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Abstract
In this thesis examples of translationally invariant one-dimensional (1D) Vlasov-Maxwell (VM)

equilibria are investigated. The 1D VM equilibrium equations are equivalent to the motion of

a pseudoparticle in a conservative pseudopotential, with the pseudopotential being proportional

to one of the diagonal components of the plasma pressure tensor. A necessary condition on the

pseudopotential (plasma pressure) to allow for force-free 1D VM equilibria is formulated. It is

shown that linear force-free 1D VM solutions correspond to the case where the pseudopotential

is an attractive central potential. The pseudopotential for the force-free Harris sheet is found and

a Fourier transform method is used to find the corresponding distribution function. The solution

is extended to include a family of equilibria that describe the transition between the Harris sheet

and the force-free Harris sheet. These equilibria are used in 2.5D particle-in-cell simulations of

magnetic reconnection. The structure of the diffusion region is compared for simulations start-

ing from anti-parallel magnetic field configurations with different strengths of guide field and

self-consistent linear and non-linear force-free magnetic fields. It is shown that gradients of off-

diagonal components of the electron pressure tensor are the dominant terms that give rise to the

reconnection electric field. The typical scale length of the electron pressure tensor components in

the weak guide field case is of the order of the electron bounce widths in a field reversal. In the

strong guide field case the scale length reduces to the electron Larmor radius in the guide magnetic

field.
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Chapter 1

Introduction

1.1 Motivation

A plasma is any state of matter which contains enough free charged particles for electromagnetic

forces to dominate its behaviour. In many areas of astrophysics the physics of plasmas play a

crucial role. In astrophysics the physics of plasmas are important in understanding the interaction

of the solar wind with the Earth’s magnetosphere, the dynamics of the Sun and stars and many

other astrophysical bodies. In fact the majority of the matter in the universe can be described as

plasma. In the laboratory the physics of plasmas also plays a vital role in controlled thermonuclear

fusion, in which the nuclei of deuterium and tritium are heated to tens of millions of degrees, under

which conditions they exist in a plasma state.

Magnetic activity processes in the coronae of the Sun and of other stars belong to the most fasci-

nating phenomena in plasma astrophysics. Astrophysical plasmas usually satisfy the conditions of

ideal magnetohydrodynamics (MHD), but nevertheless non-ideal processes such as, for example,

magnetic reconnection are known to play an important role in most coronal activity processes.

It is well-known that one way of overcoming this apparent contradiction is the formation of

strongly localized regions of strong electric current, i.e. magnetic current sheets. In these regions

ideal MHD can break down, allowing for non-ideal processes such as magnetic reconnection to

occur. Although these non-ideal processes occur only on very small length scales, they still have

a global effect in the release of stored magnetic energy.

To understand the physics behind these non-ideal processes better, kinetic theory instead of MHD

has to be used and because the time and length scales on which these processes occur are usually

much shorter than typical collision times and mean free paths, it is appropriate to use collisionless

theory.

1



1.2 Plasma Models 2

Plasma equilibria are suitable starting points for investigating these processes. For collisionless

plasmas, the most relevant equilibria are self-consistent solutions of the Vlasov-Maxwell (VM)

equations (e.g. Krall and Trivelpiece 1973; Schindler 2007).

1.2 Plasma Models

1.2.1 Kinetic Models

The most basic description of a plasma can be given by a statistical treatment based on the kinetic

theory of matter. Following the description of Boyd and Sanderson (2003) this model assumes that

there is a single particle distribution function fs(r,v, t) for each particle species which satisfies

the kinetic equation

∂fs

∂t
+ v · ∂fs

∂r
+

qs
ms

(E + v ×B) · ∂fs

∂v
=
(
∂fs

∂t

)
c

, (1.1)

where qs and ms are the charge and mass of each species respectively and fs(r,v, t)d3rd3v is

the probability of finding a particle within the phase space volume d3rd3v centred at (r,v). All

observable properties are then found by taking moments of the distribution function, where the

distribution function is normalised such that the number density and bulk velocities are given by,

ns (r, t) =
∫ ∞

−∞
fsd

3v, (1.2)

us (r, t) =
1
ns

∫ ∞

−∞
vfsd

3v. (1.3)

The charge density and current density are then given by summing over each particle species,

σ =
∑

s

qsns, (1.4)

j =
∑

s

qsnsus. (1.5)

Coupled to these equations are the full set of Maxwell’s equations,

∇ ·E =
σ

ε0
, (1.6)

∇×E = −∂B
∂t
, (1.7)

∇×B =
1
c2
∂E
∂t

+ µ0j, (1.8)

∇ ·B = 0. (1.9)
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Therefore the electric and magnetic fields in Eq. (1.1) are self-consistent as they depend on fs via

the source terms σ and j. The term on the right hand side of Eq. (1.1) is referred to as the collision

term and describes particle-particle interactions. Therefore, if the mathematical expression for the

collision term is known then Eq. (1.1) describes the evolution of the distribution function fs. In

many astrophysical plasmas it is often a reasonable assumption to neglect collisions altogether. A

collisionless plasma can be assumed as long as the mean free path of each particle species is much

greater than the length scale over which the macroscopic fields vary or alternatively the collision

frequency is much less than the typical frequency which characterises the time rate of change of

the macroscopic fields. As described by Schindler (2007), ‘typically the collision terms arise from

Coulomb collisions between the charged particles. They are based on electric fluctuations in the

Debye sphere, a sphere with the Debye length,

λD =
(
ε0kBTe

e2ne

) 1
2

=
1
ωpe

(
kBTe

me

) 1
2

, (1.10)

as its radius’. Here ne is the electron number density and Te is the electron temperature. The

electron plasma frequency, here denoted by ωpe is

ωpe =
(
e2ne

ε0me

) 1
2

. (1.11)

The typical Coulomb collision terms scale as ln(Λp)/Λp, where

Λp =
4π
3
λ3

Dne (1.12)

is the plasma parameter, which equals the number of electrons in a Debye sphere (Schindler 2007;

Boyd and Sanderson 2003). It can therefore be seen that more particles in a Debye sphere causes

less collective fluctuations.

Photosphere Corona
Number Density n [m−3] 8× 1022 1× 1015

Temperature T [K] 6× 103 2× 106

Magnetic Field Strength B [T ] 2× 10−1 1× 10−2

Length L [m] 1× 106 3× 107

Debye Length λD [m] 2× 10−8 3× 10−3

Plasma Parameter 2 1× 108

Table 1.1: Typical values of various plasma quantities are shown for the solar photosphere and
corona where the photospheric values correspond to a sunspot and the coronal values an active
region (Schindler 2007). The table also includes the value of the Debye length calculated on the
basis of these characteristic values.

The plasma parameter scales as T 3/2
e /n

1/2
e and therefore for high temperatures and low densities,
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this describes the regime of collisionless plasmas. Typical values of various plasma quantities are

shown in Table 1.1 (Schindler 2007) for the solar photosphere and corona where the photospheric

values correspond to a sunspot and the coronal values to an active region. Whereas the photosphere

is clearly influenced by collisions, the solar corona is approximately collisionless for the small

length scales associated with the non-ideal processes that are of interest, such as, for example

magnetic reconnection. For a collisionless plasma the collision term can be completely neglected

and the kinetic equation is

∂fs

∂t
+ v · ∂fs

∂r
+

qs
ms

(E + v ×B) · ∂fs

∂v
= 0, (1.13)

and is known as the Vlasov equation which states that the distribution function is constant along

particle trajectories. The characteristic equations of the Vlasov equation are just the equations of

motion of a particle moving in an electromagnetic field,

dr
dt

= v, (1.14)

dv
dt

=
qs
ms

[E + v ×B] , (1.15)

and hence particle trajectories are just the characteristic curves of the Vlasov equation. Collision-

less plasma models usually must solve for the evolution of the plasma numerically. Examples of

methods for doing this include particle in cell codes (PIC) and Vlasov codes.

1.2.2 A Fluid Description

Fluid descriptions describe the behaviour of the plasma and its interaction with the magnetic field

in terms of observables which depend only on space and time. These observables are found by

multiplying the kinetic equation, Eq. (1.1) by various powers of velocity ψ(v) and integrating

over velocity space. This process produces equations for quantities that depend only on (r, t).
The powers of v are chosen to represent density (ψ = 1), momentum (ψ = msv) and energy

(ψ = 1/2msv
2). In general multiplying Eq. (1.1) by powers of velocity ψ(v) and integrating

over velocity space gives the general moment equation,

∂

∂t
(ns 〈ψ(v)〉s) +

∂

∂r
· (ns 〈ψ(v)v〉s)−

nsqs
ms

E ·
〈
∂ψ(v)
∂v

〉
s

−nsqs
ms

〈
(v ×B) · ∂ψ(v)

∂v

〉
s

=
∫ ∞

−∞
ψ(v)

(
∂fs

∂t

)
c

d3v, (1.16)

where

〈ψ(v)〉 =
1
ns

∫
ψ(v)fsd

3v. (1.17)
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Firstly it must be noted that with each higher power of v the resulting moment equation will

contain the quantity that refers to the next higher order moment. In this way the Eq. (1.16) gives

an infinite set of equations. Therefore a method of truncation must always be chosen to reduce

the number of quantities to a manageable number. This is known as the closure condition. Some

important physical quantities that result from taking the first and second order moments are the

pressure tensor which is defined as,

Pij,s = ms

∫ ∞

−∞
(vi − ui,s)(vj − uj,s)fsd

3v = msns 〈wi,swj,s〉 , (1.18)

and the heat flux tensor,

Qijk,s = ms

∫ ∞

−∞
(vi − ui,s)(vj − uj,s)(vk − uk,s)fsd

3v = msns 〈wi,swj,swk,s〉 , (1.19)

where the deviation from the average velocity wi,s is defined as,

wi,s = vi − ui,s. (1.20)

Evaluating the zero order moment (ψ = 1), 1st order moment (ψ = msv) and second order

moment (ψ = 1/2msv
2) and making the assumption that the pressure tensor is isotropic where,

Pij,s =

{
0 i 6= j

P11,s = P22,s = P33,s = 1
3Pii,s = Ps i = j

(1.21)

and assuming that heat flux tensor components can be ignored then this gives the fluid equations

(e.g. Schindler 2007):

∂ρs

∂t
+∇ · (ρsus) = 0, (1.22)

ρs
∂us

∂t
+ ρsus · ∇us = −∇Ps + js ×B + σsE + Mcs, (1.23)

∂Ps

∂t
+ us · ∇Ps +

5
3
Ps∇ · us +Ncs = 0, (1.24)∑

s

σs = 0, (1.25)

∇×E = −∂B
∂t
, (1.26)

∇ ·B = 0, (1.27)

∇×B = µ0

∑
s

js, (1.28)

where it has also been assumed that the plasma satisfies quasineutrality and ρs = msns is the

mass density of each particle species. In Eqs. (1.23) and (1.24) Mcs and Ncs refer to the con-

tributions to the momentum equation and to the energy equation from the collision term. These
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terms therefore represent the exchange of momentum and energy due to collisions. It is assumed

that collisions take place only between neighbouring particles such that energy and momentum

within the volume element d3r is conserved during a collision. This is achieved by assuming the

scale size of the volume element is much larger than the mean free path. It is important to note

that in Eqs. 1.23 and 1.24 the assumption of isotropic pressure may not be a valid assumption for

studies of the dynamics of collisionless plasmas. In collisionless reconnection for example, the

off-diagonal terms of the electron pressure tensor are very important in understanding the physics

of the diffusion region (e.g. Hesse et al. 1999, 2004; Ricci et al. 2004a; Pritchett 2001).

Finally it is possible to construct a single fluid set of equations which removes all reference to the

individual particle species. Summing the fluid equations for each species and defining,

ρ = ρi + ρe, (1.29)

P = Pe + Pi, (1.30)

u =
(ρiui + ρeue)

ρ
(1.31)

Mce + Mci = 0, (1.32)

Nce +Nci = 0, (1.33)

the resistive MHD equations are (e.g. Schindler 2007),

∂ρ

∂t
+∇ · (ρu) = 0, (1.34)

ρ
∂u
∂t

+ ρu · ∇u = −∇P + j×B, (1.35)

E + u×B = ηj, (1.36)(
∂

∂t
+ u · ∇

)(
P

ργ

)
=

γ − 1
ργ

ηj2, (1.37)

∇×E = −∂B
∂t
, (1.38)

∇ ·B = 0, (1.39)

∇×B = µ0j. (1.40)

Equation (1.36) is called the resistive Ohm’s law. The term ηj arises from the collision term Mce

in the two fluid momentum equation where it is assumed that Mce is proportional to the relative

drift between the electrons and the ions which is equivalent to the current density. The η term

denotes resistivity. Therefore, it is important to remember that in the framework of resistive MHD

the resistive term on the RHS of Ohm’s law requires the existence of the collision term in the

kinetic equation.

Ideal MHD gives an equivalent set of equations except that the resistive term in Ohm’s law is

neglected. In ideal MHD the field lines are frozen into the plasma. Many astrophysical plasmas
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on large scales satisfy the conditions of ideal MHD.

Fluid models are applied widely in the physics of space plasmas and laboratory plasmas (e.g.

tokamaks). It is always important to assess the validity of a fluid model. First of all the fluid model

assumes that the characteristic scale lengths must be a lot larger than the mean free path. Second,

the assumption of an isotropic pressure tensor assumes that the collision time is a lot less than the

typical time scales of the plasma such that the any anisotropies are quickly smoothed out over a

few collision times and therefore the local distribution function is that of a Maxwellian distribution

function. In fact in many space plasmas of interest, especially when considering activity processes

that occur on small length scales and fast timescales the plasma can be described as collisionless

i.e. the mean free path is much larger than the typical length scale and the collision time is a lot

larger than the typical time scale.

1.3 Magnetic Reconnection

As already mentioned astrophysical plasmas in general satisfy the conditions of ideal MHD. Non-

ideal processes though, for example in the corona of the Sun, play a vital role in activity processes.

This apparent contradiction can be overcome by the formation of strongly localised regions of

strong electric current, i.e. magnetic current sheets. In these regions ideal MHD can break down

allowing for non-ideal processes to occur. Although these non-ideal processes occur on very small

length scales, they will still have a global effect in the release of stored magnetic energy. Perhaps

the most important of these non-ideal processes is magnetic reconnection. Magnetic reconnection

is thought to play a role in solar flares, coronal mass ejections and coronal heating in the solar

corona (e.g. Priest and Forbes 2000). It also plays a major role in the interaction of the solar

wind and the magnetosphere, transferring energy from the solar wind into the magnetosphere

(e.g. Schindler 2007). In general the magnetic field is frozen into the plasma and satisfies the

frozen in contraint,

E + u×B = 0. (1.41)

If the RHS of Eq. (1.41) is non-zero then the magnetic field is no longer frozen into the field and

magnetic reconnection can occur. Magnetic reconnection leads to a reconfiguration of the mag-

netic field to a lower energy state. Energy conservation means that magnetic energy is converted to

thermal, non-thermal and kinetic energy with particles being accelerated to super-Alfvénic speeds

where the Alfvén speed in a magnetic field B0 with a density ρ0 is defined as,

vA =
B0

(µ0ρ0)
1
2

. (1.42)
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An important question is by what mechanism is the frozen in flux constraint broken? If you

multiply the electron kinetic equation, Eq. (1.1) by meve and integrate over all of velocity space

then the generalised Ohm’s law is (Schindler 2007),

E + u×B = − 1
ene
∇ ·Pe +

j×B
ene

− me

e

(
∂ue

∂t
+ ue · ∇ue

)
+ ηj, (1.43)

where quasineutrality has been assumed (ne = ni), me � mi and,

j = eniui − eneue, (1.44)

u =
miui +meue

mi +me
. (1.45)

The ηj term is the contribution from the collision term on the RHS of Eq. (1.1). The terms on the

RHS are the pressure term where the full pressure tensor is included, the Hall term, the electron

inertia term and the resistive term.

In resistive MHD only the resistive term on the RHS of Eq. (1.43) is considered. The two most fa-

mous MHD models of reconnection are Sweet-Parker reconnection (Sweet 1958a,b; Parker 1957,

1963) and Petschek reconnection (Petschek 1964). A detailed description of these two models is

given in Priest and Forbes (2000).

Figure 1.1: A figure illustrating the Sweet-Parker configuration (Priest and Forbes 2000).

In the Sweet-Parker model a steady state is assumed. An extended region of size 2L × 2l is

assumed which is called the diffusion region. Magnetic flux enters the diffusion region from the

top and bottom and is ejected at the Alfvén speed from the sides of the diffusion region. An

illustration of the Sweet-Parker configuration is shown in Figure 1.1. The reconnection rate which

is defined as the rate at which magnetic flux can be brought into the diffusion region i.e. the inflow
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speed vi, where the subscript i denotes inflow, is given by,

vi =
vAi

R
1/2
mi

, (1.46)

where vAi = Bi/
√
µ0ρ is the inflow Alfvén speed and Ri = µ0LvAi/η is the inflow magnetic

Reynold’s number based on the inflow Alfvén speed. In general Ri � 1 and the reconnection

rate is of the order of 10−3− 10−6 of the Alfvén speed which is much too slow to describe a solar

flare.

Petschek (Petschek 1964) considered a configuration with a small Sweet-Parker regime which

acts as a source for four slow mode shocks. Petschek showed that the reconnection rate is now

much larger than the Sweet-Parker model. He estimated an upper limit for the non-dimensional

reconnection rate MA (MA = vi/vAi) where,

MA ≈
π

8 lnRi
, (1.47)

which is significantly faster than the Sweet-Parker reconnection rate. Neither of these models are

an exact solution of the MHD equations, but they do give a significant amount of insight into the

fundamental properties of reconnection. They do not though give any details of the structure of

the diffusion region.

Figure 1.2: A figure illustrating the magnetic field configuration of a tearing mode (Biskamp
2000).

The resistive tearing mode is a resistive MHD instability and is important because the magnetic

field can change its topology leading to the release of stored magnetic energy. The classical paper

on the resistive tearing mode is by Furth et al. (1963). The analysis of the tearing mode in general

starts from a Harris current sheet (Harris 1962) which consists of an anti-parallel magnetic field

configuration with a pressure gradient across the current sheet. The linearised full set of resistive

MHD equations are solved. A small perturbation is added to the magnetic field. The wavelength

of the perturbation must be relatively large such that the magnetic pressure gradient is strong

enough to overcome the restoring tension force and drive the tearing mode unstable, leading to

the formation of a series of X and 0-points. The tearing mode configuration is shown in Figure

1.2. A boundary layer develops at the centre of the current sheet. The solution to the resistive
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tearing mode is found by carrying out a boundary layer analysis to determine the inner and outer

solutions and the dispersion relation (e.g. Schindler 2007). In the case of a more general k vector

the tearing mode occurs at singular layers where k ·B = 0. These are known as resonant layers.

The growth rate of the tearing mode is given approximately by (Priest 1984),

γ =
(
τ3
d τ

2
A(kl)2

)−1/5
, (1.48)

where k is the wavenumber, l is the thickness of the current sheet, τd is the diffusion time and τA is

the characteristic Alfvén travel time to cross the sheet moving at the Alfvén speed, for wavelengths

in the approximate range (τA/τD)1/4 < kl < 1. The mode with the longest wavelength has the

fastest growth, namely γ = (τAτD)−1/2, a value that is the geometric mean of the diffusion and

Alfvén travel times (Priest 1984). For typical values for an active region in the solar corona (see

Table 1.1) the diffusion time is of the order of 1015 seconds and the Alfvén travel time of the

order seconds which is not fast enough to explain the impulsive phase of a flare which represents

a release of magnetic energy over a time scale of 100-1000s. This suggests that the length scales

must be extremely small (100-1000m) if the tearing mode is to be used to describe the impulsive

phase of a flare.

In all the MHD models described above magnetic reconnection seems to require the development

of very small length scales to give fast reconnection rates. On these length scales the plasma in

many parts of the magnetosphere and also in the corona of the Sun can be described as collision-

less. This corresponds to the resistive term in Ohm’s law, Eq. (1.43) being neglected. Writing the

generalised Ohm’s law in the form,

E + ue ×B =
1

neqe
∇ ·Pe +

me

qe

(
∂ue

∂t
+ ue · ∇ue

)
, (1.49)

then the terms that can now give rise to the large reconnection electric field and break the frozen

in condition are the pressure term and the electron inertia term. In the majority of studies of

collisionless reconnection, it is found that the dominant contribution to the reconnection electric

field is due to gradients of the off-diagonal components of the electron pressure tensor (e.g. Hesse

et al. 1999, 2001a; Pritchett 2001; Hesse et al. 2004; Kuznetsova et al. 2001). Therefore modelling

reconnection in the corona using an isotropic, scalar pressure is questionable, at least if you want

to get the electron physics of the diffusion region correct.

The majority of collisionless reconnection studies start from the Harris sheet (Harris 1962) and

reconnection proceeds via the collisionless tearing mode. This is similar in many ways to the

resistive tearing mode where a boundary layer develops at the centre of the current sheet and the

instability leads to reconnection with a series of X and O-points being formed. A linear stability

analysis for the collisionless tearing mode has been carried out for the Harris sheet by solving the
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linear Vlasov equation. The classical paper on the collisionless tearing mode is by Laval et al.

(1966). Biskamp (2000) gives a qualitative derivation of the growth rate. The growth rate is

approximately,

γ ≈
vth,e

L

(rLe

L

)3/2
(

1 +
Te

Ti

)(
1− k2L2

)
, (1.50)

where rLe is the electron Larmor radius in the asymptotic magnetic field, k is the wavenumber of

the perturbation, vth,e is the electron thermal speed, Te and Ti are the electron and ion temperatures

and L is the width of the box. It is clear that for kL = 1 the growth rate is zero. The growth rate

is in fact proportional to m1/4
e .

The Geospace Environmental Modelling (GEM) Magnetic Reconnection Challenge (Birn and

Hesse 2001) was an investigation of collisionless reconnection using a variety of different nu-

merical codes from a non-linear MHD code all the way through to a full electromagnetic particle-

in-cell (PIC) code. The initial condition was chosen to be a Harris sheet with no guide field, i.e.

the challenge seeked to understand and compare the results from different codes of modelling re-

connection in a collisionless high-β plasma. In particular they compared the reconnection rates

and found that the evolutions were almost identical as long as the Hall term was included. The

pure resistive MHD code in comparison did not match the reconnection rate very well and was sig-

nificantly slower. Therefore, on the large scale the reconnection rate is independent of the method

by which the frozen in constraint is broken as long as the Hall term is included. On the other hand,

for a detailed understanding of the electron physics in the diffusion region a full particle picture is

necessary, which includes the full electron pressure tensor.

1.4 Aims

The magnetic field in the corona of the Sun satisfies to a good approximation the force-free con-

dition j×B = 0. On the small length scales that magnetic reconnection can occur the plasma

can be described as collisionless. The majority of collisionless reconnection studies start from the

Harris sheet (e.g. Pritchett 2001; Hesse et al. 2001a; Shay et al. 2001; Scholer et al. 2003). The

Harris sheet is most appropriate for studying high-β plasmas due to the fact that the plasma-β

at the centre of the sheet is infinite. A constant guide field can be added to the Harris sheet to

model lower-β plasmas (e.g. Ricci et al. 2004a; Pritchett and Coroniti 2004; Hesse et al. 2004) but

importantly the guide field does not change the characteristic properties of the equilibrium. The

constant guide field does introduce a field aligned current but the field aligned current density is

completely independent of the strength of the guide field that is added. The constant guide field

is also a potential magnetic field and therefore does not add any free-energy to the magnetic field.

In a force-free field where the current density is coupled to the shear and twist of the field, if you
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increase the current density you increase the shear of the field and also the free-energy. There-

fore, to study collisionless reconnection in the solar corona it would seem more appropriate to use

force-free magnetic field configurations as initial conditions.

As already mentioned plasma equilibria are suitable starting points for investigating non-ideal

plasma processes. For collisionless plasmas, the most relevant equilibria are self-consistent so-

lutions of the Vlasov-Maxwell (VM) equations Krall and Trivelpiece (1973); Schindler (2007).

Due to the generic structure of current sheets they can be modelled by 1D equilibria as a first

approximation. Up until this point the only 1D force-free Vlasov-Maxwell (VM) equilibrium that

is known is that of a periodic linear force-free magnetic field (Sestero 1967; Bobrova and Sy-

rovatskiǐ 1979; Correa-Restrepo and Pfirsch 1993; Bobrova et al. 2001). This solution is not ideal

as in general the magnetic field in the corona is a non-linear force-free field. Also the periodic

nature of the solution does not represent a very realistic magnetic field configuration. One of the

major aims of this work was therefore to extend the theory of 1D Vlasov-Maxwell equilibria to go

beyond the Harris sheet to include a range of sheared magnetic field configurations. In particular

finding a distribution function that corresponds to the force-free Harris sheet was of great interest.

In addition to finding a distribution function for the force-free Harris sheet, it was also important

to find distribution functions that depending on the choice of parameters give a range of equilibria

that can describe the transition between an anti-parallel magnetic field configuration with a strong

plasma pressure gradient through to a force-free field where the magnetic pressure due to the shear

component of the magnetic field maintains the force balance and the plasma pressure is constant.

The aim was then to use these Vlasov-Maxwell equilibria as initial conditions in simulations of

magnetic reconnection using a fully electromagnetic particle in cell code. The main focus of

these investigations was to compare simulations starting from anti-parallel magnetic field con-

figurations with varying strengths of guide magnetic field to simulation runs starting from self-

consistent force-free Vlasov-Maxwell equilibria. The results were to be compared to simulations

starting from the Harris sheet with varying strengths of guide field. In particular the structure of

the diffusion region was investigated with emphasis on understanding the dominant term in the

collisionless Ohm’s law which gives rise to the reconnection electric field and to confirm that this

is equivalent to reconnection simulations starting from the Harris sheet. It will be shown that the

dominant contribution to the reconnection electric field in the vicinity of the X-point is due to gra-

dients of off-diagonal components of the electron pressure tensor. An investigation of the structure

of these off-diagonal pressure tensor components as the strength of the guide field increases and

for the force-free cases is given.

Therefore this thesis is laid out with a discussion of simple 1D MHD equilibria and multi-fluid

equilibria in Chap. 2 . Chapter 3 gives a detailed discussion of 1D Vlasov-Maxwell equilibria,

with particular emphasis on the general properties of 1D force-free VM equilibria. Chapter 4

describes in detail the methods of particle in cell simulation for studying collisionless plasma
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dynamics and Chap. 5 presents particle in cell simulation results starting from a wide range

of initial conditions with the focus on investigating the structure of the diffusion region. The

conclusions and future work are presented in Chap. 6.



Chapter 2

MHD and Multi-Fluid Equilibrium
Theory

2.1 Magnetohydrostatics

Magnetohydrostatics is the theory of the static equilibria of the MHD equations. It considers the

states for which ∂/∂t = 0 and the bulk velocity u = 0. Examination of the MHD equations

given in Chap. 1 shows that under these assumptions these equations reduce to the equations

of magnetohydrostatics. Immediately you can see that the continuity equation is automatically

satisfied. Ignoring gravity, the momentum equation reduces to,

∇P − j×B = 0. (2.1)

Ampère’s law and the solenoidal condition remain unchanged,

µ0j = ∇×B, (2.2)

∇ ·B = 0. (2.3)

In addition the electric field can be written as the gradient of a scalar function φ,

∇×E = 0⇒ E = −∇φ. (2.4)

In summary, the three magnetohydrostatic equations are

∇P − j×B = 0, (2.5)

µ0j = ∇×B, (2.6)

14
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∇ ·B = 0. (2.7)

These equations must be solved in addition to an equation of state that must be specified.

So why study magnetohydrostatics? A good answer to this question is given in Neukirch (1998).

In these notes the author states that the MHD equations can be thought of as ‘a set of equations

describing extremely complicated dynamical systems. In the study of dynamical systems it is

always useful to start with a study of the simplest solutions and their bifurcation properties. These

are usually the stationary states, in the MHD case the static equilibria.’

Therefore, if you are interested in understanding the complicated dynamical processes that can

occur through investigating the MHD equations it is important to understand the properties of

the equilibria that satisfy the MHS equations. For many numerical simulations that examine the

evolution of the plasma an understanding of equilibria is vital. It is these equilibria that will often

act as the initial state in any simulation run. The physical properties of the equilibria are important

as they represent different initial plasma states and can lead to different dynamical behaviour.

Therefore, by understanding the different equilibria, it may be possible to consider those which

have properties closer to the particular space plasma you wish to model. For example, the solar

corona is often described as a low-β plasma, where the fields can be described as approximately

force-free.

A force-free field magnetic field satisfies the condition that,

j×B = 0, (2.8)

which means that the other forces in the momentum equation, Eq. (2.5) are negligible or balance

each other. In the simplest case this condition can be met by setting j = 0. A solution of this form

is known as a potential field. It follows that to satisfy (2.8) generally, the condition

µ0j = αB (2.9)

must be satisfied where α is in general a function that varies in space. This states that for force-

free equilibria the current density is completely aligned with the magnetic field. It is easily shown

that α must be constant along magnetic field lines. Taking the divergence of j,

∇ · (µ0j) = ∇ · (∇×B) = ∇ · (αB) = α∇ ·B + B · ∇α = B · ∇α = 0, (2.10)

which implies that α must be constant on field lines. If α is a constant everywhere then you have

the special case of a linear force-free field. In Sec. 2.1.1 important examples of these types of

equilibria are shown.
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2.1.1 1D Equilibria

In this section a number of important examples of 1D equilibria are discussed. The reason that

it is important to discuss 1D MHD equilibria is that in Chap. 3 one of the major aims is to

find analogous equilibra in Vlasov-Maxwell theory to those already known in MHD, in particular

to find a distribution function that has the force-free Harris sheet as a solution. Therefore it is

important to understand the properties of these equilibria in the framework of MHD. Consider a

model where the magnetic field and all other quantities are dependent only on the z coordinate.

The magnetic field has components Bx and By. It is assumed that they can be derived from a

vector potential A such that ∇ · B = 0 is automatically satisfied. Considering the momentum

equation, Eq. (2.5), then the force balance condition that must be met is,

d

dz

(
B2

2µ0
+ P

)
= 0, (2.11)

⇒ B2

2µ0
+ P = PT = a constant. (2.12)

This states that the plasma pressure must always balance the magnetic pressure to give the total

pressure PT in the system. The field lines will always be straight for these 1D models so there

is no magnetic tension force. So within the framework of this model a valid equilibrium is any

magnetic field and plasma pressure combination that satisfies the condition of force balance in Eq.

(2.12).

The Harris Sheet

The Harris Sheet (Harris 1962) is perhaps the most well known 1D current sheet equilibrium. It

has a one to one correspondence in MHD and Vlasov Theory. It consists of a simple antiparallel

magnetic field configuration where,

Bx = B0 tanh
( z
L

)
(2.13)

P =
P0

cosh2
(

z
L

) , (2.14)

jy =
B0

µ0L

1
cosh2

(
z
L

) , (2.15)

B2
0

2µ0
= PT = P0. (2.16)

The profiles of the magnetic field, current density and pressure are shown in Figure 2.1(a) and a

3D plot of magnetic field lines is shown in Figure 2.1(b). In Figure 2.1(a) it should be noted that

for the Harris sheet the pressure and current density have identical profiles and are therefore indis-
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(a) (b)

(c)

Figure 2.1: A 1D plot of the profiles of the magnetic field, current density and pressure for the
Harris Sheet (2.1(a)) combined with a 3D plot of magnetic field lines along z passing through
x = 0, y = 0 for the Harris sheet with no guide field (2.1(b)) and for the case with By = B0

(2.1(c)).
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tinguishable. There is no y component of the magnetic field and the current density is completely

perpendicular to the magnetic field. For this equilibrium it is the plasma pressure gradient that

maintains the force balance, with the maximum plasma pressure at the centre of the sheet.

The Harris Sheet with Constant Guide Field

A constant guide magnetic field in the y direction can be added to the Harris sheet without altering

the structure of the equilibrium. This guide field introduces a field aligned current but it is impor-

tant to remember that the current density is completely independent of the strength of the guide

magnetic field added. So adding a guide field to introduce a field aligned current is not the same

as a force-free equilibrium where increasing the shear of the magnetic field increases the current

density in the system. The constant guide field also adds no free energy to the system. Figure

2.1(c) shows a 3D plot of magnetic field lines for a constant guide field of By = B0. It can be

clearly seen how the constant guide field adds shear and twist to the system.

Linear Force-Free Field

A simple linear force-free field is given by,

Bx = B0 sin (αz) , (2.17)

By = B0 cos (αz) , (2.18)

B2 = constant (2.19)

jx =
αB0

µ0
sin (αz) , (2.20)

jy =
αB0

µ0
cos (αz) , (2.21)

P = PT −
B2

0

2µ0
= constant. (2.22)

The profiles of the magnetic field components and current density components are shown in Figure

2.2(a) and a 3D plot of magnetic field lines is shown in Figure 2.2(b) where α = 1.0. The magnetic

fields are periodic and the pressure is constant. The current density is completely aligned with the

magnetic field.
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(a) (b)

Figure 2.2: 1D plots of the profiles of the magnetic field components and current density compo-
nents for a linear force-free current sheet (2.2(a)) combined with a 3D plot of magnetic field lines
along z passing through x = 0, y = 0 (2.2(b)).

The Force-Free Harris Sheet

In contrast to the Harris sheet there is the force-free Harris sheet. This is a 1D non-linear force-free

equilibrium where,

Bx = B0 tanh
( z
L

)
, (2.23)

By =
B0

cosh
(

z
L

) , (2.24)

B2 = constant (2.25)

jx =
B0

µ0L

tanh
(

z
L

)
cosh

(
z
L

) , (2.26)

jy =
B0

µ0L

1
cosh2

(
z
L

) , (2.27)

P = PT −
B2

0

2µ0
= constant. (2.28)

The profiles of the magnetic field components and current density components with a 3D plot of

magnetic field lines are shown in Figure 2.3. There is in this case a spatially varying symmetric y

component of the magnetic field which is non-zero at the centre of the current sheet. The magnetic

pressure is constant. It is the y component of the magnetic field, rather than the plasma pressure,

that maintains the force balance. The current density is completely aligned with the magnetic field

and the size of the current density is now directly related to the shearing of the magnetic field.
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(a) (b)

Figure 2.3: 1D plots of the profiles of the magnetic field components and current density com-
ponents for the force-free Harris Sheet (2.3(a)) combined with a 3D plot of magnetic field lines
along z passing through x = 0, y = 0 (2.3(b)).

Increasing the shear of the field also increases the free energy in the system.

The Combined Harris Sheet

It is also possible to consider the equilbria in between these two extremes where the force balance

is maintained by a balance between the y component of the magnetic field and the plasma pressure

where,

Bx = Bx0 tanh
( z
L

)
, (2.29)

By =

√
B2

x0 − 2µ0P0

cosh
(

z
L

) =
By0

cosh
(

z
L

) , (2.30)

P =
P0

cosh2
(

z
L

) =

(
B2

x0 −B2
y0

)
2µ0

1
cosh2

(
z
L

) , (2.31)

jx =
By0

µ0L

tanh
(

z
L

)
cosh

(
z
L

) , (2.32)

jy =
Bx0

µ0L

1
cosh2

(
z
L

) (2.33)

2µ0PT = B2
x0, (2.34)

B2
x0

2µ0
≥ P0. (2.35)
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These types of equilibria will have current densities which are neither completely perpendicular,

nor completely aligned with the magnetic field. They will exhibit some of the properties of both

the Harris sheet and the force-free Harris sheet, depending on for example the strength of the

imposed shear field. A simple example is shown in Figure 2.4 which shows the profiles of the

magnetic field components, current density components and the pressure in Figure 2.4(a) and a

3D plot of magnetic field in Figure 2.4(b). In this example the ratio of the the maximum value of

By to the maximum value of Bx has been set to By0/Bx0 = 1/
√

5 and the maximum value of the

plasma pressure corresponds to 4/5 of the total pressure in the system (P0 = 4/5PT ).

(a) (b)

Figure 2.4: 1D plots of the profiles of the magnetic field components, current density components
and pressure for the combined Harris Sheet (2.4(a)) combined with a 3D plot of magnetic field
lines along z passing through x = 0, y = 0 (2.4(b)).

2.2 Multi-Fluid Theory

In the Sec. 2.1.1 important 1D MHD equilibria were described. These examples gave insight

in to some of the basic properties of different types of equilibria. It is highlighted, for example

that a force-free equilibrium must have a field aligned current and that the field will be highly

sheared and twisted, with the force balance being maintained by the magnetic pressure due to the

shear field and not the plasma pressure gradient. The opposite of this is for example the Harris

sheet (Harris 1962), where the force balance is maintained by the plasma pressure gradient and the

current density is completely perpendicular to the magnetic field. The main aim of this work was

to find kinetic equilibria analogous to the MHD equilibria shown so that the reconnection process
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starting from a pure pressure gradient balanced equilibrium, for example the Harris sheet (Harris

1962), could be compared to simulations starting from a completely force-free equilibrium, for

example the force-free Harris sheet. The motivation to study multi-fluid theory is that it treats

each particle species as a separate fluid. This means that although it is still not as complex as the

full kinetic theory it does already allow us to gain insight into the bulk properties of each particle

species. This information is useful in identifying key properties that will be needed when trying

to find Vlasov-Maxwell equilibria.

2.2.1 Multi-Fluid Equilibrium Equations

Consider the static states of the collisionless multi-fluid equations (∂/∂t = 0). The primary

equations that must be solved are,

∇ · (nsus) = 0, (2.36)

msns [(us · ∇)us] = nsqs [E + us ×B]−∇Ps, (2.37)

µ0j = ∇×B, (2.38)

∇ ·B = 0, (2.39)

where the assumption of isotropic pressure has been made. These equations are the continuity

equation, the momentum equation, Ampère’s law and the solenoidal condition. The electric field

can also be written as the gradient of a scalar function φ where,

E = −∇φ. (2.40)

2.2.2 1D Equilibria

Assuming that all quantities depend only on the z coordinate and that the magnetic field can be

derived from a vector potential A. The components of the magnetic field can then be written as

Bx = −dAy

dz
, (2.41)

By =
dAx

dz
. (2.42)

It is also assumed that the bulk velocities for each particle species only have components in the x

and y directions,

us = uxsex + uysey. (2.43)
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By making this assumption the continuity equation, Eq. (2.36) is automatically satisfied as uzs =
0, i.e.

d

dz
(nsuzs) = 0. (2.44)

Also the LHS of the momentum equation, Eq. (2.37) reduces to zero. Hence the primary equation

that must be solved is the momentum balance for each species,

nsqs [E + us ×B]−∇Ps = 0. (2.45)

The electric field only has a z component,

E = −dφ
dz

ez. (2.46)

The magnetic field is determined by Ampère’s law,

∇×B = µ0j (2.47)

= µ0

∑
s

nsqsus. (2.48)

It must be assumed that ns and Ps are related by an appropriate equation of state which can be

used later to determine the separate species quantities. To determine the equilibria, a sum of the

momentum equation over all species is carried out. Assuming quasineutrality,∑
s

nsqs = 0, (2.49)

the electric field can be eliminated. Summing the momentum equation over all species results in,

E

(∑
s

nsqs

)
+

(∑
s

nsqsus

)
×B−

∑
s

∇Ps = 0, (2.50)

and using quasineutrality the electric field is eliminated and the equation that is left to be solved

is,

j×B = ∇P =
dP

dz
ez, (2.51)

where the total plasma pressure is defined as

P =
∑

s

Ps. (2.52)
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There is no field line curvature so this is just the condition that the sum of the magnetic pressure

and plasma pressure across the sheet must be equal to a constant,

B2

2µ0
+ P = PT = a constant. (2.53)

The above equations show that the equilibrium solutions are exactly the same as those in MHD.

This includes the Harris sheet (Harris 1962) and the force-free Harris sheet. For a detailed de-

scription of these equilibria refer back to Sec. 2.1.1.

Two-Fluid Case

The advantage of multi-fluid theory is that information about the separate species quantities can

be gained. In this section, the bulk properties for each particle species for the 1D equilibria are

discussed where a two-fluid picture is assumed for simplicity. An equation of state for each fluid

is given by,

Ps = kBTsns, (2.54)

where Ts is the temperature of each particle species s and is assumed to be constant. Assuming

quasineutrality and a two component plasma where, qi = −qe = e,

P = kBn
∑

s

Ts. (2.55)

This implies the total pressure and the number density have the same profile,

P α n. (2.56)

Also, due to quasineutrality,

Ps = kBTsn, (2.57)

which implies that each species has the same pressure profile as the total pressure,

Ps α P. (2.58)

The bulk velocities can also be calculated in this case. The equation for the current density gives

one equation,

j = n
∑

s

qsus. (2.59)



2.2 Multi-Fluid Theory 25

Without loss of generality (in line with MHD), the overall bulk velocity of the fluid is set to zero.

This gives the added condition,∑
s

msus = 0. (2.60)

For just two species this is sufficient to calculate us as there are 4 equations and 4 unknowns.

Performing this calculation, the Harris sheet drift velocities are constant for each species and are

only in the y direction where,

uxi = uxe = 0, (2.61)

uyi = −meuye

mi
=

B0

en0µ0L

me

me +mi
= a constant. (2.62)

In the case of the force-free Harris sheet there is a spatially varying drift velocity for each species

in the x and y directions,

uxi = −meuxe

mi
=

1
eµ0n0L

me

(me +mi)
Bx

cosh( z
L)
, (2.63)

uyi = −meuye

mi
=

1
eµ0n0L

me

(me +mi)
By

cosh( z
L)
. (2.64)

Finally the electric field can be calculated. Multiplying the equation of motion by ms and sum-

ming over all species, the electric field is written as,

E =

∑
s

ms
qs
∇Ps

n
∑

sms
. (2.65)

It is concluded that E = 0 in the force-free case as the pressure for each species, Ps, must be

equal to a constant. As a final remark, the equation of motion only determines the component of

us perpendicular to B. The parallel component will remain free apart from the constraint provided

by the parallel component of j. The important properties to note are that, in the case of the Harris

sheet, it is the spatially varying number density that maintains the force balance. The particle

density for each species is a maximum at the centre of the current sheet and drops away to zero

as you move away from the centre. There is a constant average drift velocity in the y direction for

each species which gives rise to the perpendicular current density jy. In the force-free case the

force balance is maintained by a spatially varying drift velocity for each species in both the x and

y directions. The particles drift faster at the centre of the sheet than far away from the centre. It is

these differences that are important when considering an investigation to find analogous equilibria

in Vlasov theory.
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2.3 Summary

In this chapter an overview of important MHD equilibria has been presented. One of the aims

of this work is to investigate 1D Vlasov-Maxwell which are analogous to 1D MHD equilibria,

to determine general conditions for force-free VM equilibria and in particular to find distribution

functions that have the force-free Harris sheet as a solution of the steady state Vlasov-Maxwell

equations. Therefore in this chapter the general properties of 1D MHD equilibria and some impor-

tant cases have been discussed, as preparation for the discussion of 1D VM equilibria in Chapter

3.

Two examples of force-free fields are shown. A periodic linear force-free field and the non-linear

force-free Harris sheet. In both cases in comparison to the Harris sheet the force-free solutions

have highly sheared magnetic fields. In the force-free cases the force balance is always maintained

by the shear magnetic field and the pressure is constant. In the opposite Harris sheet case the cur-

rent density is completely perpendicular to the magnetic field and there is no shearing of the field.

The force balance is maintained by the plasma pressure gradient across the sheet. A combined

Harris sheet case is also shown where the force balance is maintained by a balance between the

shear field and the plasma pressure gradient. In this case the magnetic fields are sheared but the

shear is not as great as in the force-free case. The combined Harris sheet case shows that as you

make the transition from the anti-parallel Harris sheet through to the force-free Harris sheet the

magnetic fields become more sheared and there is a trade off between the plasma pressure and the

shear field in the force-balance equation.

Multi-fluid equilibria have also been considered. Multi-fluid theory treats each particle species

as a separate fluid and therefore gives an insight in to the bulk particle properties. Firstly it was

shown that, assuming a quasineutral plasma and an isotropic pressure that the overall equilibria

are identical to the MHD cases. The Harris sheet, combined Harris sheet and the force-free Harris

sheet are all solutions of the multi-fluid equations.

