestion of curvature of the major axes of selection was for females in non-crash years, and is more375

interpretable as expected fitness asymptotically approaching one, rather than any mechanism of376

non-linear selection. Because selection appears to be largely linear, the loadings of phenotype377

onto the major axis of selection closely matched estimated directional selection gradients (table378

2b).379

In all cases, one axis of phenotype explained substantial variation in fitness (table 6). For all380

analyses, I plotted the first major axis for ease of interpretation (figure 3); for males in non-crash381

years, the predictions based on two axes were not interpretable in terms of any simple pattern382

of selection. The gppr functions with two dimensions of selection did not explain much more383

variation than the replicated analyses of randomised datasets (table 6), except for males in non-384

crash conditions; however, in that case, the amount of additional explained variation associated385

with the two dimension model was nonetheless modest.386

2.8 Supplementary simulations387

For better or worse, the primary approach in this study was to compare the inferences that388

could be made by applying di↵erent types of regression-based selection analyses to the same389

empirical datasets. For better, consideration of the behaviour of the di↵erent analyses in their390

application to real data has revealed a number of phenomena that might not otherwise have391

surfaced. For worse, it is rarely possible to determine with certainty which analyses are most392

likely to best reflect reality when conducting a case study on real data. Also, it is not necessarily393
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clear whether and which phenomena that have occurred in the specific analyses here will be394

important in general. While the purpose here is not to conduct any comprehensive simulation395

studies, two specific issues seem to necessitate a little further investigation. These and other396

issues would certainly benefit from more comprehensive studies.397

2.8.1 Regularised regression analyses398

The application of ridge regression, the lasso, and the elastic net regression to the Soay sheep399

lamb datasets did not reveal any major benefits relative to other methods. One reason for this400

may be that the dimensionality of the selection analysis problems in this study are rather low,401

i.e., four traits. Combined with the fact that the ecological relevance of each trait is reasonably402

intuitive to a human, we are inclined to think about selection on a trait-by-trait basis. It would be403

a shame if the potential benefits of these analyses were marginalised because their benefits are not404

immediately apparent in a single case study. One major potential benefit of regularised regression405

is that it should be expected to provide some reduction in the tendency for statistical noise to406

generate biases in some geometric properties of selection gradients, in particular, in the total407

length of �̂. If evolutionary quantitative genetic studies are able to become more multivariate,408

and are able to apply geometric concepts to understanding evolution, as advocated for example409

by Blows (2007) and Walsh & Blows (2009), robust inference of geometric properties of quantities410

such as selection gradient vectors and G matrices will become increasingly important. Here, I411

continue with the idea from the introduction that the norm of �̂ may be a very biased estimator412

of ||�||, and test more generally by simulation whether regularised regression can provide better413

inference. In geometric interpretations of microevolutionary parameters, ||�|| is just one of414

several important geometric quantities, appearing, for example, in theoretically well-justified415

metrics of evolutionary constraint (Hansen & Houle, 2008).416

I simulated 24 di↵erent scenarios, including every combination of: (i) sample sizes of n=100,417

200, and 500 individuals, (ii) number of trait, k = 4, 10, (iii) normal (µ=0, �=0.5) and t-418

distributed (µ=0, �=0.5, df=1) logistic scale regression gradients of expected fitness (i.e., W419

in [0,1]), and (iv) low and high dispersion of eigenvalues of the P matrix. For each simulation,420

unique P matrices were simulated from an inverse Wishart distribution of V=I, and ⌫ = 20421
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and 5, when k = 4 for low and high dispersion of P, respectively, and ⌫ = 30 and 11, when422

k = 10 for low and high dispersion of P. Each P matrix was standardised to unit variance423

in each trait. For each simulation, I simulated n records of k traits, z, with mean vectors of424

0, and covariance P. For each simulation I also drew unique logistic scale gradients of fitness425

with respect to phenotype, b, according to either the normal or t-distribution, depending on the426

scenario. I then simulated individual fitness records from a binomial distribution with expected427

value logit

�1(zb0).428

I calculated the resulting true selection gradients by a modification of the Morrissey & Sakre-429

jda (2013) algorithm. I generated 106 records of phenotype according to the true value of P430

for each replicate simulation. For each phenotypic record, I then calculated expected absolute431

fitness, and averaged these to obtain population mean expected fitness. Then, separately for432

each of the k traits, I re-calculated population mean fitness for a modified dataset in which 0.03433

had been added to each phenotypic record for a given trait, and repeated with subtracting 0.03.434

