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Abstract

We present a class of generalized energy inequalities and indicate their use in
investigating higher multifractal moments, in particular L9-dimensions of images of
measures under Brownian processes, L?-dimensions of almost self-affine measures,
and moments of random cascade measures.

1 Introduction

Calculations in fractal geometry often fall into two parts: a geometric part and
an analytic part. The geometric part may involve expressing geometric or metric
aspects of a problem in mathematical terms leading to an analytic argument to
estimate the integrals, sums, etc. so obtained. There are a range of analytic methods
that are applicable to problems in fractal geometry of apparently different natures,
for example covering or potential theoretic methods for estimating dimensions. We
will look at an analytic technique which extends the potential theoretic method to
higher moments and give several applications.

2 Li-dimensions and images of measures

sec:1

Coarse multifractal analysis reflects the asymptotic behavior of the moment sums
of measures over small grid cubes. Let M, be the set of mesh cubes of side r, that
is cubes in R™ of the form [j17, (j1 4+ 1)r) X -+ X [jnr, (jn + 1)) where j1,...,jn € Z.
Let u be a Borel measure of bounded support on R”. Define the g-th power moment

sum of u by
M(g) = Y (O (2.1)

CeM,

The Li-dimension or generalized q dimension of u is given by

1 log M, (q)

Dy(p) = I 0). 2.2) [lqdet
(W) = =7 lim = (q>0) (22) [1qdet]




If this limit does not exist we may still take lower or upper limits to get the lower
and upper Li-dimensions:

D, (1) = 1 mlong(Q) and D, () = 1 log M(q)
q—1,~0 logr

1gdef lgdef
The definitions (bb() and (Bé) are unchanged ifwe replace the moment sum by a

moment integral

2.3
qg—1~0 logr (2:3)

M, () = / W(Be.r) " dp(z) (> 0), (2.4)

see %F'ﬁ for the case of ¢ > 1 and H%SB] for 0 < ¢ < 1.

Often of interest are the dimensions of the image of a set or the generalized
dimensions of the image of a measure under a parameterized family of mappings.
Let X be a metric space, and let z,, : X — R" be a family of continuous mappings
where w € () for some parameter space 2. Let u be a Borel measure on X and let
I be its image measure under x,, so

po(A) = p(z5'(4)) (AR

N /f )dp (@ /fww Jdut)  (f:R"—R).

For a basic example, z, might be orthogonal projection from R™ onto a line L,
(which we may identify with R) in direction w , with p,, the corresponding projection
of the measure p on R™ onto L.

Now suppose (2, P, F) is a probability space and write E for expectation. One
way of obtaining lower estimates for L9-dimensions of y,, valid for almost all w is
to bound the mean moment integrals. When ¢ > 2 is an integer:

E [ (Bl )" )
—E [ o sle =l <7l o= vpa] < i)
—E fultslon () -au(t)] < 7ol ) ~au(ty-0)] < rhdutt)
—E [ [ uioaniier for all (Bt Oa(t) . duty-2)du(e)
_ /---/P{m(t) — 2, ()] < v for all jhdpu(ty) ... du(te—1)dpu(t). (2.5)

We may be able to use the geometry of the situation to estimate P{|x, () —zu(t;)| <
r for all j}, which depends on the relative closeness of the t1, ..., t,—1,t in the metric
space. For example, with z, : R™ — L, as projection onto the line L, where
w €  is distributed according to the natural invariant measure on the space of
directions 2, the probability P{|z,(t) — z,(t;)| < r for all j} is affected more, but
not exclus'g}(gl by the ¢; that are furthest from ¢, see Figure 1. In particular,
bounding (2.5) by const- r5(@=1) may lead to a lower bound of s for the L4-dimension
of u,, for almost all w. exnint
In the case when ¢ = 2 the integral (}‘Z.Tg)ﬁay be estimated by

//P{|xw ) — @y (t1)| < ridup(ty)du(t) // (fﬂ?w =z )du(tl)du()

momentint



rojections

Figure 1: Projection of three points onto a line parameterized by w

for all s > 0. This expectation can often be estimated using a transversality ar-
gument which results in an energy-ty aiH;cl gral. The classic case of this js in the
projection theorems, see for example [[7, for the projection case and for a
more general setting.