In particular the two fluid case was considered where qi = −qe = e and assuming an ideal

equation of state and constant temperatures it was shown that the pressure profile for each species

will be proportional to the quasineutral number density. Making the assumption that the overall

fluid is at rest which is equivalent to the MHD case where there is no bulk velocity the average drift

velocities for each particle species for the Harris sheet and force-free Harris sheet were found. In

the Harris sheet case there is a constant drift in the y direction consistent with the current density

being completely perpendicular to the magnetic field. In the force-free Harris sheet case there

is an average drift of each particle species in the x and y directions which is spatially varying

and aligned with the magnetic field, which is consistent with the definition of a force-free field.

Knowledge of the average drift velocites for each particle species are important as it shows that

in the Harris sheet case with a constant average drift of each particle species in the y direction
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there must be a large number density at the centre of the current sheet which drops off to zero

far away from the current sheet that maintains the force balance across the sheet. In the opposite

case of the force-free Harris sheet case the particles drift in a direction aligned with the magnetic

field and they drift faster at the centre of the current sheet and slower far away. It is the spatially

varying drift velocity that maintains the force balance. Therefore a distribution function which can

describe a force-free solution must give rise to a constant number density and spatially varying

average drift velocities for each particle species. It will now be shown how this can be achieved

in Vlasov-Maxwell equilibrium theory.



Chapter 3

Vlasov Equilibrium Theory

Parts of the work in this chapter can be found in Harrison and Neukirch (2009b) and Harrison and

Neukirch (2009a).

3.1 Introduction

Plasma equilibria are suitable starting points for investigations of, for example, plasma instabili-

ties and plasma waves. In Chap. 2, 1D fluid equilibria have been mentioned including single fluid

MHD and also collisionless multi-fluid theory with the assumption of isotropic pressure. For colli-

sionless plasmas though, the most relevant equilibria are self-consistent solutions of the stationary

Vlasov-Maxwell (VM) equations, (see e.g. Krall and Trivelpiece 1973; Schindler 2007).

This chapter focuses exclusively on non-relativistic one-dimensional quasi-neutral VM equilibria

with translational symmetry, with the distribution functions depending only on the Hamiltonian

and the two canonical momenta corresponding to the invariant directions (here chosen to be the

x- and y-directions). A large amount of work on translationally invariant 1D VM equilibria of

this kind has been done before (e.g. Tonks 1959; Grad 1961; Harris 1962; Bertotti 1963; Hurley

1963; Nicholson 1963; Sestero 1964, 1966; Sestero and Zannetti 1967; Lam 1967; Parker 1967;

Lerche 1967; Davies 1968, 1969; Alpers 1969; Su and Sonnerup 1971; Kan 1972; Channell 1976;

Lemaire and Burlaga 1976; Roth 1976; Mynick et al. 1979; Lee and Kan 1979b,a; Greene 1993;

Roth et al. 1996; Attico and Pegoraro 1999; Mottez 2003, 2004; Fu and Hau 2005; Yoon et al.

2006), especially on one-dimensional current sheets and plasma boundary layers, which are of

fundamental importance for the structure and stability of plasmas as many plasma activity pro-

cesses, especially magnetic reconnection, (see e.g Biskamp 2000; Priest and Forbes 2000) happen

there preferentially.

28
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The aim of this work is not only to add to the solutions of 1D VM that already exist, but to use

some generic properties of the 1D VM equilibrium problem to investigate the conditions for the

existence of force-free 1D VM equilibria (see e.g. Tassi et al. 2008) and to find a VM equivalent of

the force-free Harris sheet. An obvious property of 1D VM equilibria is that the structure needs to

be in force balance. In the quasi-neutral case this means that the sum of the magnetic pressure and

one of the diagonal components of the pressure tensor has to be constant. The relevant component

of the pressure tensor is the one for the single spatial coordinate upon which the equilibria depend.

The z coordinate is chosen, so the component of the pressure tensor in the force balance equation

will be Pzz . In a number of papers it has also been noticed that the translationally invariant 1D

VM problem is equivalent to the motion of a pseudo-particle in a conservative pseudo-potential

and/or that the force balance for the 1D VM structure is equivalent to pseudo-energy conservation

(see e.g. Grad 1961; Sestero 1966; Lam 1967; Parker 1967; Lerche 1967; Alpers 1969; Su and

Sonnerup 1971; Kan 1972; Channell 1976; Mynick et al. 1979; Lee and Kan 1979b,a; Greene

1993; Attico and Pegoraro 1999); the pseudo-particle analogy has also recently been used for

MHD equilibria in Tassi et al. (2008).

Directly connected to the pseudo-particle analogy and the related pseudo-energy conservation law

(equivalent to force balance of the 1D VM equilbrium) is the special role played by Pzz . As

was first noticed by Grad (Grad 1961) for the case of vanishing electric potential and only one

non-vanishing magnetic field and vector potential component, but otherwise arbitrary distribution

functions, the derivative of Pzz with respect to the non-vanishing component of the vector poten-

tial equals (modulo constants) the current density. This was generalized by Bertotti (Bertotti 1963)

who included a non-vanishing electric potential and showed that the partial derivative of Pzz with

respect to the electric potential is proportional to the charge density (see also Schindler et al. 1973;

Schindler 2007, for the same conclusion for 2D VM equilibria). Lerche (Lerche 1967) then gener-

alized this to equilibria with two magnetic field, vector potential and current density components,

but for a restricted class of distribution functions. Channell (Channell 1976) investigated the case

of vanishing electric potential and a special class of distribution functions for which he showed

that the two components of the current density are, again modulo constant factors, given by the

partial derivatives of the particle density with respect to the components of the vector potential.

If investigated carefully one can see that the full expressions including the constant factors are

again the partial derivatives of Pzz with respect to the components of the vector potential. Using

the force balance condition, Mynick et al. (Mynick et al. 1979) then showed that, independently

of the distribution function, the partial derivatives of Pzz with respect to the electric potential and

the two components of the vector potential are always proportional to the charge density and the

components of the current density, respectively. They also showed that this property is maintained

under the assumption of quasi-neutrality. The authors then use this property to construct 1D VM

equilibria with certain defined properties. The special role of Pzz in the context of 1D VM equi-

libria has also been emphasized by Attico and Pegoraro (Attico and Pegoraro 1999), again for the
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case of vanishing electric potential. Similarly to Channell (Channell 1976), they used this prop-

erty to construct a number of special distribution functions for 1D VM equilibria. More recently,

Mottez (Mottez 2004) gave a detailed discussion of the role of the full pressure tensor (not just

of one component) for distribution functions of the same type as discussed by Channell (Channell

1976), but including the case of non-vanishing electric potential.

The properties of Pzz make it a very useful quantity to start any investigation of 1D VM equilibria,

since all other quantities such as particle density, charge density and current density can be derived

by differentiation. Pzz is also equivalent to the pseudo-potential of the analogous pseudo-particle

problem and can thus be used to study the properties of 1D VM equilibria qualitatively without

the need to solve the equilibrium differential equations. In particular, the pseudo-particle analogy

can be used to formulate conditions on Pzz that it has to satisfy to allow the existence of 1D force-

free VM equilibria (Tassi et al. 2008). So far only linear force-free 1D VM equilibria are known

(Sestero 1967; Bobrova and Syrovatskiǐ 1979; Correa-Restrepo and Pfirsch 1993; Bobrova et al.

2001) and the pseudo-particle analogy can also give some insight into the types of distribution

functions permitting a linear force-free solution.

Therefore this chapter is laid out such that in Sec. 3.2 the basic general theory of quasi-neutral 1D

VM equilibria with three constants of motion is presented, rederiving the basic equations given

first by Mynick et al. (Mynick et al. 1979) directly from the definitions of the basic quantities. In

Sections 3.3 - 3.5 several examples of 1D Vlasov-Maxwell equilibria are given which emphasise

the usefulness of the properties of Pzz . In Sec. 3.6 general properties of 1D force-free VM

equilibria are discussed based on the one-to-one correspondence of the mathematical problem

with the motion of a pseudo-particle in a conservative 2D pseudo-potential. Finally Sec. 3.7 and

3.8 show how the Pzz component of the pressure tensor can be used to determine a distribution

function for the force-free Harris sheet and how this can be extended to a complete family of

equilibria that describe the transition between the Harris sheet and the force-free Harris sheet. The

conclusions are presented in Sec. 3.9.

3.2 General Theory

It is assumed that all quantities depend only on z and that the magnetic field has components Bx

and By. The magnetic field components are written in terms of a vector potential

A = (Ax, Ay, Az) where,

Bx = −dAy

dz
, (3.1)

By =
dAx

dz
, (3.2)
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and the electric field is the gradient of an electric potential φ such that,

E = −∇φ = −dφ
dz

ez. (3.3)

In this case B and E automatically satisfy the homogeneous steady state Maxwell equations

∇ ·B = 0 and ∇×E = 0.

Due to the symmetries of the system (time independence and spatial independence of x and y) the

three obvious constants of motion for each particle species are the Hamiltonian or particle energy

for each species s,

Hs =
1
2
ms(v2

x + v2
y + v2

z) + qsφ, (3.4)

the canonical momentum in the x direction, pxs,

pxs = msvx + qsAx, (3.5)

and the canonical momentum in the y direction, pys,

pys = msvy + qsAy, (3.6)

where ms and qs are the mass and charge of each species. All positive functions fs satisfying the

appropriate conditions for existence of the velocity moments and depending only on the constants

of motion,

fs = fs (Hs, pxs, pys) , (3.7)

solve the steady-state Vlasov equation,

v · ∂fs

∂r
+

qs
ms

(E + v ×B) · ∂fs

∂v
= 0. (3.8)

To calculate the 1D Vlasov-Maxwell equilibria the remaining inhomogeneous steady-state Maxwell

equations, ∇ ·E = σ/ε0 and ∇×B = µ0j must be solved. These equations reduce to,

− d2φ

dz2
=

1
ε0
σ (Ax, Ay, φ) , (3.9)

−d
2Ax

dz2
= µ0jx (Ax, Ay, φ) , (3.10)

−d
2Ay

dz2
= µ0jy (Ax, Ay, φ) , (3.11)

where the source terms are the electric charge density and the current densities in the x and z

directions, which are defined as velocity moments of the equilibrium distribution functions, fs, in
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the following way,

σ (Ax, Ay, φ) =
∑

s

qs

∫ ∞

−∞
fs

(
msv

2

2
+ qsφ,msvx + qsAx,msvy + qsAy

)
d3v,

(3.12)

jx(Ax, Ay, φ) =
∑

s

qs

∫ ∞

−∞
vxfs

(
msv

2

2
+ qsφ,msvx + qsAx,msvy + qsAy

)
d3v,

(3.13)

jy(Ax, Ay, φ) =
∑

s

qs

∫ ∞

−∞
vyfs

(
msv

2

2
+ qsφ,msvx + qsAx,msvy + qsAy

)
d3v.

(3.14)

Here, the dependence of the charge and current densities on the electric and vector potentials has

been made visible explicitly. Independent of the choice of distribution function fs, it can be shown

(see appendix A) that the charge and current density components always satisfy the equations,

∂σ

∂Ax
+
∂jx
∂φ

= 0, (3.15)

∂σ

∂Ay
+
∂jy
∂φ

= 0, (3.16)

∂jx
∂Ay

− ∂jy
∂Ax

= 0. (3.17)

These equations are completely analogous to the relation derived by Schindler and co-workers

(Schindler et al. 1973; Schindler 2007) for the case of distribution functions depending only on

the Hamiltonian and a single canonical momentum. Equations (3.15) - (3.17) imply the existence

of a potential P (Schindler 2007), where P is given by,

P (Ax, Ay, φ) =
∑

s

∫ ∞

−∞
msv

2
zfsd

3v, (3.18)

which is identified as the Pzz component of the pressure tensor. The Eqs. (3.15) - (3.17) are

necessary conditions for the force balance of the Vlasov-Maxwell equilibria, which has been

emphasized before by many authors for special cases (see e.g. Grad 1961; Hurley 1963; Lam

1967; Parker 1967; Lerche 1967; Alpers 1969; Su and Sonnerup 1971; Kan 1972; Channell 1976;

Lemaire and Burlaga 1976; Roth 1976; Lee and Kan 1979b,a; Greene 1993; Roth et al. 1996;

Attico and Pegoraro 1999); the sum of the plasma pressure and magnetic pressure must be equal

to a constant. The charge density, σ, and the current densities, jx and jy, are given by partial

derivatives of the pressure tensor with respect to the electric potential, φ and the components of

the vector potential, Ax and Ay, in the following way (see Appendix A for details):

σ = −∂P
∂φ

, (3.19)
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jx =
∂P

∂Ax
, (3.20)

jy =
∂P

∂Ay
. (3.21)

They highlight the important relations between the current density components and the Pzz com-

ponent of the pressure tensor. Throughout this work a quasineutral plasma consisting of two

species (electrons and ions) of opposite charge (|qs| = e) will always be assumed. Quasineutrality

can be assumed as long as all length scales are much larger than the Debye length. Quasineutrality

does not generally imply that the electric field vanishes (Schindler 2007; Schindler and Birn 2002;

Neukirch 1993).

Quasineutrality corresponds to (3.9) being replaced by

σ (Ax, Ay, φ) = −∂P
∂φ

= 0. (3.22)

This in general can then be inverted to give the quasineutral electric potential φqn where,

φqn = φqn (Ax, Ay) . (3.23)

The potential P is then replaced by its quasineutral version Pqn, where Pqn is a function only of

Ax and Ay,

Pqn(Ax, Ay) = P (Ax, Ay, φqn(Ax, Ay)). (3.24)

It should be noted that due to Eq. (3.22),(
∂Pqn

∂Ax

)
Ay

=
(
∂P

∂Ax

)
Ay ,φ

+
(
∂φqn

∂Ax

)
Ay

(
∂P

∂φ

)
Ax,Ay

=
(
∂P

∂Ax

)
Ay ,φ

, (3.25)

where it is understood that on the right hand side P is evaluated using the quasineutral electric

potential and the subscripts indicate explicitly which quantities are being kept constant during the

differentiation. An analogous equation holds for the derivative of Pqn with respect to Ay. Thus in

Eqs. (3.20) and (3.21) the derivatives of P can be replaced by derivatives of Pqn in the quasineutral

case. Using Eqs. (3.20) and (3.21) Ampère’s law can be written as,

− d2Ax

dz2
= µ0

∂Pqn

∂Ax
, (3.26)

−d
2Ay

dz2
= µ0

∂Pqn

∂Ay
. (3.27)

The resulting Vlasov-Maxwell equilibria can now be found by solving these two coupled second

order differential equations.
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It has been noticed before for particular distribution functions that the charge and current densities

can be written as partial derivatives of a single function of the electric and the vector potential

(Kan 1972; Lee and Kan 1979b,a) as shown in Eqs. (3.19)-(3.21).

Grad (Grad 1961) seems to have been the first to notice the special role played by Pzz for the 1D

VM equilibrium problem, but he only investigated the special case of vanishing electric potential

and only one non-vanishing component of the magnetic field and vector potential. In that case

there is no need to invoke the quasi-neutrality condition and only one of the two Eqs. (3.20) and

(3.21) is non-trivial.

For the φ = 0 case and a set of special assumptions for the distribution functions, Lerche (Lerche

1967) was able to relate the derivatives of Pzz with respect to Ax and Ay to the respective current

densities. For φ = 0 and a similar assumption for the distribution functions, other authors (Parker

1967; Su and Sonnerup 1971) also noticed that the current density is related to derivatives of a

single function with respect to Ax and Ay, but did not relate that function to Pzz .

Channell (Channell 1976) showed that for φ = 0 and distribution functions of the type

fs = f0s exp(−βsHs)gs(pxs, pys),

the current density components are given by the equations,

jx =
(

1
βe

+
1
βi

)
∂N

∂Ax
,

jy =
(

1
βe

+
1
βi

)
∂N

∂Ay
.

Here the plasma has been assumed to consist of two particle species (electron and ions), βs =
1/(kBTs) and N(Ax, Ay) is the particle density of one of the species. Another assumption made

by Channell (Channell 1976) is thatNe(Ax, Ay) is the same function ofAx andAy asNi(Ax, Ay),
which has implications for the distribution functions as well. It is easy to see that under these

assumptions,

Pzz =
(

1
βe

+
1
βi

)
N(Ax, Ay),

which is, of course, consistent with the Eqs. (3.20) and (3.21).

Using force balance as an argument to show the validity of Eqs. (3.19) - (3.21), Mynick et al.

(Mynick et al. 1979) then ultimately derived the general theory presented above. Their approach

is of course completely equivalent to the one shown here, but here these equations are shown

starting from the velocity moments and Eqs. (3.15) - (3.16).
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Attico and Pegoraro (Attico and Pegoraro 1999) also noticed the connection between the current

density and the partial derivatives of Pzz , again for the case φ = 0 and for basically the same class

of distribution functions used by Channell (Channell 1976). In their case the distribution functions

are constructed by linear superpositions of distribution functions of the Harris sheet (Harris 1962)

type

fs = f0s exp(−βsHs)
∫

Φ(uxs, uys) exp[βs(uxspxs + uyspys)]duxsduys.

The authors point out that for their case Eq. (3.17) is a necessary condition for the existence of a

single function from which the current density can be derived by differentiation, and show that it

is satisfied for their class of distribution functions and that this function is Pzz (modulo constant

factors).

Equations (3.26) and (3.27) are just the Hamiltonian equations for a pseudo particle with coor-

dinates (Ax, Ay) moving in a conservative pseudo 2D potential µ0Pqn(Ax, Ay). The differential

equations (3.26) and (3.27) can be derived from the Hamiltonian,

HA =
1
2

(
dAx

dz

)2

+
1
2

(
dAy

dz

)2

+ µ0Pqn (Ax, Ay) . (3.28)

The Hamiltonian represents the total energy of the pseudo particle and is equivalent to the Vlasov-

Maxwell equilibrium condition that the total pressure PT is constant. The magnetic pressure is

equivalent to the kinetic energy and the plasma pressure to the potential energy. Knowledge of

Pqn as function of Ax and Ay allows us to predict the nature of the solution using pseudo-energy

conservation without solving Eqs. (3.26) and (3.27) explicitly. The gradient of the potential

corresponds to the gradient of the magnetic fields, so that where the potential surface has steep

gradients, there will be steep gradients in the magnetic field components and therefore large cur-

rent densities. Again, one or several of these properties have been noticed by a large number of

authors for special cases (see e.g. Grad 1961; Bertotti 1963; Nicholson 1963; Sestero 1966; Lam

1967; Parker 1967; Lerche 1967; Alpers 1969; Su and Sonnerup 1971; Kan 1972; Channell 1976;

Lemaire and Burlaga 1976; Roth 1976; Mynick et al. 1979; Lee and Kan 1979b,a; Greene 1993;

Attico and Pegoraro 1999; Mottez 2003).

3.3 Examples of 1D-VM Equilibria

In this section the general theory that has been discussed in Sec. 3.2 will be applied to discuss

examples of 1D Vlasov-Maxwell equilibria. The distribution functions are exponential functions

whose arguments are at most quadratic in the velocity components. This class of distribution

function contains many well known special cases.
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The most general function which can be constructed out of the constants of motion and which is

quadratic in the velocities is a function of a multiple of

H̄s = Hs −
as

ms
p2

xs −
bs
ms

p2
ys −

cs
ms

pxspys − uxspxs − uyspys, (3.29)

where as, bs, cs, uxs and uys are constants. The coefficients as, bs and cs have no dimension,

whereas uxs and uys have the dimension of velocity. The constant cs is set to zero for reasons of

simplicity. Each term quadratic in the canonical momenta gives rise to a similar term in the vector

potentials after the distribution function is integrated over velocity space. Thus the pxspys term

corresponds to an AxAy term in the particle density, current density and pressure. Such a mixed

quadratic term can, however, always be eliminated by an appropriate choice of coordinate system.

This would not necessarily imply cs = 0 at distribution function level, but the mixed term is not

of critical importance for the discussion and thus is omitted here. It is remarked that the velocity

space integral (3.18) defining P only exists if as > 1/2 and bs > 1/2. The coefficients as and

bs can be related to the temperature anisotropy of the distribution function (see e.g. Bobrova et al.

2001).

A distribution function of the form,

fs =
n0s

v3
th,s

exp(−βsH̄s), (3.30)

is assumed where n0s is a constant normalizing particle density, βs = 1/kBTs is the inverse tem-

perature and vth,s = (2π/msβs)1/2 is the thermal velocity. Clearly, these distribution functions

are part of the class of distribution functions discussed by Channell (Channell 1976) and by Attico

and Pegoraro (Attico and Pegoraro 1999).

For the distribution function (3.30) the zz-component of the pressure tensor is given by,

P =
∑

s

1
βs

exp(−βsqsφ)Ns(Ax, Ay), (3.31)

where,

Ns(Ax, Ay) = n̄0s exp(r1sA
2
x + r2sA

2
y + r3sAx + r4sAy). (3.32)

Equation (3.32) uses the definitions,

n̄0s =
√

1/[(1− 2as)(1− 2bs)] exp{βsms[u2
xs/(1− 2as) + u2

ys/(1− 2bs)]/2}n0s (3.33)

r1s = βsasq
2
s/[ms(1− 2as)], (3.34)

r2s = βsbsq
2
s/[ms(1− 2bs)], (3.35)

r3s = βsuxsqs/(1− 2as), (3.36)
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r4s = βsuysqs/(1− 2bs). (3.37)

The charge density is calculated using Eq. (3.19):

σ =
∑

s

qs exp(−βsqsφ)Ns(Ax, Ay), (3.38)

and the quasi-neutrality condition σ = 0 then gives,

φqn =
1

e(βe + βi)
ln
(
Ni

Ne

)
. (3.39)

One can see immediately that the quasi-neutral electric field will only vanish for a choice of

parameters such that Ne(Ax, Ay) ∝ Ni(Ax, Ay).

The quasi-neutral Pzz is given by,

Pqn =
βe + βi

βeβi
Nβi/(βe+βi)

e N
βe/(βe+βi)
i

= P0 exp(r1,qnA
2
x + r2,qnA

2
y + r3,qnAx + r4,qnAy), (3.40)

with

P0 =
βe + βi

βeβi
n̄

βi/(βe+βi)
0e n̄

βe/(βe+βi)
0i , (3.41)

r1,qn =
βeβi

βe + βi
e2
[

ae

me(1− 2ae)
+

ai

mi(1− 2ai)

]
, (3.42)

r2,qn =
βeβi

βe + βi
e2
[

be
me(1− 2be)

+
bi

mi(1− 2bi)

]
, (3.43)

r3,qn =
βeβi

βe + βi
e

[
uxi

1− 2ai
− uxe

1− 2ae

]
, (3.44)

r4,qn =
βeβi

βe + βi
e

[
uyi

1− 2bi
− uye

1− 2be

]
. (3.45)

The x- and y-components of the current density can be calculated from Eqs. (3.20) and (3.21),

resulting in

jx = P0(2r1,qnAx + r3,qn) exp(r1,qnA
2
x + r2,qnA

2
y + r3,qnAx + r4,qnAy), (3.46)

jy = P0(2r2,qnAy + r4,qn) exp(r1,qnA
2
x + r2,qnA

2
y + r3,qnAx + r4,qnAy). (3.47)

At this point it is convenient to normalize all quantities. Normalizing the magnetic field to a typical

value B0 and the coordinate z to a typical length scale L. The components of the vector potential

are then normalized by B0L and the normalized coefficients are defined by r̄1,qn = B2
0L

2r1,qn,
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r̄2,qn = B2
0L

2r2,qn, r̄3,qn = B0Lr3,qn and r̄4,qn = B0Lr4,qn. The pressure Pqn is normalized

by B2
0/µ0 and, finally, the current density components are normalized by µ0L/B0. From now on

it is assumed that all quantities have been normalized in the way just described and the notation

for normalization is suppressed in what follows, with the exception of one example where the

dimensional form is used to show the explicit parameter dependence.

The vector potential components Ax and Ay are determined by the solutions of the two cou-

pled nonlinear ODEs (3.26) and (3.27), which for the most general case, in which none of the

coefficients ri,qn vanishes, would have to be solved by numerical methods. However, using the

equivalence of the problem to the in plane motion of a pseudo-particle in a potential Pqn(Ax, Ay),
one can usually see what types of solutions can be expected. In the following discussion solu-

tions which have been obtained using a standard fourth-order Runge-Kutta method are also shown

(Press et al. 1992).

3.3.1 The case r1,qn and r2,qn non-zero

Without loss of generality, in this case a different gauge can be chosen by letting (A′x, A
′
y) =

(Ax − Ax0, Ay − Ay0), where (Ax0, Ay0) = (−r3,qn/2r1,qn,−r4,qn/2r2,qn). This removes the

linear terms in the exponential function in Pqn and changes the current densities accordingly in

the following way

Pqn = P̄0 exp(r1,qnA
′
x
2 + r2,qnA

′
y
2), (3.48)

jx = 2P̄0r1,qnA
′
x exp(r1,qnA

′
x
2 + r2,qnA

′
y
2), (3.49)

jy = 2P̄0r2,qnA
′
y exp(r1,qnA

′
x
2 + r2,qnA

′
y
2), (3.50)

where

P̄0 = P0 exp[−r23,qn/(4r1,qn)− r24,qn/(4r2,qn)]. (3.51)

This simply amounts to a shift of the origin of the coordinate system in the equivalent pseudo-

particle problem.

3.3.2 The case r1,qn and r2,qn negative

In the case of as < 0, bs < 0, both r1,qn and r2,qn are negative and the pseudo-potential

Pqn(Ax, Ay) is a 2D Gaussian with elliptic contours with semi-axis r−1/2
1,qn and r−1/2

2,qn having its

maximum value P̄0 at the origin. The motion of a pseudo-particle can be thought of as a scattering

problem with the details depending on the initial conditions (see Fig. 3.1).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.1: Plots for the case with r1,qn = −1, r2,qn = −1 and P̄0 = 1. In each example the
figure on the right shows a surface plot of the potential Pqn with the pseudo-particle trajectory in
the Ax-Ay-plane plotted above it, that corresponds to the magnetic field profiles shown on the left
for different initial conditions.
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If the initial kinetic energy of the particle (equivalent to the initial magnetic pressure in the VM

equilibrium) is smaller than the maximum value of the potential the particle will usually move

over the flanks of the potential hill, changing direction in the process. The change in direction will

depend on the initial coordinates and also on the initial direction of approach as Pqn is usually

not a central potential. For example, if the particle approaches the origin exactly along one of

the coordinate axes, it will eventually stop, turn around and go back along the same trajectory,

eventually returning to its initial coordinates with a velocity which has the same magnitude, but

opposite direction to the initial velocity. The equivalent VM equilibrium would be a neutral sheet

with a constant, but oppositely directed magnetic field at large distances on both sides of the sheet

and a vanishing magnetic field in the centre of the sheet (corresponding, of course, to the turning

point where the particle velocity vanishes). Both the vector potential and the magnetic field will

only have one non-vanishing component in this special case. An example of this type is shown in

the top two plots of Fig. 3.1. Figure 3.1(b) shows the potential surface with the particle trajectory

in the Ax-Ay-plane overlaid. Solutions of this type have been discussed by Lam (Lam 1967), but

starting from a pressure function depending only on one vector potential component.

Figure 3.1(c) and 3.1(d) are for the case where the initial kinetic energy of the particle is less than

the maximum value of the potential but the vector potential and magnetic field now both have two

non-vanishing components. In this case the particle is scattered by the potential but importantly is

still reflected and therefore the x component of the field is still oppositely directed either side of

z = 0.

If the particle happens to have an initial kinetic energy which is exactly equal to the maximum

value of the potential and approaches the origin along one of the coordinate axes, it will asymp-

totically approach the origin itself and thus the maximum of the potential. This solution has also

been previously discussed by Lam (Lam 1967) and also corresponds to Case A discussed in the

paper by Channell (Channell 1976), albeit in both cases using a pseudo-potential depending only

on one component of the vector potential. The solution, however, will be the same. Figures 3.1(e)

and 3.1(f) show an example where the particle’s initial kinetic energy is almost equal to the maxi-

mum value of the potential. The particle approaches along the Ay axis and therefore there is only

one non-vanishing component of the vector potential and magnetic field. The particle trajectory,

shown overlaid on the pressure potential in Figure 3.1(f) gets very close to the peak of the poten-

tial surface. The significant slowing of the particle as it gets close to the peak of the potential is

evident in the flattening of the profile of the x component of the magnetic field around z = 0.

For any other approach trajectory the particle will not return to its initial Ay coordinate and the

velocity will not vanish at any point along the trajectory. These particle trajectories correspond

to 1D current sheets with a sheared magnetic field, for which the magnetic field strength on both

sides of the sheet is the same, but the field direction is not anti-parallel as in the case of the neutral

sheet and these solutions will have two non-vanishing components of the vector potential and the
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magnetic field.

If the initial kinetic energy is larger than the maximum of the pseudo-potential similar conclusions

apply, but now if the particle approaches the origin along one the coordinate axes, it will only slow

down, move over the maximum and accelerate back to its initial velocity. This corresponds to 1D

VM equilibria for which the field does not change direction, but merely shows a decrease in field

strength in the centre of the sheet. In this case, the current density has a spatial structure which is

quite different from the neutral sheet case, because it has two layers of currents flowing in opposite

directions with vanishing current density at the centre of the sheet (Nicholson 1963; Lam 1967).

Figures 3.1(g) and 3.1(h) shows an example of this type of solution. Figure 3.1(g) shows the

profile of the x component of the field. The decrease in the magnetic field strength corresponding

to the slowing of the particle is evident. Figure 3.1(h) showing the particle trajectory illustrates

that the particle is not reflected but simply keeps moving in the same direction, despite being

slowed as it moves close to the maximum of the potential.

3.3.3 The case r1,qn and r2,qn positive

If as and bs are positive, r1,qn and r2,qn are also positive. In this case Pqn has a minimum at

the origin and tends to infinity for |Ax|, |Ay| → ∞. The corresponding potential will therefore

confine the particle to a finite domain about the origin, with the size of the domain depending on

the total energy. The nature of the particle motion in each direction will be quasi-periodic, but with

different and usually incommensurate periods in the Ax and Ay directions. The trajectories will

therefore generally not be closed trajectories. An example of such a solution is shown in Fig. 3.2

with initial conditions Ax = 0, Ay = 0.45, Bx = 0, By = 0.45 at z = 0 and the parameter values

have been chosen such that r1,qn = 1, r2,qn = 2 and P̄0 = 1. Figure 3.2(a) shows the profiles of

the magnetic field components. It can be clearly seen that the magnetic fields, rather than having

a localised current sheet like structure, now exhibit oscillatory motion. Figure 3.2(b) shows a plot

of the pressure function with the particle trajectory overlaid. The particle moves in an oscillatory

way but the orbit is not closed. It can be shown that j ·B 6= 0 which confirms that there are field

aligned components of the current density. One can show that the drift velocity for each particle

species is spatially varying, which was found from the study of collisionless two fluid theory in

Sec. 2.2 of Chap. 2 to be an important property of force-free equilibria. The orbits of the pseudo

particle in this potential will in general be quasi-periodic with a corresponding behaviour of the

magnetic field components. There are also oscillatory current density components.

An interesting special case, is when r1,qn = r2,qn = rqn. In this case the pseudo-potential is

a central potential and among other orbits, also allows for circular orbits, because the (pseudo-)

angular momentum is conserved. Circular orbits correspond toA2
x +A2

y = constant, which makes

Eqs. (3.49) and (3.50) linear and allows analytical solutions. This case has been discussed by
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(a) (b)

Figure 3.2: Plots for the case with r1,qn = 1, r2,qn = 2 and P̄0 = 1. The figure on the right shows
a surface plot of the potential Pqn with the pseudo-particle trajectory in the Ax-Ay-plane plotted
above it, that corresponds to the magnetic field profiles shown on the left.

Sestero (1967), Correa-Restrepo and Pfirsch (1993), Bobrova and Syrovatskiǐ (1979), Bobrova

et al. (2001) and Harrison and Neukirch (2009b) and leads to linear force-free solutions of the

form

B = B0(sinαzex + cosαzey), (3.52)

where the boundary conditions are chosen to be Bx = 0, By = B0 for z = 0. It is interesting

to discuss this case in more detail where the analysis by Bobrova et al. (2001) is followed, in

which a slightly different notation is used which shows explicitly how as and bs can be related

to the temperature anisotropy. Dropping the previous normalisation, the distribution function in

dimensional form is,

fs = cs exp
[
− 1
Ts⊥

Hs +
∆Ts

2msTs⊥Ts‖

(
p2

xs + p2
ys

)]
, (3.53)

where cs is a normalising constant,

cs =
n0sm

3/2
s

(2π)3/2T
1/2
s⊥ Ts‖

, (3.54)

Ts⊥ is the temperature in the z direction, Ts‖ is the temperature in the x and y directions for each

particle species and

∆Ts = Ts‖ − Ts⊥ ≥ 0. (3.55)
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In terms of this notation the drift velocities for each particle species are

Vs
d(z) =

qs
ms

∆Ts

Ts⊥
A. (3.56)

Examination of the distribution function leads to the conclusion that for an equilibrium solution

to exist at least one of the plasma species must have a temperature anisotropy. This means that at

least one particle species must satisfy the condition that ∆Ts = Ts‖ − Ts⊥ 6= 0.

For the distribution function (3.53) the zz-component of the pressure tensor is given by,

P =
∑

s

Ts⊥ exp
(
− qsφ
Ts⊥

)
Ns(Ax, Ay), (3.57)

where

Ns(Ax, Ay) = n0s exp
(
rsA

2
)
, (3.58)

and the definitions of rs is

rs =
1
2
q2s
ms

∆Ts

T 2
s⊥
A2. (3.59)

The charge density is calculated using Eq. (3.19):

σ =
∑

s

qs exp
(
− qsφ
Ts⊥

)
Ns(Ax, Ay), (3.60)

and the quasi-neutrality condition σ = 0 then gives

φqn =
Te⊥Ti⊥

e(Te⊥ + Ti⊥)
ln
(
Ni

Ne

)
. (3.61)

One can see immediately that the quasi-neutral electric field will only vanish for a choice of

parameters such that Ne(Ax, Ay) ∝ Ni(Ax, Ay).

The quasi-neutral Pzz is given by

Pqn = (Te⊥ + Ti⊥)NTe⊥/(Te⊥+Ti⊥)
e N

Ti⊥/(Te⊥+Ti⊥)
i

= P0 exp
(
rqnA

2
)
, (3.62)

with

P0 = (Te⊥ + Ti⊥)n0, (3.63)

n0 = n
Te⊥/(Te⊥+Ti⊥)
0e n

Ti⊥/(Te⊥+Ti⊥)
0i , (3.64)
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rqn =
1
2

1
(Te⊥ + Ti⊥)

(
e2

me

∆Te

Te⊥
+
e2

mi

∆Ti

Ti⊥

)
. (3.65)

The x- and y-components of the current density can be calculated from Eqs. (3.20) and (3.21),

resulting in,

jx = 2rqnP0Ax exp
(
rqnA

2
)
, (3.66)

jy = 2rqnP0Ay exp
(
rqnA

2
)
. (3.67)

SettingA2
x +A2

y = constant reduces the quasineutral electric potential φqn = a constant which for

simplicity can be set to zero. The Eqs. (3.26) and (3.27) are now linear and have the explicit form

− d2Ax

dz2
=

n0e
2

ε0mec2

(
∆Te

Te⊥
+
me

mi

∆Ti

Ti⊥

)
Ax, (3.68)

−d
2Ay

dz2
=

n0e
2

ε0mec2

(
∆Te

Te⊥
+
me

mi

∆Ti

Ti⊥

)
Ay, (3.69)

where the constant factor exp
(
rqnA

2
)

has been absorbed into n0. Normalising against Ax0 and a

length L where L is equal to the electron skin depth,

L2 =
(

c

ωpe

)2

=
ε0mec

2

n0e2
, (3.70)

then Eqs. (3.68) and (3.69) become,

− d2Ax

dz2
= α2Ax, (3.71)

−d
2Ay

dz2
= α2Ay, (3.72)

where

α =
(

∆Te

Te⊥
+
me

mi

∆Ti

Ti⊥

) 1
2

. (3.73)

The solution to these differential equations is

A(z) =
(
B0

α
sin(αz),

B0

α
cos(αz), 0

)
, (3.74)

B(z) = (B0 sin(αz), B0 cos(αz), 0), (3.75)

where the boundary conditions are chosen to be Bx = 0, By = B0 for z = 0. It is easy to see that

the solution satisfies the force-free condition B2
x +B2

y = a constant and that

j = αB. (3.76)
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It should be noted that this linear force-free solution is a special solution of this distribution func-

tion for a particular initial condition and that other initial conditions will produce non-force-free

magnetic fields.

The linear force-free solution is shown in Figure 3.3. The magnetic field is normalised to 1 and

α = 1. Figure 3.3(a) shows the periodic structure of the magnetic field components and Figure

3.3(b) shows the potential with the particle orbit overlaid. The particle’s orbit in this case corre-

sponds to circular motion. In addition to this Figure 3.3(c) shows a 3D plot of magnetic field lines

along z passing through x = 0, y = 0. It easy to see the shearing and twisting of the field lines

that is a characteristic feature of a force-free magnetic field. The possibility of other force-free

VM equilibria are discussed in more detail in Sec. 3.6.

3.3.4 The case r1,qn positive and r2,qn negative

There are two possibilities for mixed sign cases of r1,qn and r2,qn, but as none of the coordinates x

or y is preferred these cases are equivalent. Therefore only one of them is discussed. In the mixed

sign case there is a saddle point of the pressure/pseudo-potential at the origin.

The structure of the solutions will depend again on the initial conditions and on whether the

pseudo-particle has enough energy to overcome the saddle or will be reflected. Note that the

condition for the particle crossing the saddle is not simply given by the total pressure (pseudo-

energy) being bigger than the value of the pressure (potential) at the saddle, because the trajectory

may not come close to the saddle at all and a higher energy will usually be required for solutions

to cross the saddle structure. Therefore, the condition that the total initial pressure is larger than

the pressure at the saddle point is a necessary, but not sufficient condition for a crossing solution.

Generally, the solutions for Ay will have a non-oscillatory nature and will be of neutral sheet

type if the particle is reflected and of single direction field type if the particle crosses the saddle.

For the Ax component some form of both oscillatory and non-oscillatory behaviour are possible

depending on initial conditions. A few examples are shown in Figure 3.4. Figures 3.4(a) and

3.4(b) are for a particle with an initial kinetic energy less than the maximum value of the potential

at the saddle point. There is only one non-vanishing component of the magnetic field and vector

potential. Figure 3.4(b) shows the pressure function with the particle trajectory overlaid. The

particle approaches along the Ay axis and is reflected resulting in the anti-parallel x component

of the magnetic field where the profile of the magnetic field is shown in figure 3.4(a). Figures

3.4(c) and 3.4(d) are for the case where the vector potential and magnetic field both have two non-

vanishing components. In this example the initial kinetic energy of the particle is greater than the

maximum value of the potential at the saddle point but because the particle approaches the saddle

structure along a different direction than the Ay axis, in this case it would require a much larger
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(a) (b)

(c)

Figure 3.3: An example of the special case when r1,qn = r2,qn = r and A2
x + A2

y = 1. The
magnetic field is normalised to 1 and α = 1. Figure 3.3(b) shows a surface plot of the potential Pqn

with the circular pseudo-particle trajectory in the Ax-Ay-plane plotted above it, that corresponds
to the linear force-free magnetic field profiles shown in Figure 3.3(a).
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initial energy to cross the saddle structure. Figure 3.4(d) shows the particle trajectory overlaid on

the potential illustrating that the particle is reflected. The profiles of the magnetic field components

are shown in Figure 3.4(c). Both Bx and By have an anti-parallel structure. Finally Figures 3.4(e)

and 3.4(f) are for the case where a particle has a kinetic energy greater than the maximum value of

the potential at the saddle point and approaches the saddle point along the Ay axis. In this case, as

shown by the particle trajectory in Figure 3.4(f) the particle crosses the saddle and is not reflected.

The magnetic field profile in Figure 3.4(e) shows that the magnetic field decreases as the particle

moves over the potential, i.e. the particle is slowed down as it crosses the saddle.

3.3.5 The case r1,qn 6= 0 and r2,qn = 0

This case is again equivalent (modulo a 90◦ rotation of the coordinate system) to the case r1,qn = 0
and r2,qn 6= 0. Again Ax can be gauged in the same way as discussed in Sec. 3.3.2 and thus

without loss of generality it can be assumed that r3,qn = 0 and r4,qn 6= 0. The sign of r4qn is also

largely irrelevant as it only determines whether the pseudo-particle/VM solution approaches from

+∞ or −∞. Thus, without loss of generality it can be assumed that r4,qn > 0.

The case r1,qn negative

This case has been studied extensively by Kan (Kan 1972). The solutions resemble the solutions

found by Nicholson (Nicholson 1963) and Lam (Lam 1967) for Ax (see Sec. 3.3.2) and the Harris

sheet (Harris 1962) (see Sec. 3.3.6) for Ay. An example is shown in Figure 3.5. Figures 3.5(a)

and 3.5(b) shows an example where a particle approaches along the Ay axis. Figure 3.5(b) shows

the particle trajectory overlaid on the potential. The particle slows, eventually stops, turns around

and goes back along the same trajectory, eventually returning to its Ay coordinate with a velocity

which has the same magnitude, but opposite direction to the initial velocity. Figure 3.5(a) shows

the corresponding profile of the x component of the magnetic field. It is a neutral sheet with

oppositely directed magnetic field components either side of the neutral line. At large distances

the magnetic field approaches a constant value on each side of the sheet, although it is oppositely

directed. Figures 3.5(c) and 3.5(d) are an example where Ax and By are now non-zero. The

potential has the effect of scattering the particle. Figure 3.5(d) shows the particle trajectory. The

particle is still reflected by the potential and therefore the profile of Bx shown in Figure 3.5(c) is

still oppositely directed across z = 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Plots for the case with r1,qn = 1, r2,qn = −1 and P̄0 = 1. In each example the figure
on the right shows a surface plot of the potential Pqn with the pseudo-particle trajectory in the
Ax-Ay-plane plotted above it, that corresponds to the magnetic field profiles shown on the left for
different initial conditions.
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(a) (b)

(c) (d)

Figure 3.5: Plots for the case with r1,qn = −1, r2,qn = 0, r3,qn = 0, r4,qn = 1 and P0 = 1. In
each example the figure on the right shows a surface plot of the potential Pqn with the pseudo-
particle trajectory in the Ax-Ay-plane plotted above it, that corresponds to the magnetic field
profiles shown on the left for different initial conditions.
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The case r1,qn positive

In this case the solutions will have a neutral sheet structure for Ay, whereas the structure of Ax

can be either oscillatory or non-oscillatory, depending on initial conditions. Solution examples are

shown in Figure 3.6. Figures 3.6(a) and Figure 3.6(b) are for a case where a particle moves along

theAy axis. The particle trajectory is shown in Figure 3.6(b) overlaid on the potential. The particle

slows, eventually stops, turns around and goes back along the same trajectory, eventually returning

to its initial Ay coordinate with a velocity which has the same magnitude, but opposite direction

to the initial velocity. The resulting anti-parallel profile of the x component of the magnetic field

is shown in Figure 3.6(a). Figures 3.6(c) and 3.6(d) are for a case where the magnetic field and

vector potential have two non-vanishing components. In this case the particle trajectory, shown in

Figure 3.6(d) is modified as the particle has an additional velocity component. The structure of the

potential in the Ay direction means that the particle at some point will be reflected. The magnetic

field profile is shown in Figure 3.6(c). Finally Figures 3.6(e) and 3.6(f) are for a case where the

initial velocity in the Ax direction is larger than in the second example. In this case the particle is

once again reflected but the profile of the y component of the field shown in Figure 3.6(e) has a

stronger oscillatory nature close to z = 0.