I then calculated the partial derivative of population mean fitness with respect to phenotype,435

scaled to relative fitness, i.e., the selection gradient, for each trait, by finite di↵erences. I re-436

peated this algorithm five times for each replicate of each simulation scenario. Values of the true437

values of � agreed to the 4th decimal place in most replicate applications of the MC procedure.438

I took the means across the five simulations to be the true values of �.439

I then applied logistic regression analyses with linear terms only in each replicate simulation440

scenario. I fitted GLMs, as well as ridge, lasso, and elastic ridge regressions, and in each case441

obtained selection gradient estimates, as described above for the case studies in Soay sheep. In442

each replicate simulation I calculated ||ˆ�||
||�|| for each of the four regression-based estimates of �̂. As443

predicted by the simple theory developed in the introduction and the appendix, the estimates444

of the total magnitude of selection are upwardly biased in analyses non-regularised analyses,445

especially when the P matrix is ill-conditioned (figure 4). Regularised regression analyses yield446

somewhat negatively, but less, biased inference of ||�||. The analyses also reveal that the best447

route to robust inference is to collect su�cient quantities of data (figure 4).448
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2.8.2 Major axes of selection449

I further investigated the degree to which the inference of the major axes of estimated � matrices450

is biased toward minor axes of the phenotype by simulating eight di↵erent scenarios of bivariate451

quadratic selection analyses, involving high and modest phenotypic correlations (r = 0.8 and452

0.5), two sample sizes (n = 250 and 500), and for no selection, and for true stabilising selection453

on one trait (fitness function was binomial with logit(E(W |zi)) = �0.3z2i ). The simulations454

with true stabilising selection thus had a true angle between the major axes of P and � of 45455

degrees.456

The null distribution of the direction of the major axis of quadratic selection, relative to the457

major axis of phenotype, is highly biased toward orthogonality, especially when there are strong458

phenotypic correlations between traits (figure 5a,c). Even when selection occurs, substantial459

bias of estimated major axes of selection occurs (figure 5b). In the best case scenario, with sub-460

stantial (true) selection which is easily characterised because of modest phenotypic correlations,461

inferences based on rotation of estimated � matrices can become robust (figure 5d). In the462

context of multivariate selection analyses, even when correlations as high as 0.8 do not occur,463

similarly minor axes of phenotype to the simulations in figure 5a,b are common. Consequently,464

it seems that substantial biases in the direction of major axes of � relative to P are likely to be465

prevalent in most studies of multivariate non-linear selection.466

3 Discussion467

Exploration of a broad range of regression analyses for quantitative inferences of natural selec-468

tion revealed useful properties of several under-used approaches, and also illustrated important469

limitations of some commonly applied analyses. In particular, two previously unacknowledged470

properties of diagonalised quadratic selection matrices seriously hinder interpretation: (i) the471

method is biased toward apparent detection of quadratic selection that is orthogonal to major472

axes of variation, and (ii) biases aside, the magnitudes of the major axes of variance-standardised473

� cannot be interpreted in variance-standardised units. However, in conjunction with recently474

developed methods for quantitative inference of selection gradients from arbitrary fitness func-475
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tions (Morrissey & Sakrejda, 2013), projection-pursuit regression may be able to serve for the476

main biological questions for which diagonalisation of � has been suggested, and will also pro-477

vide other useful properties. More generally, quantitative inference of selection gradients from478

arbitrary regression analyses will allow useful properties of a greater range of types of selection479

analysis to be exploited for the study of natural selection.480

In the example datasets, several conclusions are repeatedly supported by di↵erent analyses.481