3 The main inequality

expint

In this section we consider an approach to estimating integrals such as (Wr
q > 1 and present an inequality which we may be applied in various settings. It
is convenient to take X to be the symbolic space on a set of m > 2 symbols,
A ={1,...,m}. Thus A¥ consists of the words of length k for k > 0 and we write
A = Ui?:OAk which we identify with the vertices of the m-ary rooted tree in the
usual way. The infinite sequences, identified with the boundary of the tree, are
denoted by A*°. For i =i1,...,i € A* we write i = k for the length of the word i.
For i € A* and j € A* U A®™ we write j > i to mean that i is an initial segment of
j- The cylinders are the sets C; = {j € A> : j = i} for each i € A*. The cylinders
provide a basis for the natural topology on A*°.

Write ji A jo € A* for the join of ji,jo € A, that is the longest i € A* such
that j; > i and jo > i. For an integer ¢ > 2 we define the set of join points
i1,...,ig—1 € A* of j1,j2,...,jq € A*° to be the set

J(jlaj?v"'vjq) = {jz/\j] 01 S 7 <] Sm},

tree

see Figure b._This set will always consist of exactly ¢ — 1 points provided that they
are counted according to multiplicity, that is if there are r distinct points j;, ,. .., ji,
such that i = j;, Aj;, for all 1 < p < ¢ < r then i is counted as a join point with
multiplicity 7 — 1. (If m = 2, corresponding to a binary tree, then all join points
have multiplicity 1.) oxpint

In bounding expressions such as (&gg),iwhere we now take X = A so that the
t; € X are replaced by j € A®°, a generalised transversality argument may lead to
an estimate of the form

P{|$w(jq) - wa(j])‘ S r for all .]} S F(jlvj?v cee )jq) (31)

where F' may be expressed as a product over the join points
F(j17j27 cee 7jq) = f(il)f(iQ) cee f(iq—l) where {i17 vy iq—l} = J(j17j27 ... 7jq)7
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@ = join point

| T PR [ P is Jo J7

Figure 2: A set of 7 points in A*® with their 6 join points in A*

int
for some f: A* — RT defined on the vertices of the tree. Then (B}% "takes the form

E/uw(B(x M) dpg, (z / / (1d2, - 5dg)dp() - - dp(ig—1)dp(iq)-
o2

The following theorem estimates this integral in terms of f and the cylinder measures

n(Ch).

Theorem 3.1 For each real number q > 1 there is a polynomial p such that

/../F(h,jz,...,jq)du(jl)...du(jq) < (ip(k‘)[z f(i)q—lu(ci)q}qL)q—l'
k=0 il=k
' (3.3)

Proof. We give the proof in the special case when ¢ = 3, that is

[ Fnso pantiutiants < ([ 167 ]”2)2. (3.4

k=0  |i|=k

figjoin3
Splitting this integral into a sum over possible pairs of join points, see Figure

][ Forieiontointint < 3 Y i0r@ucncr 65
iEA* jeA*, j>i

We first estimate the restriction of this double sum over vertices of the tree for given
levels |i| = k and |j| = [ where 0 < k < [; Cauchy’s inequality is used at the places



Figure 3: The arrangement of three points in A* the join points used in the proof of
Theorem 1

indicated.
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Summing over all levels 0 < k, 1 gives inequality (3.

in
When ¢ is a larger integer, (}355)‘ may be established using an induction on
configurations of join points, requiring frequent uses of Holder’s inequality rather

than Cauchy’s inequality. A further extension of gjee culation establishes that
(B-3) remains valid for any real number g > 1, see [9, or further details.

In applications f(i) = fs(i) typically depends on a parameter s such that

Do AT )= (M)

li|=k



. Ny
for some A\s > 0. Combining (%FBei with (E?{éi Elfvéén
g1 S A
E [ no(Bla, )" dpu(@) < o D k) () )
k=0

so the value of s for which A; = 1 is critical for bounding the mean L? dimensions
of py.