3.3.6 The case r1,qn = r2,qn = 0

If r1,qn = r2,qn = 0 the argument of the exponential pressure function contains only terms linear

in Ax and Ay. In this case the Eqs. (3.26) and (3.27) can be solved analytically. The quasinuetral

potential Pqn in this case is,

Pqn = P0 exp (r3,qnAx + r4,qnAy) . (3.77)

The x and y components of the current density can be calculated from the Eqs. (3.20) and (3.21),

resulting in,

jx = r3,qnP0 exp (r3,qnAx + r4,qnAy) , (3.78)

jy = r4,qnP0 exp (r3,qnAx + r4,qnAy) . (3.79)

In terms of our normalisation the two coupled ODEs to be solved are,

− d2Ax

dz2
= P0r3,qn exp (r3,qnAx + r4,qnAy) , (3.80)

−d2Ay

dz2
= P0r4,qn exp (r3,qnAx + r4,qnAy) . (3.81)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Plots for the case with r1,qn = 1, r2,qn = 0, r3,qn = 0, r4,qn = 1 and P0 = 1. In each
example the figure on the right shows a surface plot of the potential Pqn with the pseudo-particle
trajectory in the Ax-Ay-plane plotted above it, that corresponds to the magnetic field profiles
shown on the left for different initial conditions.
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To get solutions, multiply Eq. (3.80) by r3,qn and Eq. (3.81) by r4,qn and add them together:

− d2

dz2
(r3,qnAx + r4,qnAy) = P0(r23,qn + r24,qn) exp (r3,qnAx + r4,qnAy) . (3.82)

Multiplying Eq. (3.80) by r4,qn and Eq. (3.81) by r3,qn and subtracting them results in,

− d2

dz2
(r4,qnAx − r3,qnAy) = 0. (3.83)

Excluding any asymmetries and gauging both Ax and Ay to zero at z = 0, then

r3,qnAy = r4,qnAx. (3.84)

Solving (3.82) gives,

r3,qnAx + r4,qnAy = −2 ln cosh

(√
K

2
z

)
, (3.85)

where

K = P0(r23,qn + r24,qn). (3.86)

Finally,

Ax = − 2r3,qn

r23,qn + r24,qn

ln cosh

(√
K

2
z

)
, (3.87)

Ay = − 2r4,qn

r23,qn + r24,qn

ln cosh

(√
K

2
z

)
, (3.88)

and the magnetic field components are

Bx =
2r4,qn

r23,qn + r24,qn

√
K

2
tanh

(√
K

2
z

)
, (3.89)

By = − 2r3,qn

r23,qn + r24,qn

√
K

2
tanh

(√
K

2
z

)
. (3.90)

It is in fact easy to convince oneself that without loss of generality that this solution is in fact com-

pletely equivalent to the Harris sheet, but in a rotated coordinate system. Consider the following

matrix transformations of the vector potential A, the magnetic field B and the current densities

jx and jy. Consider a general matrix rotation in the x-y-plane of the coordinate system defined

by the vector M, to a new coordinate system defined by the vector M′, with the rotation matrix
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defined as R, then the coordinate rotation is given by

M = RM′. (3.91)

Inverting this,

M′ = RTM, (3.92)

where

R =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, (3.93)

RT =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. (3.94)

Consider a rotation of the Cartesian coordinate system where

cos(θ) = 1/r3,qn sin(θ) = 1/r4,qn , (3.95)

then in this new coordinate system the vector potentials are now,

A′x = 0, (3.96)

A′y = − 2
r3,qnr4,qn

ln cosh

(√
K

2
z

)
, (3.97)

and the magnetic field is

B′x =
2

r3,qnr4,qn

√
K

2
tanh

(√
K

2
z

)
, (3.98)

B′y = 0, (3.99)

and the current densities are,

j′x = 0, (3.100)

j′y =
2

r3,qnr4,qn

K

2
1

cosh2

(√
K
2 z

) . (3.101)

This is clearly a Harris sheet (Harris 1962) in a rotated coordinate system. Therefore one can

either set r3,qn = 0 or r4,qn = 0 because it is always possible to rotate the coordinate system so

that one of the two terms vanishes. As an example r3,qn = 0 is chosen. The sign of the remaining
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Plots for the case with r1,qn = r2,qn = r3,qn = 0, r4,qn = 2 and P0 = 0.5. The
analytical solution to this case is well known and is given by the Harris sheet (Harris 1962).
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coefficient does not matter either for the same reason mentioned in Sec. 3.3.5. Here r4,qn > 0.

In this case the analytical solution is well-known and is given by the Harris sheet (Harris 1962),

shown in Figure 3.7. Figures 3.7(a), 3.7(c) and 3.7(e) show the Harris sheet with zero constant

guide field added. Figure 3.7(a) shows the profile of the magnetic field, current density and plasma

pressure where it should be noted that the profiles of the plasma pressure and current density are

identical and hence indistinguishable in the plot. The gradient of the plasma pressure maintains the

force balance with the magnetic pressure due to the x component of the field, with the maximum

plasma pressure at the centre of the sheet. Figure 3.7(c) shows the particle trajectory overlaid on

the potential. The particle approaches along the Ay axis, it slows, eventually stops, turns around

and goes back along the same trajectory, eventually returning to its initial Ay coordinate with a

velocity which has the same magnitude, but opposite direction to the initial velocity. When the

particle encounters the steep gradient it leads to strong gradients in the magnetic field and hence a

strong current density. Also Figure 3.7(e) shows a 3D plot of magnetic field lines along z passing

through x = 0, y = 0 for the Harris sheet. The magnetic field lines are not sheared in the case of

zero guide field.

Because the pressure (pseudo-potential) in this case does not depend on Ax, an Ax depending

linearly on z can be added to the solution. This gives rise to a constant y-component of the

magnetic field which corresponds to a constant y-velocity of the pseudo-particle. It is remarked

that this is possible for every case in which the pressure (pseudo-potential) depends only upon one

component of the vector potential (coordinate) (Kan 1972). Figure 3.7(b) and 3.7(d) are for the

Harris sheet with a constant guide field of By0 = 1.0. The profile of the magnetic field, current

density and plasma pressure remains unchanged. The particle trajectory is shown in Figure 3.7(d).

Figure 3.7(f) shows a 3D plot of magnetic field lines along z passing through x = 0, y = 0 for a

constant guide field of By = B0. It can be clearly seen how the constant guide field adds shear

and twist to the system.

3.4 An Extension to the Linear Force-Free Distribution Function

The distribution function (3.53) given in Sec. 3.3.3 can be extended to construct a series of Vlasov-

Maxwell equilibria that make the transition from an anti-parallel neutral sheet through to the linear

force-free equilibria described in Sec. 3.3.3. The case of an anti-parallel neutral sheet of this type

has previously been discussed by Lam (Lam 1967) and Attico and Pegoraro (Attico and Pegoraro

1999). The distribution function in dimensional form is, using the notation of Bobrova et al.

(2001),

fs = cs exp
[
− 1
Ts⊥

Hs +
∆Ts

2msTs⊥Ts‖
bsp

2
xs +

∆Ts

2msTs⊥Ts‖
p2

ys

]
, (3.102)
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where

∆Ts = Ts‖ − Ts⊥ ≥ 0. (3.103)

The constant cs is a normalising constant and is defined as,

cs =
n0sm

3/2
s

(
(1− bs)Ts‖ + bsTs⊥

)1/2

(2π)3/2Ts⊥Ts‖
. (3.104)

The distribution function is identical to the previous distribution function (3.53) with the addition

of a dimensionless parameter bs. The value of this dimensionless parameter is varied to construct a

family of Vlasov-Maxwell equilibria that describe the transition between an anti-parallel periodic

neutral sheet through to the linear force-free field.

For the distribution function (3.102) the zz-component of the pressure tensor is given by

P =
∑

s

1
βs

exp(−βsqsφ)Ns(Ax, Ay), (3.105)

where

Ns(Ax, Ay) = n0s exp(r1sA
2
x + r2sA

2
y). (3.106)

Equation (3.106) uses the definitions,

r1s =
1
2
q2s
ms

∆Ts

Ts⊥

bs(
Ts‖(1− bs) + bsTs⊥

) , (3.107)

r2s =
1
2
q2s
ms

∆Ts

T 2
s⊥
. (3.108)

The charge density is calculated using Eq. (3.19):

σ =
∑

s

qs exp
(
− qsφ
Ts⊥

)
Ns(Ax, Ay), (3.109)

and the quasi-neutrality condition σ = 0 then gives,

φqn =
Te⊥Ti⊥

e(Te⊥ + Ti⊥)
ln
(
Ni

Ne

)
. (3.110)

One can see immediately that the quasi-neutral electric field will only vanish for a choice of

parameters such that Ne(Ax, Ay) ∝ Ni(Ax, Ay).
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The quasi-neutral Pzz is given by

Pqn = (Te⊥ + Ti⊥)NTe⊥/(Te⊥+Ti⊥)
e N

Ti⊥/(Te⊥+Ti⊥)
i

= P0 exp
(
r1,qnA

2
x + r2,qnA

2
y

)
, (3.111)

with

P0 = (Te⊥ + Ti⊥)n0, (3.112)

n0 = n
Te⊥/(Te⊥+Ti⊥)
0e n

Ti⊥/(Te⊥+Ti⊥)
0i , (3.113)

r1,qn =
1

2(Te⊥ + Ti⊥)

(
e2

me

be∆Te

(1− be)Te‖ + beTe⊥
+
e2

mi

bi∆Ti

(1− bi)Ti‖ + biTi⊥

)
, (3.114)

r2,qn =
1

2(Te⊥ + Ti⊥)

(
e2

me

∆Te

Te⊥
+
e2

mi

∆Ti

Ti⊥

)
. (3.115)

The x- and y-components of the current density can be calculated from Eqs. (3.20) and (3.21),

resulting in

jx = 2r1,qnP0Ax exp
(
r1,qnA

2
x + r2,qnA

2
y

)
, (3.116)

jy = 2r2,qnP0Ay exp
(
r1,qnA

2
x + r2,qnA

2
y

)
. (3.117)

In all the example solutions the boundary conditions are Bx = 0, By = By,max, Ax = 0 and

Ay = Ay,max at z = 0, where By,max and Ay,max are the maximum of the y components of the

magnetic field and vector potential and they must all have the same period. For convenience the

definition of the maximum value of the pressure Pmax is introduced where,

Pmax = P0 exp(r2,qnA
2
y,max). (3.118)

The quasineutral pressure is now,

Pqn = Pmax exp
(
r1,qnA

2
x + r2,qn(A2

y −A2
y,max)

)
, (3.119)

where by introducing the definition of Pmax it is clear that the maximum value of the plasma

pressure will always be at z = 0 and at periodic distances along z. The two coupled ODE’s (3.26)

and (3.27) that must be solved are,

− d2Ax

dz2
= µ02r1,qnPmaxAx exp

(
r1,qnA

2
x + r2,qn(A2

y −A2
y,max)

)
, (3.120)

−d
2Ay

dz2
= µ02r2,qnPmaxAy exp

(
r1,qnA

2
x + r2,qn(A2

y −A2
y,max)

)
. (3.121)

The magnetic field is normalised to a typical value Bx0 and the coordinate z to a typical length

scale L. The components of the vector potential are then normalized by Bx0L and the normalized

coefficients are defined by r̄1,qn = B2
x0L

2r1,qn and r̄2,qn = B2
x0L

2r2,qn. The pressure P is
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normalized by B2
x0/µ0. In this case L is the electron skin depth,

L2 =
me

µ0e2nmax
=
(

c

ωpe

)2

, (3.122)

and the differential equations that must be solved to determine Ax and Ay are

− d2Ax

dz2
= 2r̄1,qnP̄maxAx exp

(
r̄1,qnA

2
x + r̄2,qn(A2

y −A2
y,max)

)
, (3.123)

−d
2Ay

dz2
= 2r̄2,qnP̄maxAy exp

(
r̄1,qnA

2
x + r̄2,qn(A2

y −A2
y,max)

)
, (3.124)

and the quasineutral pressure is

P̄qn = P̄max exp
(
r̄1,qnA

2
x + r̄2,qn(A2

y −A2
y,max)

)
, (3.125)

with

P̄max = µ0Pmax/B
2
x0, (3.126)

r̄1,qn =
1
2

B2
x0

µ0Pmax

(
be∆Te

(1− be)Te‖ + beTe⊥
+
me

mi

bi∆Ti

(1− bi)Ti‖ + biTi⊥

)
, (3.127)

r̄2,qn =
1
2

B2
x0

µ0Pmax

(
∆Te

Te⊥
+
me

mi

∆Ti

Ti⊥

)
. (3.128)

To illustrate the transition between an anti-parallel configuration and the linear force-free con-

figuration, several equilibrium examples are shown below for increasing strength of the shear

field By. In each case the solution has been found by a shooting method where a fourth or-

der Runge-Kutta method is used to integrate the differential equations. The shooting method is

used to determine the value of bs for which Bx, By, Ax and Ay satisfy the initial conditions

that Bx = 0, By = By,max, Ax = 0 and Ay = Ay,max at z = 0 and that they all have the

same period. In these example cases Bx is always normalised against Bx,max and the strength

of the shear field By is measured relative to that. For these examples Te⊥ = Ti⊥ = 0.5 and

Te‖ = Ti‖ = 0.625 and note also that be = bi = b. The mass ratio has been set equal to one

(mi/me = 1). Figure 3.8 shows plots of the profiles of the magnetic field components as you go

along z. In the examples considered the maximum value of the shear fieldBy,max takes the values

By,max = 0.0, 0.1, 0.3, 0.5, 0.9, 1.0. In each of these different cases the value of the parameter

b is given. Figure 3.9 shows the plasma pressure gradient as one makes the transition from an

anti-parallel field through to a force-free field. It is clear to see that as the strength of the shear

field increases the force balance across the sheet is dominated by the shear field rather than the

plasma pressure gradient, with the extreme case being the linear force-free case where the plasma

pressure is constant. Figure 3.10 shows 3D plots of magnetic field lines passing through x = 0,
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.8: Plots of the profiles of the magnetic field components Bx and By as one makes the
transition from an anti-parallel configuration through to a linear force-free configuration (be =
bi = b in each case). (a) By,max = 0.0 (b = 0.0), (b) By,max = 0.1 (b = 1.30), (c) By,max = 0.3
(b = 1.26), (d) By,max = 0.5 (b = 1.20), (e) By,max = 0.7 (b = 1.12), (f) By,max = 0.9
(b = 1.04), (g) By,max = 1.0 (b = 1.0).
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.9: Plots of the profiles of the plasma pressure component P as one makes the transition
from an anti-parallel configuration through to a linear force-free configuration (be = bi = b in each
case). (a) By,max = 0.0 (b = 0.0), (b) By,max = 0.1 (b = 1.30), (c) By,max = 0.3 (b = 1.26),
(d) By,max = 0.5 (b = 1.20), (e) By,max = 0.7 (b = 1.12), (f) By,max = 0.9 (b = 1.04), (g)
By,max = 1.0 (b = 1.0).
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.10: 3D plots of magnetic field lines for different values of z passing through x = 0,
y = 0 as one makes the transition from an anti-parallel configuration through to a linear force-
free configuration (be = bi = b in each case). (a) By,max = 0.0 (b = 0.0), (b) By,max = 0.1
(b = 1.30), (c) By,max = 0.3 (b = 1.26), (d) By,max = 0.5 (b = 1.20), (e) By,max = 0.7
(b = 1.12), (f) By,max = 0.9 (b = 1.04), (g) By,max = 1.0 (b = 1.0).
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.11: Plots of the potential surface P̄qn as one makes the transition from an anti-parallel
configuration through to a linear force-free configuration (be = bi = b in each case). (a)By,max =
0.0 (b = 0.0), (b) By,max = 0.1 (b = 1.30), (c) By,max = 0.3 (b = 1.26), (d) By,max = 0.5
(b = 1.20), (e) By,max = 0.7 (b = 1.12), (f) By,max = 0.9 (b = 1.04), (g) By,max = 1.0
(b = 1.0).
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y = 0 at different z values. As the strength of the shear field increases the twist of the magnetic

field increases. Finally the potential surface P̄qn is plotted in each case in Figure 3.11 with the

trajectory of the pseudo particle in the Ax-Ay-plane overlaid . In the anti-parallel case the motion

of the particle corresponds simply to oscillation back and forth along the Ay direction. The parti-

cle trajectories are oscillatory with closed orbits for the cases with a non-zero y component of the

magnetic field, with the trajectory approaching a circle for the linear force-free case.

3.5 A Sum of Two Harris Sheet Distribution Functions

A slightly different example is the case of a linear combination of two Harris sheet type distribu-

tion functions i.e. a sum of two drifting Maxwellians. This distribution function was considered

to investigate what effect adding two distribution functions would have where the first distribution

function depends only on the x component of the canonical momenta pxs and the second distribu-

tion function only on the y component of the canonical momenta pys. One of the major aims of

this thesis was to determine a distribution function that gives the force-free Harris sheet. There-

fore, the distribution function that depends only on pys was chosen to have the standard Harris

sheet form. This, as will be shown will retain the Harris sheet structure with the x component

of the magnetic field still having a hyperbolic tangent profile. Therefore this left the distribution

function that depends only on pxs free to be chosen. As a first attempt this distribution function

was chosen to be of the same form as the Harris sheet but depending on pxs instead of pys. The

distribution function is,

fs =
n0s

v3
th,s

exp(−βsHs) [as exp(βsuxspxs) + bs exp(βsuyspys)] , (3.129)

where n0s is a constant normalizing particle density, βs = 1/kBTs is the inverse temperature and

vth,s = (2π/msβs)1/2 is the thermal velocity and as and bs are dimensionless constants. This

distribution function is still of the general form as discussed by Channell (Channell 1976) and by

Attico and Pegoraro (Attico and Pegoraro 1999).

The zz-component of the pressure tensor is given by,

P =
∑

s

1
βs

exp(−βsqsφ)Ns(Ax, Ay), (3.130)

where

Ns(Ax, Ay) = n0s [as exp(βsqsuxsAx) + bs exp(βsqsuysAy)] . (3.131)
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The charge density is calculated using Eq. (3.19):

σ =
∑

s

qs exp(−βsqsφ)Ns(Ax, Ay), (3.132)

and the quasi-neutrality condition σ = 0 then gives,

φqn =
1

e(βe + βi)
ln
(
Ni

Ne

)
. (3.133)

One can see immediately that the quasi-neutral electric field will only vanish for a choice of

parameters such that Ne(Ax, Ay) ∝ Ni(Ax, Ay). The quasineutral Pzz is given by

Pqn =
βe + βi

βeβi
Nβi/(βe+βi)

e N
βe/(βe+βi)
i . (3.134)

The x- and y-components of the current density can be calculated from Eqs. (3.20) and (3.21)

resulting in

jx = enqn

[
aiuxi

exp(eβiuxiAx)
ai exp(βieuxiAx) + bi exp(βieuyiAy)

−aeuxe
exp(−eβeuxeAx)

ae exp(−βeeuxeAx) + be exp(−βeeuyeAy)

]
= enqn (〈vx〉i − 〈vx〉e) , (3.135)

jy = enqn

[
biuyi

exp(eβiuyiAy)
ai exp(βieuxiAx) + bi exp(βieuyiAy)

−beuye
exp(−eβeuyeAy)

ae exp(−βeeuxeAx) + be exp(−βeeuyeAy)

]
= enqn (〈vy〉i − 〈vy〉e) , (3.136)

where 〈v〉s are the average drift velocities of the ions and electrons respectively. For this distri-

bution function the drift velocities are spatially varying due to the dependence upon Ax and Ay.

Making the choice of the parameters for which the quasineutral potential φqn can be set to zero

corresponds to setting ae = ai, bi = be, n0e = n0i = n0 and

βeuxe + βiuxi = 0, (3.137)

βeuye + βiuyi = 0. (3.138)

The quasineutral pressure can now be written as

Pqn = P0

[
a exp

(
Ax

Ax0

)
+ b exp

(
Ay

Ay0

)]
, (3.139)
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with

P0 =
βe + βi

βeβi
n0 (3.140)

1
Ax0

= eβiuxi = −eβeuxe, (3.141)

1
Ay0

= eβiuyi = −eβeuye. (3.142)

The equilibria can be found from solving the two coupled nonlinear ODEs (3.26) and (3.27),

which in this example are explicitly,

− d2Ax

dz2
=

µ0P0

Ax0
a exp

(
Ax

Ax0

)
, (3.143)

−d
2Ay

dz2
=

µ0P0

Ay0
b exp

(
Ay

Ay0

)
. (3.144)

Normalizing lengths to a length L and Ax and Ay to Ax0 then

− d2Ax

dz2
=

[
1 +

βe

βi

]
aλex exp(Ax), (3.145)

−d
2Ay

dz2
=

[
1 +

βe

βi

]
brλex exp(rAy), (3.146)

where

λex =
µ0n0L

2

βeA2
x0

, (3.147)

r =
Ax0

Ay0
. (3.148)

These two differential equations can be solved analytically to give

Ax = −2 ln

(√
κ1

K1
cosh

(√
K1

2
(z − α1)

))
, (3.149)

Ay = −2
r

ln

(√
κ2

K2
cosh

(
r

√
K2

2
(z − α2)

))
, (3.150)

where

κ1 =
[
1 +

βe

βi

]
aλex, (3.151)

κ2 =
[
1 +

βe

βi

]
bλex, (3.152)

and K1,K2, α1, α2 are integration constants to be determined from the boundary conditions. A
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particular solution is found by setting

K1 = κ1, (3.153)

K2 = κ2, (3.154)

and gauging Ax = 0 and Ay = 0 at z = 0. This gives,

Ax = −2 ln

(
cosh

(√
K1

2
z

))
, (3.155)

Ay = −2
r

ln

(
cosh

(
r

√
K2

2
z

))
, (3.156)

Bx = 2

√
K2

2
tanh

(
r

√
K2

2
z

)
, (3.157)

By = −2

√
K1

2
tanh

(√
K1

2
z

)
. (3.158)

A particular solution is shown in Figure 3.12, where Ax = 0, Ay = 0 at z = 0. The parameter

values have been chosen such that a = 1/16, b = 1/4, βe = βi, λex = 1 and r = 1. Figure 3.12(a)

is a 1D plot of the profiles of the magnetic field components. Both components of the magnetic

field have a neutral sheet structure with oppositely directed magnetic field lines either side of the

neutral line. In this case the y component of the current density is larger than the x component

of the current density. An important feature of this equilibrium is that the parameters a and b

can be varied to tune the relative sizes of the current densities in the x and y directions. The

drift velocities are spatially varying for each particle species and depending on how you choose

the parameters the shearing of the field can be increased or decreased. Figure 3.12(b) shows a

plot of the potential surface with the particle trajectory in the Ax-Ay-plane overlaid. The particle

approaches from negative infinity with constant velocity in both the Ax and Ay directions. The

particle slows down when it encounters the steep gradient in the potential surface and at some

point stops and turns around, moving off in the opposite direction and eventually having velocity

components of equal magnitude but opposite direction to the initial velocity components. This

particle trajectory is consistent with the magnetic field plots. The gradient of the potential surface

corresponds to the gradient of the magnetic field components. Figure 3.12(c) shows a plot of

magnetic field lines at different z values passing through x = 0, y = 0 . There is a slight shearing

of the field lines. The shear of the field lines in the current region is due to the fact that Bx

and By are not equal to each other for all values of z. Therefore the larger the change in one of

the magnetic field components relative to the other as you go along z the larger the twisting and

shearing of the field in the current region.
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(a) (b)

(c)

Figure 3.12: Plots of the solution for example 3 where 3.12(a) shows the 1D profiles of the mag-
netic field components, 3.12(b) shows the pressure function and 3.12(c) shows a plot of magnetic
field lines at different z values passing through x = 0, y = 0.
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This distribution function was investigated to see if it could give insight into the problem of find-

ing a distribution function that gave the force-free Harris sheet. As has been shown the resulting

equilibrium is not the force-free Harris sheet. It does show though that by choosing the distribu-

tion function that depends only on pys to have the form of the standard Harris sheet distribution

function that the x component of the field and the y component of the current density correspond

to the Harris sheet equilibrium. By choosing the distribution function that depends only on pxs

to also have the same form as the Harris sheet distribution function the y component of the mag-

netic field and the x component of the current density also have Harris sheet profiles. Therefore,

even though this distribution function was not successful in giving the force-free Harris sheet, it

suggests that to determine a distribution function for the force-free Harris sheet the correct form

of the distribution function that depends only on pxs must be found. As will be shown in Sec. 3.7

a Fourier transform method can be used to determine the correct form of the distribution function

pxs which results in a distribution function that gives the force-free Harris sheet.

3.6 Conditions for Force-Free 1D VM Equilibria

The pseudo-particle analogy can be used to specify the necessary conditions that all force-free

solutions of the 1D VM equations have to satisfy. So far only linear force-free 1D VM solutions

are known (Sestero 1967; Channell 1976; Bobrova and Syrovatskiǐ 1979; Correa-Restrepo and

Pfirsch 1993; Bobrova et al. 2001) and the analogy could help to answer the question (see e.g.

Tassi et al. 2008) whether other, in particular non-linear, force-free solutions exist and how to find

them.

The force-free condition

j×B = 0, (3.159)

implies that the current density j = ∇×B/µ0 is parallel to B. In the 1D situation discussed here

Eq. (3.159) can be written as

d

dz

(
B2

2µ0

)
= 0. (3.160)

Because the total pressure is always constant for 1D VM equilibria, this implies that for a force-

free solution Pzz must also be constant.

At first sight, this may seem to be at variance with Eqs. (3.20) and (3.21) which clearly imply that

the current density is only non-zero if the partial derivatives of Pzz with respect to Ax and Ay are
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non-zero. A closer look, however, reveals that the condition Pzz = constant only implies

dPzz

dz
=
dAx

dz

∂Pzz

∂Ax
+
dAy

dz

∂Pzz

∂Ay
= 0, (3.161)

for the force-free solution only. Equation (3.161), which is, of course, equivalent to Eq. (3.159),

can be satisfied for one solution even if the partial derivatives of Pzz are non-zero. When translated

into the pseudo-particle picture, it is seen that to obtain a pseudo-particle trajectory corresponding

to a force-free magnetic field, a pseudo-potential (Pzz) which has at least one equipotential line

(contour) that is also a particle trajectory is needed. This is a necessary condition for the existence

of a 1D force-free VM equilibrium.

Of course, finding such a potential (pressure) is not yet the complete solution of the problem, but

only a first step. For a complete solution it is necessary to find the distribution functions giving

rise to the pressure function (pseudo-potential). In simple cases this may be achievable by using

the transform methods presented by Channell (Channell 1976) and Attico and Pegoraro (Attico

and Pegoraro 1999). In more general cases, numerical methods as described by Mynick et al.

(Mynick et al. 1979) could be used.

There is, however, a well-known family of pseudo-potentials that satisfies the condition of allow-

ing trajectories which are identical to contours of the pseudo-potential. These are attractive central

potentials. These have to be restricted to nonsingular pseudo-potentials because the equivalent

pressure must be positive and nonsingular. This rules out, for example, all potentials which are

negative powers of the radial coordinate. For central pseudo-potentials, there is not only pseudo-

energy conservation, but also pseudo-angular momentum conservation. The pseudo-angular mo-

mentum is given by

Lpseudo = Ax
dAy

dz
−Ay

dAx

dz
= −(AxBx +AyBy),

and is equal to the negative of the magnetic helicity density.

An example of a distribution function resulting in a central attractive potential has already been

given by Sestero (1967); Bobrova and Syrovatskiǐ (1979); Correa-Restrepo and Pfirsch (1993);

Bobrova et al. (2001) and has been discussed in Sec. 3.3.3 and has the form

fs =
n0s

v3
th,s

exp(−βsH̄s), (3.162)

with

H̄s = Hs −
as

ms
(p2

xs + p2
ys), (3.163)

where as is a dimensionless constant, which can be related to the temperature anisotropy of the
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distribution function (see e.g. Bobrova et al. 2001, and Sec. 3.3.3). It is remarked again that

the velocity space integral (3.18) defining P only exists if as > 1/2. Here n0s is a constant

normalizing particle density, βs = 1/kBTs is the inverse temperature and vth,s = (2π/msβs)1/2

is the thermal velocity. The distribution function allows linear force-free solutions of the form,

Bx = αAx = kα sinαz, (3.164)

By = αAy = kα cosαz, (3.165)

so B2
x +B2

y = k2α2 = constant as is required, and that

µ0j = αB, (3.166)

where the particle trajectories are circles in theAx-Ay-plane which are also contours of the pseudo

potential.

Another distribution function giving rise to the same magnetic field solution has been presented by

Channell (Channell 1976) (see his case C). In this case a complete solution is available, which has

not been discussed in the context of force-free fields, but it is obvious that for the correct choice

of initial conditions and parameters the same linear force-free field as given above results. In this

case Pzz (pseudo-potential) has the form of a 2D harmonic oscillator potential

Pzz(Ax, Ay) = P00 +
1
2
P01(A2

x +A2
y), (3.167)

with P00 and P01 both positive parameters. In this case Ampére’s law is always linear and has the

form

− d2Ax

dz2
= P01Ax, (3.168)

−d
2Ay

dz2
= P01Ay. (3.169)

The general solution as given by Channell is

Ax = Ax0 sin(
√
P01z + δx), (3.170)

Ay = Ay0 sin(
√
P01z + δy). (3.171)

One can see that by choosing Ax0 = Ay0 = k, δx = 0 and δy = π/2 the solution from above

is recovered with α =
√
P01. The corresponding distribution functions are of the form (Channell

1976)

fs(Hs, pxs, pys) = exp(−βsHs)[f0s + f1s(p2
xs + p2

ys)]. (3.172)

The same type of Pzz and corresponding distribution function has also been found by Attico and
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Pegoraro, (Attico and Pegoraro 1999) but without giving explicit solutions for the magnetic field.

It is actually straightforward to see that all distribution functions of the type

fs = fs(Hs, p
2
s), (3.173)

with p2
s = p2

xs + p2
ys lead to a Pzz corresponding to a central pseudo-potential. Defining pxs =

p cos θ, pys = p sin θ, vx = v cos θ, vy = v sin θ, Ax = A cos θ, Ay = A sin θ, so that v2 =
v2
x + v2

y and A2 = A2
x +A2

y. It is obvious that

p2
s = m2

sv
2 + 2msqsAv + q2sA

2,

which does not depend on the angle θ. Since Hs does not depend upon the vector potential, the

integrals defining P (Ax, Ay) (see Eq. (3.18)) define a function depending only upon the mag-

nitude of the vector potential, A, but not upon its direction. The corresponding pseudo-potential

will therefore be a central potential and if it is attractive it will admit circular orbits, i.e. linear

force-free solutions of the same type as discussed before, so obviously there are many distribution

functions leading to the same magnetic field solution.

Another property which is common to all force-free 1D VM solutions is the following. Assume

that a Pzz(Ax, Ay) admitting a force-free solution Ax,ff (z) and Ay,ff (z) is known, and that the

constant value of Pzz for the force free solution is Pff . Then any (positive) function F (x) can be

used to construct a new P̄zz(Ax, Ay) admitting exactly the same force-free solution, by letting

P̄zz(Ax, Ay) =
1

F ′(Pff )
F (Pzz(Ax, Ay)), (3.174)

where F ′(x) is the derivative of F with respect to its argument. Using this definition, Ampére’s

law for the new P̄zz has the form

− d2Ax

dz2
=

1
F ′(Pff )

F ′(Pzz(Ax, Ay))
∂Pzz

∂Ax
, (3.175)

−d
2Ay

dz2
=

1
F ′(Pff )

F ′(Pzz(Ax, Ay))
∂Pzz

∂Ay
. (3.176)

For the force-free solution Pzz = Pff and thus Eqs. (3.175) and (3.176) reduce to the equations

generated by Pzz , but only for (Ax, Ay) = (Ax,ff , Ay,ff ).
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3.7 The Force-Free Harris Sheet

A discussion of a large part of the work of this section can be found in Harrison and Neukirch

(2009a).

3.7.1 The Pressure Function

The force-free Harris sheet is an example of a 1D non-linear force-free field. One of the main aims

of this work was to determine a distribution function that gives this magnetic field configuration.

To determine the distribution function the first step is to find the corresponding quasineutral pres-

sure function Pqn which generates the force-free Harris sheet configuration. The magnetic field

components for the force-free Harris sheet are

Bx = B0 tanh
( z
L

)
= −dAy

dz
, (3.177)

By =
B0

cosh
(

z
L

) =
dAx

dz
, (3.178)

and they satisfy the force-free condition that,

B2
x +B2

y = B2
0 , (3.179)

where B0 is a constant. The components of the vector potentials are

Ax = 2B0L tan−1
(
e

z
L

)
, (3.180)

Ay = −B0L ln
(
cosh

( z
L

))
. (3.181)

The current densities for the force-free Harris sheet are,

jx =
B0

µ0L

tanh
(

z
L

)
cosh

(
z
L

) , (3.182)

jy =
B0

µ0L

1
cosh2

(
z
L

) , (3.183)

and they satisfy the force-free condition that

µ0j = αB, (3.184)

where

α =
1
L

1
cosh

(
z
L

) . (3.185)
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An important assumption to be able to make analytical progress is that the pressure potential (3.24)

is assumed to be of the form

Pqn(Ax, Ay) = P1(Ax) + P2(Ay). (3.186)

Equations (3.26) and (3.27) then give the differential equations that must be satisfied,

− d2Ax

dz2
= µ0

∂P1

∂Ax
, (3.187)

−d
2Ay

dz2
= µ0

∂P2

∂Ay
. (3.188)

These, combined with the force-free condition give three conditions that represent the force bal-

ance across the sheet,(
dAx

dz

)2

+ 2µ0P1(Ax) = 2µ0P01, (3.189)(
dAy

dz

)2

+ 2µ0P2(Ay) = 2µ0P02, (3.190)(
dAx

dz

)2

+
(
dAy

dz

)2

= B2
0 , (3.191)

where P01, P02 and B0 are constants. Of course, one must also have that

P1(Ax) + P2(Ay) = a constant. (3.192)

Solving (3.189) for P1(Ax) and solving (3.190) for P2(Ay) the pressure function for the force-free

Harris sheet can be written as

Pqn(Ax, Ay) = P1(Ax) + P2(Ay) (3.193)

=
B2

0

2µ0

[
1
2

cos
(

2Ax

B0L

)
+ exp

(
2Ay

B0L

)]
+ P03, (3.194)

where P2(Ay) is the standard Harris sheet pressure function whilst the new contribution P1(Ax)
has a cosine dependence onAx and P03 is a constant. The problem of determining the distribution

function though still remains.

3.7.2 Force-Free Harris Sheet Distribution Function

The pressure function for the force-free Harris sheet is made up of a sum of two different pressure

contributions P1(Ax) and P2(Ay). It is possible to use these to find a distribution function that

gives the force-free Harris sheet via the Fourier transform method that is presented by Channell
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(1976). As Pqn is a sum of a function that only depends on Ax and a function that depends only

on Ay the distribution function fs is assumed to be of the form

fs = exp(−βsHs)[g1s(pxs) + g2s(pys)]. (3.195)

It is immediately obvious that g2s(pys) must be equivalent to the standard Harris sheet distribu-

tion function as this will give rise to the P2(Ay) part of the pressure function which as already

discussed corresponds to the Harris sheet. Therefore, using the microscopic notation previously

used in Sec. 3.3, g2s(pys) will have the general form,

g2s(pys) =
n0s

v3
th,s

exp (βsuyspys) , (3.196)

where n0s is a constant normalizing particle density, uys is a constant with dimensions of velocity,

βs = 1/kBTs is the inverse temperature and vth,s = (2π/msβs)1/2 is the thermal velocity. So it

is left to determine the form of g1s(pxs). In general for a distribution function of the form

fs = exp(−βsHs)gs(pxs, pys), (3.197)

it is possible to write down an integral equation for gs(pxs, pys) in terms of the quasineutral pres-

sure function Pqn(Ax, Ay) as long as one assumes there is a choice of parameters for which the

quasineutral electric potential φqn can be set to zero (Channell 1976):

1
m2

s

(
2π
msβs

)1/2 ∫ ∞

−∞
exp

[
− βs

2ms

[
(pxs − qsAx)2

+(pys − qsAy)
2

]]
gs (pxs, pys) dpxsdpys =

βeβiPqn(Ax, Ay)
(βe + βi)

. (3.198)

Equation (3.198) simplifies for g1s(pxs) and the integral equation to be solved is,

2π
βsm2

s

∫ ∞

−∞
exp

(
− βs

2ms
(pxs − qsAx)2

)
g1s(pxs)dpxs = n0s cos (qsβsuxsAx) , (3.199)

where on the right hand side Pqn has been written in the general microscopic form introduced in

Sec. 3.3 with uxs a constant that has dimensions of velocity. The specific choice of the micro-

scopic parameters which results in the force-free Harris sheet will be shown in Sec. 3.7.3. This

integral equation is solved for g1s(pxs). Taking the Fourier transform of both sides of the integral

equation in terms of Ax and denoting transformed variables by a tilde then this results in

(
2π
βsms

)3/2

g̃1s(k) exp
(
−2msπ

2

βs
k2

)
=
n0s

2

[
δ

(
k − qsβsuxs

2π

)
+ δ

(
k +

qsβsuxs

2π

)]
.

(3.200)
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Rearranging, g̃1s(k) is given by,

g̃1s(k) =
n0s

2

(
βsms

2π

)3/2

exp
(

2msπ
2

βs
k2

)[
δ

(
k − qsβsuxs

2π

)
+ δ

(
k +

qsβsuxs

2π

)]
.

(3.201)

Inverting this gives g1s(pxs),

g1s(pxs) =
asn0s

v3
th,s

cos (βsuxspxs) , (3.202)

where as is a dimensionless constant. The method of solving the integral equation via a Fourier

transform method has led to a distribution function that for the correct choice of parameters has

the force-free Harris sheet as a solution. The complete distribution function is of the general form,

fs =
n0s

v3
th,s

exp(−βsHs) [as cos (βsuxspxs) + exp (βsuyspys) + bs] , (3.203)

where n0sbs is a constant background density which is necessary to ensure that the distribtution

function always remains positive.

3.7.3 Testing the Force-Free Harris Sheet Distribution Function

To check that the distribution function for the force-free Harris sheet is indeed given by (3.203)

the distribution function is now used as the starting point and the moment integrals are calculated.

The differential equations resulting from Eqs. (3.26) and (3.27) are then solved under certain

conditions to show that the distribution function does indeed give the non-linear force-free Harris

sheet magnetic field configuration. In fact it is only necessary to calculate the velocity moment that

corresponds to the Pzz component of the pressure tensor from the general theory described in Sec.

3.2 from which the charge density and current density can then be calculated via differentiation.

For the distribution function (3.203) the zz-component of the pressure tensor is given by

P =
∑

s

1
βs

exp(−βsqsφ)Ns(Ax, Ay), (3.204)

where

Ns(Ax, Ay) = n0s exp
(
βsms

2
u2

ys

)[
as exp

(
−βsms

2
(u2

xs + u2
ys)
)

cos(βsqsuxsAx)
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+exp(βsqsuysAy) + bs exp
(
−βsms

2
u2

ys

)]
. (3.205)

The charge density is calculated using Eq. (3.19):

σ =
∑

s

qs exp(−βsqsφ)Ns(Ax, Ay), (3.206)

and the quasi-neutrality condition σ = 0 then gives,

φqn =
1

e(βe + βi)
ln
(
Ni

Ne

)
. (3.207)

One can see immediately that the quasi-neutral electric field will only vanish for a choice of

parameters such that Ne(Ax, Ay) ∝ Ni(Ax, Ay).

The quasi-neutral Pzz is given by

Pqn =
βe + βi

βeβi
Nβi/(βe+βi)

e N
βe/(βe+βi)
i . (3.208)

The condition of vanishing electric potential implies that Ni(Ax, Ay) = Ne(Ax, Ay), which is

true if,

n0e exp
(
βeme

2
u2

ye

)
= n0i exp

(
βimi

2
u2

yi

)
= n0, (3.209)

ae exp
(
−βeme

2
(u2

xe + u2
ye)
)

= ai exp
(
−βimi

2
(u2

xi + u2
yi)
)

= a, (3.210)

be exp
(
−βeme

2
u2

ye

)
= bi exp

(
−βimi

2
u2

yi

)
= b, (3.211)

−βeuxe = βiuxi, (3.212)

−βeuye = βiuyi. (3.213)

Supposing that βe and βi are given, there are ten parameters needing to satisfy only five equations

which is always possible. Therefore, this provides the justifcation for applying Channell’s method

(Channell 1976) to determine the distribution function. On the basis of these conditions, the

quasineutral potential Pqn becomes

Pqn =
βe + βi

βeβi
n0 [a cos (eβeuxeAx) + exp (−eβeuyeAy) + b] . (3.214)

Comparing the coefficients of the quasineutral pressure (3.214) to the force-free pressure function

(3.194) then this shows that the connection between the microscopic notation and the original
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macroscopic notation used in (3.194) is given by

B2
0

2µ0
=

(
1
βe

+
1
βi

)
n0, (3.215)

L =
(

2βi

µ0e2n0u2
yeβe(βe + βi)

)1/2

, (3.216)

a =
1
2
, (3.217)

b = 2µ0P03/B
2
0 . (3.218)

The quasineutral pressure (3.214) is now identical to the force-free pressure function (3.194),

Pqn =
B2

0

2µ0

[
1
2

cos
(

2Ax

B0L

)
+ exp

(
2Ay

B0L

)]
+ P03. (3.219)

The x- and y-components of the current density can be calculated from Eqs. (3.20) and (3.21),

resulting in

jx = − B0

2µ0L
sin
(

2Ax

B0L

)
, (3.220)

jy =
B0

µ0L
exp

(
2Ay

B0L

)
. (3.221)

The differential equations resulting from Eqs. (3.26) and (3.27) are,

− d2Ax

dz2
= −B0

2L
sin
(

2Ax

B0L

)
, (3.222)

−d
2Ay

dz2
=

B0

L
exp

(
2Ay

B0L

)
. (3.223)

You can immediately integrate both of these differential equations once to give,(
dAx

dz

)2

+
B2

0

2
cos
(

2Ax

B0L

)
= κ1, (3.224)(

dAy

dz

)2

+B2
0 exp

(
2Ay

B0L

)
= κ2. (3.225)

Setting κ1 = B2
0/2 and κ2 = B2

0 and also choosing Ax = B0Lπ/2 and Ay = 0 at z = 0 leads to

the force-free Harris sheet solution where,

Ax = 2B0L tan−1
(
ez/L

)
, (3.226)

Ay = −B0L ln
(
cosh

( z
L

))
, (3.227)
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which give the magnetic field components

Bx = B0 tanh
( z
L

)
, (3.228)

By =
B0

cosh
(

z
L

) . (3.229)

Figure 3.13 shows plots of profiles of the magnetic field components in Figure 3.13(a). A plot of

magnetic field lines along z passing through x = 0, y = 0 is shown in Figure 3.13(b) where the

shear of the magnetic fields lines in the current sheet region is clearly visible. The potential surface

is shown in Figure 3.13(c) with the particle trajectory overlaid in the Ax-Ay-plane. The particle

trajectory is a contour of the potential surface which is a characteristic property of a force-free

Vlasov-Maxwell equilibria.

3.8 The Combined Harris Sheet

It can be shown that the distribution function (3.203), for different choices of the parameters,

describes a complete family of equilibria that make the transition between the Harris sheet and the

force-free Harris sheet. The magnetic field components and the plasma pressure for the combined

Harris sheet are,

Bx = Bx0 tanh
( z
L

)
= −dAy

dz
, (3.230)

By =
By0

cosh
(

z
L

) =
dAx

dz
, (3.231)

P =
P0

cosh2
(

z
L

) + P00 (3.232)

where

By0 =
√
B2

x0 − 2µ0P0, (3.233)

and they satisfy the force balance condition that

B2
x +B2

y

2µ0
+ P =

B2
x0

2µ0
+ P00, (3.234)

whereBx0,By0, P0 and P00 are constants. The components of the vector potentials can be written

as,

Ax = 2By0L tan−1
(
e

z
L

)
, (3.235)

Ay = −Bx0L ln
(
cosh

( z
L

))
. (3.236)
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(a) (b)

(c)

Figure 3.13: Plots showing the force-free Harris sheet solution where 3.13(a) shows the 1D pro-
files of the magnetic field components, 3.13(b) shows a plot of magnetic field lines at different z
values passing through x = 0, y = 0 and 3.13(c) shows the pressure function.
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The quasineutral pressure function (3.24) is assumed to be of the form

Pqn(Ax, Ay) = P1(Ax) + P2(Ay), (3.237)

in the same way as before. Equations (3.26) and (3.27) then give the differential equations that

must be satisfied,

− d2Ax

dz2
= µ0

∂P1

∂Ax
, (3.238)

−d
2Ay

dz2
= µ0

∂P2

∂Ay
. (3.239)

These give three conditions that represent the force balance across the sheet,(
dAx

dz

)2

+ 2µ0P1(Ax) = 2µ0P01, (3.240)(
dAy

dz

)2

+ 2µ0P2(Ay) = 2µ0P02, (3.241)(
dAx

dz

)2

+
(
dAy

dz

)2

+ 2µ0P1(Ax) + 2µ0P2(Ay) = 2µ0P01 + 2µ0P02, (3.242)

where P01, P02 are constants. Solving (3.240) for P1(Ax) and solving (3.241) for P2(Ay) the

quasineutral pressure function for the combined Harris sheet is,

Pqn(Ax, Ay) = P1(Ax) + P2(Ay) (3.243)

=
1
2
B2

y0

2µ0
cos
(

2Ax

By0L

)
+
B2

x0

2µ0
exp

(
2Ay

Bx0L

)
+ P03,

(3.244)

where P2(Ay) is the standard Harris sheet pressure function whilst the new contribution P1(Ax)
has a similar cosine dependence on Ax as the force-free Harris sheet. In the case that P0 = 0, this

would then give the force-free Harris sheet quasineutral potential. In the case of P0 = B2
x0/2µ0

this would correspond to the Harris sheet quasineutral potential.