First, while larger size is generally selected, mass is more directly associated with first winter482

survival than is structural size, as represented here by leg length. The positive direct selection483

of mass reported here does not contradict the previously reported associations of limb length484

with neonatal survival Coltman et al. (1999), as the lack of direct e↵ect characterised by the485

selection di↵erential (low here for leg length; table 2b) neither precludes association (table 2a),486

or an indirect mechanistic e↵ect of leg length on survival. The strong direct e↵ect of mass is487

supported by all regression-based inferences of selection gradients, although the pattern is more488

tenuous in crash rather than non-crash years, and also coincides with extensive work showing489

associations of mass with life history in this population (Milner et al., 1999). While it is probably490

not possible to conclude that mass-fitness relationships, in adults at least, are causal (Morrissey491

et al., 2012a), it seems plausible that energy reserves in lambs could well be a key causal variable492

in determining first winter survival. It appears that for crash years, smaller available sample493

sizes combined with high covariances among traits conspire to make separation of direct and494

indirect e↵ects very di�cult. The regularised regression analyses, particularly the lasso, which495

allows some degree of inherent variable selection, suggest that the pattern of mass, rather than496

structural size, being most proximal to survival, may hold in crash years as well (table 4).497

Whereas there is either little selection, or positive selection, of horn size in lambs across sexes498

and environmental conditions (i.e., near zero or positive selection di↵erentials), there appears to499

be substantial selection for (terminology for association vs. e↵ect following Sober 1984) smaller500

horn size in non-crash years. The pattern in non-crash years, at least, is simple and intuitive, as501

investment in horns is unlikely to positively influence survival in general (Johnston et al., 2013;502

Robinson et al., 2006) or survival of lambs in particular. I am hesitant to interpret estimated503

selection gradients of horn length in crash years as indicative of any environmentally-induced504
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variation in selection, as uncertainty in their estimation precludes rejection of the possibility of505

similar selection across environmental conditions. If indeed selection does directly favour horn506

size, at least directly with reference to the traits studied here, this could reflect utility of horns507

for competition for scarce resources.508

The simple “bigger is better” pattern apparently revealed by positive selection of the first509

axis on phenotypic variation gives an impression of simple directional selection on the traits510

underlying the first axis (mass, leg length, and horn length), in both sexes and environmental511

conditions. All other analyses show that this pattern does not reflect reality, at least not in512

non-crash years where direct e↵ects of traits can be estimated with relative precision. Certainly,513

situations will arise where principle components will reflect ecologically-relevant axes of varia-514

tion. However, the analyses here highlight that statistically dominant and ecologically important515

axes of variation may be very di↵erent. At the very least, results of selection analyses of prin-516

ciple components should be approached with caution, especially when the motivation for using517

principle components is statistical (dimensionality reduction), rather than biological.518

Regularised regression methods (i.e., the lasso, ridge regression, and the elastic net) generally519

supported patterns in selection gradients that were obtained from more traditional regression-520

based analyses. The lasso may have provided improved inferences in cases where trait covariances521

otherwise precluded inference of selection gradients. For example, it is useful that the lasso522

was able to identify a most-probable proximate e↵ect of mass on survival in males in crash523

years, where other methods were essentially unable to distinguish among potential e↵ects of the524

di↵erent traits. Similarly, the total amounts of variation in survival that are apparently explained525

by regression analyses (figure 2) are much more plausible for ridge, rather than for (unpenalised)526

least-squares regression. While the application of these regularised regression analyses did not527

greatly help interpretation of the Soay sheep example data, it is possible that they could be quite528

useful in other circumstances, especially for making geometric interpretations about multivariate529

selection (figure 4).530

Two major features of the analyses of multivariate non-linear selection in the Soay sheep lamb531

datasets highlight the di�culties in interpretation of the major axes of the quadratic selection532

gradient matrix, �. It may initially seem quite bold to criticise existing methods for analysis533
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of non-linear selection based on example analyses of datasets that do not, it turns out, seem534

to contain much non-linear selection. However, the undesirable behaviours of inferences about535

the estimated � matrix here will exist in any analysis, regardless of the underlying reality. The536

first serious problem is that statistical noise has a very insidious e↵ect on the orientation of the537

estimated major axes of �. The true curvature of � will be hardest to estimate in directions538

within P that have the least variance. Therefore, major axes of � are likely to correspond to539

minor axes of phenotype, purely as an artefact of the fact that statistical noise will create the540

greatest estimated values in directions within P that have the least variance. Such a pattern541

unfortunately has a very tempting biological interpretation, i.e., that quadratic selection and542

multivariate phenotype are aligned. This problem is quite intuitive once one starts to consider543

the e↵ect of noise on a table of estimated selection coe�cients such as �. Note that this problem544

will a↵ect all axes of estimated � matrices, influencing both shape and orientation. Even where545

axes exist that are subject to quadratic selection, inference of their orientation will be hindered546

by the fact that the orientation of other axes is biased by the shape of P, combined with the547

constraint of orthogonality inherent to diagonalisation (table 5). This problem arises because548

of di↵erent amounts of variation in di↵erent directions of phenotypic space. Therefore, it will549

a↵ect analyses of major axes of � matrices under any system of trait standardisation.550