4 Images of measures under Gaussian processes

ine
For a first application of inequality (bBi, we examine images of measures under
certain Gaussian processes. Let {z, : [0,1] — R, w € Q} be index-« fra ongl, oy
Brownian motion (0 < a < 2)[§a§ﬁlned on a suitable probability space €2, see [2, 15,

20]. It was shown by Kahane that for a Borel set £ C R

imp £
dimyg X (F) = min {1, dimyy } a.s.,

where dimpg denotes Hausdorfl dimension. It is natural to seek similar relation-
ships between the generalized dimensions of measures and their images under such
processes.

| X

fhy \
Uil 1o W
IMWWM "

w

Figure 4: A measure p and its image p,, under a process x,,

Theorem 4.1 Let x,, : [0,1] — R be index-a fractional Brownian motion, let p be a
finite measure on [0,1] and let p,, be the image of p under x,,. Letq > 1. Assuming
that Dy(p) exists then Dy(p) exists almost surely and

D () = min {1, qui'u)}

Sketch of proof. Since index-a fractional Brownian motion almost surely satisfies
an (o — e)-Holder condition for all € > 0, it follows easily from the definition of
Li-dimensions that Dy(p) < Dg(p)/c.

For the opposite inequality we use the local nondeterminism (LND) of fBm.
Roughly this states that the variance of z,(¢1) conditional on x,(t2),...,z.(tq) is
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comparahle yitl the variance of x,(t1) — x,(t;) for the j for which |t; —t;] is least),
see E3), 25, 20]. It

may be shown that the calculations are essentially unaffected if, for
a suitably large m, we consider the numbers in [0, 1] to base m and identify the base
m number 0.ajazas ... with (a1 + 1,a2 + 1,a3 + 1,...) € A*, so that the hierarchy
of m-ary subintervals of [0, 1] are the cylinders Cj in symbolic space. Using LND
inductively we obtain, in symbolic space notation,

P{lzw(iq) — zw(§j)| <r forall j} < cF(ji,j2,---,dq)

where F' is a product over the join points iy,...,i,—1 € J(j1,Jj2,...,Jq) of the form
F(i1sjos- - - jq) = er®@Dpplitlasyylimlas .y lig-tlas

for any s > 0, where we have replaced Euclidea mtatnce on [0,1] by the m-ary
ultrametric d(ji,j2) = m~¥A2l, In this notation (b D becomes

E / o (B, 7)1 dp ()

<ersa—) / : / mlitlosplimlas . plia-tlesgy () dp(jy).
i1,00ig—1€J(1,2dq)

Inequality (%%gi with f(i) = f.(i) = m/l*® now gives

e [ bl Bl ) i) < 0D (3l [Z A7
k=0

where

A= £(i) q—m“”‘“)z (4.2)

li|=k

sumbound 1gdef
The sum in (hi ) 1s Tinite if lim su poo(As i) F < 1, that is if as < Dy () using (}‘255
and noting that the sum in (h%: is a sum over the m-ary mesh intervals of lengths
m~lil that are identified with the cylinders Cj. Tt follows that if s; < s < Dy(u)/c
then

E> 270 [ (B2 ) o)
k=1

/(22“1 Bl 2 ) ) dpo(2) < oo,

which implies that 5q(uw) > 51 almost surely, since the generalized dimensions are
determined by the sequence of r = 27%. O

This method yields similar conclusions for the L?-dimensions of the images of
measures under other classes of Gaussian process such Xfractional Riesz-Bessel
motion and infinity scale fractional Brownian motion, seea]%

5 Measures on almost self-affine sets

Next we consider L?-dimensions of measures on self-affine and almost self-affine sets.
Fori=1,...,mlet T; be linear contractions on R™ and let w; be translation vectors.
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almostsa

The iterated function system {7}j(z) + w;}7*; has an non-empty compact attractor
E satisfying £ = UL, (Tj(E) + wj); such a set is termed a self-affine set. Writing
w = (wi,...,wy) for the set of translations, the attractor £ may be characterised
in terms of m-ary sequences: E_, = UJe A Zw(j), where x4, : A% — R is given by
the single point in the decreasing intersection

o0

L-U(J) = $w(j1,j2, s ﬂ J +“)]1 32 +w]2) (Tjk +wjk)(B)’ (5'1)

where B is any ball such that T;(B) + w; C B for all j.