Comparing the coefficients of the quasineutral pressure (3.214) to the combined Harris sheet pres-

sure function (3.244) then this shows that the connection between the microscopic notation and

the macroscopic notation used in (3.244) is

B2
0

2µ0
=

(
1
βe

+
1
βi

)
n0, (3.245)

L =
(

2βi

µ0e2n0u2
yeβe(βe + βi)

)1/2

, (3.246)
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By0 =

(
2µ0(βe + βi)n0u

2
ye

βeβiu2
xe

)1/2

, (3.247)

a =
1
2
B2

y0

B2
x0

, (3.248)

b = 2µ0P03/B
2
0 . (3.249)

The quasineutral pressure (3.214) is now identical to the combined pressure function (3.244). The

differential equations that result from Eqs. (3.26) and (3.27) that must be solved are,

− d2Ax

dz2
= −By0

2L
sin
(

2Ax

By0L

)
, (3.250)

−d
2Ay

dz2
=

Bx0

L
exp

(
2Ay

Bx0L

)
. (3.251)

You can immediately integrate both of these differential equations once to give(
dAx

dz

)2

+
B2

y0

2
cos
(

2Ax

By0L

)
= κ1, (3.252)(

dAy

dz

)2

+B2
x0 exp

(
2Ay

Bx0L

)
= κ2. (3.253)

Setting κ1 = B2
y0/2 and κ2 = B2

x0 and also choosing Ax = (By0Lπ)/2 and Ay = 0 at z = 0
leads to the combined Harris sheet solution where,

Ax = 2By0L tan−1
(
ez/L

)
, (3.254)

Ay = −Bx0L ln
(
cosh

( z
L

))
, (3.255)

which give the magnetic field components

Bx = Bx0 tanh
( z
L

)
, (3.256)

By =
By0

cosh
(

z
L

) . (3.257)

In the limiting case of P0 → B2
x0/2µ0 then the contribution in the pressure function due to

P1(Ax) is zero and the solution is the Harris sheet. In the limit of P0 → 0 then this results in

the force-free Harris sheet solution. Figure 3.14 show plots of the profiles of Bx, By, jx, jy and

P as you make the transition from the Harris sheet (2µ0P0/B
2
x0 = 1) through to the force-free

Harris sheet (2µ0P0/B
2
x0 = 0). It can be seen that the plasma pressure decreases as the shear

field component By increases. This demonstrates the trade off between the plasma pressure and

the magnetic pressure due to the shear field component By in the force balance equation. In
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the Harris sheet case the current is completely perpendicular to the magnetic fields whereas in

the force-free case it is completely aligned with the magnetic field direction. In the Harris sheet

case the profile of the plasma pressure and the current density are identical and hence they are

indistinguishable in Figure 3.14(a). Figure 3.15 are plots of magnetic field lines along z passing

through x = 0, y = 0 for each of the cases shown in Figure 3.14 and these show that as expected,

as the strength of the shear field is increased the twisting of the magnetic field in the localised

current region is increased. Finally Figure 3.16 shows the potential surface Pqn for each of the

cases shown in Figure 3.14 with the particle trajectories overlaid. Clearly as 2µ0P0/B
2
x0 → 1 the

cosine contribution in the pressure function tends to zero and the particle trajectory approaches

that of the Harris sheet that has already been discussed. This is seen by the fact that the cosine

profile in Ax flattens as you tend closer to the Harris sheet solution.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Plots of the profiles of Bx, By, jx, jy and P as one makes the transition from the
Harris sheet (2µ0P0/B

2
x0 = 1) through to the force-free Harris sheet (2µ0P0/B

2
x0 = 0).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: 3D plots of the magnetic field lines for different values of z passing through x =
0, y = 0 as one makes the transition from the Harris sheet (2µ0P0/B

2
x0 = 1) through to the

force-free Harris sheet (2µ0P0/B
2
x0 = 0). (a) 2µ0P0/B

2
x0 = 1 , (b) 2µ0P0/B

2
x0 = 4/5, (c)

2µ0P0/B
2
x0 = 3/5, (d) 2µ0P0/B

2
x0 = 2/5, (e) 2µ0P0/B

2
x0 = 1/5, (f) 2µ0P0/B

2
x0 = 0.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: Plots of the potential surface Pqn as one makes the transition from the Harris sheet
(2µ0P0/B

2
x0 = 1) through to the force-free Harris sheet (2µ0P0/B

2
x0 = 0). (a) 2µ0P0/B

2
x0 = 1 ,

(b) 2µ0P0/B
2
x0 = 4/5, (c) 2µ0P0/B

2
x0 = 3/5, (d) 2µ0P0/B

2
x0 = 2/5, (e) 2µ0P0/B

2
x0 = 1/5, (f)

2µ0P0/B
2
x0 = 0.
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3.9 Summary

In this chapter a general theory of 1D Vlasov-Maxwell equilibria has been given where the distri-

bution functions are always chosen to depend on the three constants of motion which correspond

to the particle energy (the Hamiltonian) and the two canonical momenta. It has been shown that

the charge density and current densities can all be determined from a general potential P where P

is in fact the Pzz component of the pressure tensor. In general the potential P will be a function of

the electric potential φ and the magnetic vector potential components Ax and Ay. If one assumes

a quasineutral plasma it is in general possible to invert the quasineutral number density so that P

becomes a function of only Ax and Ay. This quasineutral pressure is then denoted by Pqn. The

properties of Pqn make it a very useful quantity to start any investigation of 1D VM equilibria

with, since all other quantities such as particle density, charge density and current density can be

derived by differentiation.

Ampère’s law, in terms of the potential Pqn reduces to Hamilton’s equations for a particle with

coordinates (Ax, Ay) moving in a conservative 2D potential µ0Pqn. The potential Pqn is espe-

cially useful in cases where an analytical solution to the magnetic field configuration cannot be

easily found as gradients of the potential surface correspond to gradients of the magnetic field

components so that large gradients of the potential surface indicates large current densities in the

solution. Therefore without actually solving Ampère’s law the potential surface can give insight

into the expected solution. The pseudo-particle analogy can be used to formulate conditions on

Pqn that it has to satisfy to allow the existence of 1D force-free VM equilibria (Harrison and

Neukirch 2009b). For a force-free VM equilibrium there must be at least one particle trajectory

which is a contour of Pqn. A particular family of potentials that satisfy this are non-singular

attractive central potentials. Finally, knowledge of the pressure function for a specific field config-

uration results in an integral equation for gs(pxs, pys) which in some cases can be solved to find

the distribution function.

Examples of 1D Vlasov-Maxwell equilibria starting from distribution functions that are exponen-

tial functions whose arguments are at most quadratic in velocity was given in Sec. 3.3. Several

examples were investigated which illustrated for different Pqn the usefulness of the pseudo particle

picture in determining the expected solution.

One example of a linear force-free magnetic field was shown, where in that case the particle tra-

jectories were circles in the Ax-Ay-plane. In Sec. 3.4 the distribution function given by (Bobrova

et al. 2001) was extended to incude an additional dimensionless parameter bs in front of the x

component of the canonical momenta. This distribution function allowed a family of periodic

solutions to be constructed which show a transition from an anti-parallel (bs = 0) magnetic field

configuration through to a linear force-free field configuration (bs = 1). As the transition is made

the dominant contribution to the force balance comes from the gradient of the shear field rather
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than the plasma pressure gradient, whereas in the force-free case the plasma pressure across the

sheet is constant. The shearing and twisting of the field increases as the y component of the field

increases relative toBx. In terms of the particle trajectories the solutions are in general oscillatory,

with trajectories approaching a circle for the force-free solution.

Another example considered a sum of two Harris sheet type distribution functions, where the first

depended on the pxs component of the canonical momenta and the second on the pys component

of the canonical momenta. It was shown that by not only making the assumption of quasineutrality

but by also choosing the set of parameters for which the quasineutral electric potential φqn is zero

that an analytical solution for the magnetic field can be found. The magnetic field components

both have hyperbolic tangent profiles and hence a localised current region but the average drift

velocities were spatially varying. The magnetic field is sheared in the localised current region.

The inclusion of two free parameters in the distribution function allows the amount of shear in the

magnetic field to be adjusted.

This distribution function also added insight into the problem of finding a distribution function

that gives the force-free Harris sheet. As has been shown the resulting equilibrium is not the

force-free Harris sheet. It showed that by choosing the distribution function that depends only on

pys to have the form of the standard Harris sheet distribution function that the x component of

the field and the y component of the current density correspond to the Harris sheet equilibrium.

By choosing the distribution function that depends only on pxs to also have the same form as the

Harris sheet distribution function, the y component of the magnetic field and the x component

of the current density also had Harris sheet profiles. Therefore, even though this distribution

function was not successful in giving the force-free Harris sheet, it suggested that to determine a

distribution function for the force-free Harris sheet the correct form of the distribution function

that depends only on pxs must be found. This was applied in Sec. 3.7, where by assuming the

quasineutral pressure function to be made up of two independent functions, one that depended

only on Ax which corresponds to pxs in the distribution function and one that depended only on

Ay which corresponds to pys in the distribution function that a Fourier transform method could be

applied to determine the correct form of the distribution function for the force-free Harris sheet.

Finally, and most importantly a distribution function which has the force-free Harris sheet as a

solution has been shown (Harrison and Neukirch 2009a). This is the first ever self-consistent non-

linear force-free 1D Vlasov Maxwell solution known. The distribution function was found by first

finding the quasi-neutral pressure function that corresponds to the force-free Harris sheet magnetic

field configuration. This pressure function was then used to write down an integral equation for

the gs(pxs, pys) function which was solved via a Fourier transform method, where it was assumed

that there must be a choice of parameters for which the quasineutral electric potential φqn can

be set to zero. The resulting gs(pxs, pys) function was found to be a sum of two contributions.

The first contibution has a cosine dependence on pxs and the second contribution an exponential



3.9 Summary 88

dependence on pys which is equivalent to the Harris sheet case. To check the validity of the

distribution function it was used as the starting point from which the moment equations were

calculated. It was shown that there is a choice of parameters which set the quasineutral electric

potential φqn to zero. The differential equations resulting from Ampère’s law were then solved

to give the force-free Harris sheet magnetic field solution. This distribution function was also

extended to show that for the correct choice of parameters a family of equilibria can be constructed

that describe the transition from the Harris sheet through to the force-free Harris sheet.

This new family of VM equilibria will generate new possibilities for studies of linear and nonlinear

instabilities of force-free current sheets. The stability of the VM equilibria presented here have yet

to be investigated. It must be pointed out that the pxs-dependent part of the distribution function

(3.203) may have multiple peaks in the vx-direction and this may give rise to instabilities. It is also

remarked that although theBx(z) and jy(z)-profiles are identical to the Harris sheet, jx(z) is anti-

symmetric with respect to z = 0. This is closely linked to the fact that in the Harris sheet solution

the spatial structure of the current density is determined by the density structure with the average

velocity of each particle species being constant, whereas in the force-free solution presented here

the particle density is constant and the spatial structure of the current density is determined by the

spatial structure of the average velocity. Further investigations will be needed to clarify exactly

what the implications are for the stability of the new solution, but on the basis of the physical

differences just mentioned one would expect the stability properties of the force-free solution to

differ considerably from those of the Harris sheet. Apart from studying the stability properties

of the solution class presented here, it will be also be very interesting to investigate whether the

general method employed here can be used to find other non-linear force-free solutions.



Chapter 4

Particle in Cell Methods for Simulating
Collisionless Plasma Dynamics

4.1 Introduction

Particle in cell methods are now an extremely popular method of studying plasma physics. In par-

ticular they are used widely as tools for studying the physical processes of collisionless plasmas.

One very important area of application is the study of collisionless reconnection (e.g. Hesse et al.

1999, 2001a; Pritchett 2001; Scholer et al. 2003; Pritchett and Coroniti 2004). Particle in cell

codes are widely used in the study of collisionless reconnection as they include the kinetic physics

that underly the dissipation and transport mechanisms which are key to understanding the physics

of the reconnection region.

Particle in cell codes employ the technique of representing many millions of real physical par-

ticles in terms of finite sized superparticles. These superparticles can be thought of as ‘finite

sized clouds of electrons or ions, the position of the superparticles being the centre of mass of

the clouds and their velocities being the mean velocities of the clouds’ (Hockney and Eastwood

1988). Importantly though the charge to mass ratio in Maxwell’s equations remains unchanged.

This representation, assuming that there are enough superparticles in a Debye sphere gives an

accurate interpretation of a collisonless plasma. The equations of motion for these superparticles

are then solved together with Maxwell’s equations to advance the positions and velocities of the

superparticles in time and to evolve the electric and magnetic fields.

A brief description of the general method of a particle in cell code is given by Birdsall and Langdon

(1985). The initial stage of the particle in cell code is to initialise the particle positions and particle

velocities. This is usually based on an equilibrium distribution function. The electric and magnetic

89
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fields that correspond to this initial distribution must also be specified. At each time step the

program solves for the electric and magnetic fields from the particle positions and velocities and

moves the particles forward in time.

The particle quantities such as position and velocity can take a continuous range of values in the

phase space x,v. The particles are labelled with an index. The labelling of the particles is chosen

such that you can correctly identify the ‘electrons’ and ‘ions’. The electric and magnetic fields

are located at discretely spaced grid points. To solve for the new particle positions and velocities

which are calculated from the electric and magnetic fields, the electric and magnetic fields must

be interpolated to the particle positions. The method used here is a first order weighting which

interpolates the electric and magnetic fields to the particle position from the 4 nearest grid points.

Higher order weighting methods can be used but this will be at the cost of computational time.

There are many ways in which the equation of motion can be integrated. In general second order

leapfrog schemes are often used as they are accurate and fairly fast in terms of computational time.

A second order implicit leapfrog scheme will be described in detail in what follows.

Once the new positions of the particles and velocities are known the number densities and average

drift velocites or charge densities and current densities are calculated on the grid. This is done

by taking the position and velocity of each particle and interpolating the weighted values of these

quantities to the four nearest grid points and then summing up over all particles. Once the new

densities are known then the new electric and magnetic fields can be solved for. An implicit solver

is described in detail in this chapter. An important point to note is that in general it is necessary

to employ a method of ensuring that the electric field satisfies Poisson’s equation. This cycle then

continues until the final timestep is reached.

In this chapter a detailed description of the particle in cell code Im2dp4hf is given. The

main program and each of the separate subroutines that make up the full algorithm is discussed.

Im2dp4hf is a 2 1/2 dimensional fully electromagnetic particle in cell code developed by

Michael Hesse (e.g. Hesse et al. 1999). The code utilizes the Buneman layout (Villasenor and

Buneman 1992) and integrates the electromagnetic fields implicitly. Density and fluxes are accu-

mulated on the grid, on the basis of a rectangular particle shape function. Charge conservation is

guaranteed by the iterative application of a Langdon-Marder type (Langdon 1992; Marder 1987)

correction to the electric field.
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4.2 Basic Equations

The principle equations that must be solved for the particles are the equations of motion. The

equations of motion for particles with a charge qs and mass ms are

dv
dt

=
qs
ms

(E + v ×B), (4.1)

dr
dt

= v. (4.2)

Maxwell’s equations for the electric field E = (Ex, Ey, Ez) and the magnetic field B = (Bx, By, Bz)
are

∇×B = µ0j +
1
c2
∂E
∂t
, (4.3)

∇×E = −∂B
∂t
. (4.4)

The electromagnetic fields are used to push the particles on the grid. The new positions and ve-

locities are used to calculate the new densities and fluxes, and in turn the new fields are calculated.

The E,B and j are defined at spatial grid points, while particles can take any positions on the grid.

4.3 Grid Assignment

In the code there are full integer grid points defined at −Lx + (i − 2)∆x (i = 1, 2, 3.., nx),
−Lz + (j − 2)∆z (j = 1, 2, 3, .., nz) and half grid points defined at −Lx + (i − 3/2)∆x,

−Lz + (j − 3/2)∆z where Lx and Lz are the halfwidths of the box in the x and z directions and

∆x = 2Lx/(nx − 2), ∆z = 2Lz/(nz − 2) . An illustration of the grid is shown in Figure 4.1.

This grid layout is chosen such that the code is second order in space.

4.3.1 Debye Length

A condition of the code is that the grid spacing ∆x should not be much larger than the Debye

length λD given by

λD =
vth,e

wpe
. (4.5)

In fact the grid spacing should satisfy the condition that

λD ≤ ∆x ≤ 3λD. (4.6)
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Figure 4.1: The grid assignment

4.4 Timestep chart

The general cycle of the code is shown in Figure 4.2. The particle positions and velocities are

given some suitable initial condition at t = 0. The positions and velocities are used to calculate

the charge and current densities. Once these have been calculated the electric and magnetic fields

are calculated on the grid. These fields are interpolated to the particle positions to apply the correct

force to each individual particle. This cycle then continues for many time steps.

����
..........................

Integrate the field equations on the grid

Calculate the force on each particle

Integrate the equations of motion

Fi −→ vi −→ ri

(x, v)i −→ (ρ, J)j

(E, B)j ←− (ρ, J)j

(E, B)j −→ Fi

Calculate the charge and current densities
∆t

Figure 4.2: Time chart showing the general cycle of a PIC code
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4.4.1 Courant condition

The electromagnetic fields are integrated implicitly, thereby eliminating the Courant constraint on

the time step generated by light waves,

∆x > c∆t. (4.7)

4.5 Normalisations

The code is normalised in the following way. Most importantly time is normalised against the

inverse electron plasma frequency. This then has consequences for the other normalisations. The

normalisation factors are as follows:

• Time is normalised against the inverse electron plasma frequency.

t = ω−1
pe (4.8)

• Length is normalised against the electron skin depth.

L =
c

ωpe
(4.9)

• Number density is normalised against n0 which is a free parameter.

n = n0 (4.10)

• Mass is normalised in units of the electron mass.

m = me (4.11)

• Velocity is normalised against the speed of light.

v = c (4.12)

• The magnetic field is normalised in terms of B0 and the ratio of the electron plasma fre-

quency to the electron cyclotron frequency as a consequence of choosing time to be nor-

malised against ω−1
pe .

B =
me

qet
=
meωpe

qe
=
me

qe

ωpe

Ωe
Ωe =

ωpe

Ωe
B0 (4.13)
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• The electric field is normalised in terms ofB0 and the ratio of the electron plasma frequency

to the electron cyclotron frequency.

E = cB =
ωpe

Ωe
B0c (4.14)

• The temperature is normalised by the fact that velocity is normalised in units of c,

T =
mec

2

kB
. (4.15)

• The pressure normalisation factor is given by

p = men0c
2 = n0kBT. (4.16)

4.6 The Main Program

The main level program calls several subroutines which solve for the new electromagnetic fields

and the new particle positions and velocities. There is a call to an initialisation subroutine that

initialises the spatial grids, the fields and the particle positions and velocities for each species.

The main loop consists of a call to a particle pusher subroutine which pushes the particles and cal-

culates the new density and current density moments. Calls to separate subroutines calculates the

new electromagnetic fields. Finally there is a call to a subroutine that ensures charge conservation

is satisfied.

4.7 Initialisation

This subroutine sets up the initial condition of the simulation run. The spatial grids, fields, particle

positions and particle velocities are initialised. The first step of the initialisation consists of setting

up the spatial grid. The spatial grid runs from −(Lx + ∆x),−(Lz + ∆z) to Lx, Lz where Lx and

Lz are the halfwidths in the x and z directions. The fields are then initialised on the grid points

according to the grid layout in Figure 4.1.

The first half of the initialisation sets up the foreground species. These are the two species that

carry the current. Once the number density ns for each species is set, then a subroutine is called

which returns the total number of real particles for each species. This is used to calculate the

density factors which makes sure the number of superparticles per cell matches up to the real

number density. In this code the density factors for each species are always equal. The number of
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superparticles per cell in the code is calculated by considering the following. Denoting the total

number of real particles for each species by Ns then Ns can be written as

Ns =
∫
dxdz n(x, z). (4.17)

Denoting the total number of real particles in a cell by Nc then this can be written as

Nc = dxdz n(x, z), (4.18)

and denoting the number of superparticles by Np then the number of superparticles per cell is

no. of superparticles per cell =
no. of real particles per cell

total no. of particles

× (number of superparticles)

=
Nc

Ns
×Np. (4.19)

In the code, the density factor for each particle species is defined as

density factor =
Ns

Npdxdz
. (4.20)

The number of superparticles per cell for each species is then calculated in the code by dividing n

for each grid cell by the density factor.

The thermal velocities vth,e and vth,i for each particle species in units of c are set using the tem-

perature ratio Te/Ti. An important point to remember is the choice of Te +Ti is chosen so that the

initial equilibrium satisfies force balance. As an example, in the Harris sheet case this means the

plasma pressure at the centre of the sheet must balance the magnetic pressure of the asymptotic

magnetic field, far away from the centre of the current sheet. This gives the requirement that,(
B2

2

)
z→∞

= p(z = 0) = n(z = 0)× (Te + Ti), (4.21)

which consequently means that if you want the magnetic field and density to be normalised to

unity you must set Te + Ti = 0.5. This addition of the temperatures can be changed for different

initial conditions but it must be chosen such that the initial equilibrium satisfies the force balance

condition.

In the case of a drifting Maxwellian distribution function, initialising the velocity distribution is

relatively straight forward. A uniform random number generator is used to set up a Guassian

distribution which is scaled by the thermal velocity and shifted by a Gallilean transformation

which adds the correct drift velocities for each species vdx,e, vdx,i, vdy,e, vdy,i, vdz,e and vdz,i. In

the majority of examples considered in Chap. 5 these velocity distributions will be of the form of
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a drifting Maxwellian.

In Chap. 5 an example is also given where in one velocity direction the distribution function is not

in the form of a drifting Maxwellian. In this case a slightly different approach has to be used to

initialise the distribution function. Assuming that the velocity distribution that is to be initialised

is given by the 1D distribution f(v) then define

r(v) =
∫ v

−v
dv
′
f(v

′
), (4.22)

where r(v) is the probability of finding a particle in the velocity interval [−v, v] and it satisfies the

condition that

lim
v→∞

r(v) = 1. (4.23)

To produce the desired velocity distribution it is necessary to use the inverse map v(r) which can

be used to map a random number between [0, 1] to v. In practice this is done by defining an n

element array, say v[i], where each element is set to,

v[i] = −vmax + 2 ∗ (i− 1)/(n− 1) ∗ vmax, (4.24)

where vmax is the maximum velocity that you want to consider. You then define another n element

array r[i] and fill it by numerical integration where,

r[i] =
∫ v[i]

−vmax
dv
′
f(v

′
), (4.25)

ensuring normalisation by setting

r[i]← r[i]/r[n] ∀i. (4.26)

The particle velocities are then set as follows. For each particle you create a random number

s ∈ [0, 1], evenly distributed. You then search for the largest index j for which r[j] ≤ s and

then assign the velocity v[j] to that particle. This procedure will give a pretty good representation

of f(v). There are improvements that could be made, particularly for example by varying the

spacing in velocity space, i.e. v[i] not evenly spaced. In practice an evenly spaced array works

well enough provided you take n large enough.

This initialisation process is then repeated for the background populations. A background popu-

lation is introduced to ensure that the number density does not reduce to very small values in any

grid cell. These are given a uniform density and a Maxwellian velocity distribution. They carry

no current. To initialise the density and current density moments on the grid the particle move

subroutine is called with the timestep ∆t set to zero.
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4.8 Particle Pushing Subroutine

This is the subroutine that calculates the new position and velocities of the particles and then uses

these to calculate the new density and current density moments on the grid.

The first step of this subroutine sets all the moment arrays to zero. To solve for the new particle

positions and velocities the electric and magnetic fields must be known at the particle positions.

To simplify this calculation all the field components are interpolated to the full integer grid points.

As an example of this consider the following example lines from the code which says

do iz=1,nz

do ix=2,nx

exh(ix,iz)=0.5*(ex(ix,iz)+ex(ix-1,iz))

enddo

enddo

The x component of the electric field is defined on the grid at half integer grid points in x and

full integer grid points in z directions. The lines of code above show that this component of the

electric field is interpolated so it is known at the full integer grid point for both x and z where

exh is the interpolated value of the x component of the electric field. The same procedure is

followed for the other electric and magnetic field components. An illustration of this process for

the x component of the electric field is shown in Figure 4.3.

Figure 4.3: An illustration to show how the field components on half integer grid points are inter-
polated to the full integer grid points for the particle move subroutine. This x component of the
electric field is used as an example which is located on half integer grid points in the x direction.

The next step is to get the fields at the particle locations. For each individual particle its position

is found. To calculate the interpolation factors the next lowest index of the nearest grid point is

calculated and hence the distance in the x and z directions between the particle and the position of

the four nearest grid points. These lengths are used to calculate the area weightings which are used

to interpolate the fields on the grid points to the particle position. Figure 4.4 shows graphically

how this is done and which interpolation factor multiplies which grid point’s field value. The black
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circle represents the particle. It can be seen clearly that it is the opposite area to the grid point

which multiplies the field value at that grid point. This is emphasised where the coloured areas

correspond to the colours of the grid points for which that area weighting is used. Once the fields

Figure 4.4: An illustration to show the interpolation of the fields to the particle positions for the
particle move subroutine.

have been interpolated to the particle positions then the velocities are advanced by integrating the

equation of motion,

dv
dt

=
qs
ms

(E + v ×B). (4.27)

The difference equation that must be solved is

vt+∆t − vt

∆t
=

qs
ms

(E + vt+∆t
2 ×B), (4.28)

which can be written in the form,

vt+∆t = vt +
β

α
(E + (αvt+∆t + (1− α)vt)×B), (4.29)

where α is an implicit factor and vt+∆t
2 has been rewritten as

vt+∆t
2 = αvt+∆t + (1− α)vt, (4.30)

where

β

α
=

qs
ms

∆t. (4.31)
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This can then be rewritten as

vt+∆t − βvt+∆t ×B = vt +
β

α
(E + (1− α)vt ×B) = T, (4.32)

which can be rearranged to give

vt+∆t ×B =
1
β

(vt+∆t −T). (4.33)

Taking the cross product of this equation with B this becomes

vt+∆t ×B + βvt+∆t
⊥ B2 = T×B. (4.34)

This in turn implies that

vt+∆t + β2vt+∆t
⊥ B2 = βT×B + T. (4.35)

Splitting up vt+∆t into parallel and perpendicular components this can be written as

vt+∆t
‖ + vt+∆t

⊥ (1 + β2B2) = βT×B + T. (4.36)

Now taking the cross product of this again with B this equation becomes

vt+∆t
⊥ ×B =

1
(1 + β2B2)

(β(T×B)×B + T×B). (4.37)

Finally, substituting into Eq. (4.33) and expanding the triple vector product the expression for

vt+∆t is

vt+∆t = T +
β

(1 + β2B2)
(−β(TB2 −B(T ·B)) + T×B). (4.38)

The new velocities are used to advance the particle positions. The difference equations for this

step are given by

xt+∆t = xt + vt+∆t
x ∆t (4.39)

zt+∆t = zt + vt+∆t
z ∆t. (4.40)

The only thing left to do is to make sure the boundary conditions are satisfied. In the examples

considered in the next chapter two different sets of boundary conditions are used. In the Harris

sheet cases the boundary conditions in the x direction are periodic and in the z direction the

particles are specularly reflected at the boundaries. Illustrations of these two boundary conditions

are shown in Figure 4.5. In examples using periodic equilibria as initial conditions the boundary

conditions are doubly periodic so that the z boundary is periodic as well.
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Figure 4.5: An illustration to show the boundary conditions for the particle positions

The second part of the particle move subroutine is to use the new positions and velocities of the

particles to calculate the 1st and 2nd order moments for each particle species at the grid points.

This is done in a similar way to the particle move calulation except that now the new particle

positions and velocities are used to calculate and interpolate the new number densities and average

drift velocities to the grid points. The weightings for each grid point are exactly the same as shown

in Figure 4.4. The actual quantities calculated by the code are essentially the following first and

second order moments for each species.

ns =
∫ ∞

−∞
fsd

3v, (4.41)

ns〈v〉s =
∫ ∞

−∞
vfsd

3v. (4.42)

To calculate the new densities and average drift velocities on the grid points you sum over each

particle species finding the position and velocity of each particle and then using the area weight-

ings shown in Figure 4.4 to allocate the number density and average drift velocity contribution at

each grid point.

In all cases the boundary conditions in the x direction are periodic. It is important to note though

that the way the densities are gathered on the grid the outer cells only receive half the total density.

So assuming symmetry the amount the outer cells receive is just doubled. The boundary conditions

on the z boundary for the Harris sheet cases is that the densities at iz=2 and iz=nz are set to

the densities at iz=3 and iz=nz-1 . On the z boundary the velocities are set to zero. In the

case of a periodic initial condition the boundary conditions on the z boundary are periodic.

4.9 Advancing the Magnetic Field

To start off, the old magnetic field components are stored. The current density components on the

grid are also found. The right hand side of the equation for the implicit solve is calculated first in
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one subroutine, which in turn calls a separate subroutine which solves for the new magnetic field

components.

To see how this process is done consider the following calculation. The differential equation to be

solved is

∂B
∂t

= −∇×E, (4.43)

which together with the differential equation

1
c2
∂E
∂t

= ∇×B− µ0j, (4.44)

can be solved implicitly to find the new magnetic field components. The corresponding difference

equations are

Bt+∆t −Bt = −∆t∇×Et+∆t
2 , (4.45)

which can be written using the implicit factor α as

Bt+∆t −Bt = −∆t∇× [αEt+∆t + (1− α)Et]. (4.46)

The second difference equation is

Et+∆t −Et = −∆t c2[µ0j−∇×Bt+∆t
2 ], (4.47)

which again can be written using the implicit factor α as

Et+∆t −Et = −∆t c2[µ0j−∇× (αBt+∆t + (1− α)Bt)]. (4.48)

Now substituting for Et+∆t from Eq. (4.48) into Eq. (4.46),

Bt+∆t −Bt = −∆t α∇×
[
Et −∆t c2[µ0j−∇× (αBt+∆t + (1− α)Bt)]

]
−∆t(1− α)∇×Et, (4.49)

which reduces to

Bt+∆t −Bt = −∆t∇×Et + ∆t2 αc2µ0∇× j

−∆t2 c2α2(∇×∇×Bt+∆t)−∆t2 c2α(1− α)(∇×∇×Bt). (4.50)

Expanding the vector triple products and remembering that∇ ·B = 0 and separating new and old



4.9 Advancing the Magnetic Field 102

variables, the difference equation is

Bt+∆t −∆t2 c2α2∇2Bt+∆t = Bt −∆t∇×Et + ∆t2 αc2µ0∇× j

+∆t2 c2α(1− α)∇2Bt
. (4.51)

Denoting the RHS of this equation as S the final difference equation is

Bt+∆t −∆t2 c2α2∇2Bt+∆t = S. (4.52)

Now the last part of the calculation shown here is to illustrate how Eq. 4.52 is solved to determine

the magnetic field components at the new time step. The calculation shown below is just for the x

component of the magnetic field as an illustration. So expanding Eq. (4.52) in terms of its spatial

derivatives,

−∆t2 α2c2

[
Bt+∆t

x (ix+ 1, iz)− 2Bt+∆t
x (ix, iz) +Bt+∆t

x (ix− 1, iz)
∆x2

+
Bt+∆t

x (ix, iz + 1)− 2Bt+∆t
x (ix, iz) +Bt+∆t

x (ix, iz − 1)
∆z2

]
+Bt+∆t

x (ix, iz) = Sx.

(4.53)

Rearranging this to solve for Bt+∆t
x then gives,

Bt+∆t
x (ix, iz) =

1
1 + 2∆t2 α2c2

∆x2 + 2∆t2 α2c2

∆z2

[
Sx

+
∆t2 α2c2

∆x2

(
Bt+∆t

x (ix+ 1, iz) +Bt+∆t
x (ix− 1, iz)

)
+

∆t2 α2c2

∆z2

(
Bt+∆t

x (ix, iz + 1) +Bt+∆t
x (ix, iz − 1)

) ]
. (4.54)

A similar calculation can be shown forBy andBz . Therefore to advance the magnetic field the first

subroutine calculates Sx, Sy and Sz . A separate subroutine is then called which uses a relaxation

method to converge towards the new magnetic field component values by solving Eq. (4.52).

The boundary conditions for the magnetic field components in the x direction are periodic. In the

Harris sheet cases the magnetic field components Bx and Bz at the z boundaries are set using the

condition that µ0j = ∇×B. The y component of the magnetic field must be set explicitly. In the

case of a periodic initial condition the z boundaries also satisfy periodic boundary conditions.
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4.10 Advancing the Electric Field

The next step is to solve for the new electric field components. To do this the difference equation

Et+∆t −Et = −∆tc2
(
µ0j−∇×Bt+∆t

2

)
, (4.55)

is solved. This is rewritten using the implicit factor α in terms of the magnetic field at the old and

new timestep.

Et+∆t −Et = −∆tc2
[
µ0j−∇×

(
αBt+∆t + (1− α)Bt

)]
. (4.56)

The first stage of the routine is to loop over all the particles to calculate the total current densities.

It is important to remember that the current densities must be defined on the grid at the points

at which each component of the electric field is located on the grid. The particle move routine

calculates the average drift velocities for each particle species at the integer grid points. Therefore

as well as summing over each particle species to calculate the total current densities, it is also

necessary, for particular components of the electric field, to interpolate the average drift velocities

for each species to half integer grid points in the x or z directions so they are located at the same

position on the grid as that component of the electric field. An example of this is the x component

of the electric field. The x component of the electric field is located on the grid at half integer

grid points in the x direction and full integer grid points in the z direction. Hence the average

drift velocity component in the x direction vdx,s must be interpolated so that it now has the correct

value at the half integer grid point in the x direction, whilst also looping over all particle species

to calculate the total current density there. This can be seen in the example lines of code below

and is also shown in Figure 4.6.

do k=1,nss

do iz=2,nz

do ix=2,nx-1

jx(ix,iz)=jx(ix,iz)

+0.5*q(k)*dfac(k)*(vxs(ix,iz,k)+vxs(ix+1,iz,k))

enddo

enddo

enddo

Once the total current densities jx, jy and jz are calculated then it is straight forward to solve

for the new electric field components by solving Eq. (4.56), where the values of the magnetic

field components at the new time step are known because they were already calculated by the

subroutine that advances the magnetic field and the magnetic field components at the previous

timestep are also saved before the new magnetic field components are calculated.

Now the final matter to deal with is to correct the electric field components properly at the bound-
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Figure 4.6: An illustration to show how the average drift velocities located at full integer grid
points are interpolated to half integer grid points in the x and z directions so that the total current
densities are calculated at the position of each component of the electric field on the grid. The x
component of the electric field is used as an example which is located on half integer grid points
in the x direction.

aries. The boundary conditions in the x direction are always periodic. In the Harris sheet simula-

tion runs the electric field components at the z boundaries are set to zero. In the case of a periodic

initial condition periodic boundary conditions are used in the z direction.

4.11 Ensuring Charge Conservation

In all PIC codes it is necessary to correct for the electric field to ensure that Poisson’s equation

is satisfied. In Im2dp4hf charge conservation is guaranteed by the iterative application of a

Langdon-Marder type (Langdon 1992; Marder 1987) correction to the electric field. The method

is described below. Consider the Ampère-Maxwell equation,

∂E
∂t

= c2∇×B− j
ε0

+∇F, (4.57)

where F is a correction term to ensure charge conservation and is defined as

F = k(∇ ·E− ρ), (4.58)

where k is in general allowed to vary in space. Leap-frog time differencing of Eq. (4.57) and Eq.

(4.58) gives,

Et+∆t = Et + c2∆t∇×Bt+∆t
2 − ∆t

ε0
jt+

∆t
2 + ∆t∇F t, (4.59)

F t = k(∇ ·Et − ρt). (4.60)
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Defining (0)Et+∆t as the electric field calculated in the code at time t + ∆t and (0)F t+∆t as the

correction term to the electric field at t+ ∆t then define,

(0)Et+∆t = Et + c2∆t∇×Bt+∆t
2 − ∆t

ε0
jt+

∆t
2 , (4.61)

(0)F t+∆t = k(∇ ·Et+∆t − ρt+∆t), (4.62)

and then the correction to the electric field is

Et+∆t = (0)Et+∆t + ∆t∇(0)F t+∆t (4.63)

= (0)Et+∆t + ∆t∇
(
k(∇ ·(0) Et+∆t − ρt+∆t)

)
. (4.64)

Defining the correction to the electric field as Ec = −∇φ then

Et+∆t = (0)Et+∆t −∇φ, (4.65)

∇2φ = ∇ ·(0) Et+∆t − ρt+∆t. (4.66)

Solving for φ via an accelerated point Jacobi method,

2

(
φ

(m+1)
i,j − (1− ω)φ(m)

i,j

ω

)(
1

∆x2
+

1
∆z2

)
=

1
∆x2

(
φ

(m)
i+1,j + φ

(m)
i−1,j

)
+

1
∆z2

(
φ

(m)
i,j+1 + φ

(m)
i,j−1

)
−
(
∇ ·(0) Et+∆t − ρt+∆t

)
(4.67)

and assuming that φ(0) = 0 then,

φ
(1)
i,j = −ω

2
1(

1
∆x2 + 1

∆z2

) (∇ ·(0) Et+∆t − ρt+∆t
)
. (4.68)

Substituting into Eq. (4.65)

Et+∆t =(0) Et+∆t +∇

(
ω

2
1(

1
∆x2 + 1

∆z2

) (∇ ·(0) Et+∆t − ρt+∆t
))

, (4.69)

which by comparing to Eq. (4.64) implies that a single pass of the point Jacobi scheme is equiva-

lent to the improved Marder scheme (Langdon 1992) with

k =
ω

2∆t
1(

1
∆x2 + 1

∆z2

) , (4.70)

and therefore,

(0)F t+∆t =
ω

2∆t
1(

1
∆x2 + 1

∆z2

) (∇ ·(0) Et+∆t − ρt+∆t
)
, (4.71)

Et+∆t = (0)Et+∆t + ∆t∇(0)F t+∆t. (4.72)
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This method is used iteratively in Im2dp4hf to correct for the electric field. An iterative loop is

set up where

F (n) =
ω

2∆t
1(

1
∆x2 + 1

∆z2

) (∇ ·E(n) − ρ
)
, (4.73)

E(n+1) = E(n) + ∆t∇F (n), (4.74)

and n is the iteration number. This iteration loop is then performed many times. In the code

ω = 1/2.

4.12 Summary

In this chapter a detailed description of the particle in cell code Im2dp4hf developed by Michael

Hesse (e.g. Hesse et al. 1999) has been given. Each of the main subroutines have been described.

The first step initialises the particle positions and velocities according to a specific distribution

and sets up the electric and magnetic fields that are consistent with this. It also establishes the

densities and current densities on the grid. The main loop consists of calling several subroutines.

The particle move subroutine pushes the particles by integrating the equation of motion via an

implicit method. The new particle positions and velocities are used to calculate the new densities

and current densities on the grid. Then subrotuines are called that advance the magnetic field

components forward in time, also by an implicit method. The electric fields are then advanced

and finally a subroutine is called that ensures charge conservation. In the Harris sheet cases the

boundary conditions are periodic in x. Particles are specularly reflected at the z boundaries. The

magnetic field components at the z boundaries are set using µ0j = ∇×B and the electric field

components are set to zero. In the case of a periodic initial condition the boundary conditions are

periodic in both x and z.



Chapter 5

PIC Simulations of Collisionless
Reconnection

5.1 Introduction

Magnetic reconnection is considered to be one of the most important plasma processes that fa-

cilitates the release of large amounts of stored magnetic energy which is converted into heat and

kinetic energy of fast particles. It is thought to have fundamental importance in flares, coronal

mass ejections and also coronal heating (e.g. Priest 1984). It is also plays a major role in the

transfer of energy from the solar wind into the magnetosphere (e.g. Schindler 2007).

In many of the regimes of interest in astrophysical plasmas the plasma can be considered as colli-

sionless. Therefore the aim of understanding the physics underlying reconnection in a collisionless

plasma has become an important area of research. In particular there have been many studies to

try and understand the dissipation mechanism which gives rise to the reconnection electric field

Ey and allows the frozen in constraint to be broken (e.g. Shay et al. 1998; Birn et al. 2001; Hesse

et al. 1999, 2001a,b, 2004, 2005; Kuznetsova et al. 1998, 2000, 2001; Nishimura et al. 2003; Ricci

et al. 2004a; Pritchett 2001; Pritchett and Coroniti 2004; Pritchett 2005; Bowers and Li 2007).

The frozen in constraint is given by the ideal Ohm’s law,

E + u×B = 0. (5.1)

The frozen in constraint is broken when the right hand side of Eq. (5.1) becomes non zero. Taking

the first order moment of the electron Vlasov equation the collisionless Ohm’s law is,

E + ue ×B =
1

neqe
∇ ·Pe +

me

qe

(
∂ue

∂t
+ ue · ∇ue

)
. (5.2)

107
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Ohm’s law refers to the electrons as in general it is the electrons that are the dominant current

carriers. The terms that can give rise to the Ey electric field that break the frozen in constraint can

therefore only be gradients of the off-diagonal components of the electron pressure tensor or the

electron bulk inertia.

The process by which the frozen in constraint is broken has been studied extensively in 2D start-

ing from a Harris sheet (Harris 1962) both without a guide field (e.g. Hesse et al. 1999, 2001a;

Kuznetsova et al. 1998, 2000, 2001; Pritchett 2001) and with a guide field (e.g. Hesse et al. 2004;

Ricci et al. 2004a; Pritchett 2005). These have shown that the dominant contribution to the recon-

nection electric field in the vicinity of the X-point is due to gradients of the off-diagonal compo-

nents of the electron pressure tensor when the full electron pressure tensor is included on the right

hand side of Ohm’s law.

In the case of zero guide field it has been shown that the scale lengths of the electron dissipation

region are determined by the trapping lengths of an electron in a field reversal (Hesse et al. 1999;

Kuznetsova et al. 2000, 2001) where the trapping lengths λx and λz are given as approximately,

λx =

[
2meTe

e2
(

∂Bz
∂x

)2
]1/4

, (5.3)

λz =

[
2meTe

e2
(

∂Bx
∂z

)2
]1/4

. (5.4)

These lengths are simply the distances away from the X-point which are equivalent to the elec-

tron gyroradius in the field reversal. Hesse et al. (1999) compared two simulations starting from

identical Harris sheet magnetic field configurations varying only the mass ratio in each case from

mi/me = 9 to mi/me = 100. They showed that the profile of Bz is almost identical in both runs

indicating that the length scales of the electron dissipation region are proportional to the fourth

root of the electron mass.

Kuznetsova et al. (1998, 2000, 2001) have carried out several studies using hybrid simulations

in 2D which included electron non-gyrotropic effects in the hybrid simulation model and they

have also compared these results to full electromagnetic particle in cell results (Kuznetsova et al.

2001). They found that the hybrid simulation reproduced the full particle code results very well

and that the dominant contribution to the reconnection electric field is due to gradients of off-

diagonal terms of the electron pressure tensor or what can also be described as kinetic quasi-

viscous effects. It is found that the bulk electron inertia contributes very little to the reconnection

electric field. In these studies estimates of the reconnection electric field due to the non-gyrotropic

kinetic effects were calculated and it was suggested that these could be incorporated into large

scale MHD models. Analytical estimates of the time evolution of the reconnected flux for the

MHD model with the non-gyrotropic correction agreed very well with the results from the hybrid
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and full particle simulations.