A second di�culty with spectral decomposition of � is specific to analysis of variance-551

standardised � matrices. Where the original gradients are interpretable as the direct components552

of selection intensities, i.e., they reflect the amount of fitness variation directly associated with553

(quadratic) selection of the traits, given the standing variation in the traits, the major axes of554

gamma do not have this interpretation. This phenomenon is particularly noticeable in figure 1b.555

Here, the most curved direction of � is aligned with an axis of P (table 1) that has little variation556

(whether this is real, or chance, is not immediately relevant to this second point). Consequently,557

the first axis of stabilising selection is actually associated with less variation in fitness than the558

second axis! This is apparent in figure 1b, where the curvature of the second axis is indeed559

less than that of the first, but it represents stronger selection because it is associated with more560

phenotypic variation.561

Of course, understanding multivariate selection, including multivariate non-linear selection,562
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remains extremely important. Fortunately, a variety of features of projection-pursuit regression563

make it highly amenable to the study of multivariate selection. In combination with methods to564

obtain quantitatively interpretable selection gradients from projection-pursuit regression-based565

inferences of fitness functions, as applied here, this method can probably supplant the practice566

of diagonalisation of �. The first major empirical benefit of projection-pursuit regression is that567

it can be used to seek the major axes of selection, not just the major axes of directional or of568

quadratic selection. In addition to the issues already discussed about diagonalisation of �, there569

has never been any real resolution to the fact that quadratic univariate or multivariate selection,570

considered either in isolation or in conjunction with �, does not address key biological questions571

about natural selection, such as whether or not fitness optima exist (Schluter, 1988). gppr, on572

the other hand, provides a method of characterising the major axes of selection, whether they573

be linear, disruptive, stabilising, or purely directional but curved. Further investigations of the574

behaviour of gppr-based selection analysis seems warranted, as it is currently unknown what575

e↵ects details of its application, for example the form of ridge functions, may have on inferences576

of selection.577

Reporting of maximum likelihood estimates of selection coe�cients, i.e., such as those com-578

monly reported to date and in table 2, will remain very important. These, and associated579

information about their statistical uncertainties, are required for meta analysis. To date, failure580

to report standard errors has severely limited sample sizes in formal meta-analyses of selection581

(Morrissey & Hadfield, 2012; Siepielski et al., 2013). However, reporting standard errors is only582

a start. Reporting of sampling variances and covariances, in additional to full reporting of sum-583

mary statistics, will also be very useful. Sampling covariances could potentially be reported by584

archiving posterior distributions, or bootstrap samples, of fitted models of fitness functions. An585

e�cient way to report full distributions of sampling variance may be to archive bootstrap dis-586

tributions of selection coe�cients, such as those that are generated automatically by functions587

in the R package gsg (Morrissey & Sakrejda, 2013).588



Morrissey, options for multivariate selection analysis 23

Conclusion589

The availability of an approach to obtain valid inference of selection gradients from arbitrary590

regression-based inferences of fitness functions renders a large range of techniques available for591

quantitative inference of natural selection. I have explored a range of these methods, and dis-592

sected some key aspects of the behaviour of each. Projection-pursuit regression seems to stand593

out as a method for characterisation of multivariate selection. Its greater use will facilitate on-594

going attempts to implement multivariate quantitative genetic studies on selection in natural595

populations and experimental systems. Furthermore, identification of major axes of selection, as596

opposed to major axes of directional or quadratic selection, will bring much more direct biological597

interpretation to multivariate selection analysis.598
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5 Appendix609

Denote an arbitrary function relating trait to relative fitness, w(z), and a decomposition of an610
individual i’s trait value, z, into e↵ects of breeding value and environment zi = ai + ei Assume611
that a and e are independent, ai ⇠ p(a) and ei ⇠ q(e), such that the variance of phenotype612
in a population obeys �2

z = �

2

a + �

2

e . Assume that p(a) represents a normal probability density613

function with mean zero and variance �

2

a, such that p(a) = 1

�a
p
2⇡
e

� a2

2�2
a , and that q(e) is an614

arbitrary probability density function (not necessarily with mean of zero).615
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The secondary theorem (Robertson, 1966) defines616