Let p1,...,pm be probabilities, so that 0 < p; < 1 and Z;”Zl pj = 1. Let u be
the Bernoulli probability measure on A defined by

:U’(CJ) = Pj1Pja - - - Py, J = (jl, <o 7]k) € A*a (52)

and extended to a Borel measure on A>°. For each w € 2 let p, be the image
measure of y under x,, which is supported by FE,,.

We wish to find the generalized dimensions Dg(jt,,). This is well-known in the
case where the T; + w; are similarities and FE,, is a self-similar set. Provided the
open set condition is satisfied (that is, there exists a non-empty open set U such
that U7, (T;(U) +w;) C U with this union disjoint), then the generalized dimension

Dy(pw) = do where dy satisfies the equation > 7", j(l a)do q =1, see ZI 7 Closed
formulae have also been obtained for the generalized dimenswns or self-affine ‘car-
pets’ and ‘sponges’, where the T} are all equal and the affine transformations 7}, +w;;,
%fgjp a given cube onto surmlarly aligned rectangles or rectangular parallelepipeds

In general it is difficult to obtain formulae for L9¢-dimensions of measures on
self-affine sets, or even for the Hausdorff dimension of the supporting self-affine
sets, not least because they need not be continuous in w. Nevertheless, using a
potential-theoretic approach, one may obtain formulae that are valid for almost all
w = (wi,... ,wm}%ﬁig the sense of mn-dimensional Lebesgue measure in the case that
1 < g < 2, see [8]. However, in general there is ‘not enough transversality’ as w
varies for the estimates to extend to g > 2.

(T + w (T + 031,2)(]3) x,(1,2,2,...)

(T + ap)(T) + mz,l)(B)

Figure 5: Hierarchical construction of an almost self-affine set F,,



One way of circumventing this difficulty is to introduce more randomness by
allowing a random perturbation in the translation component at each stage of the
construction. We let

w = {wjh]éym,jk : (jl,jQ, R ,jk) € A*} S (RH)A* (53)

be a famil LS XEIranslation vectors in R™ which we assume to be bounded. Analo-
gously to (5.T) we let

o0
vo() = [V (T +wi) (T + wjy o) (Ths + @i gngs) -+ (Thy + Wi o) (BI-4)
k=1
- klgrolo(Tﬂl + wjl)(sz + wj17j2)(Tj3 + wjl,j27j3> T (T]k + wj17j2r~~jk)(0>
= wj + 1wy jo + 15, Tjpwjy jojs + -+

for each j = (j1, j2,...) € A, for some ball B large enough to ensure that T;(B) +
Wiy jo,.ju © B for all ji,j2, ..., jr € A*. We call

E, = U Tw(j)

JeAS

almostsa
an almost self-affine set, see Figure b.

We may randomize t%ﬁeg{%&nslation vectors in the self-affine construction. Assume
now that wj, j, . j in (5.3) are independent identically distributed (i.i.d.) random
vectors for ji, ja, ..., jr € A* with absolutely continuous density with respect to n-
dimensional Lebesgue measure. We put the product probability measure on (]R”)A*.
We then term E,, a random almost self-affine set, see Figure 6.
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Figure 6: A self-affine set and a random almost self-affine set with the same linear com-
ponents in the defining transformations

To analyse self-affine and almost self-affine sets we utilize the singular values of
the mappings which control the proportions of the components in the construction.
The singular values ay > ag > -+ > ap > 0 of a linear mapping 7' : R™” — R™ are
the positive square roots of the eigenvalues of 7™ or equivalently are the semi-axis
lengths of the ellipsoid T'(B) where B is the unit ball. The singular value function
of T is then defined by
P’(T)=aq... ()zp,loz;_p+1 (5.5) [svn

where p is the integer such that p —1 < s < p. (If T is a similarity then ¢°(T) is
just the sth power of the scaling ratio of T'.)
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There are two important properties of ¢°. Firstly it is submultiplicative, that is

¢*(T1Tz) < ¢°(T1)9°(12), (5.6)
and secondly, if T is fontracting linear map, then ¢*(7") is continuous and strictly
decreasing in s, see [5]. It follows, writing

Ppi= Y F(Tio-oTy),
i1y AR

that ®f itself is also submultiplicative, that is ®; , < ®;®7, so, by the standard
property of submultiplicative sequences, the limit
®° := lim (®F)/*
k—o0

exists and is decreasing in s.