A detailed study of 2D reconnection was carried out in the Geospace Environmental Modelling

(GEM) Magnetic Reconnection Challenge (Birn et al. 2001). This study used a simple Harris

sheet configuration without a guide field with a specified set of initial conditions including a finite

amplitude magnetic island perturbation to trigger the dynamics. The question of reconnection

onset was not addressed. The aim of the challenge was to understand the important physics of col-

lisionless reconnection and to determine the minimum requirements to facilitate fast reconnection.

A variety of different numerical codes were used including MHD codes (Birn and Hesse 2001;

Otto 2001), Hall MHD codes (Ma and Bhattacharjee 2001; Birn and Hesse 2001), hybrid codes

(Kuznetsova et al. 2001; Shay et al. 2001) and full particle codes (Hesse et al. 2001a; Pritchett

2001; Shay et al. 2001). It was concluded that the minimum requirement for fast reconnection is

inclusion of the Hall term in the generalised Ohm’s law. The reconnection rate was essentially

independent of the method by which the frozen in constraint was broken, whether it was resis-

tivity, electron inertia, or non-gyrotropic pressure effects. A plot showing the evolution of the

reconnected magnetic flux for the GEM challenge for a full particle, hybrid, Hall MHD and MHD

code is shown in Figure 5.1. The slope of the reconnected flux is equivalent to the reconnection

rate.

Figure 5.1: Time evolution of the reconnected magnetic flux for the GEM reconnection challenge
for a full particle, hybrid, Hall MHD and MHD code (Birn et al. 2001).

The Hall term introduces a scale separation between the electrons and ions. The electrons are

decoupled from the magnetic field on the scale length of the electron skin depth c/ωpe and the

ions decouple from the electrons and the magnetic field on the scale length of the ion skin depth

c/ωpi (Shay et al. 1998). A characteristic feature of the scale separation between the electrons
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and the ions is the development of a quadrupolar out of the plane magnetic field (e.g. Hesse

et al. 2001a; Kuznetsova et al. 2001; Ma and Bhattacharjee 2001; Shay et al. 2001; Pritchett

2001; Ricci et al. 2004a). This is due to the fact that in the Hall zone, the region in which the

ions are decoupled from the magnetic field and electrons are frozen into the magnetic field, the

electron flow speeds are found to be significantly larger than the ion flow speeds (Hesse et al.

2001a). The difference between these flow speeds results in an in plane current. The gradients

of the quadrupolar magnetic field supports this current. The importance of the Hall term is that it

introduces the dynamics of whistler waves into the system (Shay et al. 2001; Ma and Bhattacharjee

2001). The quadratic dispersion relation of the whistler waves (ω ∼ k2) results in a phase speed

that is inversely proprotional to the width of the electron dissipation region. Thus the electron flux

out of the electron dissipation region is independent of the sheet width. As a consequence of this

the inflow velocity is independent of the width of the electron dissipation region and it is the ions

that control the reconnection rate (Shay et al. 2001).

Hesse et al. (1999) have shown that the reconnection electric field in the vicinity of the X-point is

independent of the mass ratio. This is shown in Figure 5.2 from Hesse et al. (1999). The evolution

of the reconnected flux in each case for varying values of the mass ratio is virtually identical

indicating that the reconnection electric field is approximately the same in all runs. In particular

they compared two simulation runs, one with a mass ratio of mi/me = 9 and the other with mass

ratio mi/me = 100 and they showed that although the pressure anisotropy was larger in the case

of the lower mass ratio by a factor of about 3, the gradient of the off-diagonal components of

the pressure tensors gave rise to the same reconnection electric field indicating that the electron

physics adjusts itself to the large scale requirements of the system. A similar result was found by

Pritchett (Pritchett 2001). To verify this result Hesse et al. (1999) made an order of magnitude

estimate of the reconnection electric field Ey based on the contribution from gradients of off-

diagonal components of the electron pressure tensor and found it to be given approximately by,

Ey,rec ≈
1
e

∂vxe

∂x

√
2meTe, (5.5)

where vxe is the electron flow velocity, Te the electron temperature and me the electron mass.

They therefore concluded that for the reconnection electric field to be independent of the mass

ratio the electron flow velocity must scale as the inverse square root of the electron mass which

was confirmed by their simulation results.

The reconnection rate has also been shown to depend on the initial sheet width (Hesse et al.

2001a). They compared simulation runs for total sheet thinkness 0.25, 0.5 and 2c/ωpi. They

found that the evolution was much faster for the thinner current sheets, shown in Figure 5.3. In one

diagnostic they plotted the maximum value of the reconnection electric field against the inverse

sheet thickness and found an exact linear relationship. This is shown in Figure 5.3(a). They also
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Figure 5.2: Time evolution of the reconnected magnetic flux for runs with increasing mass ratio.
Their evolutions are identical indicating that the reconnection rate is independent of the mass ratio
(Hesse et al. 1999).

plotted the time taken to reach certain values of total reconnected magnetic flux against sheet

thickness. This, in contrast to the first diagnostic suggested some non-linear behaviour, where for

larger sheet thickness the evolution times increased more strongly. This is shown in Figure 5.3(b).

The dominant current carriers for the y component of the current density around the X-point was

found to be the electrons (e.g. Pritchett 2001; Hesse et al. 2001a). It is stated by Pritchett (2001)

for a simulation starting from the GEM challenge configuration that the electron current is 2.5

times larger than the ion current. This is due to the increased electron drift in the y direction due

to the enhanced Ey electric field component. This increased electron drift is found to peak at the

X-line and remains strong out to | x |≈ 3 − 4c/ωpi which is in contrast to the ion drift which

is nearly constant over this region and much smaller than the electron drift (Hesse et al. 2001a;

Pritchett 2001). It is found that the magnetic island size in the z direction is of the order of the

ion inertial length c/ωpi but in fact the region of enhanced electron current around the X-point

is limited to a much smaller region of half thickness of the order 1 − 2c/ωpe in which electrons

are expelled at super Alfvénic speeds (Hesse et al. 1999, 2001a; Pritchett 2001; Kuznetsova et al.

2001). Outside of this electron diffusion region the ions are the dominant current carriers.

The results of the GEM challenge and several other 2D reconnection studies have led to the model

description (Hesse et al. 2001a) that the ‘large scale MHD-like behaviour transitions into a region

known as the Hall zone where the ions are demagnetised, whereas the electrons are still frozen

into the magnetic field. This region is associated with the formation of a quadrupolar structure
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(a)

(b)

Figure 5.3: Two figures that show the evolution dependence on the half width of the current sheet
from Hesse et al. (2001a). In Figure 5.3(a) the maximum reconnection electric field is plotted
against the inverse sheet thickness which is in units of the ion inertial length. In Figure 5.3(b)
the elapsed simulation times, in units of the inverse ion cyclotron period, until a certain level of
magnetic flux normal to the current sheet is reached is plotted. This shows some deviation from
the predicted linear dependence on current sheet width (Hesse et al. 2001a).
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of the normal magnetic field By, with gradients supporting the current flow in the plane of the

X-type magnetic field structure. The scale size of the Hall zone is a few to 10 ion inertial lengths.

Embedded in this region lies the electron dissipation region, where electrons become demagne-

tised from the magnetic field, thus enabling the reconnection process. The edges of this region

are marked by peaks in nongyrotropic electron pressure. Scale sizes here are defined by the elec-

tron bounce motion in the reversals of both Bx and Bz , which typically correspond to just over

an electron inertial length in the z direction and a few electron inertial lengths in the x direction.

In the magnetotail these lengths correspond to lengths of tens to hundreds of kilometres.’ In the

solar corona, using typical values for an active region (see Table 1.1) the electron inertial length

is approximately of the order of a tenth of a metre and the ion inertial length of the order of ten

metres. This model description is shown in Figure 5.4.

Figure 5.4: Neighbourhood of the dissipation region in collisionless magnetic reconnection. The
figure shows the quadrupolar out of plane magnetic field; the Hall zone, where ions become de-
magnetized; and the embedded, electron physics dominated diffusion region (Hesse et al. 2001a).

An important question to answer is what effect the introduction of a constant guide has on the

evolution. The addition of a constant guide field modifies the physics of the dissipation region.

The effect of the guide field in 2D has been studied by several authors (e.g. Hesse et al. 2004;

Pritchett 2005; Ricci et al. 2004a). Hesse et al. (2004) considered a moderate strength guide field

of By0 = 0.8 and showed that there was a finite contribution to the reconnection electric field

from the electron bulk inertia within a collisionless skin depth of the X-point which agreed with

the results of Pritchett (2005). In addition to this though they found that within a smaller scale

length which corresponded to the thermal electron Larmor radius in the guide magnetic field that

the non-gyrotropic pressures dominated the reconnection electric field. They went on to determine
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approximations for the off-diagonal components of the electron pressure tensor Pxy,e and Pyz,e

and found that for the Pyz,e component of the electron pressure tensor that gradients of the heat

flux tensor were important. Ricci et al. (2004a) have shown that even in the case of a guide field

of By0 = 5.0 the dominant non-ideal term in the dissipation region is due to the electron pressure

terms.

The introduction of a guide field has the effect of reducing the reconnection rate. This effect has

been shown in both 2D (e.g. Pritchett 2001; Ricci et al. 2004a), and 3D (e.g. Pritchett and Coroniti

2004) for simulations starting from a Harris sheet configuration. The reconnection rate is slowed

significantly if By0 � B0 where B0 is the asymptotic value of the x component of the magnetic

field. Examples of the time history of the reconnected flux for different strengths of guide field

where the initial configuration is identical to that of the GEM challenge (Birn et al. 2001) is given

in the paper by Pritchett (2001) and is shown in Figure(5.5). The gradients of the reconnected flux

correspond to the reconnection rate. It is therefore clear to see that the effect of the guide field is

to reduce the reconnection rate.

Figure 5.5: The time history of the reconnected flux ∆ψ for three different values of the uniform
initial B0y (Pritchett 2001).

In the zero guide field case the ions and electrons flow towards the X-point along the z direction

due to an E×B drift. They are accelerated in the y direction via the reconnection electric field

and flow outwards along the x diection with the electrons reaching super Alfvénic velocities (e.g.

Hesse et al. 1999, 2001a; Ricci et al. 2004a). The addition of the guide field destroys the symmetry

of this flow pattern. The electrons and ions can now drift in directions that were not possible in

the zero guide field case. The electrons have strong flows along the separatrices, with the flow

being inwards in the first and third quadrants and outwards in the second and fourth quadrants
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(Pritchett 2005; Ricci et al. 2004a). The ions are diverted in an antisymmetric way with respect to

the x = 0 line when they approach the X-point with their outflow motion primarily along x (Ricci

et al. 2004a). The guide field also reduces the size of the outflow region.

The quadrupolar out of the plane magnetic field is changed by the addition of a guide field. In the

cases of guide fields of the order By0 ∼ B0 the out of the plane component of the magnetic field

still has a quadrupolelike structure imposed on top of the guide magnetic field which is strongly

distorted from the zero guide field case (Hesse et al. 2004; Ricci et al. 2004a). In the case of

guide fields where By0 � B0 the quadrupolar structure of the out of the plane magnetic field is

completely removed (Rogers et al. 2003; Ricci et al. 2004a). The decoupling of ions and electrons

is still present which is evident in the fact that the maximum in plane electron flow is of the order

of several times the Alfvén speed whilst the maximum in plane ion flow is significantly slower

(Pritchett 2005).

In the zero guide field case it is the whistler dynamics that is important for fast reconnection. In

the strong guide field (low plasma β) case it has been argued that the dynamics are dominated

by kinetic Alfvén waves (KAW’s) which has a dispersion similar to the dispersion of the whistler

wave (ω ∼ k2) and are characterised by a scale length of the gyroradius rather than the ion

inertial length (Pritchett 2005; Ricci et al. 2004a). The characteristic signature of the KAW is a

quadrupolar structure of the electron density near to the X-point which has been shown by Ricci

et al. (2004a).

An important question to try and answer is whether the properties of 2D reconnection carry over

to 3D reconnection. In the paper by Hesse et al. (2001b) they carried out two simulations. The first

run started from a Harris sheet equilibrium with a perturbation to the magnetic field similar to that

of the GEM challenge (Birn et al. 2001) and the second run started from a Harris sheet with no

initial perturbation specified. They showed that reconnection starting from a case with an imposed

perurbation remained essentially 2D throughout the reconnection process whilst the run with no

perturbation initially formed patchy areas of reconnection but at later times these patches merged

to form a much larger reconnection channel. They also confirmed for the unperturbed run that

the reconnection electric field is again due to gradients of off-diagonal components of the electron

pressure tensor. The quadrupolar structure of the out of the plane magnetic field component was

also seen. In both simulation runs a lower hybrid drift instability also developed due to the density

gradient at the edge of the current sheet layer.

A similar study was performed by Pritchett and Coroniti (2004) in 3D starting from the GEM

challenge configuration with varying strengths of guide field. They found similar conclusions to

the 2D case that the effect of the guide field is to reduce the reconnection rate. A significant

reduction in the reconnection rate was observed for By0 � B0. The quadrupolar out of the

plane magnetic field component of the zero guide field case was replaced by an out of the plane
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magnetic field that was enhanced between the separatrices and reduced outside of the separatrices.

The electron flows were strongest along the separatrices in the lower left and upper right quadrants

which is consistent with the 2D case. In the cases with By0 � B0 the flows away from the X-

line were reduced, and thus the Hall currents were reduced. This is consistent with a reduced

reconnection rate for the strong guide field cases.

The dominant mechanism for breaking the frozen in constraint at the X-line was found to be due

to the divergence of the electron pressure tensor which is consistent with the results of 2D guide

field reconnection. Hesse et al. (2005) carried out a 3D simulation starting from an approximate

force-free Harris sheet equilibrium with a guide field of By0 = 0.8. An approximate force-free

Harris sheet was used to avoid the unrealistic growth of the lower hybrid drift instability (LHDI)

and drift kink instability (DKI) for the mass ratio considered. An initial perturbation similar

to that of the GEM challenge was added. They showed that the dominant contribution to the

reconnection electric field came from gradients of the Pyz,e term of the electron pressure tensor

with a characteristic scale length of the thermal electron Larmor radius, consistent with 2D studies

(Hesse et al. 2004). In Sec. 3.7 of Chap. 3 the first self consistent non-linear Vlasov-Maxwell

equilibrium for the force-free Harris sheet was shown. This equilbrium could be used as an initial

configuration for studies of 3D reconnection where the uniform initial density should suppress

the growth of the LHDI. This equilibrium would also be most appropriate for studying magnetic

reconnection in the solar corona.

In the studies of the GEM challenge the magnetic field configuration is initialised with a large

magnetic island amplitude. This is done so that the non-linear phase of magnetic reconnection

can be studied i.e. it does not address the important question of reconnection onset. The onset of

reconnection is thought to be due to the development of a collisionless tearing mode. The colli-

sionless tearing mode has been shown to saturate when the island width approaches the electron

skin depth (Biskamp 2000). This island width is too small to introduce the decoupling of the

electrons and ions which is a characteristic feature of fast collisionless reconnection (e.g. Hesse

et al. 2001a; Birn et al. 2001; Shay et al. 2001). Therefore without the inclusion of a significant

initial perturbation it is questionable that the collisonless tearing mode ever reaches large enough

amplitudes for fast reconnection to occur. This has led to a large number of authors to consider

the effect of current aligned microinstabilities which may have the effect of coupling to the tearing

mode and enhancing its growth rate (e.g. Büchner and Kuska 1999; Scholer et al. 2003; Lapenta

2003; Daughton et al. 2004; Karimabadi et al. 2004; Ricci et al. 2004b, 2005; Silin and Büchner

2003, 2005). These current aligned instabilities are particularly important for 3D in which the full

range of wave numbers (kx, ky, kz) are included.

It has been found that the lower hybrid drift instability (LHDI) may play a large role in the onset

of fast collisionless reconnection (e.g. Lapenta 2003; Karimabadi et al. 2004; Ricci et al. 2004b,

2005; Scholer et al. 2003). The LHDI has been shown to heat the electrons preferentially in the
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perpendicular direction (Te⊥/Ti‖ > 1) which is known to significantly increase the growth rate of

the tearing mode (e.g. Ricci et al. 2004b, 2005; Karimabadi et al. 2004). Ricci et al. (2005) showed

that the LHDI in thin current sheets of the order of the ion inertial length leads to a thinning of

the current sheet and an increased current density perpendicular to the magnetic field which can

enhance the growth of the tearing mode. In the case of larger current sheet widths the LHDI led to

a bifurcation of the current sheet. Current sheet thinning due to the LHDI has also been reported

by Scholer et al. (2003). The same authors have also shown the development of the drift kink

instability (DKI) and a sausage mode for a 3D simulation with a mass ratio mi/me = 64. At the

onset of reconnection the DKI is dominant. In contrast they showed that for a higher mass ratio

of mi/me = 150 that reconnection starts before any kinking is observed and it is the thinning

of the current sheet due to LHDI that causes the onset of reconnection. The reduced growth rate

of the DKI at high mass ratio is in agreement with the linear analysis of the unstable modes of

a Harris sheet given by Daughton (1999). The LHDI has also been shown to introduce velocity

shear (Lapenta 2003; Ricci et al. 2005). The velocity shear can lead to the development of a Kelvin

Helmholtz instability (KHI) which can cause compression and rarefaction of the magnetic fields

which may lead to the onset of reconnection (Lapenta 2003).

Silin and Büchner (2005) carried out fully 3D simulations with a mass ratio of mi/me = 32
using a Vlasov-code. They are argued that the lower hybrid waves that occur at the edge of the

current layer due to pressure gradients in the plasma can interact with the ion flow via inverse

Landau damping leading to the fast growth of an instability that would affect the entire current

sheet. They define this as the drift resonant instability (DRI). This drift resonant instability will

have a wavelength and frequency of the order of typical lower hybrid scales λ ∼ (dide)1/2 and

ω ∼ (Ω0iΩ0e)1/2 where di and de are the ion and electron skin depths and Ω0i and Ω0e are the

ion and electron cyclotron frequencies in the asymptotic magnetic field. The effect of adding a

guide field on this instability is to slow its growth. The guide field causes the wave modes to now

propagate obliquely to the current direction and as a consequence this reduces the number of ions

that can amplify the lower hybrid drift waves due to inverse Landau damping.

One of the major aims of this work was to understand and investigate further the magnetic recon-

nection process for plasmas starting from different initial conditions. In particular to investigate

the role of the guide field compared to using a force-free equilibrium as an initial condition. The

magnetic fields for example in the corona of the Sun can be descibed as approximately force free

(j×B = 0), where the plasma β is low, and therefore it is of interest to investigate collision-

less reconnection starting from a force-free initial state. As shown in Chap. 3 a linear force-

free Vlasov-Maxwell equilibrium can be given by a special case of an anisotropic bi-Maxwellian

distribution function (Sestero 1967; Bobrova and Syrovatskiǐ 1979; Correa-Restrepo and Pfirsch

1993; Bobrova et al. 2001) where at least one plasma species must have a temperature anisotropy.

Several authors have used this equilibrium as an initial state to carry out 2.5D and 3D fully elec-
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tromagnetic PIC simulations (Bobrova et al. 2001; Nishimura et al. 2003; Li et al. 2003; Sakai and

Matsuo 2004; Bowers and Li 2007).

The linear force-free state is unstable to a tearing mode instability at resonant layers where k ·B =
0 (Bobrova et al. 2001; Nishimura et al. 2003; Li et al. 2003). Li et al. (2003) have shown that the

linear growth rate for the tearing mode is,

γ =
1

π1/2

1− cos(
√

1− κ2π)
sin(
√

1− κ2π)
κ
√

1− κ2(deα)2αvte, (5.6)

where α = 2π/Lz , Lz is the length of the simulation box in the z direction, κ = k/α is the

wavenumber divided by the pitch of the magnetic field, de = c/ωpe is the electron inertial length,

k = 2πnx/Lx is the wave number in the x direction where Lx is the length of the simulation

box in the x direction and vte is the electron thermal speed. Therefore, for wavelengths shorter

than the shear length 2π/α or Lx < Lz the factor 1− κ2 is less than zero and there is no growth.

The effect of this tearing mode has been shown to result in a global reorganisation of the initial

magnetic field configuration.

Nishimura et al. (2003) carried out several runs using a 2.5D fully electromagnetic PIC code.

They imposed a temperature anisotropy only in the electrons varying the box size, the pitch of the

magnetic field α, the plasma β, the temperature anisotropy Te⊥/Te‖ and the ratio of the electron

drift speed to electron thermal speed Vde/vte. In addition to the tearing mode they found that in

the initial phase of each simulation run a Buneman type electrostatic instability could be excited

if the ratio of the electron drift velocity to the electron thermal velocity exceeded the threshold

value of 1.44. This instability can lead to enhanced growth of the tearing mode at later times

as it can lead to the formation of a new configuration with inhomogeneous electron density and

temperature which is in direct contrast to the initial condition which is homogeneous in all scalar

plasma parameters.

Li et al. (2003) also carried out 2.5D simulations where only a temperature anisotropy was im-

posed on the electrons and parameters were chosen such that the initial state was stable to the

electrostatic Buneman type instability. The box size was chosen so that it was only unstable to

the nx = 1 mode of the tearing mode instability. They chose a mass ratio of mi/me = 100.

In agreement with the results from Nishimura et al. (2003) they found that following the linear

growth of the tearing mode there was a period of magnetic reconnection followed by a saturation

phase where the magnetic field organises itself into a new quasi steady state going from having

only x and y components in the initial state to mainly having only y and z components in the

final state. They defined the duration of reconnection to be the time it takes for the island width to

grow and ‘touch’ the neighbouring reconnection layer so that the mutual interaction between them

becomes dominant. Investigation into the dissipation mechanism around the X-point confirmed

that the electric field was partially supported by gradients of the off-diagonal terms of the pressure
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tensor which is in agreement with previous studies of collisionless reconnection (e.g. Hesse et al.

2001a, 2004, 2005; Pritchett 2001; Ricci et al. 2004a). They also found the scale separation of the

dissipation region which is also reported in Birn et al. (2001) where the electron diffusion region

was found to be of the order of 0.2 ion inertial lengths whereas the ion region had a width of about

0.8 ion inertial lengths.

Bowers and Li (2007) carried out a 3D PIC simulation starting from the linear force-free equi-

librium which has been discussed by Sestero (1967); Bobrova and Syrovatskiǐ (1979); Correa-

Restrepo and Pfirsch (1993); Bobrova et al. (2001) with a mass ratio of 100. The evolution was

similar to the 2D case. The evolution consisted of a linear growth stage, followed by a shorter

reconnection stage, with finally an extended saturation stage. During the growth of the tearing

mode the current density becomes enhanced at the X-points. In the saturation stage the reconnec-

tion caused a complete reorganistion of the field from a (Bx, By) magnetic field configuration to a

(By, Bz) magnetic field configuration. They showed that the electron pressure terms dominate the

reconnection electric field which is in agreement with 2.5D studies starting from the same linear

force-free initial condition (Li et al. 2003).

The aim of this work is to investigate the morphology of the off-diagonal components of the

electron pressure tensor as one makes the transition from an anti-parallel magnetic field through

to a strong guide field case. For comparison purposes in Sec 5.4 the evolution of the electron

pressure tensor components are shown for the Harris sheet case with varying strengths of guide

field. These will indicate the expected structures of the off-diagonal components of the electron

pressure tensor during the reconnection process and will be important for comparison purposes.

Detailed studies of the structure of the off diagonal components of the electron pressure tensor for

the Harris sheet cases have already been carried out (Hesse et al. 1999, 2002, 2004). It is found

that in the anti-parallel case the structure of the pressure tensor components in the vicinity of the

X-point have a length scale determined by the electron bounce motion (Hesse et al. 1999) whilst

in the strong guide field case this scale reduces down to the electron Larmor radius in the guide

magnetic field (Hesse et al. 2004, 2005).

In Sec. 5.5 this transition is investigated using the equilibria resulting from the anisotropic bi-

Maxwellian distribution function introduced in Sec. 3.4 of Chap. 3 as initial conditions in 2.5D

PIC simulations of magnetic reconnection. These are investigated for equal mass ratio. In all these

equilibria it is necessary to have a temperature anisotropy. An anti-parallel periodic equilibrium

is investigated with various strengths of guide field added in each case, ranging from By0 = 0
through to By0 = B0 where B0 is the amplitude of the anti-parallel component of the magnetic

field. These results are compared to the structure of the off-diagonal components of the electron

pressure tensor for a simulation starting from a self-consistent linear force-free equilibrium. In

Sec. 5.6 simulations starting from a double Harris sheet with a range of guide fields are also shown

as another example of magnetic reconnection starting from a periodic equilibrium magnetic field.
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These are also investigated for equal mass ratio. The anisotropic bi-Maxwellian simulations are

extended to consider a mass ratio mi/me = 25 in Sec. 5.7.

Finally in Sec. 5.8 two simulation runs are compared starting from the self-consistent force-

free Harris sheet equilibrium given in Sec. 3.7 of Chap 3 for the mass ratios mi/me = 1 and

mi/me = 9.

5.2 The Reconnection Electric Field

The reconnection electric field Ey in the vicinity of the X-point can be written approximately as

Ey ≈ −
me

e

(
ux,e

∂uy,e

∂x
+ uz,e

∂uy,e

∂z

)
− 1
nee

(
∂Pxy,e

∂x
+
∂Pyz,e

∂z

)
− (uz,eBx − ux,eBz) .

(5.7)

It is found that the dominant contribution to this electric field comes from gradients of the off-

diagonal components of the electron pressure tensor Pxy,e and Pyz,e. The focus of this study is

therefore to investigate the morphology of these off-diagonal components of the pressure tensors

as the transition is made from a weak guide field to a strong guide field and also to compare this

to simulations starting from self consistent force-free equilibria.

5.3 The Simulation Code

In all the examples shown the 2.5D, fully electromagnetic particle-in-cell code developed by

Michael Hesse (Hesse et al. 1999) has been used and is described in Chap. 4. The scheme is

based on the Buneman layout of the currents and fields on a rectangular grid (e.g. Villasenor and

Buneman 1992). Particles are integrated by a second order, implicit leapfrog scheme and densities

and fluxes are accumulated on the grid using a rectangular particle shape function. The electro-

magnetic fields are integrated using an implicit method which avoids the Courant constraint on

the propagation of light waves. Charge conservation is guaranteed by a Langdon-Marder type

(Marder 1987; Langdon 1992) correction to the electric field.

5.4 Harris Sheet Simulations (mi/me = 1)

The Harris sheet (Harris 1962) is well known and understood as the majority of studies of colli-

sionless reconnection start from a Harris sheet, or a Harris sheet with a constant guide field (e.g.
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Hesse et al. 2001a, 2004; Pritchett 2001; Pritchett and Coroniti 2004; Birn and Hesse 2001; Ricci

et al. 2004a). The major aim of this work was to investigate the structure of the diffusion region

for different initial conditions and to compare how the structure of the off-diagonal components

of the electron pressure tensor changes as the guide field is varied. By showing the changing

structures of the off diagonal components of the pressure tensors for the Harris sheet case as one

moves from a weak guide field through to a strong guide field this allows a direct comparison to

the results from the simulations runs starting from different initial conditions.

The reconnection rates of each simulation run were also investigated. It is a well known trend that

for the Harris sheet case the effect of increasing the strength of the constant guide field slows the

reconnection rate down. This behaviour for the Harris sheet is shown and is used to compare to

simulation results starting from different initial conditions.

In the following simulation results, the ion to electron mass ratio is equal to one (mi/me = 1).
Lengths are normalized to the ion inertial length c/ωpi and the number density is normalised to

a value n0. Times are normalised to the inverse of the ion cyclotron frequency Ωi = eB0/mi.

The magnetic field is normalised to the value B0, the amplitude of the initial magnetic field. The

system dimensions are Lx = 19.34 c/ωpi and Lz = 4.83 c/ωpi where Lx and Lz are the half

lengths of the box in the x and z directions, with a grid that is 140× 70 in the x and z directions.

A time step ωpe∆t = 1 is used. The ratio ωpe/Ωe is set to a numerical value of 5.

The initial configuration is a Harris sheet. The magnetic field is given by

Bx = tanh
( z
L

)
, (5.8)

where L = 1.2. The electron and ion densities are given by

n =
1

cosh2
(

z
L

) . (5.9)

For each simulation run a perturbation of the form

Bxp = −a0xm
π

2Lz
exp

(
− x2

2x2
m

+ 0.5
)

sin
(
πz

2Lz

)
, (5.10)

Bzp = a0
x

xm
exp

(
− x2

2x2
m

+ 0.5
)

cos
(
πz

2Lz

)
, (5.11)

is also added where a0 = 0.1 and xm = Lz/2. This gives an X-point type reconnection site at

the centre of the box. This is done so that the non-linear phase of magnetic reconnection can be

studied. The question of reconnection onset is not addressed.

There are two particle populations. The foreground population consists of the first set of ions and

electrons which establish the equilibrium pressures and currents. In the simulation runs tempera-
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tures are set such that Ti+Te = 0.5, with Te/Ti = 1. The second population consists of the second

set of ions and electrons and constitutes a constant background density nb = 0.2. The background

temperatures are identical to the foreground population Te + Ti = 0.5, with Te/Ti = 1.0. The

simulation run used 2 × 107 ions and electrons each for the foreground and 3 × 107 ions and

electrons for the background.

Periodic boundary conditions are employed at x = −Lx and x = Lx. Particles are specularly

reflected at z = −Lz and z = Lz . The strength of the constant guide field By = By0 is varied

from By0 = 0.0 through to By0 = 1.0 to show the effect of adding a constant guide field in the y

direction.

Figure 5.6 shows the initial configuration for the Harris sheet at t = 0. A filled contour plot of

the magnetic field component Bx is shown in Figure 5.6(a) with a line plot of the magnetic field

profile plotted along z for x = 0 shown in Figure 5.6(b). Figure 5.6(c) is a filled contour plot of

the y component of the current density with contours of the flux function overplotted showing the

magnetic field lines. It is clear to see the hyperbolic tangent profile of Bx and also the current

sheet structure of jy with the X-point introduced by the perturbation to the equilibrium magnetic

field. A range of constant guide fields By0 are added to this initial configuration.

Figures 5.7 - 5.9 show the evolution of the magnetic field for three different runs with the y

component of the current density colour coded. Figure 5.7 shows the evolution for the initial con-

figuration with zero guide field. Figure 5.8 shows the evolution for the initial configuration with

a guide field of value By0 = 0.5 and Figure 5.9 shows the evolution for the initial configuration

with a guide field of value By0 = 1.0. Movies of the evolution for each case can be found on the

CD which is attached to this thesis (see Appendix B). These figures show how magnetic recon-

nection proceeds and leads to large changes in the magnetic field structure. In the central X-point

region the current density and particle density are strongly reduced. The reduction of the current

density at the X-point as reconnection proceeds for all cases can be seen in Figures 5.7 - 5.9. In the

zero guide field case, Figure 5.7 shows that the current density is enhanced and localised in small

regions adjacent to the X-point along the z = 0 line. In the strong guide field case By0 = 1.0 the

current density is distributed around the O-points. Eventually in all cases reconnection slows due

to the build up of magnetic flux in the magnetic islands which causes a magnetic pressure gradient

which reduces the pulling of the magnetic field lines away for the reconnection site.

Figure 5.11 shows line plots along x for z = 0 of the electron number density ne (blue lines) and

the y component of the current density (red lines) for the cases with zero guide field, By0 = 0.5
and By0 = 1.0 at the time of maximum reconnection rate. These can be compared to the electron

number density and y component of the current density at t = 0 for each run which are shown in

Figure 5.10 plotted along x for z = 0. In all three cases Figures 5.11(a), 5.11(c) and 5.11(e) show

a significant density depletion around the X-point. Figures 5.11(b), 5.11(d) and 5.11(f) show that
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(a)

(b)

(c)

Figure 5.6: Plots showing the initial configuration for the Harris sheet. Figure 5.6(a) shows a
colour contour plot of Bx and Figure 5.6(b) shows a line plot of the profile of Bx along z for
x = 0. Figure 5.6(c) shows a filled contour plot of the y component of the current density with
magnetic field lines corresponding to contours of the flux function overplotted.
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(a)

(b)

(c)

(d)

Figure 5.7: Plots of the y component of the current density with contours of the flux function
overplotted for the Harris sheet run with zero guide field. The plots correspond to the different
times (a) t = 0, (b) t = 20, (c) t = 40 and (d) t = 60.
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(a)

(b)

(c)

(d)

Figure 5.8: Plots of the y component of the current density with contours of the flux function
overplotted for the Harris sheet run with a guide field of value By0 = 0.5. The plots correspond
to the different times (a) t = 0, (b) t = 20, (c) t = 40 and (d) t = 60.
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(a)

(b)

(c)

(d)

Figure 5.9: Plots of the y component of the current density with contours of the flux function
overplotted for the Harris sheet run with a guide field of value By0 = 1.0. The plots correspond
to the different times (a) t = 0, (b) t = 20, (c) t = 40 and (d) t = 60.
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(a) (b)

Figure 5.10: Line plots of the electron number density ne (blue line) and the y component of the
current density (red line) plotted along x for z = 0 at t = 0.

in all cases the current density is significantly reduced at the X-point.

In the zero guide field case Figure 5.11(b) shows that in regions adjacent to the X-point the current

is enhanced from its initial value at a distance |x| ≈ 7 c/ωpi either side of the X-point. In the guide

field case By0 = 0.5, Figure 5.11(d) shows that the current density has peaks along the z = 0
line in the regions adjacent to the X-point and that the value of the current density at these peaks

has a maximum value which is slightly reduced from the initial maximum value of the current

density. The peaks of the current density along z = 0 are located adjacent to the X-point at

|x| ≈ 9 − 10 c/ωpi either side of the X-point. The current density at the X-point is also slightly

larger than in the zero guide field case whilst still reduced from its initial value. Figure 5.11(f)

shows that for the case with a guide field By0 = B0 the current density is significantly reduced

from its initial value in the regions adjacent to the X-point along the z = 0 line. The peaks of the

current density along z = 0 are though, still located adjacent to the X-point, at |x| ≈ 12 c/ωpi

either side of the X-point. The current density is larger at the X-point than in the zero guide field

and By0 = 0.5 cases, whilst also still reduced from its initial value. The value of the current

density at the X-point in the zero guide field case has the value of ≈ 0.25 in comparison to the

guide field By0 = 1.0 case where the current density has a value of ≈ 0.5 at the X-point.

A comparison of the evolution of the runs is given in figure 5.12. This shows two plots, one for

the reconnected flux for each case plotted using different colours to represent the strength of the

guide field in each run where the reconnected flux is defined as

F (t) =
∫

Bz>0
dxBz(z = 0), (5.12)

and the other shows the reconnection rate where the reconnection rate is found by taking the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Line plots of the electron number density ne (blue lines) and the y component of the
current density (red lines) plotted along x for z = 0 at the time of maximum reconnection rate
for the Harris sheet runs with a guide field of value (a),(b) By0 = 0.0 (t = 50) (c),(d) By0 = 0.5
(t = 50), (e),(f) By0 = 1.0 (t = 52).
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(a)

(b)

Figure 5.12: Figures showing the evolution of the simulations with varying strengths of guide field
using the Harris sheet as an initial configuration. The reconnected flux is shown in Figure 5.12(a)
and the corresponding reconnection rates in Figure 5.12(b). The colours represent the different
strengths of the guide field in the initial configuration.
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derivative of the reconnected flux and normalising it against the maximum Alfvén speed at each

timestep.

Examining the evolution of the Harris sheet runs you can clearly see from the plots of the re-

connection rate shown in Figure 5.12(b) that the reconnection rate reduces significantly when the

guide field is of the order B0. This is in agreement with previous studies that show that the recon-

nection rate is reduced once the guide field is large enough to significantly change the magnetic

pressure in the system (e.g. Pritchett 2001; Ricci et al. 2004a).

5.4.1 The Structure of the Diffusion Region

In this section the morphology of the off-diagonal components of the pressure tensor components

are shown for the Harris sheet cases. It is also shown how the different contributions in equation

(5.7) make up the reconnection electric field in the vicinity of the X-point.

Figure 5.13 shows filled contour plots of the y component of the current density at the time of

maximum reconnection rate for each simulation run. The time of maximum reconnection rate

corresponds to the peaks of the graphs for each case shown in Figure 5.12(b). Figure 5.14 are

filled contour plots of the y component of the electric field at the time of maximum reconnection

rate. The electric field in each case has been averaged for 2Ω−1
i either side of the time of maximum

reconnection rate. This shows how magnetic reconnection generates a strong y component of the

electric field in the vicinity of the X-Point. The guide fields By0 = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
have been used. In all the figures x0 refers to the approximate position along x of the position of

the X-point. In all cases the position of the X-point along z is approximately at z = 0.

To demonstrate that the dominant contribution to the Ey electric field in the vicinity of the X-

point is due to off-diagonal components of the electron pressure tensor Figure 5.15 and Figure

5.16 show line plots along x and z through the X-point of the contributions that make up the Ey

electric field in Eq. (5.7) at the time of maximum reconnection rate. The quantities in each case

have been averaged for 2Ω−1
i either side of the time of maximum reconnection rate. Examination

of these figures clearly shows that the dominant contribution to the electric field in the vicinity

of the X-point comes from the gradients of the off-diagonal components of the electron pressure

tensor (green lines).

In each of the plots shown in Figure 5.15 and Figure 5.16 the gradients of the off-diagonal com-

ponents of the electron pressure tensor (green lines) dominate the electric field out to the point

at which the u×B term (purple lines) equals the contribution from the gradients of the electron

pressure tensor terms. The plots shown in Figure 5.15 show that the contribution from the off diag-

onal pressure tensor components dominates to about x ≈ ±3 c/ωpi either side of the X-point. For

the plots shown in Figure 5.16 the contribution from the off diagonal pressure tensor components
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.13: Plots of the y component of the current density with contours of the flux function
overplotted for simulations with varying strengths of guide field at the time of maximum reconnec-
tion rate. (a) By0 = 0.0 (x0 = −0.28), (b) By0 = 0.1 (x0 = −0.28), (c) By0 = 0.3 (x0 = 0.0),
(d) By0 = 0.5 (x0 = 0.0), (e) By0 = 0.7 (x0 = −0.28), (f) By0 = 0.9 (x0 = 0.0), (g) By0 = 1.0
(x0 = −0.28).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.14: Plots of theEy electric field for simulations with varying strengths of guide field at the
time of maximum reconnection rate. (a) By0 = 0.0 (x0 = −0.28), (b) By0 = 0.1 (x0 = −0.28),
(c) By0 = 0.3 (x0 = 0.0), (d) By0 = 0.5 (x0 = 0.0), (e) By0 = 0.7 (x0 = −0.28), (f) By0 = 0.9
(x0 = 0.0), (g) By0 = 1.0 (x0 = −0.28).
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.15: Plots along x for z = 0 of the contributions that make up the Ey electric field in Eq.
(5.7) for simulations with varying strengths of guide field at the time of maximum reconnection
rate. (a) By0 = 0.0 (x0 = −0.28), (b) By0 = 0.1 (x0 = −0.28), (c) By0 = 0.3 (x0 = 0.0), (d)
By0 = 0.5 (x0 = 0.0), (e) By0 = 0.7 (x0 = −0.28), (f) By0 = 0.9 (x0 = 0.0), (g) By0 = 1.0
(x0 = −0.28).



5.4 Harris Sheet Simulations (mi/me = 1) 134
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(g)

Figure 5.16: Plots along z for x = x0 of the contributions that make up the Ey electric field in Eq.
(5.7) for simulations with varying strengths of guide field at the time of maximum reconnection
rate. (a) By0 = 0.0 (x0 = −0.28), (b) By0 = 0.1 (x0 = −0.28), (c) By0 = 0.3 (x0 = 0.0), (d)
By0 = 0.5 (x0 = 0.0), (e) By0 = 0.7 (x0 = −0.28), (f) By0 = 0.9 (x0 = 0.0), (g) By0 = 1.0
(x0 = −0.28).



5.4 Harris Sheet Simulations (mi/me = 1) 135
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(e) (f)

(g)

Figure 5.17: Plots of the Pxy,e component of the electron pressure tensor for simulations with
varying strengths of guide field at the time of maximum reconnection rate. (a) By0 = 0.0 (x0 =
−0.28), (b) By0 = 0.1 (x0 = −0.28), (c) By0 = 0.3 (x0 = 0.0), (d) By0 = 0.5 (x0 = 0.0), (e)
By0 = 0.7 (x0 = −0.28), (f) By0 = 0.9 (x0 = 0.0), (g) By0 = 1.0 (x0 = −0.28).
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Figure 5.18: Plots of the Pyz,e component of the electron pressure tensor for simulations with
varying strengths of guide field at the time of maximum reconnection rate. (a) By0 = 0.0 (x0 =
−0.28), (b) By0 = 0.1 (x0 = −0.28), (c) By0 = 0.3 (x0 = 0.0), (d) By0 = 0.5 (x0 = 0.0), (e)
By0 = 0.7 (x0 = −0.28), (f) By0 = 0.9 (x0 = 0.0), (g) By0 = 1.0 (x0 = −0.28).
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(a) (b)

Figure 5.19: Plots of the profile of Bz along x and of the profile of Bx along z going through
the position of the X-point at the time of maximum reconnection rate for the zero guide field
(anti-parallel) case.

dominates to about z ≈ ±1.8c/ωpi either side of the X-point for the weak guide field cases whilst

for the strong guide field cases they dominate up to z ≈ ±0.5c/ωpi either side of the X-point.

Although the dominant term in the vicinity of the X-point is due to the gradients of the off-

diagonal terms of the electron pressure tensor, there is a small contribution to the electric field

from the electron inertia term at the edge of the diffusion regime. It can be seen in the plots along

z of the contributions to the reconnection electric field shown in Figure 5.16 that as the guide field

becomes larger the contribution from the electron inertia (black lines) at the edge of the diffusion

region becomes larger. In the strong guide field cases this electron inertia term is in fact of equal

magnitude to the u×B term. In a recent paper by Hesse et al. (2004) for a simulation starting

from a Harris sheet with a guide field of By0 = 0.8, it was shown that within a collisionless

skin depth there was a finite contribution from the electron inertia at the edge of the localised

current region. The main contribution to the Ey electric field close to the X-point was still due

to the nongyrotropic pressures. The results shown here are consistent with this. The significant

contribution from the electron inertia term is due the small scales associated with the electron

Larmor radius in the strong guide field case.

To investigate further the structure of the off-diagonal electron pressure tensor components, Fig-

ures 5.17 and 5.18 show filled contour plots of the Pxy,e and Pyz,e components of the electron

pressure tensor zoomed in around the position of the central X-point. In the anti-parallel case

the Pxy,e component is approximately symmetrical about the line x = x0 which goes through

the X-point with a gradient in x. The Pyz,e component of the pressure tensor is approximately
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symmetrical about the z = 0 line going through the X-point with a gradient in z. As the guide

field is increased the structure of the Pxy,e component starts to change. The symmetry along the

line x = x0 is broken and the structure is seen to rotate in an anti-clockwise direction until at the

guide field By0 = 1.0 case the Pxy,e component is almost symmetrical along the line z = 0 with a

gradient in z. The central region in all of the plots can also be seen to thin. The Pyz,e component

of the electron pressure tensor is seen to at first rotate in the anti-clockwise direction up to about

a guide field of By0 = 0.5 but then rotates clockwise until for a guide field of By0 = 1.0 the

symmetry along z = 0 has almost been restored. The thinning of the central region can again be

observed as the guide field becomes stronger.

It is currently unclear why the structure of the Pxy,e and Pyz,e components of the electron pres-

sure tensor have the behaviour shown in Figure 5.17 and Figure 5.18 for the intermediate cases

between the zero guide field and strong guide field case. Analytical estimates of the Pxy,e and

Pyz,e components of the electron pressure tensor in the vicinity of the X-point have been derived

for the anti-parallel case (Hesse et al. 1999) and the strong guide field case (Hesse et al. 2004). A

full analytical theory that can describe the changing structure of Pxy,e and Pyz,e shown in Figure

5.17 and Figure 5.18 as the transition between a zero guide field case to a strong guide field case

is made is not currently available and is a problem for future work.

The thinning of the central region in Figure 5.17 and Figure 5.18 is due to the introduction of the

guide field. In the case with zero guide field the characteristic length scale of Pxy,e and Pyz,e is

given approximately by the electron bounce widths in a field reversal λx and λz (e.g. Hesse et al.