�z̄ = �a,w, (A1)

which by definition is617
�z̄ = E(a · w)� E(a)E(w). (A2)

The second term in A2 is zero because the E(a) is zero by construction. So, from equation A2,618

�z̄ =

Z 1

�1
a

Z 1

�1
w(a+ e)p(a)q(e)deda. (A3)

The average slope of the relative fitness function, w0(z), given normally distributed breeding619
values and conditioning on e, can be written

R1
�1 w

0(a+e)p(a)da. p0(a) = � a
�2
a
p(a), so integration620

by parts gives621
Z 1

�1
w

0(a+ e)p(a)da = [w(a+ e)p(a)] +

Z 1

�1
w(a+ e)

a

�

2

a

p(a)da

=

Z 1

�1
w(a+ e)

a

�

2

a

p(a)da.
(A4)

The simplification assumes that the relative fitness function is bounded. Applying Fubini’s622
theorem to the double integral and multiplying equation A3 by �2

a
�2
a
, and then substituting using623

equation A4 gives624

�z̄ =

Z 1

�1

Z 1

�1
�

2

aw(a+ e)
a

�

2

a

p(a)q(e)dade,

=

Z 1

�1

Z 1

�1
�

2

aw
0(a+ e)p(a)q(e)dade,

= �

2

a

Z 1

�1

Z 1

�1
w

0(a+ e)p(a)q(e)dade.

(A5)

So, evolution of the mean phenotype is given by the variance of normally distributed breeding625
values, times the average slope of the relative fitness function integrated over the distribution of626
phenotype, regardless of the distribution of environmental e↵ects on phenotype.627

6 Data accessibility628

R functions and example datasets are included in an update to the R package gsg.629
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ber, B., Lafourcade, B., ao, P.J.L., Münkemüller, T., McClean, C., Osborne, P.E., Reineking,649
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Table 1: The distribution of mass, hind leg length, horn length, and log ked number in Soay sheep lambs. (a)

Correlation matrices (all associated analyses are conducted on unit variance-standardised data for both sexes in

crash and non-crash years), and (b) spectral decomposition of the correlation matrices. Units are kg for mass,

and mm for leg and horn lengths.

(a) correlation, means and variances

mass leg length horn length

(ai) males, non-crash years mean (SE) variance (SE)

mass 13.85 (0.11) 7.79 (0.44)

leg length 0.84 162.00 (0.40) 98.99 (5.57)

horn length 0.573 0.421 126.72 (1.53) 1484.8 (83.5)

(log) ked number -0.025 0.005 0.062 1.269 (0.028) 0.515 (0.029)

(aii) females, non-crash years

mass 12.35 (0.15) 4.79 (0.46)

leg length 0.861 157.63 (0.64) 86.64 (8.42)

horn length 0.472 0.425 83.06 (1.55) 511.2 (49.6)

(log) ked number -0.105 -0.056 -0.052 0.978 (0.046) 0.460 (0.45)

(aiii) males, crash years

mass 13.54 (0.19) 9.95 (0.84)

leg length 0.864 161.21 (0.64) 117.47 (9.93)

horn length 0.594 0.507 125.94 (2.35) 1555.7 (131.5)

(log) ked number 0.006 0.005 -0.004 1.21 (0.045) 0.563 (0.048)

(aiv) females, crash years

mass 12.56 (0.24) 6.60 (0.87)

leg length 0.856 157.08 (0.85) 83.75 (11.00)

horn length 0.509 0.454 83.40 (2.11) 521.5 (68.48)

(log) ked number -0.329 -0.286 -0.154 1.124 (0.074) 0.637 (0.084)