The positive number dy that satisfies ®% = 1 is called the affinity dimension
do = do(Th,- -+, T),) of the self-affine set E,, that is the attractor of the IFS of affine
maps {T; + w; }1" ;. In other words dy is given by

1/k
dW(Ty, ..., T\y) = ®% = lim ( > (T, O"'OTz’k)> =1  (5.7)
k—o0
1.0 EAF
notice that the affinity dimension depends only on the linear parts of the IFS
functions. Affinity dimensions provide ‘generic’ values for the Hausdorff and box-
counting dimensions of self-affine sets. We write dimyg and dimp for Hausdorff and
upper box-counting dimensions respectively

Proposition 5.1 Let E,, be a self-affine or almost self-affine subset of R™. Then
dimy B, < dimp E, < do(T1, -+, Tn) (5.8)

where (T, - -+, Ty) are the linear parts of the affine contractions in the cons &”ﬁncf%'l%n
of Ew. If E, is self-affine with ||T;|| < % for all j then there is equality in (; 8 for
almost all translatio ysets w € (R™)™. If E,, is a random almost self-affine set then
there is equality in (5.8) for almost all w € Q with no restriction on ||Tj]|.

. dimine . . .
Proof.  Inequality (%81]) is obtained by a covering method. Almost sure equality
for self-affine sets and random almost self-affine s ts may B derived from energy
estimates for measures supported on the sets, see %and for the two settings.
O

To obtain generic formulae for L9-dimensions, we adapt the egniflion of affine
(B2 1

dimension. With p to be a Bernoulli measure on A* defined by et
S 3 S 17q q 1/k
o = dim (Y @(ToTyo 0 T) (Cianni)?)
01,00 EAF
_ . - 1/k
= lim ( Z (b (Tu ° Ti2 o---0T; ) q<pi1pi2 e 'pik)q> : (5'9)
k—oo

01,000 EAF

Again the limits exist as a consequence of supermultiplicativity, and if ¢ > 1 then
Py is strictly increasing and continuous in s. Thus we may define positive numbers
dq by the requirement that

Dl = 1. (5.10)
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As before we write p,, for the image of the Bernoulli measure p under z,,. We refer
to e as a self-affine measure for w € A when the support F,, is a self-affine set,
and as an (random) almost self-affine measure when w € € and the support is a
(random) almost self-affine set.

proplqg2 Proposition 5.2 Let 1 < q < 2. Let i be a Bernoulli measure on A*°. For every
self-affine or almost self-affine measure p,, on R™

Dy (ps) < minfd,, n} (5.11)
dgdef

where dg is given by (5.70). Moreover, Dy(ju.,) exists and
Dy (pe) = min{dg, n}

in the self-affine case provided |Tj|| < % for all j, for almost all w € (R™)™
and also in the random almost self-affine case for almost all w € (R™MA" (with no
restriction on the ||T}||).

5
Note on proof. This is proved in %’using a potential-theoretic method; the proof
adapts easily to give equality in the random almost self-affine case. O

roplqg2
It is natural to ask whether the conclusion of Proposition %lid for ¢ > 2
when the basic potential-theoretic method is in déeﬂ_lul%tee. This higher moment case
can be addressed using the inequality of Section E However, for self-affine measures
o %here is § not- enough randomness or transversality to get an adequate estimate
in (L‘T%to—read to equality for almost all w € (R™)™. Thus we can only obtain the
lower bound for random almost self-affine measures.

Theorem 5.3 Letq > 1. Let i be a Bernoulli measure on A°°. For every self-affine
or almost self-affine measure ., on R"

Dy(pw) < min{dg,n} (5.12)

o %gj’gfd de .
where dg is given by (5.10). If pe is a random almost self-affine measure then
Dy(pw) exists and

Dy(j1er) = min{dy, n)
for almost all w € (R™)N

dgeql
Sketch of proof. The upper bound g 2)_comes from splitting ellipses of the form
that occur in the intersecti%;a% iFa .4) 1nto appropriate pieces and summing the

powers of the measures, see

For the case where ¢ > 2 is an integer and p,, a random almost self-affine set,
let ji,...,jq € A®°. Using the geometry and randomness or higher transversality
available in the construction, we may obtain an estimate