1999). In these simulations the electron bounce width in the x and z directions for the anti-parallel

field configuration as given by Eqs. (5.3) and (5.4) at the time of maximum reconnection rate are

of the order λx ≈ 2.5c/ωpi and λz ≈ 1.3c/ωpi. Plots of the Bx and Bz profiles of the magnetic

field along z and x respectively going through the X-point for the zero guide field case at the time

of maximum reconnection rate are shown in Figure 5.19. These are used to calculate estimates

of the bounce widths λx and λz . In the strong guide field case the characteristic length scale

changes to that of the thermal electron Larmor radius rL = vth,e/Ωe in the guide magnetic field

(Hesse et al. 2004). The electron Larmor radius for the simulation with By0 = 1.0 at the time of

maximum reconnection rate is of the order rL ≈ 0.5c/ωpi. This characteristic change of length

scale can be seen in Figure 5.17 and Figure 5.18.

5.5 Anisotropic Bi-Maxwellian Simulations (mi/me = 1)

In this section simulation results that use the equilibria that were introduced in Sec. 3.3.3 and

Sec. 3.4 in Chap. 3 as initial conditions are shown. The main focus of the study is to investigate

the structure of the off-diagonal components of the electron pressure tensor for a periodic anti-
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parallel equilibrium with varying strengths of guide field and compare this to a simulation run

where a self consistent linear force-free equilibrium is used as the initial condition. This is the

first time a systematic comparison of the reconnection process has been done comparing results

from simulations starting from an anti-parallel configuration with a guide field to a simulation

starting from a self-consistent linear force-free equilibrium. These results are compared to the

Harris sheet cases.

The anti-parallel configuration and the force-free equilibrium can both be found from the anisotropic

bi-Maxwellian distribution function (3.102) given in Chap. 3 which is an extension to the distri-

bution function discussed by Bobrova et al. (2001). The anti-parallel configuration is given by

setting bs = 0 and the linear force-free equilibrium is found by setting bs = 1. The distribution

function for the anti-parallel case is explicitly given by

fs = cs exp
[
− 1
Ts⊥

Hs +
∆Ts

2msTs⊥Ts‖
p2

ys

]
, (5.13)

where

∆Ts = Ts‖ − Ts⊥ ≥ 0. (5.14)

The constant cs is a normalising constant and is defined as,

cs =
n0sm

3/2
s

(2π)3/2Ts⊥T
1/2
s‖

. (5.15)

This can be written in terms of velocity as

fs(z,v) =
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(2π)3/2Ts⊥T
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− ms

2
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2
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T 2
s⊥
A2

y

])
, (5.16)

where

V s
dy =

qs
ms

∆Ts

Ts⊥
Ay, (5.17)

are the average drift velocities in the y direction for each species.
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The linear force-free equilibrium is given by the distribution function

fs = cs exp
[
− 1
Ts⊥

Hs +
∆Ts

2msTs⊥Ts‖
p2

xs +
∆Ts

2msTs⊥Ts‖
p2

ys

]
, (5.18)

where

∆Ts = Ts‖ − Ts⊥ ≥ 0. (5.19)

The constant cs is a normalising constant and is defined as

cs =
n0sm

3/2
s

(2π)3/2T
1/2
s⊥ Ts‖

. (5.20)

This can be written in terms of velocity as
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where

V s
dx =

qs
ms

∆Ts

Ts⊥
Ax, (5.22)

V s
dy =

qs
ms

∆Ts

Ts⊥
Ay, (5.23)

are the average drift velocities in the x and y directions. In the anti-parallel case Ts⊥ is the

temperature in the x and z directions and Ts‖ is the temperature in the y direction for each particle

species. In the linear force-free case Ts⊥ is the temperature in the z direction and Ts‖ is the

temperature in the x and y directions for each particle species.

The profiles of the magnetic field components for the two equilibria are shown in Figure 5.20.

The anti-parallel solution is found by a fourth order Runga-Kutta method to solve the differential

equations resulting from Ampère’s law and was discussed in Sec. 3.4 of Chap. 3. The force-free

solution can be found analytically and was discussed in Sec. 3.3.3 in Chap. 3. The magnetic field

for the force-free case is

B = B0 (sin(αz)ex + cos(αz)ey) , (5.24)
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where α is given by

α =
(

∆Te

Te⊥
+
me

mi

∆Ti

Ti⊥

) 1
2

. (5.25)

(a) (b)

Figure 5.20: Plots showing the two equilbrium which are used here as initial configurations in the
simulation runs. Figure 5.20(a) shows the anti-parallel configuration and Figure 5.20(b) shows the
linear force-free equilibrium.

In the anti-parallel case the quasi-neutral particle density is spatially varying and is strong in

regions of strong current and is given by

nqn = n0 exp
[
1
2
e2

me

∆Te

T 2
e⊥

(A2
y −A2

y,max)
]
. (5.26)

In the force-free case the quasineutral number density is constant.

In all the simulations in this section the ion to electron mass ratio is equal to one (mi/me = 1).
Lengths are normalized to the ion inertial length c/ωpi and the number density is normalised to a

value n0. Times are normalised to the inverse of the ion cyclotron frequency Ωi = eB0/mi. The

magnetic field is normalised to the value B0, the amplitude of the initial magnetic field.

In the anti-parallel case the system dimensions are Lx = 19.34 c/ωpi and Lz = 4.83 c/ωpi where

Lx andLz are the half lengths of the box in the x and z directions, with a grid that is 140×70 in the

x and z directions. The linear force-free case has system dimensions Lx = 4
√

2πc/ωpi = 4π/α
and Lz =

√
2πc/ωpi = π/α where Lx and Lz are the half lengths of the box in the x and z

directions with a grid that is 120 × 60 in the x and z directions. A time step ωpe∆t = 1 is used.

The ratio ωpe/Ωe is set to a numerical value of 5 in both cases.

The initial configurations used consist of the anti-parallel case shown in Figure 5.21 where a

range of different strengths of guide field were added and the linear force-free case that is shown
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in Figure 5.22. For each simulation run a perturbation of the form,

Bxp = a0
π

Lz
sin
(
πz

Lz

)
, (5.27)

Bzp = a0
π

Lx
sin
(
πx

Lx

)
, (5.28)

is also added where Lx and Lz are the half lengths of the box in the x and z directions. This field

perturbation gives X-points at (0, 0), (Lx, Lz), (Lx,−Lz), (−Lx, Lz) and (−Lx,−Lz). O-Points

are located at (0, Lz), (0,−Lz), (−Lx, 0) and (Lx, 0). In all cases periodic boundary conditions

are employed at x = −Lx and x = Lx and z = −Lz and z = Lz . The electron-ion temperature

ratios are chosen as Te⊥/Ti⊥ = Te‖/Ti‖ = 1.0.

There are two particle populations in all simulation runs. The foreground population consists of

the first set of ions and electrons which establish the equilibrium pressures and currents in all cases.

In the anti-parallel runs there is both an electron and ion temperature anisotropy. The distribution

of the ions and electrons is therefore specified by Eq. (5.13). The temperature anisotropy is set

such that Te⊥/Te‖ = Ti⊥/Ti‖ = 0.8. The second population consists of the second set of ions and

electrons and constitutes a constant background density nb = 0.2. The background temperatures

are identical to the foreground population Te⊥ + Ti⊥ = 1.0, Te‖ + Ti‖ = 1.25. The simluation

run used 2× 107 ions and electrons each for the foreground and 3× 107 ions and electrons for the

background.

In the force-free run there is both an electron and ion temperature anisotropy. The distribution

of the ions and electrons is therefore specified by Eq. (5.18). This is one of the only studies in

2.5D starting from the linear force-free equilibrium discussed by (Bobrova and Syrovatskiǐ 1979;

Bobrova et al. 2001) that has the initial current carried by both the electrons and the ions and is

the only study to compare the reconnection process to an anti-parallel initial configuration. In

the majority of previous studies that have been carried out the initial ion distribution function has

been assumed to be isotropic (Bobrova et al. 2001; Nishimura et al. 2003; Li et al. 2003; Bowers

and Li 2007). The temperature anisotropy is set such that Te⊥/Te‖ = Ti⊥/Ti‖ = 0.8. The

second population consists of the second set of ions and electrons and once again this population

constitutes a constant background density nb = 0.2. The background temperatures are identical to

the foreground population Te⊥+Ti⊥ = 0.4, Te‖+Ti‖ = 0.5 and α = 1/
√

2ωpe/c. The simluation

run used 2× 107 ions and electrons each for the foreground and 3× 107 ions and electrons for the

background.

Results from simulation runs where the strength of the constant guide field By = By0 is varied

from By0 = 0.0 through to By0 = 1.0 for the anti-parallel case are shown and compared to the

linear force-free and to the Harris sheet cases.

Figure 5.21 and Figure 5.22 shows the initial configurations for the anti-parallel cases and the
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(a)

(b)

(c)

Figure 5.21: Plots showing the initial configuration for the anti-parallel case. Figure 5.21(a) shows
a colour contour plot of Bx and figure 5.21(b) shows a line plot of the profile of Bx along z for
x = 0. Figure 5.21(c) shows a filled contour plot of the y component of the current density with
magnetic field lines corresponding to contours of the flux function overplotted.
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(a) (b)

(c) (d)

(e)

Figure 5.22: Plots showing the initial configuration for the force-free case. Figure 5.22(a) and
Figure 5.22(b) show colour contour plots of Bx and By. Figure 5.22(c) shows a colour contour
plot of the x component of the current density and Figure 5.22(d) shows a filled contour plot of
the y component of the current density with magnetic field lines corresponding to contours of the
flux function overplotted. Figure 5.22(e) shows a line plot of the profile of Bx and By along z for
x = 0.
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force-free case. For the anti-parallel case a filled contour plot of Bx is shown in Figure 5.21(a)

with a line plot of the magnetic field profile plotted along z for x = 0 shown in Figure 5.21(b).

Figure 5.21(c) is a filled contour plot of the y component of the current density with contours of

the flux function overplotted showing the magnetic field lines. It is clear to see the periodic profile

of Bx and also the multiple current sheet structures of jy with X-points located at the centre and

corners of the box and the 0-points located in between the X-points that are introduced by the

perturbation to the equilibrium magnetic field.

For the force-free case filled contour plots of Bx and By are shown in Figure 5.22(a) and Figure

5.22(b) with a line plot of the magnetic field profiles plotted along z for x = 0 shown in Figure

5.22(e). Figure 5.22(c) shows a colour contour plot of the x component of the current density

and Figure 5.22(d) is a filled contour plot of the y component of the current density with contours

of the flux function overplotted showing the magnetic field lines. It is clear to see the periodic

profile of Bx and By and also the multiple current sheet structures of jx and jy with X-points

located at the centre and corners of the box and the 0-points located in between the X-points that

are introduced by the perturbation to the equilibrium magnetic field.

Figures 5.23 - 5.26 show the evolution of the magnetic field for four different runs with the y

component of the current density colour coded. Figure 5.23 shows the evolution for the anti-

parallel configuration without a guide field. Figure 5.24 shows the evolution for the anti-parallel

case with a guide field of value By0 = 0.5. Figure 5.25 shows the evolution for the anti-parallel

case with a guide field of value By0 = 1.0 and Figure 5.26 shows the evolution of the force-free

case. Movies of the evolution for each case can be found on the CD which is attached to this thesis

(see Appendix B). It is important to note that the colour bar scale changes between each of the

snapshots to range between the minimum and maximum values of the y component of the current

density.

These figures show how magnetic reconnection proceeds and leads to large changes in the mag-

netic field structure. In the anti-parallel case with zero guide field the current density becomes

reduced at the central X-point and enhanced in the regions adjacent to the diffusion region, show-

ing a similar behaviour to the Harris sheet runs. In the cases with stronger guide field and including

the force-free case the current density becomes enhanced at the X-point. In the strong guide field

cases the central current layer thins and becomes more localised. At late times in the simulation

runs the magnetic field structure has changed dramatically. The magnetic field configuration has

gone from having a (Bx, By) structure to having a mainly (By, Bz) structure. In all the simula-

tion runs in the majority of the simulation box the y component of the current density has been

significantly reduced. In the stronger guide field cases there are also small regions where the y

component of the current density is enhanced. This large scale reorganistion of the geometry of

the magnetic field is due to the doubly periodic boundary conditions that are employed. In all

the simulation runs the O-points above and below the central X-point have a strong effect. Once
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Figure 5.23: Plots of the y component of the current density with contours of the flux function
overplotted for the anti-parallel case with zero guide field. The plots correspond to the different
times (a) t = 0, (b) t = 60, (c) t = 100 and (d) t = 160.
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Figure 5.24: Plots of the y component of the current density with contours of the flux function
overplotted for the anti-parallel case with a guide field of value By0 = 0.5. The plots correspond
to the different times (a) t = 0, (b) t = 40, (c) t = 60 and (d) t = 80.
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Figure 5.25: Plots of the y component of the current density with contours of the flux function
overplotted for the anti-parallel case with a guide field of value By0 = 1.0. The plots correspond
to the different times (a) t = 0, (b) t = 40, (c) t = 60 and (d) t = 80.
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Figure 5.26: Plots of the y component of the current density with contours of the flux function
overplotted for the force-free case. The plots correspond to the different times (a) t = 0, (b)
t = 40, (c) t = 60 and (d) t = 80.
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Figure 5.27: Plots of the x component of the current density for the force-free case. The plots
correspond to the different times (a) t = 0, (b) t = 40, (c) t = 60 and (d) t = 80.
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(a) (b)

(c) (d)

Figure 5.28: Line plots of the electron number density ne (blue lines) and the y component of the
current density (red lines) plotted along x for z = 0 at t = 0 for (a),(b) the anti-parallel simulation
runs and also (c),(d) the linear force-free run.

the initial stages of reconnection have occurred the O-points above and below the central X-point

continue to press in on the central X-point eventually leading to the large scale reorganisation that

is shown.

Figure 5.29 shows line plots along x for z = 0 of the electron number density ne (blue lines)

and the y component of the current density (red lines) for the antiparallel cases with zero guide

field, By0 = 0.5 and By0 = 1.0 and also the linear force-free case during reconnection. These

can be compared to the initial electron number number density and y component of the current

density profiles plotted along x for z = 0 which are shown in Figure 5.28. It is interesting to note

that in the runs starting from the anti-parallel magnetic configuration, Figures 5.29(a), 5.29(c) and

5.29(e) show a density depletion around the X-point which is most significant for the zero guide

field case. In the zero guide field case Figure 5.29(b) shows that the current density is also reduced

at the X-point, whereas in the stronger guide field casesBy0 = 0.5 andBy0 = 1.0, Figures 5.29(d)

and 5.29(f) show that the current density is actually enhanced at the X-point. In the guide field

casesBy0 = 0.5 andBy0 = 1.0 the reduction of the number density at the X-point implies that the

current density increase must be due to an increased drift of the electrons and ions in the vicinity

of the X-point. In the linear force-free case, in contrast to the anti-parallel cases, Figure 5.29(g)

shows that the number density is enhanced at the X-point. In addition to this Figure 5.29(h) shows

that the current density is significantly increased at the X-point.
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Figure 5.29: Line plots of the electron number density ne (blue lines) and the y component of the
current density (red lines) plotted along x for z = 0 during reconnection for the anisotropic bi-
Maxwellian runs for the anti-parallell case with a guide field of value (a),(b) By0 = 0.0 (t = 64)
(c),(d) By0 = 0.5 (t = 44), (e),(f) By0 = 1.0 (t = 46), and also (g),(h) linear force-free (t = 50).
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(a)

(b)

Figure 5.30: Figures showing the evolution of the simulations with varying strengths of guide
field using the anti-parallel case as an initial configuration and also including the case of a linear
force-free equilibrium. The reconnected flux is shown in Figure 5.30(a) and the corresponding
reconnection rates in Figure 5.30(b). The colours represent the different strengths of the guide
field in the initial configuration.
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In comparison to the Harris sheet, the anti-parallel cases all showed a similar density depletion

around the X-point. In the zero guide field case as in the Harris sheet case the current density

was reduced at the X-point and enhanced in the regions adjacent to the reconnection region. In

the stronger guide field cases the current density was actually enhanced at the X-points which is

different to the Harris sheet cases where the current density was always reduced at the X-point.

The linear force-free case is different to both the Harris sheet cases and the anti-parallel runs with

there being both a significant number density and current density increase at the X-point.

Figure 5.27 shows the evolution of the x component of the current density for the linear force-free

case. This shows that as reconnection proceeds the x component of the current density remains

very small at and along a thin region either side of the X-point and that it is also reduced in the

magnetic islands. In the final stages of the evolution the interaction of the multiple current layers

leads to a breakdown of the structure of the x component of the current density.

A comparison of the evolution of the runs is given in Figure 5.30. This shows two plots, one for

the reconnected flux for each case plotted using different colours to represent the strength of the

guide field in each run where the reconnected flux is defined as

F (t) =
∫

Bz>0
dxBz(z = 0), (5.29)

and the other shows the reconnection rate which is found from the gradient of the reconnected flux

normalised against the maximum Alfvén speed at each timestep.

Examining the evolution from the plots of the reconnection rate shown in Figure 5.30(b), the

reconnection rate in general is reduced when the guide field is of the orderB0. This is in agreement

with previous studies that show that the reconnection rate is reduced once the guide field is large

enough to significantly change the magnetic pressure in the system (e.g. Pritchett 2001; Ricci et al.

2004a) and is in agreement with the simulations using the Harris sheet as the initial configuration.

The linear force-free case has a reconnection rate similar to that of the By0 = 0.3 case suggesting

that the shear field By does not strongly reduce the reconnection rate in comparison to the anti-

parallel case in the way that the strong guide field does. The overall maximum reconnection rates

are larger than those of the Harris sheet runs. This may be a result of the periodic boundary

conditions which result in the complete reorganisation of the geometry of the magnetic field.

5.5.1 The Structure of the Diffusion Region

In this section the morphology of the off-diagonal components of the pressure tensor components

are shown for the different runs. The structure of these pressure tensor components can be com-

pared to the Harris sheet cases. It is also shown how the different contributions in Eq. (5.7)
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make up the reconnection electric field in the vicinity of the X-point. This is the first time a sys-

tematic comparison of the structure of the diffusion region has been carried out which compares

reconnection starting from an anti-parallel configuration with various strengths of guide field to

reconnection starting from a self-consistent linear force-free equilibrium.

To investigate the structure of the off-diagonal components in the region of the central X-point

it was originally intended to analyse them at the time of maximum reconnection rate which is

given by the peaks of each curve in Figure 5.30(b) in the same way as the Harris sheet cases were

investigated. The problem with this was though that at the time of maximum reconnection rate

the pressure tensor components did not show the expected structure. This was due mainly to the

interaction of the multiple current layers which led to a breakdown of the expected structure of the

off-diagonal components at the central X-point which is a major difference from the Harris sheet

cases. At earlier stages in the reconnection process the off-diagonal pressure tensor components

do show the expected form. This can be seen in Figure 5.35 and Figure 5.36 which show the Pxy,e

and Pyz,e components of the pressure tensor for the different strengths of guide field and including

the force-free case, zoomed in around the X-point.

Figure 5.31 shows filled contour plots of y component of the current density for each case at earlier

stages of reconnection when the off-diagonal components of the pressure tensor components show

the expected structure. Figure 5.32 shows filled contour plots of theEy electric field at these times.

This shows that magnetic reconnection generates a strong Ey electric field in the vicinity of the

X-Point. The region of enhanced Ey is larger in the strong guide field cases. The cases shown

here are for the guide fieldsBy0 = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 for the anti-parallel case and also

the linear force-free case. In all the figures x0 refers to the approximate position along x of the

X-point. In all cases the position of the X-point along z is approximately at z = 0.

To demonstrate that the dominant contribution to the Ey electric field in the vicinity of the X-

point is due to off-diagonal components of the electron pressure tensor Figure 5.33 and Figure

5.34 shows line plots along x and z of the contributions that make up the Ey electric field in Eq.

(5.7) averaged between the times shown in Figure 5.32 for each case at which the pressure tensor

components have the expected form. In each case it can be seen that the dominant contribution to

the electric field close to the X-point comes from the gradients of the off-diagonal components of

the electron pressure tensor (green lines).

In each of the plots shown in Figure 5.33 and Figure 5.34 the gradients of the off-diagonal com-

ponents of the electron pressure tensor (green lines) dominate the electric field out to the point

at which the u×B term (purple lines) equals the contribution from the gradients of the electron

pressure tensor terms identical to the Harris sheet cases. The plots shown in Figure 5.33 show

that the contribution from the gradients of the off diagonal pressure tensor components domi-

nates to about x ≈ ±3c/ωpi either side of the X-point for the weak guide field cases but for the
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Figure 5.31: Plots of the y component of the current density with contours of the flux function
overplotted for simulations with varying strengths of guide field and the force-free case at a time
when the electron pressure tensor components show the expected structure. (a) By0 = 0.0 (x0 =
−0.28), (b) By0 = 0.1 (x0 = −0.56), (c) By0 = 0.3 (x0 = −1.68), (d) By0 = 0.5 (x0 = −2.24),
(e) By0 = 0.7 (x0 = −0.56), (f) By0 = 0.9 (x0 = −2.24), (g) By0 = 1.0 (x0 = −1.68), (h)
linear force-free (x0 = −1.20).
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Figure 5.32: Plots of the y component of the electric field for simulations with varying strengths
of guide field and the force-free case at a time when the electron pressure tensor components show
the expected structure. (a) By0 = 0.0 (x0 = −0.28), (b) By0 = 0.1 (x0 = −0.56), (c) By0 = 0.3
(x0 = −1.68), (d) By0 = 0.5 (x0 = −2.24), (e) By0 = 0.7 (x0 = −0.56), (f) By0 = 0.9
(x0 = −2.24), (g) By0 = 1.0 (x0 = −1.68), (h) linear force-free (x0 = −1.20).
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Figure 5.33: Plots along x for z = 0 of the contributions that make up the Ey electric field in Eq.
(5.7) for simulations with varying strengths of guide field and the force-free case at a time when the
electron pressure tensor components show the expected structure. (a) By0 = 0.0 (x0 = −0.28),
(b) By0 = 0.1 (x0 = −0.56), (c) By0 = 0.3 (x0 = −1.68), (d) By0 = 0.5 (x0 = −2.24), (e)
By0 = 0.7 (x0 = −0.56), (f) By0 = 0.9 (x0 = −2.24), (g) By0 = 1.0 (x0 = −1.68), (h) linear
force-free (x0 = −1.20).
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Figure 5.34: Plots along z for x = x0 of the contributions that make up the Ey electric field in Eq.
(5.7) for simulations with varying strengths of guide field and the force-free case at a time when the
electron pressure tensor components show the expected structure. (a) By0 = 0.0 (x0 = −0.28),
(b) By0 = 0.1 (x0 = −0.56), (c) By0 = 0.3 (x0 = −1.68), (d) By0 = 0.5 (x0 = −2.24), (e)
By0 = 0.7 (x0 = −0.56), (f) By0 = 0.9 (x0 = −2.24), (g) By0 = 1.0 (x0 = −1.68), (h) linear
force-free (x0 = −1.20).
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Figure 5.35: Plots of the Pxy,e component of the electron pressure tensor for simulations with
varying strengths of guide field and the force-free case at a time when the electron pressure tensor
components show the expected structure. (a) By0 = 0.0 (x0 = −0.28), (b) By0 = 0.1 (x0 =
−0.56), (c) By0 = 0.3 (x0 = −1.68), (d) By0 = 0.5 (x0 = −2.24), (e) By0 = 0.7 (x0 = −0.56),
(f) By0 = 0.9 (x0 = −2.24), (g) By0 = 1.0 (x0 = −1.68), (h) linear force-free (x0 = −1.20).
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Figure 5.36: Plots of the Pyz,e component of the electron pressure tensor for simulations with
varying strengths of guide field and the force-free case at a time when the electron pressure tensor
components show the expected structure. (a) By0 = 0.0 (x0 = −0.28), (b) By0 = 0.1 (x0 =
−0.56), (c) By0 = 0.3 (x0 = −1.68), (d) By0 = 0.5 (x0 = −2.24), (e) By0 = 0.7 (x0 = −0.56),
(f) By0 = 0.9 (x0 = −2.24), (g) By0 = 1.0 (x0 = −1.68), (h) linear force-free (x0 = −1.20).
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(a) (b)

Figure 5.37: Plots along x of the Bz component of the magnetic field and of the Bx component
of the magnetic field along z going through the position of the X-point at a time when the off-
diagonal components of the electron pressure tensor show the expected structure for the zero
guide field (anti-parallel) case.

stronger guide field cases the gradients of the electron pressure tensor components dominate out

to x ≈ ±6c/ωpi. There is also a degree of asymmetry around the X-point. For the linear force-

free case the gradients of the electron pressure tensor components dominate out to x ≈ ±5c/ωpi.

The plots shown in Figure 5.34 indicate that the contribution from the off diagonal pressure tensor

components dominates to about z ≈ ±1.5c/ωpi either side of the X-point for the weak guide field

cases whilst for the strong guide field cases they dominate up to z ≈ ±0.8c/ωpi either side of the

X-point. In the force-free case the gradients of the electron pressure tensor components dominate

out to only z ≈ ±0.5c/ωpi either side of the X-point.

In comparison to the Harris sheet cases these simulation runs starting from anisotropic equilibria

give the same features. In all cases the mechanism that breaks the frozen in condition and dom-

inates the contribution to the inductive electric field near to the X-point is due to gradients of the

off-diagonal components of the electron pressure tensor. It must be pointed out though that for

all the figures shown here, they are at an earlier time than the time of maximum reconnection rate

that correspond to the peaks of the lines shown in Figure 5.30(b). This is because at the time of

maximum reconnection rate, the periodic boundary conditions and the interaction of the multiple

current layers in the simulation box, lead to the breakdown of the expected structure of the pres-

sure tensor components. Examples of this are shown in Figures 5.38 - 5.45. Therefore to compare

equally to the Harris sheet cases and to understand the dominant mechanism that breaks the frozen

in condition, an earlier time in the reconnection process was investigated.

Although, as in the Harris sheet cases the dominant term in the vicinity of the X-point is clearly

due to the gradients of the off-diagonal terms of the electron pressure tensor, there is a small
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contribution to the electric field from the electron inertia term (black lines) at the edge of the

diffusion regime. The electron inertia term is not significant in the weak guide field cases. It can

be seen in the plots along z of the contributions to the reconnection electric field shown in Figure

5.34 that as the guide field increases in strength the contribution from the electron inertia term at

the edge of the diffusion region grows. In the strong guide field cases the electron inertia term is

equal to the value of the u×B term at the edge of the diffusion region. In fact the linear force-

free case has the largest contribution to the Ey electric field from the electron inertia term at the

edge of the diffusion regime. As mentioned in the discussion of the Harris sheet cases, in a recent

paper by Hesse et al. (2004) it was shown that within a collisionless skin depth there was a finite

contribution from the electron inertia at the edge of the localised current region. In that paper the

initial condition was a Harris sheet with a guide field of By0 = 0.8. The main contribution to

the Ey electric field close to the X-point was still due to the nongyrotropic pressures. The results

shown here starting from the anisotropic equilibria are again consistent with this. The significant

contribution from the electron inertia term is due the small scales associated with the electron

Larmor radius in the strong guide field case.

To investigate further the structure of the off-diagonal pressure tensor components, Figure 5.35

and Figure 5.36 shows filled contour plots of the Pxy,e and Pyz,e components of the electron

pressure tensor zoomed in around the position of the central X-point. In the anti-parallel case

the Pxy,e component is approximately symmetrical about the line x = x0 which goes through

the X-point with a gradient in x. The Pyz,e component of the pressure tensor is approximately

symmetrical about the z = 0 line going through the X-point with a gradient in z. As the guide

field is increased the structure of the Pxy,e component starts to change. The symmetry along the

line x = x0 is broken and the structure is seen to rotate in an anti-clockwise direction until at the

guide field By0 = 1.0 the Pxy,e component is almost symmetrical along the line z = 0 with a

gradient in z identical to the Harris sheet cases. The central region in all of the plots can also be

seen to thin. The Pyz,e component of the electron pressure tensor is seen to rotate very slightly in

the anti-clockwise direction. The significant rotation anti-clockwise and then clockwise as seen

in the Harris sheet cases is not so obvious. It is also quite noisy in the weak guide field cases in

particular. In the strong guide field cases there is though almost symmetry about the z = 0 line

and once again the central region is observed to thin slightly as the guide field becomes large. The

central region is thinnest in the linear force-free case. The Pyz,e component is almost completely

symmetrical about z = 0 line in this case with a gradient in z.

The thinning of the central region in Figure 5.35 and Figure 5.36 is due to the introduction of the

guide field. In the case of the Harris sheet without a guide field the characteristic length scale of

Pxy,e and Pyz,e has been shown to be given approximately by the electron bounce widths in a field

reversal λx and λz (e.g. Hesse et al. 1999). In these simulations the electron bounce width in the

x and z directions for the anti-parallel field configuration as given by Eqs. (5.3) and (5.4) at the
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time shown in Figure 5.31(a) are of the order λx ≈ 3.4c/ωpi and λz ≈ 1.1c/ωpi. Plots of the

x and z component of the magnetic field along z and x respectively for the anti-parallel case at

the time shown in Figure 5.31(a) at which the off-diagonal components of the electron pressure

tensor show the correct form are shown in Figure 5.37. These are used to calculate estimates of the

bounce widths λx and λz . In the strong guide field case for the Harris sheet it has been shown that

the characteristic length scale changes to that of the thermal electron Larmor radius rL = vth,e/Ωe

in the guide magnetic field (Hesse et al. 2004). The electron Larmor radius for the simulation with

By0 = 1.0 at the time shown in Figure 5.31(g) is of the order rL ≈ 0.75c/ωpi. This characteristic

change of length scale can be seen in Figure 5.35 and Figure 5.36 as the strength of the guide field

is increased and is consistent with the Harris sheet cases.

The thermal electron Larmor radius for the linear force-free case at the time shown in Figure

5.31(h) based on the maximum value of the shear component of the magnetic field at the X-point

(By ≈ 0.58) is of the order rL ≈ 1.0c/ωpi. This estimate of the thermal electron Larmor radius

based on the shear magnetic field at the X-point is larger than for the guide field case By0 = 1.0
but the central regions of the plots of Pxy,e and Pyz,e shown in Figure 5.35 and Figure 5.36 are

in fact thinner than for the equivalent plots for the guide field case By0 = 1.0. Therefore, for the

force-free case these results suggest that the characteristic length scale may be even smaller than

the thermal electron gyroradius in the shear magnetic field.

To illustrate how the interaction of the multiple current layers leads to the break up of the structure

of the pressure tensor components at the central X-point it is useful to look at the time evolution

of the off-diagonal components of the pressure tensor components. As examples of this the evo-

lutions for the Pxy,e component and the Pyz,e component for the anti-parallel cases with a guide

field of By0 = 0.0, By0 = 0.5, By0 = 1.0 and the linear force-free case are shown in Figures

5.38 - 5.45. The snapshots show the off-diagonal components throughout the whole simulation

domain. It can be seen that at the early stages of reconnection the pressure tensor components

at the central X-point have the expected structure and then as time proceeds the interaction of

the boundary with the central current layer leads to the breakdown of this structure. The overall

evolution is also shown in the movies that come with the thesis (see Appendix B).
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Figure 5.38: Plots of the evolution of the Pxy,e component of the electron pressure tensor for the
anti-parallel case with zero guide field. The plots correspond to the Pxy,e component at (a) t = 0
and averaged around (b) t = 64, (c) t = 100 and (d) t = 160.
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Figure 5.39: Plots of the evolution of the Pyz,e component of the electron pressure tensor for the
anti-parallel case with zero guide field. The plots correspond to the Pyz,e component at (a) t = 0
and averaged around (b) t = 64, (c) t = 100 and (d) t = 160.
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Figure 5.40: Plots of the evolution of the Pxy,e component of the electron pressure tensor for the
anti-parallel case with a guide field of By0 = 0.5. The plots correspond to the Pxy,e component at
(a) t = 0 and averaged around (b) t = 44, (c) t = 60 and (d) t = 80.
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Figure 5.41: Plots of the evolution of the Pyz,e component of the electron pressure tensor for the
anti-parallel case with a guide field of By0 = 0.5. The plots correspond to the Pyz,e component at
(a) t = 0 and averaged around (b) t = 44, (c) t = 60 and (d) t = 80.
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Figure 5.42: Plots of the evolution of the Pxy,e component of the electron pressure tensor for the
anti-parallel case with a guide field of By0 = 1.0. The plots correspond to the Pxy,e component at
(a) t = 0 and averaged around (b) t = 46, (c) t = 60 and (d) t = 80.
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Figure 5.43: Plots of the evolution of the Pyz,e component of the electron pressure tensor for the
anti-parallel case with a guide field of By0 = 1.0. The plots correspond to the Pyz,e component at
(a) t = 0 and averaged around (b) t = 46, (c) t = 60 and (d) t = 80.
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Figure 5.44: Plots of the evolution of the Pxy,e component of the electron pressure tensor for the
linear force-free case. The plots correspond to the Pxy,e component at (a) t = 0 and averaged
around (b) t = 50, (c) t = 60 and (d) t = 78.
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Figure 5.45: Plots of the evolution of the Pyz,e component of the electron pressure tensor for the
linear force-free case. The plots correspond to the Pyz,e component at (a) t = 0 and averaged
around (b) t = 50, (c) t = 60 and (d) t = 78.
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5.6 Double Harris Sheet Simulations (mi/me = 1)

In this section simulations starting from a double Harris sheet equilibrium with varying strengths

of guide field are shown to compare to the anisotropic bi-Maxwellian simulation runs. The double

Harris sheet also requires periodic boundary conditions in both x and z. This initial state was

investigated to confirm that the complete re-organisation of the magnetic field and interaction of

the multiple current layers which lead to the breakdown of the structure of the electron pressure

tensor components is due to the doubly periodic boundary conditions that are imposed when using

periodic equilibria as initial conditions. The results are also compared to the Harris sheet cases.

In the following simulation results the ion to electron mass ratio is equal to one (mi/me = 1).
Lengths are normalized to the ion inertial length c/ωpi and the number density is normalised to

a value n0. Times are normalised to the inverse of the ion cyclotron frequency Ωi = eB0/mi.

The magnetic field is normalised to the value B0, the amplitude of the initial magnetic field. The

system dimensions are Lx = 20.0 c/ωpi and Lz = 8.0 c/ωpi where Lx and Lz are the half lengths

of the box in the x and z directions, with a grid that is 140× 70 in the x and z directions. A time

step ωpe∆t = 1 is used. The ratio ωpe/Ωe is set to a numerical value of 5.

The initial configuration is a double Harris sheet. The magnetic field is given by

Bx =


− tanh

(
(z+Lz)

L

)
−Lz ≤ z ≤ −Lz/2

tanh
(

z
L

)
−Lz/2 ≤ z ≤ Lz/2

− tanh
(

(z−Lz)
L

)
Lz/2 ≤ z ≤ Lz,

(5.30)

where L = 1.2. The electron and ion densities are given by

n =


1

cosh2
“

(z+Lz)
L

” −Lz ≤ z ≤ −Lz/2

1
cosh2( z

L) −Lz/2 ≤ z ≤ Lz/2
1

cosh2
“

(z−Lz)
L

” Lz/2 ≤ z ≤ Lz.

(5.31)

There will be jumps in the derivatives at the boundaries between each part of the solution for

Bx and n but these derivatives will be small such that they will not have any significant effect.

The double Harris sheet is not a force-free equilibrium with the force balance maintained by the

plasma pressure gradient.

For each simulation run a perturbation of the form

Bxp = a0
π

Lz
sin
(
πz

Lz

)
, (5.32)
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Bzp = a0
π

Lx
sin
(
πx

Lx

)
, (5.33)

is also added where Lx and Lz are the half lengths of the box in the x and z directions. This

field perturbation gives X-points at (0, 0), (Lx, Lz), (Lx,−Lz), (−Lx, Lz) and (−Lx,−Lz). O-

points are located at (0, Lz), (0,−Lz), (−Lx, 0) and (Lx, 0). Periodic boundary conditions are

employed at x = −Lx and x = Lx and at z = −Lz and z = Lz .

There are two particle populations. The foreground population consists of the first set of ions and

electrons which establish the equilibrium pressures and currents. In the simulation runs tempera-

tures are set such that Ti+Te = 0.5, with Te/Ti = 1. The second population consists of the second

set of ions and electrons and constitutes a constant background density nb = 0.2. The background

temperatures are identical to the foreground population Te + Ti = 0.5, with Te/Ti = 1.0. The

simulation run used 2 × 107 ions and electrons each for the foreground and 3 × 107 ions and

electrons for the background.

The initial configuration at t = 0 is illustrated in Figure 5.46. A filled contour plot of Bx is shown

in Figure 5.46(a) with a line plot of the magnetic field profile plotted along z for x = 0 shown in

Figure 5.46(b). Figure 5.46(c) is a filled contour plot of the y component of the current density

with contours of the flux function overplotted showing the magnetic field lines. It is clear to see

the periodic profile of the x component of the magnetic field and also the current sheet structure of

jy with X-points located at the centre and corners of the box and the 0-points located in between

the X-points that are introduced by the perturbation to the equilibrium magnetic field.

Figures 5.47 - 5.49 show the evolution of the magnetic field for three different runs with the y

component of the current density colour coded. Figure 5.47 shows the evolution for the initial

configuration with zero guide field. Figure 5.48 shows the evolution for the initial configuration

with a guide field of value By0 = 0.5 and Figure 5.49 shows the evolution for the intial configu-

ration with a guide field of value By0 = 1.0. Movies of the evolution for each case can be found

on the CD which is attached to this thesis (see Appendix B). It is important to note that the colour

bar scale changes between each of the snapshots to range between the minimum and maximum

values of the y component of the current density.

These figures show how magnetic reconnection proceeds and leads to large changes in the mag-

netic field structure. In the case with zero guide field the current density becomes reduced at the

central X-point and enhanced in the regions adjacent to the diffusion region. In the cases with

stronger guide field the current density becomes enhanced at the X-point. At late times in the

simulation runs the magnetic field structure has changed dramatically. The magnetic field con-

figuration has gone from having a (Bx, By) structure to having a mainly (By, Bz) structure and

exhibits the same behaviour as the anisotropic bi-Maxwellian cases in Sec. 5.5. In all the sim-

ulation runs in the majority of the simulation box the y component of the current density has
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(a)

(b)

(c)

Figure 5.46: Plots showing the initial configuration for the double Harris sheet. Figure 5.46(a)
shows a colour contour plot of Bx and Figure 5.46(b) shows a line plot of the profile of Bx along
z for x = 0. Figure 5.46(c) shows a filled contour plot of the y component of the current density
with magnetic field lines corresponding to contours of the flux function overplotted.
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Figure 5.47: Plots of the y component of the current density with contours of the flux function
overplotted for the double Harris sheet run with zero guide field. The plots correspond to the
different times (a) t = 0, (b) t = 40, (c) t = 50 and (d) t = 80.
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Figure 5.48: Plots of the y component of the current density with contours of the flux function
overplotted for the double Harris sheet run with a guide field of value By0 = 0.5. The plots
correspond to the different times (a) t = 0, (b) t = 20, (c) t = 32 and (d) t = 60.
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Figure 5.49: Plots of the y component of the current density with contours of the flux function
overplotted for the double Harris sheet run with a guide field of value By0 = 1.0. The plots
correspond to the different times (a) t = 0, (b) t = 20, (c) t = 30 and (d) t = 50.
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(a) (b)

Figure 5.50: Line plots of the electron number density ne (blue line) and the y component of the
current density (red line) plotted along x for z = 0 at t = 0 for the double Harris sheet runs.

been significantly reduced at the end of the simulation run. In the stronger guide field cases there

are also small regions where the y component of the current density is enhanced. In the strong

guide field cases the central current region thins and becomes more localised showing the same

behaviour as the anisotropic bi-Maxwellian cases in Sec. 5.5. This large scale reorganistion of the

geometry of the magnetic field is due to the doubly periodic boundary conditions that are used.

In all the simulation runs the O-points above and below the central X-point have a strong effect.

Once the initial stages of reconnection have occurred the O-points above and below the central

X-point continue to press in on the central X-point eventually leading to the large scale reorgani-

sation that is shown. This identical behaviour starting from two different initial periodic equilibria

confirms that the main reason for the change in geometry of the magnetic field, once reconnection

has occurred, is due to the doubly periodic boundary conditions.

Figure 5.51 shows line plots along x for z = 0 of the electron number density ne (blue lines) and

the y component of the current density (red lines) for the cases with zero guide field, By0 = 0.5
and By0 = 1.0 during reconnection. These can be compared to the electron number density and

y component of the current density at t = 0 for each run which are shown in Figure 5.50 plotted

along x for z = 0. In comparison to the runs discussed in Sec. 5.5 Figures 5.51(a), 5.51(c) and

5.51(e) show a similar density depletion around the X-point which is most significant for the zero

guide field case. In the zero guide field case, Figure 5.51(b) shows that the current density is

reduced at the X-point and enhanced in regions adjacent to it with peaks of the current density at a

distance |x| ≈ 7 c/ωpi, whereas in the stronger guide field casesBy0 = 0.5 andBy0 = 1.0 Figures

5.51(d) and 5.51(f) show that the current density is actually enhanced at the X-point from its initial

value, with the current density increase most significant for the guide field case By0 = 1.0. In the

guide field cases By0 = 0.5 and By0 = 1.0 the reduction of the number density at the X-point
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Figure 5.51: Line plots of the electron number density ne (blue lines) and the y component of the
current density (red lines) plotted along x for z = 0 during reconnection for the double Harris
sheet runs with a guide field of value (a),(b)By0 = 0.0 (t = 44) (c),(d)By0 = 0.5 (t = 30), (e),(f)
By0 = 1.0 (t = 28).
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(a)

(b)

Figure 5.52: Figures showing the evolution of the simulations with varying strengths of guide
field using the double Harris sheet as an initial configuration. The reconnected flux is shown in
Figure 5.52(a) and the corresponding reconnection rates in Figure 5.52(b). The colours represent
the different strengths of the guide field in the initial configuration.
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implies that the current density increase must be due to an increased drift of the electrons and ions

in the vicinity of the X-point.

In comparison to the Harris sheet, the double Harris sheet cases all showed a similar density

depletion around the X-point. In the zero guide field case as in the Harris sheet case the current

density was reduced at the X-point and enhanced in the regions adjacent to the reconnection

region. In the stronger guide field cases the current density was actually enhanced at the X-

points which is different to the Harris sheet cases where the current density was always reduced

at the X-point. The behaviour of the double Harris sheet runs is overall very similar to that of the

anti-parallel runs discussed in Sec. 5.5.

A comparison of the evolution of the runs is given in Figure 5.52. This shows two plots, one for

the reconnected flux for each case plotted using different colours to represent the strength of the

guide field in each run where the reconnected flux is defined as

F (t) =
∫

Bz>0
dxBz(z = 0), (5.34)

and the other shows the reconnection rate where the reconnection rate is found from the gradient

of the reconnected flux normalised against the maximum Alfvén speed at each timestep.

Examining the evolution of the double Harris sheet runs from the plots of the reconnection rate

shown in Figure 5.52(b) they show that the reconnection rate is reduced significantly when the

guide field is of the order B0. This is in agreement with previous studies that show that the recon-

nection rate is reduced once the guide field is large enough to significantly change the magnetic

pressure in the system (e.g. Pritchett 2001), and also agrees with simulation runs that use the Har-

ris sheet and the anisotropic bi-Maxwellian periodic equilibria as initial conditions that have been

shown in Sec. 5.4 and Sec. 5.5. The maximum reconnection rates in comparison to the previous

cases show that they are in general greater for the double Harris sheet runs. This may be a conse-

quence of the larger simulation domain for the double Harris sheet runs which results in a larger

amount of free-energy in the initial setup. The doubly periodic boundary conditions may also play

a role in the very high reconnection rates at later times during the simulation runs.

5.6.1 The Structure of the Diffusion Region

In this section the morphology of the off-diagonal components off the pressure tensor components

are shown for the different runs. The structure of these pressure tensor components can be com-

pared to the Harris sheet and anisotropic bi-Maxwellian cases. It is also shown how the different

contributions in Eq. (5.7) make up the reconnection electric field in the vicinity of the X-point.