(b) major axes of correlation matrices

eigenvalue eigenvector loadings

mass leg length horn length ked number

(bi) males, non-crash years

term 1 2.224 0.633 0.594 0.496 0.017

term 2 1.009 0.070 0.051 -0.115 -0.990

term 3 0.621 0.182 0.499 -0.836 0.136

term 4 0.146 0.749 -0.629 -0.205 0.044

(biii) females, non-crash years

term 1 2.211 0.628 0.615 0.465 -0.103

term 2 0.988 0.031 0.085 0.065 0.994

term 3 0.665 0.292 0.371 -0.881 0.017

term 4 0.136 0.721 -0.690 -0.051 0.040

(biii) males, crash years

term 1 2.322 0.619 0.599 0.508 0.004

term 2 1.000 0.004 0.004 -0.016 1.000

term 3 0.548 0.267 0.447 -0.853 -0.016

term 4 0.129 0.738 -0.664 -0.117 -0.002

(biv) females, crash years

term 1 2.383 0.601 0.584 0.447 -0.314

term 2 0.871 0.082 0.107 0.389 0.911

term 3 0.606 0.314 0.434 -0.802 0.264

term 4 0.140 0.731 -0.678 -0.067 0.042
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Table 3: Quadratic selection gradients of the major axes of estimated �; obtained as the eigenvalues of the the

diagonalised estimated � matrix for each sex and environmental condition. p-values are permutation-based two-

tailed values following Reynolds et al. (2010). The first two eigenvectors for each analysis are depicted graphically

in figure 1.

axis of � 1 p 2 p 3 p 4 p

non-crash, males -0.222 0.497 0.070 0.845 0.024 0.926 -0.021 0.436

non-crash, females -0.475 0.224 -0.199 0.23 0.159 0.068 -0.017 0.627

crash, males 0.37 0.935 -0.137 0.978 -0.074 0.925 0.016 0.867

crash, females -1.874 0.069 -0.373 0.686 0.089 0.947 -0.069 0.559
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Table 4: Variance standardised selection gradients for summer lamb traits in male and female Soay sheep in crash and non-crash years using regularised

regression and projection-pursuit regression. Zero values with no decimal places shown are quadratic gradients associated with traits that have both

associated directional and quadratic coe�cient estimates shrunken to zero.

(a) Non-crash years

males females

lasso ridge elastic net gppr gppr SE gppr p lasso ridge elastic net gppr gppr SE gppr p

�, mass 0.145 0.094 0.121 0.214 0.057 0 0.153 0.117 0.126 0.194 0.063 0.004

�, leg length 0 0.039 0.006 -0.023 0.048 0.596 0.022 0.079 0.052 0.038 0.057 0.488

�, horn length -0.051 -0.046 -0.036 -0.105 0.034 0 -0.054 -0.086 -0.062 -0.121 0.044 0

�, ked number -0.001 0.007 -0.001 0.014 0.026 0.628 -0.010 -0.030 -0.019 -0.032 0.032 0.316

�, mass -0.024 0.019 -0.017 -0.045 0.027 0.01 -0.067 -0.036 -0.040 -0.081 0.054 0.018

�, leg length -0.003 -0.035 -0.002 0 0.004 0.674 -0.002 -0.078 -0.009 0 0.015 0.668

�, horn length -0.005 -0.006 -0.003 -0.01 0.009 0.022 -0.007 -0.002 -0.008 -0.027 0.025 0.018

�, ked number -0.002 0.019 -0.002 0 0.001 0.916 -0.001 -0.002 -0.003 0.001 0.005 0.916

�, mass - leg length 0 0.004 -0.001 0.005 0.013 0.594 -0.010 0.014 -0.019 -0.020 0.025 0.492

�, mass - horn length 0.009 0.015 0.005 0.023 0.013 0.01 0.035 0.058 0.038 0.050 0.029 0.004

�, mass - ked number 0 -0.018 0 -0.003 0.006 0.596 0.003 -0.004 0.008 0.008 0.017 0.492

�, leg length - horn length -0.001 -0.015 -0.001 -0.003 0.007 0.626 0.006 0.036 0.012 0.013 0.015 0.326

�, leg length - ked number 0 0.013 0 0 0.002 0.972 -0.011 -0.048 -0.021 0 0.006 0.888

�, horn length - ked number 0.043 0.048 0.038 0.001 0.003 0.634 -0.002 -0.014 -0.004 -0.01 0.011 0.316

(b) Crash years

males females

lasso ridge elastic net gppr gppr SE gppr p lasso ridge elastic net gppr gppr SE gppr p

�, mass 0.182 0.060 0.154 0.233 0.169 0.166 0.133 0.137 0.126 0.176 0.364 0.340

�, leg length 0 0.046 0.021 0.019 0.158 0.836 0.083 0.118 0.102 0.158 0.370 0.424