P{|zw(q) — 2w(ij)| < 7 for all j} < er*™Vgs(T3,) 1o (Th,) ... 6% (TG, )"

(5.13)

int
where i1, ...,i;—1 are the join points of ji,...,j,. Using (bexg il%ve get, for all s > 0,
E [ (Bla, ) (o)
< opSla=1) [, S(Ty V" LS(Te )L S(Te —Lduli du(i
<er ¢°(Ti,) ¢°(Th,) " -+ 0°(Ti,y) ™ dp(in) - - - dp(iq)

0 1\ ¢-1
P (Sp o))

lil=k
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Or[1otrmal p, taking f(i) = ¢*(T3) ! in inequality ( }2131136) From the defini-
of @7, this series converges if 0 < s < dg, in which case

,

E> 20 [ (B2 ) o)
k=1

= E/ 22 i@ (B(x,2” ))q_l)d,uw(a:) < 00,

for all 0 < s1 < s, giving Dy(pw) > s1 for all s; < dy, as required. a7
For full details of this argument and the case of non-integer ¢ > 1 see hEFO] O

6 Random multiplicative cascade measures

Let A ={1,2,...,m}, let W; be independent positive random variables indexed by
i=11,49,...,1 € A" and let

Xi = Wilwihiz T Wi1,i2,~~~7ik'
We may identify the cylinders in symbolic spac f}zvilglgr‘%he hierarchy of m-ary subin-
tervals of of [0, 1] in the obvious way, see Figure 6 We assume that E(WW;) = 1 for all

i

122 211 212 221 222

Xi,ini3

Xl,rz,rg,m

X - a martingale for each j

Figure 7: A random multiplicative binary cascade measure represented on the interval
[0, 1], with Xj;, a martingale for each j € [0, 1].

i € A" in which case (Xj|;, F) is a martingale for each j € A*°, where j|k denotes the
curtailment of j after k terms and Fy is the o-field generated by {W; : i€ UF_ Al}.

These martingales, termed random multiplicative cascade measures, wer ;ﬁt]}"&,—
duced and studied in the 1970s by Mandelbrot and Kahane and Peyriere [13, 14

12



randcas

who obtained many properties in the ‘self-similar’ case, that is when the W; are in-
dependent and identically distributed. Let u be a Borel probability measure on A*°.
Of particular interest are k-th level sums

Z XIM /*X.]k;d:u

li[=k

which moments of the sums remain bounded as k — oo and in what setting the inte-
gral converges. It follows from Minkowski’s inequality that if E(( Y ;cax Xi M(Ci))q)

is bounded in k then so is ) ; \x E((Xi M(Ci))q!hlsgigg more interest are opposite
implications. Using the inequality from Section 3 we get the following result.

Theorem 6.1 Let g > 1 be a real number. If

hmsup(z E(X{)p(Cy)? )I/k <1 (6.1)

then

Tim sup E<< 3 X M(Ci))q> < (6.2)

ko0 il =k

and [ X 51kdp(j) converges a.s. and in LY. Note that we require the underlying Wi
to be independent but not necessarily identically distributed.

This, gﬁi Ia;her properties of these martingales were obtained by Kahane and
Peyriere ﬁ?fﬂ] when the random cascade is ‘self-similar’, that is when the Wj;
are identically distributed, utilizing the self-similarity to show that the sums satisfy
a random difﬁfeﬂce equation. There have been many subsequent ensions and
variants, see which contain many further references. Barral proved this
result without the i.i.d. requirement on the W; in the case 1 < ¢ < 2, with the
martingales defined in a more general continuous, rather than discrete, setting.

randcas
Note on the proof of Theorem [6.1. hen g > 1 is an integer we may expand

E<( SX u(Ci)>q>

Y E(XG X X (G )p(Cyy) - p(Cy,)

li|=k li1],liz],...,|iq|=F
< (ipuf)( > E(X?mci)q)qil)ql.
k=0 li|=k

for a polynomial p, where this ine g%i%ﬁmmay be established using induction in a
manner akin to that of Theorem v relating the expectations of products of
the Xj; to actations of powers o %Lréle Xj at the join points of ij,...,i;. The
conclusion (‘%)jggfthen Eollonginfrom

As with Theorem B.T the argument for non-integer ¢ requires a more involved
induction argument. O
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