To investigate the structure of the off-diagonal components in the region of the central X-point
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it was intended to analyse them at the time of maximum reconnection rate which is given by the

peaks of each curve in Figure 5.52(b) in the same way as the Harris sheet cases were investigated.

The problem with this was that at the time of maximum reconnection rate the pressure tensor

components did not show the expected structure. This was due mainly to the interaction of the

multiple current layers which led to a breakdown of the expected structure of the off-diagonal

components at the central X-point. This process is very similar to the anisotropic bi-Maxwellian

cases. It can be shown though at earlier stages in the reconnection process that the off-diagonal

pressure tensor components do show the expected form. This can be seen in Figure 5.57 and

Figure 5.58 which show the Pxy,e and Pyz,e components of the electron pressure tensor for the

different strengths of guide field zoomed in around the X-point.

Figure 5.53 shows filled contour plots of the y component of the current density for each case when

the off-diagonal components of the pressure tensor show the expected structure. Also shown in

Figure 5.54 are filled contour plots of the Ey electric field at these times. This shows again that

magnetic reconnection generates a strong y component of the electric field in the vicinity of the

X-Point. The region of enhancedEy is larger in the cases of stronger guide field. The cases shown

here are for the guide fields By0 = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 and By0 = 1.0. In all the figures x0

refers to the approximate position along x of the X-point. In all cases the position of the X-point

along z is approximately at z = 0.

To demonstrate that the dominant contribution to the Ey electric field in the vicinity of the X-

point is due to off-diagonal components of the electron pressure tensor Figure 5.55 and Figure

5.56 show line plots along x and z of the contributions that make up the Ey electric field in Eq.

(5.7) averaged between the times shown in Figure 5.54 for each different case. In each case the

dominant contribution to the electric field close to the X-point comes from the gradients of the

off-diagonal components of the electron pressure tensor (green lines).

In each of the plots shown in Figure 5.55 and Figure 5.56 the gradients of the off-diagonal com-

ponents of the electron pressure tensor (green lines) dominate the electric field out to the point

at which the u×B term (purple lines) equals the contribution from the gradients of the electron

pressure tensor terms identical to the Harris sheet cases. For the plots shown in Figure 5.55 they

show that the contribution from the gradients of the off diagonal pressure tensor components dom-

inate strongly to about x ≈ ±3 − 4c/ωpi. There is also a degree of asymmetry of some of the

contributions that make up the Ey electric field similar to the anisotropic cases. The plots shown

in Figure 5.56 show that the contribution from the off diagonal pressure tensor components dom-

inates to about z ≈ ±1.0c/ωpi either side of the X-point for the weak guide field cases whilst for

the strong guide field cases they dominate up to z ≈ ±0.5c/ωpi either side of the X-point.

In comparison to the Harris sheet cases the essential features close to the X-point are the same. In

all cases the mechanism that breaks the frozen in condition and dominates the contribution to the
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Figure 5.53: Plots of the y component of the current density with contours of the flux function
overplotted for simulations with varying strengths of guide field at a time when the electron pres-
sure tensor components show the expected structure. (a) By0 = 0.0 (x0 = 0.87), (b) By0 = 0.1
(x0 = 0.58), (c) By0 = 0.3 (x0 = −0.87), (d) By0 = 0.5 (x0 = −0.87), (e) By0 = 0.7
(x0 = −1.45), (f) By0 = 0.9 (x0 = −0.58), (g) By0 = 1.0 (x0 = −0.87).
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Figure 5.54: Plots of the y component of the electric field for simulations with varying strengths
of guide field at a time when the electron pressure tensor components show the expected structure.
(a) By0 = 0.0 (x0 = 0.87), (b) By0 = 0.1 (x0 = 0.58), (c) By0 = 0.3 (x0 = −0.87), (d)
By0 = 0.5 (x0 = −0.87), (e) By0 = 0.7 (x0 = −1.45), (f) By0 = 0.9 (x0 = −0.58), (g)
By0 = 1.0 (x0 = −0.87).



5.6 Double Harris Sheet Simulations (mi/me = 1) 186

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.55: Plots along x for z = 0 of the contributions that make up the Ey electric field in
Eq. (5.7) for simulations with varying strengths of guide field at a time when the electron pressure
tensor components show the expected structure. (a) By0 = 0.0 (x0 = 0.87), (b) By0 = 0.1
(x0 = 0.58), (c) By0 = 0.3 (x0 = −0.87), (d) By0 = 0.5 (x0 = −0.87), (e) By0 = 0.7
(x0 = −1.45), (f) By0 = 0.9 (x0 = −0.58), (g) By0 = 1.0 (x0 = −0.87).
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Figure 5.56: Plots along z for x = x0 of the contributions that make up the Ey electric field in
Eq. (5.7) for simulations with varying strengths of guide field at a time when the electron pressure
tensor components show the expected structure. (a) By0 = 0.0 (x0 = 0.87), (b) By0 = 0.1
(x0 = 0.58), (c) By0 = 0.3 (x0 = −0.87), (d) By0 = 0.5 (x0 = −0.87), (e) By0 = 0.7
(x0 = −1.45), (f) By0 = 0.9 (x0 = −0.58), (g) By0 = 1.0 (x0 = −0.87).
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Figure 5.57: Plots of the Pxy,e component of the electron pressure tensor for simulations with
varying strengths of guide field at a time when the electron pressure tensor components show the
expected structure. (a) By0 = 0.0 (x0 = 0.87), (b) By0 = 0.1 (x0 = 0.58), (c) By0 = 0.3
(x0 = −0.87), (d) By0 = 0.5 (x0 = −0.87), (e) By0 = 0.7 (x0 = −1.45), (f) By0 = 0.9
(x0 = −0.58), (g) By0 = 1.0 (x0 = −0.87).
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Figure 5.58: Plots of the Pyz,e component of the electron pressure tensor for simulations with
varying strengths of guide field at a time when the electron pressure tensor components show the
expected structure. (a) By0 = 0.0 (x0 = 0.87), (b) By0 = 0.1 (x0 = 0.58), (c) By0 = 0.3
(x0 = −0.87), (d) By0 = 0.5 (x0 = −0.87), (e) By0 = 0.7 (x0 = −1.45), (f) By0 = 0.9
(x0 = −0.58), (g) By0 = 1.0 (x0 = −0.87).
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(a) (b)

Figure 5.59: Plots of the profile of Bz along x and of the profile of Bx along z going through the
position of the X-point at a time when the off-diagonal components of the electron pressure tensor
show the expected structure for the zero guide field (anti-parallel) case.

reconnection electric field near to the X-point is due to gradients of the off-diagonal components

of the electron pressure tensor near to the X-point. It must be pointed out though that for all

the figures shown here they are at an earlier time than the time of maximum reconnection rate

corresponding to the peaks of the lines shown in Figure 5.52(b). This is because at the time of

maximum reconnection rate, due to the periodic boundary conditions and the interaction of the

multiple current layers in the simulation box as described already for the anisotropic cases, this

leads to the breakdown of the expected structure of the pressure tensor components. Therefore to

compare equally to the Harris sheet cases and to investigate the dominant mechanism that breaks

the frozen in condition an earlier time in the reconnection process, is investigated.

Although, as in the Harris sheet cases the dominant term in the vicinity of the X-point is clearly

due to the gradients of the off-diagonal terms of the electron pressure tensor, there is a small

contribution to the electric field from the electron inertia term at the edge of the diffusion region.

This inertia term is not significant in the weak guide field cases. It can be seen in the plots

along z of the contributions to the reconnection electric field that in the strong guide field cases

the electron inertia term has a significant contribution to the Ey electric field at the edge of the

reconnection regime. In these cases as in the Harris sheet cases the contribution from the electron

inertia at the edge of the diffusion region matches the value of the u×B. As mentioned in the

discussion of the Harris sheet cases, in a recent paper by Hesse et al. (2004) starting from a Harris

sheet with a guide field of By0 = 0.8 it was shown that within a collisionless skin depth there

was a finite contribution from the electron inertia at the edge of the localised current region. The

main contribution to the Ey electric field close to the X-point was still due to the nongyrotropic

pressures. The results shown here starting from the double Harris sheet are consistent with this.
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The significant contribution from the electron inertia term is due the small scales associated with

the electron Larmor radius in the strong guide field case.

To investigate further the structure of the off-diagonal pressure tensor components, Figures 5.57

and 5.58 show filled contour plots of the Pxy,e and Pyz,e components of the electron pressure

tensor zoomed in around the position of the central X-point. In the anti-parallel case the Pxy,e

component is approximately symmetrical about the line x = x0 which goes through the X-point

with a gradient in x. The Pyz,e components of the pressure tensor is approximately symmetrical

about the z = 0 line going through the X-point with a gradient in z. As the guide field is increased

the structure of the Pxy,e component starts to change. The symmetry along the line x = x0 is

broken and the structure is seen to rotate in an anti-clockwise direction until for the guide field

By0 = 1.0 case the Pxy,e component is almost symmetrical along the line z = 0 with a gradient

in z identical to the Harris sheet cases. The central region in all of the plots can also be seen to

thin. The Pyz,e component of the electron pressure tensor is seen to rotate very slightly in the

anti-clockwise direction. The significant rotation anti-clockwise and then clockwise as seen in the

Harris sheet cases is again not so obvious. In the strong guide field cases there is though almost

symmetry about the z = 0 line. There is a thinning of the central region as the guide field becomes

large but in this case the thinning is relatively slight.

The thinning of the central region in Figure 5.57 and Figure 5.58 is due to the introduction of the

guide field. In the case of the Harris sheet without a guide field the characteristic length scale of

Pxy,e and Pyz,e has been shown to be given approximately by the electron bounce widths in a field

reversal λx and λz (e.g. Hesse et al. 1999). In these simulations the electron bounce width in the

x and z directions for the anti-parallel field configuration as given by Eqs. (5.3) and (5.4) at the

time shown in Figure 5.53(a) are of the order λx ≈ 2.7c/ωpi and λz ≈ 1.0c/ωpi. Plots of the

x and z components of the magnetic field along z and x respectively for the anti-parallel case at

the time shown in Figure 5.53(a) at which the off-diagonal components of the electron pressure

tensor show the correct form are shown in Figure 5.59. These are used to calculate estimates of the

bounce widths λx and λz . In the strong guide field case for the Harris sheet it has been shown that

the characteristic length scale changes to that of the thermal electron Larmor radius rL = vth,e/Ωe

in the guide magnetic field (Hesse et al. 2004). The electron Larmor radius for the simulation with

By0 = 1.0 at the time shown in Figure 5.53(g) is of the order rL ≈ 0.6c/ωpi. This characteristic

change of length scale can be seen in Figure 5.57 and Figure 5.58 as the strength of the guide field

is increased and is consistent with the Harris sheet and anisotropic bi-Maxwellian cases already

shown. The very slight thinning of the central region that is seen in Figure 5.58 can be attributed

to the fact that the difference between the bounce width λz in the zero guide field case and the

thermal electron Larmor radius for the By0 = 1.0 case is small.

To illustrate how the interaction of the multiple current layers leads to the break up of the structure

of the pressure tensor components at the central X-point it is useful to look at the time evolution
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Figure 5.60: Plots of the evolution of the Pxy,e component of the electron pressure tensor for the
double Harris sheet case with zero guide field. The plots correspond to the Pxy,e component at (a)
t = 0 and averaged around (b) t = 44, (c) t = 60 and (d) t = 100.
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Figure 5.61: Plots of the evolution of the Pyz,e component of the electron pressure tensor for the
double Harris sheet case with zero guide field. The plots correspond to the Pyz,e component at (a)
t = 0 and averaged around (b) t = 44, (c) t = 60 and (d) t = 100.
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Figure 5.62: Plots of the evolution of the Pxy,e component of the electron pressure tensor for
the double Harris sheet case with a guide field of By0 = 0.5. The plots correspond to the Pxy,e

component at (a) t = 0 and averaged around (b) t = 30, (c) t = 44 and (d) t = 58.



5.6 Double Harris Sheet Simulations (mi/me = 1) 195

(a)

(b)

(c)

(d)

Figure 5.63: Plots of the evolution of the Pyz,e component of the electron pressure tensor for
the double Harris sheet case with a guide field of By0 = 0.5. The plots correspond to the Pyz,e

component at (a) t = 0 and averaged around (b) t = 30, (c) t = 44 and (d) t = 58.



5.6 Double Harris Sheet Simulations (mi/me = 1) 196

(a)

(b)

(c)

(d)

Figure 5.64: Plots of the evolution of the Pxy,e component of the electron pressure tensor for
the double Haris sheet case with a guide field of By0 = 1.0. The plots correspond to the Pxy,e

component at (a) t = 0 and averaged around (b) t = 28, (c) t = 42 and (d) t = 48.



5.6 Double Harris Sheet Simulations (mi/me = 1) 197

(a)

(b)

(c)

(d)

Figure 5.65: Plots of the evolution of the Pyz,e component of the electron pressure tensor for
the double Harris sheet case with a guide field of By0 = 1.0. The plots correspond to the Pyz,e

component at (a) t = 0 and averaged around (b) t = 28, (c) t = 42 and (d) t = 48.
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of the off-diagonal components of the pressure tensor components. As examples of this the evo-

lutions for the Pxy,e component and the Pyz,e component for the double Harris sheet cases with a

guide field of By0 = 0.0, By0 = 0.5, By0 = 1.0 are shown in Figures 5.60 - 5.65. The snapshots

show the off-diagonal components throughout the whole simulation domain. It can be seen that

at the early stages of reconnection the pressure tensor components at the central X-point have

the expected structure and then as time proceeds the interaction of the boundary with the central

current layer leads to the breakdown of this structure. The overall evolution is also shown in the

movies that come with the thesis (see Appendix B).

5.7 Anisotropic Bi-Maxwellian Simulations (mi/me = 25)

In this section simulations starting from the anisotropic bi-Maxwellian cases already shown for

mi/me = 1 in Sec. 5.5 are extended to show cases using a mass ratio of mi/me = 25. Results

using an anti-parallel configuration as the initial configuration with varying strengths of guide field

are shown and compared to a simulation run where a self consistent linear force-free equilibrium

is used as the initial condition to see what differences there are when the characteristic time and

lengths scales for the electrons and ions are different. This is the first time a detailed comparison of

the structure of the diffusion region has been carried out formi/me > 1 that compares simulations

starting from an an anti-parallel configuration with different strengths of guide field to simulations

starting from a self-consistent linear force-free field.

In the following simulation results ions are considered to be protons. Lengths are normalized

to the ion inertial length c/ωpi and the number density is normalised to a value n0. Times are

normalised to the inverse of the ion cyclotron frequency Ωi = eB0/mi. The magnetic field is

normalised to the value B0, the amplitude of the initial magnetic field.

In the anti-parallel case the system dimensions are Lx = 3.22 c/ωpi and Lz = 1.61 c/ωpi where

Lx andLz are the half lengths of the box in the x and z directions, with a grid that is 100×50 in the

x and z directions. The linear force-free case has system dimensions Lx = 2.96 c/ωpi = 2π/α
and Lz = 1.48 c/ωpi = π/α where Lx and Lz are the half lengths of the box in the x and z

directions with a grid that is 100 × 50 in the x and z directions and α = 2.12ωpi/c. A time

step ωpe∆t = 1 is used. The ratio ωpe/Ωe is set to a numerical value of 5 in both cases. It

should be noted that the simulation box is very small in both cases. This is due to the fact that the

magnetic field components are periodic and the total simulation box length in the z direction must

correspond to one full period of the magnetic field. In the force-free case this length is given by

2π/α. The period in the z direction is determined by the choice of parameters for each equilibrium

(see Sec. 3.3.3 in Chap. 3 for an example) and therefore the length of the box in the z direction is

always restricted by this constraint. The small size of the box consequently means that the amount
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of magnetic flux in the simulation box is small. The typical width of the current sheet in all cases

is relatively large. These two factors combined could result in the possibility that the initial state

is stable due to the relatively small amount of free-energy available.

For each simulation run a perturbation of the form

Bxp = a0
π

Lz
sin
(
πz

Lz

)
, (5.35)

Bzp = a0
π

Lx
sin
(
πx

Lx

)
, (5.36)

is also added where Lx and Lz are the half lengths of the box in the x and z directions. This field

perturbation gives X-points at (0, 0), (Lx, Lz), (Lx,−Lz), (−Lx, Lz) and (−Lx,−Lz). O-Points

are located at (0, Lz), (0,−Lz), (−Lx, 0) and (Lx, 0). In all cases periodic boundary conditions

are employed at x = −Lx and x = Lx and z = −Lz and z = Lz . The electron-ion temperature

ratios are chosen as Te⊥/Ti⊥ = 5.0 and Te‖/Ti‖ = 23/7. The mass ratio for the simulation runs

is mi/me = 25.

There are two particle populations in all simulation runs. The foreground population consists of

the first set of ions and electrons which establish the equilibrium pressures and currents in all

cases. In the anti-parallel runs there is both an electron and ion temperature anisotropy. The

distribution of the ions and electrons is therefore specified by (5.13). To ensure that the electric

field is zero a frame of reference is chosen in which the condition

V e
dy

V e
dy

= −Te⊥
Ti⊥

(5.37)

is satisfied. The same overall temperatures as in the previous simulation runs are used i.e. Te⊥ +
Ti⊥ = 1.0, Te‖+Ti‖ = 1.25 and the ratio of the quantities ∆Te/∆Ti = 1 where ∆Te = Te‖−Te⊥

and ∆Ti = Ti‖ − Ti⊥. This therefore sets the temperature anisotropy such that Te⊥/Te‖ = 20/23
and Ti⊥/Ti‖ = 4/7. The second population consists of the second set of ions and electrons which

constitute a constant background density nb = 0.2. The background temperatures are identical to

the foreground population, Te⊥ + Ti⊥ = 1.0, Te‖ + Ti‖ = 1.25. The simluation run used 4× 107

ions and electrons each for the foreground and 1× 107 ions and electrons for the background.

In the force-free run there is both an electron and ion temperature anisotropy. The distribution of

the ions and electrons is therefore specified by (5.18). A frame of reference is chosen in which the

conditions that

V e
dx

V i
dx

= −Te⊥
Ti⊥

, (5.38)

V e
dy

V i
dy

= −Te⊥
Ti⊥

, (5.39)
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are satisfied. The same overall temperatures as in the previous simulation runs are used i.e. Te⊥+
Ti⊥ = 0.4, Te‖+Ti‖ = 0.5 and the ratio of the quantities ∆Te/∆Ti = 1 where ∆Te = Te‖−Te⊥

and ∆Ti = Ti‖ − Ti⊥. This therefore sets the temperature anisotropy such that Te⊥/Te‖ = 20/23
and Ti⊥/Ti‖ = 4/7. The second population again consists of the second set of ions and electrons

which constitute a constant background density nb = 0.2. The background temperatures are

identical to the foreground population, Te⊥ + Ti⊥ = 0.4, Te‖ + Ti‖ = 0.5. The simluation run

used 4 × 107 ions and electrons each for the foreground and 1 × 107 ions and electrons for the

background. This is the first study for mi/me � 1 to start from the self-consistent linear force-

free equilibria as discussed by Sestero (1967); Bobrova and Syrovatskiǐ (1979); Correa-Restrepo

and Pfirsch (1993); Bobrova et al. (2001) where both the electrons and the ions carry the initial

current.

For the anti-parallel configuration the strength of the constant guide field By = By0 is varied to

consider the cases By0 = 0.0, By0 = 0.5 and By0 = 1.0. These results are compared to the

force-free case.

In the figures shown below the initial configurations for the anti-parallel cases and the force-free

case are shown. For the anti-parallel case a filled contour plot of Bx is shown in Figure 5.66(a)

with a line plot of the magnetic field profile plotted along z for x = 0 shown in Figure 5.66(b).

Also shown in Figure 5.66(c) is a filled contour plot of the y component of the current density

with contours of the flux function overplotted showing the magnetic field lines. For the force-free

case filled contour plots of Bx and By are shown in Figure 5.67(a) and Figure 5.67(b). Figure

5.67(c) is a filled contour plot of the x component of the curent density and Figure 5.67(d) is a

filled contour plot of the y component of the current density with contours of the flux function

overplotted showing the magnetic field lines. Finally a line plot of the magnetic field profiles

plotted along z for x = 0 is shown in Figure 5.67(e). In both cases it is clear to see the periodic

profile of the magnetic field components and also the multiple current sheet structures of jx and

jy with X-points located at the centre and corners of the box and the 0-points located in between

the X-points that are introduced by the perturbation to the equilibrium magnetic field.

Figures 5.68 - 5.70 show the evolution of the magnetic field for different runs with the y component

of the current density colour coded. Figure 5.68 shows the evolution for the anti-parallel case with

a guide field of value By0 = 0.5. Figure 5.69 shows the evolution for the anti-parallel case with a

guide field of value By0 = 1.0 and Figure 5.70 shows the evolution of the force-free case. Movies

of the evolution for each case can be found on the CD which is attached to this thesis (see Appendix

B). In the anti-parallel case the initial configuration seems to be stable to the tearing mode. The

simulation was run for an extended period of time and the system remains relatively unchanged.

This stability may be a consequence of the small initial magnetic flux in the system which is a

consequence of the periodic boundary conditions. In the cases with a guide field of By0 = 0.5,

By0 = 1.0 and the force-free case the system reconnects and releases the stored energy in the
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(a)

(b)

(c)

Figure 5.66: Plots showing the initial configuration for the anti-parallel case. Figure 5.66(a) shows
a colour contour plot of Bx and Figure 5.66(b) shows a line plot of the profile of Bx along z for
x = 0. Figure 5.66(c) shows a filled contour plot of the y component of the current density with
magnetic field lines corresponding to contours of the flux function overplotted.
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(a) (b)

(c) (d)

(e)

Figure 5.67: Plots showing the initial configuration for the force-free case. Figure 5.67(a) and
Figure 5.67(b) show colour contour plots of Bx and By. Figure 5.67(c) shows a filled contour
plot of the x component of the current density and Figure 5.67(d) shows a filled contour plot of
the y component of the current density with magnetic field lines corresponding to contours of the
flux function overplotted. Figure 5.67(e) shows a line plot of the profile of Bx and By along z for
x = 0.
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magnetic field. Therefore it would seem that the guide field plays a role in the stability properties

of the anti-parallel equilibrium. As of yet a full linear stability analysis has not been carried out

but it would be interesting in the future to try and understand the role of the guide field.

Figures 5.68 - 5.70 show how magnetic reconnection proceeds and leads to large changes in the

magnetic field structure. In the guide field case By0 = 0.5 the current density is reduced at the X-

point from its initial value and enhanced in regions adjacent to it. In the guide field caseBy0 = 1.0
the magnitude of the current density at the X-point is only slightly reduced from its initial value.

In the force-free case the current density is enhanced at the X-point. At late times in the simulation

runs the magnetic field structure has changed dramatically. The magnetic field configuration has

gone from having a (Bx, By) structure to having a mainly (By, Bz) structure which is identical to

the behaviour for the equal mass ratio simulations. It is also clear that in all the simulation runs in

the majority of the simulation box the y component of the current density has been significantly

reduced. This large scale reorganistion of the geometry of the magnetic field is again due to the

doubly periodic boundary conditions that are used. It is clear to see that in all the simulation runs

that the O-points above and below the central X-point have a strong effect. Once the initial stages

of reconnection have occurred the O-points above and below the central X-point continue to press

in on the central X-point eventually leading to the large scale reorganisation that is shown.

Figure 5.73 shows line plots along x for z = 0 of the electron number density ne (blue lines)

and the y component of the current density (red lines) for the antiparallel cases with guide field,

By0 = 0.5 and By0 = 1.0 and also the linear force-free case during reconnection. These can be

compared to the initial electron number number density and y component of the current density

profiles plotted along x for z = 0 which are shown in Figure 5.72. In comparison to the equal

mass ratio runs in Sec. 5.5, Figures 5.73(a) and 5.73(b) show that the runs starting from the anti-

parallel magnetic configuration show a similar density depletion around the X-point. In the guide

field cases By0 = 0.5 and By0 = 1.0, Figures 5.73(b) and 5.73(d) show that the current density is

strongest in regions adjacent to the X-point with peaks either side of the X-point at |x| ≈ 1.2 c/ωpi

for the case By0 = 0.5 and |x| ≈ 1.3 c/ωpi for the case with By0 = 1.0. Figure 5.73(b) shows

that for the guide field case By0 = 0.5 the current density is significantly reduced from its initial

value at the X-point. In the stronger guide field case By0 = 1.0 the current density is only slightly

reduced at the X-point from its initial value and is stronger than that of the guide field By0 = 0.5
case. In the linear force-free case, in contrast to the anti-parallel cases, Figure 5.73(e) shows that

the number density is enhanced at the X-point. In addition to this Figure 5.73(f) shows that the

current density is significantly increased at the X-point. This behaviour is identical to the equal

mass ratio case discussed in Sec. 5.5.

Figure 5.71 shows the evolution of the x component of the current density for the linear force-free

case. This shows that as reconnection proceeds the x component of the current density remains

very small at and along a thin region either side of the X-point and that it is also reduced in the
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(a)

(b)

(c)

(d)

Figure 5.68: Plots of the y component of the current density with contours of the flux function
overplotted for the anti-parallel case with a guide field of value By0 = 0.5. The plots correspond
to the different times (a) t = 0, (b) t = 5, (c) t = 6 and (d) t = 8.
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(a)

(b)

(c)

(d)

Figure 5.69: Plots of the y component of the current density with contours of the flux function
overplotted for the anti-parallel case with a guide field of value By0 = 1.0. The plots correspond
to the different times (a) t = 0, (b) t = 5, (c) t = 6 and (d) t = 8.
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(a)

(b)

(c)

(d)

Figure 5.70: Plots of the y component of the current density with contours of the flux function
overplotted for the force-free case. The plots correspond to the different times (a) t = 0, (b) t = 7,
(c) t = 8 and (d) t = 11.
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(a)

(b)

(c)

(d)

Figure 5.71: Filled contour plots of the x component of the current density for the force-free case.
The plots correspond to the different times (a) t = 0, (b) t = 7, (c) t = 8 and (d) t = 11.
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(a) (b)

(c) (d)

Figure 5.72: Line plots of the electron number density ne (blue lines) and the y component of the
current density (red lines) plotted along x for z = 0 at t = 0 for (a),(b) the anti-parallel simulation
runs and also (c),(d) the linear force-free run.

magnetic islands. The thin central region is also inclined to the x axis. In the final stages of the

evolution the interaction of the multiple current layers leads to a breakdown of the structure of the

x component of the current density.

In the strong guide field case and in the force-free case for the y component of the current density

you can also see the characteristic inclination of the central current sheet with respect to the x

axis. In the zero guide field case it would have been expected that the electrons and the ions

drift towards the X-point due to the E×B drift. In the reconnection region they would become

demagnetised and accelerated in the y direction by the reconnection electric field. They would also

be expelled from the reconnection region with super Alfvénic velocities along x. The electron and

ion flows would be expected to be symmetric. The introduction of the guide field changes the

dynamics. In particular in the strong guide field case, where the inclination of the current sheet

is most prominent the guide field modifies the E×B drift and causes the ions and electrons to

drift in directions not possible in the zero guide field case. The electrons in the strong guide field

case have strong flows along the separatrices. The electron flow parallel to the magnetic field is

shown for the guide field case By0 = 1.0 and for the force-free case in Figure 5.74. There is

clearly a large electron flow along the separatrices in the strong guide field and force-free cases.

The strongest flows in both cases are along the upper left and bottom right separatrices.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.73: Line plots of the electron number density ne (blue lines) and the y component of
the current density (red lines) plotted along x for z = 0 during reconnection for the anisotropic
bi-Maxwellian runs for the anti-parallell case with a guide field of value (a),(b) By0 = 0.5 (t = 6)
(c),(d) By0 = 1.0 (t = 6), and also (e),(f) linear force-free (t = 9).
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(a) (b)

Figure 5.74: Figures showing the electron flow along the magnetic field during reconnection for
the guide field case By0 = 1.0 and the force-free case. In these cases the electrons have large
flows along the separatrices.

(a) (b)

(c) (d)

Figure 5.75: Plots of the electron and ion contributions to the y component of the current density
for different cases during reconnection. (a),(b) By0 = 1.0 (x0 = −0.07), (c),(d) linear force-free
(x0 = −0.06).
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(a) (b)

Figure 5.76: Figures showing the y component of the magnetic field during the reconnection
process. (a) In the guide field case By0 = 1 the quadrupolar structure is overlaid on top of the
guide field. (b) In the force-free case the quadrupolar By magnetic field is similar to the anti-
parallel case although slightly distorted from the expected symmetry.

Figure 5.75 shows the electron and ion contributions to the y component of the current density

during the reconnection process for the guide fieldBy0 = 1.0 and force-free case. In each example

it is clear that in the vicinity of the central X-point the electron current layer is much thinner than

the ion current layer in the z direction which is charactersitic of the change of scaling that the

higher mass ratio introduces. The electrons are demagnetized for a smaller region than the ions.

In the guide field By0 = 1.0 case the ion current layer is relatively unchanged from the initial

state. The electron current layer in the force-free case and the guide field By0 = 1.0 cases are

very similar. In both cases it is clear that the y component of the current density is dominated

by the electrons. This is again a characteristic feature of collisionless reconnection. The region

in which the ions are demagnetized is known as the Hall zone. This characteristic property of

collisionless reconnection leads to the formation of a quadrupolar out of the plane magnetic field

in the case of zero guide field. In the strong guide field case you also get the formation of a

quadrupolar out of the plane magnetic field, but overlaid on the guide magnetic field and this is

shown in Figure 5.76(a). In the force-free case there is the formation of a quadrupolar out of the

plane magnetic field that is similar to the anti-parallel case but it is distorted from the symmetry

that would be expected in the anti-parallel case. This is shown in Figure 5.76(b).

A comparison of the evolution of the runs is given in Figure 5.77. This shows two plots, one for

the reconnected flux for each case plotted using different colours to represent the strength of the

guide field in each run where the reconnected flux is defined as

F (t) =
∫

Bz>0
dxBz(z = 0), (5.40)

and the other shows the reconnection rate which is found from the gradient of the reconnected flux

normalised against the maximum Alfvén speed at each timestep.

Examining the evolution of these runs one can clearly see from the plots of the reconnection rate
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(a)

(b)

Figure 5.77: Figures showing the evolution of the simulations with varying strengths of guide
field using the anti-parallel case as an initial configuration and also including the case of a linear
force-free equilibrium for mi/me = 25 simulation runs. The reconnected flux is shown in Figure
5.77(a) and the corresponding reconnection rates in Figure 5.77(b). The colours represent the
different strengths of the guide field in the initial configuration.
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shown in Figure 5.77(b) that the reconnection rate in general is reduced when the guide field is of

the order B0. This is in agreement with previous studies that show that the reconnection rate is

reduced once the guide field is large enough to significantly change the magnetic pressure in the

system (e.g. Pritchett 2001). It is also in agreement with all the previous results shown for initial

conditions with equal mass ratio. The linear force-free case has a maximum reconnection rate that

is approximately equivalent to the By0 = 1.0 case which suggests that the shear magnetic field

component By also has the effect of reducing the reconnection rate compared to the anti-parallel

case.

5.7.1 The Structure of the Diffusion Region

In this section the morphology of the off-diagonal components off the electron pressure tensor

components are shown for the different runs. The structure of these pressure tensor components

can be compared to the previous examples for the equal masss ratio runs. It is also shown how the

different contributions in Eq. (5.7) make up the reconnection electric field in the vicinity of the

X-point.

To investigate the structure of the off-diagonal components in the region of the central X-point

it was intended to analyse them at the time of maximum reconnection rate which is given by

the peaks of each curve in Figure 5.77(b) in the same way as the Harris sheet cases. As in the

equal mass ratio cases the problem with this was that at the time of maximum reconnection rate

the pressure tensor components did not show the expected structure. This is again due to the

interaction of the multiple current layers which leads to a breakdown of the expected structure of

the off-diagonal components at the central X-point. It can be shown though at earlier stages in

the reconnection process that the off-diagonal pressure tensor components do show the expected

form. This can be seen in Figure 5.82 and Figure 5.83 which show the Pxy,e and Pyz,e components

of the electron pressure tensor for the different strengths of guide field and including the force-free

case.

Figure 5.78 shows filled contour plots of the y component of the current density for each case at

earlier stages of reconnection where the off-diagonal components of the electron pressure tensor

show the expected structure. Also shown in Figure 5.79 are filled contour plots of the y component

of the electric field at these times. This clearly shows how magnetic reconnection generates a

strong Ey electric field in the vicinity of the X-Point. The cases shown here are for the guide

fields By0 = 0.5, 1.0 for the anti-parallel case and also the linear force-free case. In all the figures

x0 refers to the approximate position along x of the X-point. In all cases the position of the

X-point along z is approximately at z = 0.

To demonstrate that the dominant contribution to the Ey electric field in the vicinity of the X-
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(a) (b)

(c)

Figure 5.78: Plots of the y component of the current density with contours of the flux function
overplotted for simulations with varying strengths of guide field and the force-free case at a time
when the electron pressure tensor components show the expected structure. (a) By0 = 0.5 (x0 =
−0.07), (b) By0 = 1.0 (x0 = −0.07), (c) linear force-free (x0 = −0.06).

(a) (b)

(c)

Figure 5.79: Plots of the y component of the electric field for simulations with varying strengths of
guide field and the force-free case at a time when the electron pressure tensor components show
the expected structure. (a) By0 = 0.5 (x0 = −0.07), (b) By0 = 1.0 (x0 = −0.07), (c) linear
force-free (x0 = −0.06).
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(a)

(b)

(c)

Figure 5.80: Plots along x for z = 0 of the contributions that make up the Ey electric field in Eq.
(5.7) for simulations with varying strengths of guide field and the force-free case at a time when the
electron pressure tensor components show the expected structure. (a) By0 = 0.5 (x0 = −0.07),
(b) By0 = 1.0 (x0 = −0.07), (c) linear force-free (x0 = −0.06).
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(a)

(b)

(c)

Figure 5.81: Plots along z for x = x0 of the contributions that make up the Ey electric field
in Eq. (5.7) for simulations with varying strengths of guide field and the force-free case at a
time when the electron pressure tensor components show the expected structure. (a) By0 = 0.5
(x0 = −0.07), (b) By0 = 1.0 (x0 = −0.07), (c) linear force-free (x0 = −0.06).
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(a)

(b)

(c)

Figure 5.82: Plots of the Pxy,e component of the electron pressure tensor for simulations with
varying strengths of guide field and the force-free case at a time when the electron pressure tensor
components show the expected structure. (a) By0 = 0.5 (x0 = −0.07), (b) By0 = 1.0 (x0 =
−0.07), (c) linear force-free (x0 = −0.06).
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(a)

(b)

(c)

Figure 5.83: Plots of the Pyz,e component of the electron pressure tensor for simulations with
varying strengths of guide field and the force-free case at a time when the electron pressure tensor
components show the expected structure. (a) By0 = 0.5 (x0 = −0.06), (b) By0 = 1.0 (x0 =
−0.06), (c) linear force-free (x0 = −0.07).
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point is due to off-diagonal components of the electron pressure tensor Figure 5.80 and Figure

5.81 shows line plots along x and z of the contributions that make up the Ey electric field in Eq.

(5.7) averaged for 0.08Ω−1
i either side of the times the Ey electric field is shown at in Figure

5.79 for each different case. In each case the red line corresponds to the Ey component of the

electric field. It can be seen that the dominant contribution to the electric field close to the X-point

comes from the gradients of the off-diagonal components of the electron pressure tensor as at this

point the magnitude of the contribution from the gradients of the off-diagonal components of the

electron pressure tensor (green line) match the magnitude of the y component of the electric field.

In each of the plots shown in Figure 5.80 and Figure 5.81 the gradients of the off-diagonal compo-

nents of the electron pressure tensor dominate the electric field out to the point at which the u×B

term equals the contribution from the gradients of the electron pressure tensor terms identical to

the Harris sheet cases and the previous results for equal mass ratio. The plots shown in Figure

5.80 show that the contribution from the gradients of the off diagonal pressure tensor components

dominates to about x ≈ ±0.5c/ωpi either side of the X-point for the guide field cases and the

force-free case. The plots shown in Figure 5.81 indicate that the contribution from the off diago-

nal pressure tensor components dominates to about z ≈ ±0.4c/ωpi either side of the X-point for

the By0 = 0.5 case whilst for By0 = 1.0 case they dominate up to z ≈ ±0.2c/ωpi either side

of the X-point. In the force-free case the gradients of the electron pressure tensor components

dominate out to only z ≈ ±0.1c/ωpi either side of the X-point.

In comparison to the previous cases for equal mass ratio these simulation runs starting from

anisotropic equilibria give the same features. In all cases the mechanism that breaks the frozen in

condition and dominates the contribution to the inductive electric field near to the X-point is due

to gradients of the off-diagonal components of the electron pressure tensor near to the X-point.

It must be pointed out though that for all the figures shown here, they are at an earlier time than

the time of maximum reconnection rate that correspond to the peaks of the lines shown in Figure

5.77(b). This is because at the time of maximum reconnection rate, due to the periodic boundary

conditions and the interaction of the multiple current layers in the simulation box, this leads to

the breakdown of the expected structure of the pressure tensor components. Therefore to compare

equally to the Harris sheet cases and to investigate the dominant mechanism that breaks the frozen

in condition, an earlier time in the reconnection process has been investigated.

To investigate further the structure of the off-diagonal pressure tensor components, Figures 5.82

and 5.83 show filled contour plots of the Pxy,e and Pyz,e components of the electron pressure

tensor zoomed in around the position of the central X-point. It would be expected that in the anti-

parallel case the Pxy,e component would be approximately symmetrical about the line x = x0

which goes through the X-point with a gradient in x and the Pyz,e component of the pressure

tensor would be approximately symmetrical about the z = 0 line going through the X-point with

a gradient in z. This expected structure has been shown already for the Harris sheet, anisotropic
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bi-Maxwellian case and the double Harris sheet with equal mass ratio in Sec. 5.4 - 5.6. As the

guide field is increased the structure of the Pxy,e component starts to change. The symmetry along

the line x = x0 is broken and the structure is seen to rotate in an anti-clockwise direction until for

the guide field By0 = 1.0 the Pxy,e component is almost symmetrical along the line z = 0 with a

gradient in z identical to the equal mass ratio cases. The central region in all of the plots can also

be seen to thin. The Pyz,e component of the electron pressure tensor is seen to rotate slightly in

the anti-clockwise direction. The significant rotation anti-clockwise and then clockwise as seen in

the Harris sheet cases with equal mass ratio is not so obvious. In the strong guide field case the

structure of the Pyz,e component is still inclined to the z = 0 line, which is different to the equal

mass ratio cases but once again the central region is observed to thin as the guide field becomes

large. In the force-free case the inclination to the line z = 0 for the Pyz,e component of the

pressure tensor is less than the strong guide field case. The central region is thinnest in the linear

force-free case.

The thinning of the central region in Figure 5.82 and Figure 5.83 is due to the introduction of the

guide field. In the case of the Harris sheet without a guide field the characteristic length scale

of Pxy,e and Pyz,e has been shown to be given approximately by the electron bounce widths in

a field reversal λx and λz (e.g. Hesse et al. 1999). In the strong guide field case for the Harris

sheet it has been shown that the characteristic length scale changes to that of the thermal electron

Larmor radius rL = vth,e/Ωe in the guide magnetic field (Hesse et al. 2004). The thermal electron

Larmor radius for the simulation withBy0 = 1.0 at the time shown in Figure 5.78(b) is of the order

rL ≈ 0.18c/ωpi. The width of the central region in Figure 5.82(b) and 5.83(b) is consistent with

this estimate suggesting that the scale length of Pxy,e and Pyz,e is of the order of the thermal

electron Larmor radius.

The thermal electron Larmor radius for the linear force-free case at the time shown in Figure

5.78(c) based on the maximum value of the shear component of the magnetic field at the X-point

(By ≈ 0.16) is of the order rL ≈ 0.82c/ωpi. This estimate of the thermal electron Larmor radius

based on the shear magnetic field at the X-point is larger than for the guide field case By0 = 1.0
but the central regions of the plots of Pxy,e and Pyz,e shown in Figure 5.82(c) and Figure 5.83(c)

are of a similar width to the equivalent plots for the guide field case By0 = 1.0. Therefore, for the

force-free case these results suggest that the characteristic length scale may be even smaller than

the thermal electron gyroradius in the shear magnetic field.

To illustrate how the interaction of the multiple current layers leads to the break up of the structure

of the pressure tensor components at the central X-point it is useful to look at the time evolution

of the off-diagonal components of the pressure tensor components. As examples of this the evo-

lutions for the Pxy,e component and the Pyz,e component for the anti-parallel cases with a guide

field of By0 = 0.5, By0 = 1.0 and the linear force-free case are shown in Figures 5.84 - 5.89. The

snapshots show the off-diagonal components throughout the whole simulation domain. It can be
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(a)

(b)

(c)

(d)

Figure 5.84: Plots of the evolution of the Pxy,e component of the electron pressure tensor for the
anti-parallel case with a guide field of By0 = 0.5. The plots correspond to the Pxy,e component at
(a) t = 0 and averaged around (b) t = 6, (c) t = 6.48 and (d) t = 9.
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(a)

(b)

(c)

(d)

Figure 5.85: Plots of the evolution of the Pyz,e component of the electron pressure tensor for the
anti-parallel case with a guide field of By0 = 0.5. The plots correspond to the Pyz,e component at
(a) t = 0 and averaged around (b) t = 6, (c) t = 6.48 and (d) t = 9.
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(d)

Figure 5.86: Plots of the evolution of the Pxy,e component of the electron pressure tensor for the
anti-parallel case with a guide field of By0 = 1.0. The plots correspond to the Pxy,e component at
(a) t = 0 and averaged around (b) t = 6, (c) t = 6.4 and (d) t = 9.
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(a)
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(c)

(d)

Figure 5.87: Plots of the evolution of the Pyz,e component of the electron pressure tensor for the
anti-parallel case with a guide field of By0 = 1.0. The plots correspond to the Pyz,e component at
(a) t = 0 averaged around (b) t = 6, (c) t = 6.4 and (d) t = 9.
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(a)

(b)

(c)

(d)

Figure 5.88: Plots of the evolution of the Pxy,e component of the electron pressure tensor for the
linear force-free case. The plots correspond to the Pxy,e component at (a) t = 0 and averaged
around (b) t = 9, (c) t = 10 and (d) t = 12.
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(a)

(b)

(c)

(d)

Figure 5.89: Plots of the evolution of the Pyz,e component of the electron pressure tensor for the
linear force-free case. The plots correspond to the Pyz,e component at (a) t = 0 and averaged
around (b) t = 9, (c) t = 10 and (d) t = 12.
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seen that at the early stages of reconnection the pressure tensor components at the central X-point

have the expected structure and then as time proceeds the interaction of the boundary with the

central current layer leads to the breakdown of this structure. The overall evolution is also shown

in the movies that come with the thesis (see Appendix B).

5.8 Force-Free Harris Sheet Simulations

The major aim of this work was to investigate the structure of the diffusion region for different

initial conditions and to compare how the structure of the off-diagonal components of the electron

pressure tensor changes. In this section reconnection simulations starting from a self-consistent

force-free Harris sheet are investigated. This is the first ever study of collisionless reconnection

to use an exact self-consistent non-linear force-free equilibrium as an initial condition. These are

compared to the Harris sheet simulations, in particular to the strong guide field cases which have

commonly been used to model low-β plasmas.

The reconnection rates of each simulation run are also investigated. It is a well know trend that for

the Harris sheet case the effect of increasing the strength of the constant guide field reduces the

reconnection rate. It is interesting to compare the reconnection rates for simulations starting from

a self-consistent non-linear force-free field to see if in the force-free case the effect of the shear

By magnetic field is to reduce or increase the reconnection rate.

In the first simulation the ion to electron mass ratio is set equal to one (mi/me = 1). In the second

simulation the mass ratio is set to mi/me = 9. Lengths are normalized to the ion inertial length

c/ωpi and the number density is normalised to a value n0. Times are normalised to the inverse of

the ion cyclotron frequency Ωi = eB0/mi. The magnetic field is normalised to the value B0, the

amplitude of the initial magnetic field. In the equal mass ratio simulation the system dimensions

are Lx = 20.0 c/ωpi and Lz = 10.0 c/ωpi and in the mi/me = 9 the system dimensions are

Lx = 13.3 c/ωpi and Lz = 6.7 c/ωpi where Lx and Lz are the half lengths of the box in the x and

z directions. In the equal mass ratio simulation the grid is 200× 100 and in the mi/me = 9 case

the grid is 260× 130 in the x and z directions. A time step ωpe∆t = 1 is used. The ratio ωpe/Ωe

is set to a numerical value of 5.