�, horn length 0.009 0.042 0.036 0.077 0.095 0.43 0.133 0.108 0.13 0.216 0.327 0.038

�, ked number 0 0.022 0.006 0.088 0.077 0.232 0 0.008 0 0.041 0.329 0.674

�, mass 0.014 0.010 0.010 0.016 0.060 0.368 0.002 -0.004 0.001 -0.006 12.657 0.496

�, leg length 0 -0.003 0 0 0.044 0.684 0.001 -0.023 0.001 -0.006 12.657 0.242

�, horn length 0 -0.016 0.001 0 0.013 0.812 0.002 -0.084 -0.009 -0.007 12.657 0.430

�, ked number 0 -0.018 0 0.001 0.012 0.69 0 -0.059 -0.001 -0.002 12.654 0.170

�, mass - leg length 0 0 0.001 0.002 0.048 0.978 0.001 0.014 0.001 0.002 12.651 0.812

�, mass - horn length 0.001 0.002 0.002 0.007 0.020 0.53 0.002 0.029 0.002 0.002 0.220 0.572

�, mass - ked number 0 -0.004 0 0.001 0.017 0.774 0.001 0.013 0.002 0.002 12.65 0.898

�, leg length - horn length 0 -0.005 0 0.009 0.016 0.276 0 0.012 0 0.001 0.111 0.598

�, leg length - ked number 0 -0.008 0 0.001 0.009 0.758 0 0.041 0.005 0 0.111 0.614

�, horn length - ked number 0 0.001 0 0.003 0.010 0.416 0 -0.04 0 0.001 0.110 0.602
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  (a) males, non−crash years
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  (b) females, non−crash years
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Figure 1: Major axes of estimated �. The estimated values of � are given in table 2 and permutation test-based

inferences of the statistical significance of quadratic selection of these axes are given in table 6. The coloured

arrows represent the loadings of the traits (blue - mass, red - leg length, green - horn length, and orange - log

ked count) onto the space defined by the first two eigenvectors of �. Selection of no axes of � in either sex or

environmental condition are statistically significant.
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Figure 2: Distributions of expected fitness from the generalised-linear model-based estimates of selection gradients

(blue), and from ridge regression-based estimates of selection gradients (red).
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Figure 3: Generalised projection-pursuit regression-based fitness functions for the major axes of selection of

Soay sheep lambs. Grey points indicate the values of the four traits transformed to the two major axes of the

projection-pursuit regression for each of males (a) and (c), and females (b) and (d), in non-crash (a) and (b),

and crash (c) and (d) years, respectively. Coloured arrows describe the rotation of the four traits onto the two

major axes: blue - mass, red - leg length, green - horn length, and orange - log ked count. Contours show

expected absolute fitness. Values of � and � reported on each of the plots are the unit variance standardised

directional and quadratic selection gradients, and the x-axis is also plotted for unit variance scaled factors. They

are obtained by projecting the phenotype onto the major axis of selection, as inferred by gppr, and then fitting a

univariate cubic spline to the rotated phenotype, predicting individual survival, and the using the gsg function

gam.gradients() to obtain the selection gradients.
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Figure 4: Proportional error in the length of estimated selection gradient vectors. Points represent means, and

lines represent 80% quantile ranges of the di↵erence between estimated and true values of ||�||. Mean values

greater than one represent positive bias, and values below one demonstrate negative bias. Colours represent:

black - non-regularised GLM regression, red - ridge regression, green - lasso, and blue - elastic net. “d = high or

low” indicates covariance matrices with high and low dimensionality, “some large �” in parts (a) and (c) indicate

� in those simulations are drawn from a t-distribution, rather than a normal distribution; further details on

simulation scenarios are given in the text.
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Figure 5: Simulation results showing bias in the direction of major axes of estimated � matrices. All plots show

the distribution of angles between the major axis of phenotype, and the major axis of the estimated � matrix.

Left plots (a and c): no selection, right plots (b and d) quadratic selection of one trait; top plots: phenotypic

correlations of 0.8, and bottom plots: rP = 0.5. Solid lines show simulations for sample size of 500, and dotted

lines show n = 250. Each simulation scenario was repeated 50000 times. In (a and c), the blue lines show the

distribution of an hypothetical unbiased estimator. In (b and d), the blue lines show the true value around which

an unbiased estimator would be distributed.