The initial configuration is a force-free Harris sheet. The magnetic field is given by

Bx = tanh
( z
L

)
, (5.41)

By =
B0

cosh
(

z
L

) , (5.42)

whereL = 1.0. The electron and ion densities are constant. For each simulation run a perturbation
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of the form

Bxp = −a0xm
π

2Lz
exp

(
− x2

2x2
m

+ 0.5
)

sin
(
πz

2Lz

)
, (5.43)

Bzp = a0
x

xm
exp

(
− x2

2x2
m

+ 0.5
)

cos
(
πz

2Lz

)
, (5.44)

is also added where a0 = 0.1 and xm = Lz/2. This gives an X-point type reconnection site at the

centre of the box.

The velocity distribution of each particle species is set up according to the distribution function

(3.203) described in Chap. 3. There are two particle populations which set up the equilibrium

pressures and currents. The first population consists of a set of ions and electrons which estab-

lish the equilibrium pressures and currents for the Harris sheet part of the distribution function.

The second population consists of a second set of ions and electrons which set up the additional

pressure and currents that correspond to the shear By magnetic field. In the simulation runs tem-

peratures are set such that Ti + Te = 0.5, with Te/Ti = 1. The equal mass ratio simluation run

used 2 × 107 ions and electrons each for the first population and 3 × 107 ions and electrons for

the second population. The mi/me = 9 simulation run used 1.0× 108 ions and electrons for the

first population and 1.0 × 108 ions and electrons for the second population. Periodic boundary

conditions are employed at x = −Lx and x = Lx. Particles are specularly reflected at z = −Lz

and z = Lz . One of the advantages of the force-free Harris sheet is that unlike the linear force-free

case it is not necessary to use periodic boundary conditions in the z direction and therefore the

box size is free to be chosen, provided that you satisfy the condition (4.6) given in Chap. 4.

Figures 5.90 and 5.91 show the initial configuration at t = 0 for the equal mass ratio andmi/me =
9 cases. Filled contour plots of the magnetic field components Bx and By for the two cases are

shown in Figures 5.90(a), 5.90(b), 5.91(a) and 5.91(b). Figures 5.90(e) and 5.91(e) show line plots

of the magnetic field profiles and current density profiles plotted along z for x = 0 (i.e. through

the X-point). It is important to note the slight modification of the hyperbolic tangent profile of the

x component of the magnetic field and the respective y component of the current density along z

in both cases which is introduced by the perturbation to the magnetic field. Figures 5.90(c) and

5.91(c) show filled contour plots of the x component of the current density and Figures 5.90(d)

and 5.91(d) are filled contour plots of the y component of the current density with contours of

the flux function overplotted showing the magnetic field lines. It is clear to see in both cases the

current sheet structure of the x and y components of the current density with the X-point structure

introduced by the perturbation to the equilibrium magnetic field.

Figures 5.92 and 5.93 show the evolution of the magnetic field for the equal mass ratio and

mi/me = 9 runs with the y component of the current density colour coded. Movies of the

evolution for each case can be found on the CD which is attached to this thesis (see Appendix B).



5.8 Force-Free Harris Sheet Simulations 229

(a) (b)

(c) (d)

(e)

Figure 5.90: Plots showing the initial configuration for the force-free Harris sheet with equal mass
ratio. Figures 5.90(a) and 5.90(b) shows colour contour plots of Bx and By. Figure 5.90(c) shows
a filled contour plot of the x component of the current density and Figure 5.90(d) shows a filled
contour plot of the y component of the current density with magnetic field lines corresponding to
contours of the flux function overplotted. Figure 5.90(e) shows line plots of the profiles of Bx,
By, jx and jy along z for x = 0.
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(a) (b)

(c) (d)

(e)

Figure 5.91: Plots showing the initial configuration for the force-free Harris sheet with mass ratio
mi/me = 9. Figures 5.91(a) and 5.91(b) shows colour contour plots of Bx and By. Figure
5.91(c) shows a filled contour plot of the x component of the current density and Figure 5.91(d)
shows a filled contour plot of the y component of the current density with magnetic field lines
corresponding to contours of the flux function overplotted. Figure 5.91(e) shows line plots of the
profile of Bx and By along z for x = 0.
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These figures show how magnetic reconnection proceeds and leads to large changes in the mag-

netic field structure. In the central X-point region in both cases the current density is enhanced

and particle densities are increased during the first phase of the evolution. This is different to the

Harris sheet cases as in all those cases the current density and particle densities are reduced at the

central X-point. In the equal mass ratio case there is symmetry of the central current sheet about

the X-point. In the mass ratio mi/me = 9 case as the evolution proceeds there is a rotation of

the central current sheet with respect to the x axis where the electrons are the dominant current

carriers. The rotation with respect to the x axis is a characteristic feature of guide field reconnec-

tion and is related to the shear y component of the magnetic field at the X-point. In the late stages

of the evolution in both cases the current density reduces at the X-point and the y component of

the magnetic field is almost zero at the X-point which corresponds to a transition to anti-parallel

reconnection. The evolution of By for the two cases is shown in Figures 5.96 and 5.97. Eventu-

ally in both cases reconnection slows due to the build up of magnetic flux in the magnetic islands

which causes a magnetic pressure gradient which reduces the pulling of the magnetic field lines

away from the reconnection site.

Figure 5.99 shows line plots along x for z = 0 of the electron number density ne (blue lines) and

the y component of the current density (red lines) for the force-free Harris sheet runs with mass

ratio mi/me = 1 amd mi/me = 9 at the time of maximum reconnection rate. These can be

compared to the electron number density (blue lines) and the y component of the current density

at t = 0 for each case which is shown in Figure 5.98. Figures 5.99(a) and 5.99(b) show that for

the equal mass ratio run at the time of maximum reconnection rate the number density and current

density are increased at the X-point. This feature has also been shown for the linear force-free runs

in Sec. 5.5 and 5.7. The increase in the current density and number density at the time of maximum

reconnection rate is different to a Harris sheet run with zero guide field where the current density

and number density are depleted at the X-point during reconnection. In the mass ratiomi/me = 9
case the time of maximum reconnection rate occurs at a later time in the evolution. At this time

the evolution is closer to anti-parallel reconnection with a weak guide field and therefore Figures

5.99(c) and 5.99(d) show a density depletion and current density decrease at the X-point similar

to reconnection starting from a Harris sheet with weak guide field. Figure 5.99(d) also shows

increases of the y component of the current density at peaks located at |x| ≈ 9 − 10 c/ωpi either

side of the X-point. This is also a typical feature of anti-parallel reconnection.

Figures 5.94 and 5.95 show the evolution of the x component of the current density for the equal

mass ratio and mi/me = 9 cases. This shows that as reconnection proceeds the x component of

the current density is reduced in regions close to the X-point and in the magnetic islands with wing-

like structures at the edges of the magnetic islands where the x component of the current density

is enhanced. The enhanced wing-like structures correspond to gradients of the y component of
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(a)

(b)

(c)

(d)

Figure 5.92: Plots of the y component of the current density with contours of the flux function
overplotted for the force-free Harris sheet run with equal mass ratio. The plots correspond to the
different times (a) t = 0, (b) t = 20, (c) t = 40 and (d) t = 80.



5.8 Force-Free Harris Sheet Simulations 233

(a)
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(d)

Figure 5.93: Plots of the y component of the current density with contours of the flux function
overplotted for the force-free Harris sheet run with a mass ratiomi/me = 9. The plots correspond
to the different times (a) t = 0, (b) t = 28.89, (c) t = 45.56 and (d) t = 80.
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(a)
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(d)

Figure 5.94: Plots of the x component of the current density for the force-free Harris sheet run
with equal mass ratio. The plots correspond to the different times (a) t = 0, (b) t = 20, (c) t = 40
and (d) t = 80.



5.8 Force-Free Harris Sheet Simulations 235
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Figure 5.95: Plots of the x component of the current density for the force-free Harris sheet run
with a mass ratiomi/me = 9. The plots correspond to the different times (a) t = 0, (b) t = 28.89,
(c) t = 45.56 and (d) t = 80.
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Figure 5.96: Plots of the y component of the magnetic field for the force-free Harris sheet run with
equal mass ratio. The plots correspond to the different times (a) t = 0, (b) t = 20, (c) t = 40 and
(d) t = 80.
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Figure 5.97: Plots of the y component of the magnetic field for the force-free Harris sheet run with
a mass ratio mi/me = 9. The plots correspond to the different times (a) t = 0, (b) t = 28.89, (c)
t = 45.56 and (d) t = 80.
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(a) (b)

(c) (d)

Figure 5.98: Line plots of the electron number density ne (blue lines) and the y component of the
current density (red lines) plotted along x for z = 0 at t = 0 for the force-free Harris sheet runs
with a mass ratio of (a),(b) mi/me = 1 and (c),(d) mi/me = 9.

(a) (b)

(c) (d)

Figure 5.99: Line plots of the electron number density ne (blue lines) and the y component of the
current density (red lines) plotted along x for z = 0 at the time of maximum reconnection rate
for the force-free Harris sheet runs with a mass ratio of (a),(b) mi/me = 1 (t = 38) and (c),(d)
mi/me = 9 (t = 45.56).
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(a)

(b)

(c)

(d)

Figure 5.100: Filled contour plots of the ion and electron flows parallel to the magnetic field for
(a),(b) the equal mass ratio case (t = 38) and (c),(d) the mass ratio mi/me = 9 case (t = 45.56)
at the time of maximum reconnection rate.
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(a)

(b)

Figure 5.101: Figures comparing the evolution of the simulations using the force-free Harris sheet
as an initial configuration with equal mass ratio and mass ratio mi/me = 9. The reconnected flux
is shown in Figure 5.101(a) and the corresponding reconnection rates in Figure 5.101(b).
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the magnetic field at the edges of the magnetic islands which can be seen in Figure 5.96 and 5.97

for the two cases. This behaviour is similar to the linear force-free cases already discussed in

Secs. 5.5 and 5.7. In Figures 5.94 - 5.97 there are some boundary effects which do not change

the overall evolution of jx and By but in the future need to be investigated to understand why they

occur.

Figure 5.100 shows the ion and electron flows parallel to the magnetic field for the equal mass

ratio and mass ratio mi/me = 9 cases at the time of maximum reconnection rate. In the equal

mass ratio case the ions have the strongest flows along the bottom left and upper right separatrices.

The electron flows have the opposite symmetry with the strongest flows along the upper left and

bottom right separatrices. The magnitude of the flows are equal in this case but the electrons flow

are in the opposite direction along the magnetic field to the ions. The mass ratio mi/me = 9 case

shows that the strongest electron flows are still along the separatrices. The electron flows are also

larger than the ion flows and flow in the opposite direction to the ions. The largest ion flows are

in the magnetic islands. The central region is rotated clockwise with respect to the x axis for the

electrons whereas for the ions the central region is rotated anti-clockwise.

A comparison of the evolution of the runs is given in figure 5.101. This shows two plots, one for

the reconnected flux for each case plotted using different colours to represent the equal mass ratio

and mi/me = 9 runs where the reconnected flux is defined as

F (t) =
∫

Bz>0
dxBz(z = 0), (5.45)

and the other shows the reconnection rate where the reconnection rate is found by taking the

derivative of the reconnected flux and normalising it against the maximum Alfvén speed at each

timestep. In the equal mass ratio case the peak of the reconnection rate has a value of ≈ 0.06 and

in the mass ratio of mi/me = 9 a rate of≈ 0.055. Comparing the reconnection rates to the Harris

sheet simulations in Sec. 5.4, the peak of the reconnection rate for the force-free Harris sheet cases

have a value of a similar magnitude to an intermediate guide field case. Therefore it seems that

the shear magnetic field By in the vicinity of the X-point which is still present, although reduced

from its intial value at the time of maximum reconnection rate still has the effect of reducing the

reconnection rate.

5.8.1 The Structure of the Diffusion Region

In this section the structure of the off-diagonal components of the electron pressure tensor com-

ponents are shown for the force-free Harris sheet cases with equal mass ratio and mass ratio

mi/me = 9 at the time of maximum reconnection rate. It is also shown how the different contri-

butions in Eq. (5.7) make up the reconnection electric field in the vicinity of the X-point.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.102: Plots of Force-Free Harris sheet with me = mi, L = 1.0, Te = Ti at the time of
maximum reconnection rate: (a) y component of the current density with the magnetic field, (b)
Ey electric field, (c)(d) lineplots along x and z through the X-point of different contributions to
Ey electric field, (e)(f) zoom-ins of Pxy,e and Pyz,e components of electron pressure tensor.
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(a)

(b)

(c) (d)

Figure 5.103: Plots of Force-Free Harris sheet with mi/me = 9, L = 1.0, Te = Ti at the time of
maximum reconnection rate: (a) y component of the current density with the magnetic field lines
overplotted, (b) Ey electric field, (c)(d) lineplots along x and z through the X-point of different
contributions to Ey electric field.
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(a) (b)

(c) (d)

Figure 5.104: Plots showing the off diagonal components of the electron pressure tensor Pxy,e and
Pyz,e for the mi/me = 9 case during (a),(b) the early stages of reconnection and (c),(d) at the
time of maximum reconnection rate.

Figure 5.102 shows a comparison for the force-free Harris sheet with equal mass ratio at the time

of maximum reconnection rate. Figure 5.102(a) shows a filled contour plot of the y component

of the current density at the time of maximum reconnection rate which corresponds to the peak

of the graph for the equal mass ratio case shown in Figure 5.101(b). Figure 5.102(b) is a filled

contour plot of the Ey electric field at the time of maximum reconnection rate. The electric field

has been averaged for 2Ω−1
i either side of the time of maximum reconnection rate. This shows

how magnetic reconnection generates a strong Ey electric field in the vicinity of the X-point.

In the figures the X-point is located approximately at x = −0.20 and z = 0. Figure 5.102(c)

and 5.102(d) show line plots along x and z respectively through the X-point of the Ey electric

field and the contributions that make up the reconnection electric field in Eq. (5.7). It is clear

that the dominant contribution to the Ey electric field in the vicinity of the X-point is due to the

off-diagonal components of the electron pressure tensor (green lines).

A similar analysis is shown in Figure 5.103 for the mi/me = 9 case. Figure 5.103(a) shows a

filled contour plot of the y component of the current density at the time of maximum reconnec-

tion rate which corresponds to the peak of the graph for the mass ratio mi/me = 9 case shown

in Figure 5.101(b). Figure 5.103(b) is a filled contour plot of the Ey electric field at the time of

maximum reconnection rate. The electric field has been averaged for 2Ω−1
i either side of the time

of maximum reconnection rate. This shows how magnetic reconnection generates a strong Ey

electric field in the vicinity of the X-point. In the figures the X-point is located approximately at

x = −0.4 and z = 0. Figure 5.103(c) and 5.103(d) show line plots along x and z respectively
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through the X-point of the Ey electric field and the contributions that make up the reconnection

electric field in Eq. (5.7). The dominant contribution to the Ey electric field very close to the

X-point is due to the off-diagonal components of the electron pressure tensor (green lines). It

is noticable outside the diffusion region that there are large changes in the gradients of the elec-

tron pressure tensor components. This suggests that the pressure tensor components may still be

strongly time dependent and is a question for future investigations.

Although the dominant term in the vicinity of the X-point is due to the gradients of the off-diagonal

terms of the electron pressure tensor, Figure 5.102(d) and Figure 5.103(d) show there is in both the

equal mass ratio and mi/me = 9 cases a contribution to the electric field from the electron inertia

term at the edge of the diffusion regime along z. In the equal mass ratio case this is relatively small

compared to the peak of the gradients of the electron pressure terms at the X-point and is of equal

magnitude to the u×B term at the edge of the diffusion region. In the mass ratiomi/me = 9 case

the contribution from the electron inertia at the edge of the diffusion region is significantly large

relative to the peak of the gradients of the electron pressure terms at the X-point and is greater

than the magnitude of the u×B term at the edge of the diffusion region. In the future it would

be necessary to carry out a more detailed investigation of the role of the electron inertia in this

case. It has been shown though in a recent paper by Hesse et al. (2004) for a simulation starting

from a Harris sheet with a guide field of By0 = 0.8, that within a collisionless skin depth there

was a finite contribution from the electron inertia at the edge of the localised current region. The

main contribution to the Ey electric field close to the X-point was still due to the nongyrotropic

pressures. The results shown here for the force-free Harris sheet also show this feature.

Figures 5.102(e) and 5.102(f) show zoom-ins of the off-diagonal components of the electron pres-

sure tensor around the X-point showing their structure for the equal mass ratio case at the time

of maximum reconnection rate. The structure of the Pxy,e component of the pressure tensor, in

comparison to the Harris sheet cases looks similar to an intermediate guide field case which is

consistent with the fact that the y component of the magnetic field has a value of approximately

By ≈ 0.35 in the vicinity of the X-point. The Pyz,e component of the electron pressure tensor has

a strong gradient along z.

Figure 5.104 show the off-diagonal components of the electron pressure tensor for themi/me = 9
case in the early phase of reconnection and also at the time of maximum reconnection rate. It is

clear to see that at the earlier time the structures of Pxy,e and Pyz,e are similar to an intermediate

guide field case when compared to simulations starting from the Harris sheet. This result is con-

sistent with the y component of the magnetic field having a value of By = 0.66 at the X-point.

At the time of maximum reconnection rate it would be expected, considering that the value of the

y component of the magnetic field has reduced to By = 0.51 at the X-point that the structure of

Pxy,e and Pyz,e would start to exhibit a transition to a structure similar to a simulation starting

from a Harris sheet with a weak guide field. Examination of Figure 5.104(c) does not show a clear
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structure for Pxy,e and Figure 5.104(d) shows that the structure of Pyz,e close to the X-point has

symmetry along x = 0 which is not seen in the Harris sheet cases. It has been shown in Sec.

5.4 that in a weak guide field case the Pyz,e component of the pressure tensor is approximately

symmetrical about z = 0. Clearly further, more detailed studies would be needed in the future to

fully understand the evolution of the structure of Pxy,e and Pyz,e for this case.

In the case with zero guide field the characteristic length scale of Pxy,e and Pyz,e is given approx-

imately by the electron bounce widths in a field reversal λx and λz (e.g. Hesse et al. 1999). In

the strong guide field case the characteristic length scale changes to that of the thermal electron

Larmor radius rL = vth,e/Ωe in the guide magnetic field (Hesse et al. 2004). The thermal electron

Larmor radius for the force-free Harris sheet case with equal mass ratio at the time of maximum

reconnection rate based on the maximum value of the shear component of the magnetic field at

the X-point (By ≈ 0.35) is of the order rL ≈ 1.4c/ωpi. The central region in Figures 5.102(e)

and 5.102(f) are thinner than this estimate of the electron Larmor radius. This suggests that the

characteristic length scale of Pxy,e and Pyz,e may be even smaller than the thermal electron Lar-

mor radius in the shear magnetic field By which is consistent with the linear force-free simulation

runs. In the mass ratio mi/me = 9 case it would be necessary in the future to carry out a more

detailed study of the evolution of the structure of the off-diagonal components of the electron

pressure tensor before the characteristic length scales can be accurately determined.

5.9 Summary

In this chapter examples of the equilibria that are discussed in Chap. 3 were used as initial con-

ditions in particle in cell (PIC) simulations of magnetic reconnection. It is been shown by several

authors (e.g. Hesse et al. 1999, 2004; Pritchett 2001) that the dominant contribution to the recon-

nection electric field component Ey for a collisionless plasma is due to the off-diagonal compo-

nents of the electron pressure tensor where the initial condition consisted of a Harris sheet with

varying strengths of guide field. In the weak guide field case the characteristic scale length for

the off diagonal components of the electron pressure tensor in the vicinity of the X-point is the

electron bounce width. In the strong guide field cases the charactersitic length scale is the thermal

electron Larmor radius in the guide field.

Comparisons of the structure of the diffusion region starting from initial configurations which were

not the Harris sheet have been shown and compared to simulations starting from a Harris sheet

with different strengths of guide field. Initially these investigations were carried out for equal mass

ratio. Section 5.5 used the anti-parallel periodic anisotropic bi-Maxwellian equilibria with varying

strengths of guide field as initial conditions and compared this to a simulation starting from a self-

consistent linear force-free equilibrium that were discussed in Sec. 3.3.3 and Sec. 3.4 of Chap.
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3. The evolution of these equilibria showed that the use of doubly periodic boundary conditions

has a significant effect. As a result of the multiple current layers the O-points above and below

the central X-point push in on the central X-point eventually causing a complete re-organisation

of magnetic field geometry from that of a (Bx, By) configuration to a mainly (By, Bz) magnetic

field configuration. It was found that the reconnection rates were reduced as the guide field was

increased. In the linear force-free case the effect of the shear magnetic field By was also to reduce

the reconnection rate with the maximum reconnection rate similar to that of the By0 = 0.3 guide

field case.

Due to the interaction of the multiple current layers as a consequence of the doubly periodic

boundary conditions, this led to a breakdown of the structure of the off-diagonal electron pressure

tensor components at the time of maximum reconnection rate. This is a major difference to the

Harris sheet cases. Therefore the off-diagonal components of the electron pressure tensor were

investigated at an earlier time than the time of maximum reconnection rate. Examination of the

structure of the diffusion region led to the conclusion that the dominant contribution to the re-

connection electric field in the vicinity of the X-point is due to the gradients of the off-diagonal

components of the electron pressure tensor. As in the Harris sheet cases the characteristic length

scale was the electron bounce width in the weak guide field cases and the thermal electron Larmor

radius in the strong guide field cases. In the force-free case it was suggested that the characteris-

tic length scales of Pxy,e and Pyz,e may be even smaller than the thermal electron Larmor radius

based on the value of the shear magnetic field By at the X point.

Reconnection simulations starting from a double Harris sheet with equal mass ratio have also been

shown with varying strengths of guide field added. The evolution was similar to the anisotropic

bi-Maxwellian cases. The effect of the doubly periodic boundary conditions was that at the end

of the reconnection process the geometry of the magnetic field had been completely re-organised

from a (Bx, By) structure to a mainly (By, Bz) structure. Once again it was shown that one of the

effects of the guide field was to reduce the reconnection rate. As in the anisotropic bi-Maxwellian

cases the interaction of the multiple current layers led to the breakdown of the structure of the

off-diagonal components of the electron pressure tensor and therefore they were investigated at

an earlier time than the time of maximum reconnection rate. Examination of the structure of the

diffusion region during reconnection confirmed that the dominant contribution to the reconnection

electric field was due to the gradients of the off-diagonal components of the electron pressure

tensor. The characteristic length scales of Pxy,e and Pyz,e was the electron bounce width in the

weak guide field cases and the thermal electron Larmor radius in the strong guide field cases.

In both the anisotropic bi-Maxwellian simulations and the double Harris sheet simulations it was

shown that in the strong guide field cases there was a significant contribution to the reconnection

electric field along z at the edge of the diffusion region from the electron inertia term. In the linear

force-free case there was also a significant contribution from the electron inertia term at the edge



5.9 Summary 248

of the diffusion region.

The study using the anisotropic bi-Maxwellian equilibria as initial conditions was extended to

investigate a mass ratio mi/me = 25. The effect of introducing the unequal mass ratio was to

introduce the characteristic change in length and time scales between the electrons and ions. Four

different simulation runs were carried out. The first three runs were for an anti-parallel equilibrium

with constant guide fields By0 = 0.0, 0.5, 1.0 and these were compared to a simulation starting

from a linear force-free equilibrium. It was found that the anti-parallel case with zero guide field

was stable to the tearing mode. This may have been due to the small amount of free energy due

to the relatively large width of the current layer and small size of the simulation box. The cases

with guide field By0 = 0.5, By0 = 1.0 and linear force-free case were unstable to the tearing

mode. It seems that the guide field plays some role in the stability properties in equilibria of this

type. A complete linear stability anlysis of these anisotropic bi-Maxwellian equilibria has not yet

been carried out but it may be interesting to do in the future so that the role of the guide field on

stability can be fully understood.

In the guide field case By0 = 1.0 and the force-free case the characteristic inclination of the

current sheet is shown. The current density is dominated by the electrons, with the electron current

density region in the vicinity of the X-point in the z direction being much thinner than that of the

ion current density. The electrons are demagnetized for a much smaller region than the ions which

is a charactersitic feature of collisionless magnetic reconnection with an unequal mass ratio. In the

strong guide field case and force-free case the electrons have strong flows along the separatrices.

Finally in all cases there is the formation of the typical quadrupolar y component of the magnetic

field, although in the strong guide field case overlaid on top of the guide magnetic field. The

quadrupolar By magnetic field for the linear force-free case is distorted from the symmmetry

that would be expected in the case with zero guide field. Comparisons of the evolution of the

different runs shows that the linear force-free case and guide field case By0 = 1.0 have maximum

reconnection rates of similar value which is slower than the By0 = 0.5 case. This illustrates that

the effects of increasing the guide field and of the shear magnetic field By in the force-free case

is to reduce the reconnection rate. The effect of the doubly periodic boundary conditions once

again led to the complete re-organisation of the magnetic field geometry from the initial (Bx, By)
structure to a mainly (By, Bz) structure at the end of the reconnection process.

Due to the interaction of the multiple current layers leading to the breakdown of the structure of

the off-diagonal components of the electron pressure tensor components at the time of maximum

reconnection rate they were investigated at an earlier time in the reconnection process. It was

shown that the dominant contribution to the electric field was again due to the gradients of the

off-diagonal components of the electron pressure tensor components close to the X-point. The

typical rotation of the structure of the Pxy,e component of the pressure tensor from symmetry

about the line x = x0 for the zero guide field case where x0 refers to the position of the X-
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point to symmetry about the line z = 0 through the X-point in the strong guide field case and

force-free case is evident. The structure of the Pyz,e component of the pressure tensor for the

strong guide field case was different to the Harris sheet cases as it was still fairly inclined to the

z = 0 line whereas in the Harris sheet case the Pyz,e component of the pressure tensor was almost

symmetrical about the z = 0 line. The Pyz,e component of the pressure tensor for the linear force-

free case was almost symmetrical along z = 0. The characteristic length scales of Pxy,e and Pyz,e

for the By0 = 1.0 case was of the order of the thermal electron Larmor radius in the guide field.

In the force-free case it was suggested that the characteristic length scales of Pxy,e and Pyz,e may

be even smaller than the thermal electron Larmor radius based on the value of the shear magnetic

field By at the X point.

Finally a comparison of two different runs for the force-free Harris sheet were compared. A run

with equal mass ratio and mass ratio mi/me = 9 was carried out. It was shown in both cases that

in the initial stages of the evolution the current density is enhanced at the X-point. In the equal

mass ratio the particle density is also enhanced at the X-point. In the late stages of the evolution

the y component of the magnetic field is reduced almost to zero at the X-point corresponding to

a change from guide field reconnection to anti-parallel reconnection. The x component of the

current density in each case is enhanced in wing-like structures that enclose the magnetic islands

and correspond to gradients of the y component of the magnetic field. In both cases it was shown

that at the time of maximum reconnection rate the gradients of the off-diagonal components of

the electron pressure tensors were the dominant terms that give rise to the reconnection electric

field. In both cases there was also a contribution from the electron inertia at the edge of the

diffusion region along z, which was most significant in the mi/me = 9 case. The structure of

the off-diagonal components of the electron pressure tensor were investigated. In the equal mass

ratio case it was shown that the structure of the pressure tensor components were similar to an

intermediate guide field case. It was suggested that the characteristic scale length of the pressure

tensor components may be even smaller than the electron Larmor radius in the shear magnetic

field. In the mi/me = 9 case in the early stages of reconnection the pressure tensor components

were again equivalent to an intermediate guide field case. At the time of maximum reconnection

rate the structure of the pressure tensor components did not show the expected form and in the

future a more detailed investigation of the pressure tensor components is necessary.



Chapter 6

Summary and Further Work

6.1 Summary

In this thesis a general discussion of some well known 1D MHD equilibria is given in Chap. 2.

These included the Harris sheet (Harris 1962), force-free Harris sheet and the combined cases.

The Harris sheet equilibrium is well known in both MHD and Vlasov theory with a one-to-

one correspondence. The aim of the thesis was to find analogous equilibria in the framework

of Vlasov-Maxwell theory for the combined case and force-free Harris sheet case. Therefore it

was necessary to understand the properties of these equilibria in MHD which must also be present

in Vlasov-Maxwell theory. Also shown was a discussion of 1D multi-fluid theory. This showed

that under certain assumptions that the overall equilibria are identical to the Harris sheet, force-

free Harris sheet and combined cases. A two-fluid example was considered. In this case it was

possible to determine some of the bulk properties of each individual fluid. It was shown that an

important property of the Harris sheet is that the average drift velocity is constant and only in

the y direction and that the number density is spatially varying whereas in the force-free case the

number density is constant and there is an average drift velocity in both the x and y directions

which are spatially varying. These two properties are important when investigating the possibility

of force-free Vlasov-Maxwell equilibria.

A general theory of 1D Vlasov-Maxwell equilibria has been given where the distribution functions

depend on the three constants of motion which correspond to the particle energy (the Hamiltonian)

and the two canonical momenta. The important results of this general theory is that it can be

shown that the charge density and current densities can all be determined from a general potential

P where P is in fact the Pzz component of the pressure tensor. In the quasineutral case P is a

function of Ax and Ay alone and is denoted by Pqn. Furthermore Ampère’s law, in terms of the

potential Pqn reduces to Hamilton’s equations for a particle with coordinates (Ax, Ay) moving

250
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in a conservative 2D potential µ0Pqn. The potential Pqn is epecially useful in cases where an

analytical solution to the magnetic field configuration cannot be easily found as gradients of the

potential surface correspond to gradients of the magnetic field components so that large gradients

of the potential surface indicates large current densities in the solution. Several examples of how

this particle analogy can be used to determine the nature of the solution has been given in Sec. 3.3

in Chap. 3.

In terms of the aims of this thesis, perhaps the most important application of this theory was to

determine general conditions for force-free Vlasov-Maxwell equilibria. It has been shown that to

obtain a pseudo-particle trajectory corresponding to a force-free magnetic field, a pseudo-potential

(Pzz) which has at least one equipotential line (contour) that is also a particle trajectory is needed.

This is a necessary condition for the existence of a 1D force-free VM equilibrium.

A well-known family of pseudo-potentials that satisfies the condition of allowing trajectories

which are identical to contours of the pseudo-potential are attractive central potentials. These

have to be restricted to nonsingular pseudo-potentials because the equivalent pressure must be

positive and nonsingular. This rules out, for example, all potentials which are negative powers of

the radial coordinate. For central pseudo-potentials there is not only pseudo-energy conservation,

but also pseudo-angular momentum conservation. Examples of distribution functions resulting in

a central attractive potential has already been given by Sestero (1967); Bobrova and Syrovatskiǐ

(1979); Correa-Restrepo and Pfirsch (1993); Bobrova et al. (2001) and are discussed in Sec. 3.3.3

and Sec. 3.6 in Chap. 3. The distribution function given by (Bobrova et al. 2001) was extended to

incude an additional dimensionless parameter bs in front of the x component of the canonical mo-

menta. This distribution function allowed a family of periodic solutions to be constructed which

show a transition from an anti-parallel (bs = 0) magnetic field configuration through to a linear

force-free field configuration (bs = 1). As the transition is made the dominant contribution to the

force balance comes from the gradient of the shear field rather than the plasma pressure gradient,

where in the force-free case the plasma pressure across the sheet is constant. The shearing and

twisting of the field increases as By increases relative to Bx. In terms of the particle trajectories

the solutions are in general oscillatory, with the trajectories approaching closer to that of a circle

for the force-free solution.

A distribution function which has the force-free Harris sheet as a solution has been shown (Har-

rison and Neukirch 2009a). This is the first ever non-linear self-consistent force-free 1D Vlasov

Maxwell solution known. The distribution function was found by first finding the quasi-neutral

pressure function that corresponds to the force-free Harris sheet magnetic field configuration. This

pressure function was then used to write down an integral equation for the gs(pxs, pys) function

which was solved via a Fourier transform method, where it was assumed that there must be a

choice of parameters for which the quasineutral electric potential φqn can be set to zero. The

resulting gs(pxs, pys) function was found to be a sum of two contributions. The first contibution
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has a cosine dependence on pxs and the second contribution an exponential dependence on pys

which is equivalent to the Harris sheet case. To check the validity of the distribution function it

was used as the starting point from which the moment equations were calculated. It was shown

that there is a choice of parameters which set the quasineutral electric potential φqn to zero. The

differential equations resulting from Ampère’s law were then solved to give the force-free Harris

sheet magnetic field solution. This distribution function was also extended to show that for the

correct choice of parameters a family of equilibria can be constructed that describe the transition

from the Harris sheet through to the force-free Harris sheet.

This new family of VM equilibria will generate new possibilities for studies of linear and nonlinear

instabilities of force-free current sheets. The stability of the VM equilibria presented here have yet

to be investigated. It must be pointed out that the pxs-dependent part of the distribution function

(3.203) may have multiple peaks in the vx-direction and this may give rise to instabilities. It is also

remarked that although theBx(z) and jy(z)-profiles are identical to the Harris sheet, jx(z) is anti-

symmetric with respect to z = 0. This is closely linked to the fact that in the Harris sheet solution

the spatial structure of the current density is determined by the density structure with the average

velocity of each particle species being constant, whereas in the force-free solution presented here

the particle density is constant and the spatial structure of the current density is determined by the

spatial structure of the average velocity. Further investigations will be needed to clarify exactly

what the implications are for the stability of the new solution, but on the basis of the physical

differences just mentioned one would expect the stability properties of the force-free solution to

differ considerably from those of the Harris sheet. Apart from studying the stability properties

of the solution class presented here, it will be also be very interesting to investigate whether the

general method employed here can be used to find other non-linear force-free solutions and is an

aim for future work.

In Chap. 5 examples of the equilibria that are discussed in Chap. 3 were used as initial conditions

in particle in cell (PIC) simulations of magnetic reconnection. It is been shown by several authors

(e.g. Hesse et al. 1999, 2004; Pritchett 2001) that the dominant contribution to the reconnection

electric field component Ey for a collisionless plasma is due to the off-diagonal components of

the electron pressure tensor where the initial condition consisted of a Harris sheet with varying

strengths of guide field. In the weak guide field case the characteristic scale length for the off

diagonal components of the electron pressure tensor in the vicinity of the X-point is the electron

bounce width. In the strong guide field cases the charactersitic length scale is the thermal electron

Larmor radius in the guide field.

Chapter 5 shows comparisons of the structure of the diffusion region starting from initial config-

urations which were not the Harris sheet. Initially these investigations were carried out for equal

mass ratio. This is the first time a systematic comparison of the reconnection process and the struc-

ture of the diffusion region has been carried out which compares results from simulations starting
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from an anti-parallel configuration with a guide field to a simulation starting from a self-consistent

linear force-free equilibrium. Section 5.5 of Chap. 5 used the anti-parallel periodic anisotropic

bi-Maxwellian equilibria with varying strengths of guide field as initial conditions and compared

this to a simulation starting from a self-consistent linear force-free equilibrium that were discussed

in Sec. 3.4 and 3.3.3 of Chap. 3. The evolution of these equilibria showed that the use of doubly

periodic boundary conditions has a significant effect. As a result of the multiple current layers the

O-points above and below the central X-point push in on the central X-point eventually causing

a complete re-organisation of magnetic field geometry from that of a (Bx, By) configuration to a

(By, Bz) magnetic field configuration. It was found that the reconnection rates were reduced as

the guide field was increased. In the linear force-free case the effect of the shear magnetic field

By was also to reduce the reconnection rate with the maximum reconnection rate similar to that

of the By0 = 0.3 guide field case.

Due to the interaction of the multiple current layers as a consequence of the doubly periodic

boundary conditions, this led to a breakdown of the structure of the off-diagonal electron pressure

tensor components at the time of maximum reconnection rate. Therefore the off-diagonal compo-

nents of the electron pressure tensor were investigated at an earlier time than the time of maximum

reconnection rate. Examination of the structure of the diffusion region led to the conclusion that

the dominant contribution to the reconnection electric field in the vicinity of the X-point is due to

the gradients of the off-diagonal components of the electron pressure tensor. As in the Harris sheet

cases the characteristic length scale was the electron bounce width in the weak guide field cases

and the thermal electron Larmor radius in the strong guide field cases. In the force-free case it

was suggested that the characteristic length scales of Pxy,e and Pyz,e may be even smaller than the

thermal electron Larmor radius based on the value of the shear magnetic field By at the X point.

Reconnection simulations starting from a double Harris sheet were also shown with varying

strengths of guide field added. The evolution was similar to the anisotropic bi-Maxwellian cases.

The effect of the doubly periodic boundary conditions was that at the end of the reconnection

process the geometry of the magnetic field had been completely re-organised from a (Bx, By)
structure to a mainly (By, Bz) structure. Once again it was shown that one of the effects of the

guide field was to reduce the reconnection rate. As in the anisotropic Bi-Maxwellian cases the

interaction of the multiple current layers led to the breakdown of the structure of the off-diagonal

components of the electron pressure tensor and therefore they were investigated at an earlier time

than the time of maximum reconnection rate. Examination of the structure of the diffusion region

during reconnection confirmed that the dominant contribution to the reconnection electric field

was due to the gradients of the off-diagonal components of the electron pressure tensor. The char-

acteristic length scales of Pxy,e and Pyz,e was the electron bounce width in the weak guide field

cases and the thermal electron Larmor radius in the strong guide field cases.

In both the anisotropic bi-Maxwellian simulations and the double Harris sheet simulations it was
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shown that in the strong guide field cases there was a significant contribution to the reconnection

electric field along z at the edge of the diffusion region from the electron inertia term. In the linear

force-free case there was also a significant contribution from the electron inertia term at the edge

of the diffusion region.

The study using the anisotropic bi-Maxwellian equilibria as initial conditions was extended to

investigate the case of using a mass ratiomi/me = 25. The effect of introducing the unequal mass

ratio was to introduce the characteristic change in length and time scales between the electrons

and ions. Four different simulation runs were carried out. The first three runs were for an anti-

parallel equilibrium with constant guide fields By0 = 0.0, 0.5, 1.0 and these were compared to

a simulation starting from a self-consistent linear force-free equilibrium. It was found that the

anti-parallel case with zero guide field was stable to the tearing mode. This may have been due to

the small amount of free energy due to the relatively large width of the current layer and small size

of the simulation box. The cases with guide field By0 = 0.5, By0 = 1.0 and linear force-free case

were unstable to the tearing mode. It seems that the guide field plays some role in the stability

properties in equilibria of this type. A complete linear stability anlysis of these anisotropic bi-

Maxwellian equilibria has not yet been carried out but it may be interesting to do in the future so

that the role of the guide field on the stability can be fully understood.

In the guide field case By0 = 1.0 and the force-free case the characteristic inclination of the

current sheet is shown. The current density is dominated by the electrons, with the electron current

density region in the vicinity of the X-point in the z direction being much thinner than that of the

ion current density. The electrons are demagnetized for a much smaller region than the ions

which is a charactersitic feature of collisionless magnetic reconnection with an unequal mass

ratio. In the strong guide field case and force-free case the electrons have strong flows along the

separatrices. Finally in all cases there is the formation of the typical quadrupolar By magnetic

field configuration, although in the in the strong guide field case overlaid on top of the guide

magnetic field. The quadrupolar By magnetic field for the linear force-free case is also distorted

from the symmmetry that would be expected in the case with zero guide field. Comparisons of the

evolution of the different runs shows that the linear force-free case and guide field case By0 = 1.0
have maximum reconnection rates of similar value which is slower than the By0 = 0.5 case. This

illustrates that the effects of increasing the guide field and of the shear magnetic field By in the

force-free case is to reduce the reconnection rate. The effect of the doubly periodic boundary

conditions once again led to the complete re-organisation of the magnetic field geometry from the

initial (Bx, By) structure to a mainly (By, Bz) structure at the end of the reconnection process.

Due to the interaction of the multiple current layers leading to the breakdown of the off-diagonal

components of the electron pressure tensor components at the time of maximum reconnection

rate they were investigated at an earlier time in the reconnection process. It was shown that

the dominant contribution to the electric field was again due to the gradients of the off-diagonal



6.1 Summary 255

components of the electron pressure tensor components close to the X-point. The typical rotation

of the structure of the Pxy,e component of the pressure tensor from symmetry about the line x = x0

for the zero guide field case where x0 refers to the position of the X-point to symmetry about the

line z = 0 through the X-point in the strong guide field case and force-free case is evident. The

structure of the Pyz,e component of the pressure tensor for the strong guide field case was different

to the Harris sheet cases as it was still fairly inclined to the z = 0 line whereas in the Harris sheet

case the Pyz,e component of the pressure tensor was almost symmetrical about the z = 0 line.

The Pyz,e component of the pressure tensor for the linear force-free case was almost symmetrical

along z = 0. The characteristic length scales of Pxy,e and Pyz,e for the By0 = 1.0 case was of

the order of the thermal electron Larmor radius in the guide field. In the force-free case it was

suggested that the characteristic length scales of Pxy,e and Pyz,e may be even smaller than the

thermal electron Larmor radius based on the value of the shear magnetic field By at the X point.

Finally a comparison of two different runs for the force-free Harris sheet were compared. This is

the first ever study of collisionless reconnection to use an exact self-consistent non-linear force-

free equilibrium as an initial condition. A run with equal mass ratio and mass ratio mi/me = 9
was carried out. It was shown in both cases that in the initial stages of the evolution the current

density is enhanced at the X-point. In the equal mass ratio the particle density is also enhanced at

the X-point. In the late stages of the evolution the y component of the magnetic field is reduced

almost to zero at the X-point corresponding to a change from guide field reconnection to anti-

parallel reconnection. The x component of the current density in each case is enhanced in wing-

like structures that enclose the magnetic islands and correspond to gradients of the y component

of the magnetic field. In both cases it was shown that at the time of maximum reconnection rate

the gradients of the off-diagonal components of the electron pressure tensors were the dominant

terms that give rise to the reconnection electric field. In both cases there was also a contribution

from the electron inertia at the edge of the diffusion region along z, which was most significant in

themi/me = 9 case which is similar to guide field reconnection. The structure of the off-diagonal

components of the electron pressure tensor were investigated. In the equal mass ratio case it was

shown that the structure of the pressure tensor components were similar to an intermediate guide

field case. It was suggested that the characteristic scale length of the pressure tensor components

may be even smaller than the electron Larmor radius in the shear magnetic field. In themi/me = 9
case in the early stages of reconnection the pressure tensor components were again equivalent to

an intermediate guide field case. At the time of maximum reconnection rate the structure of the

pressure tensor components did not show the expected form and in the future a more detailed

investigation of the pressure tensor components is necessary.

In the future a major aim would be to use the general theory for the Vlasov-Maxwell equilibria

and the conditions for force-free equilibria to investigate the possibility of additional analytical

force-free equilibria. Even if the differential equations resulting from Ampère’s law were not
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analytically solvable it might be possible to apply numerical methods to find additional force-free

equilibria (e.g. Mynick et al. 1979). It may be possible to apply the general method of finding

the corresponding quasineutral pressure functions Pqn and inverting this to find the distribution

function to other simple 1D force-free magnetic field configurations.

This thesis only shows two different 2.5D PIC simulations starting from the same force-free Harris

sheet equilibrium for equal mass ratios and mass ratio mi/me = 9. It would be interesting to

investigate this equilibrium for even larger mass ratio. The length scale of the equilibrium could

also be varied to see what effect this has. Also it would be interesting to add different constant

guide fields on top of the spatially varying shear field to see what difference that makes. In addition

to this reconnection simulations starting from a combined Harris sheet case could be carried out.

A major aim for the future would be to extend this work to run full 3D PIC simulations. It would

be extremely interesting to investigate how the reconnection process might change starting from a

self-consistent non-linear force-free magnetic field, for example how microinstabilities found for

systems with plasma density gradients change for force-free equilibria.



Appendix A: The Pressure Potential

Following Schindler et al. (1973); Schindler (2007) the relation (3.15) can be derived directly by

use of the chain rule and by noticing that∫ (
∂fs

∂vx

)
vy ,vz

d3v = 0, (A1)

using integration by parts. This integral vanishes because fs has to vanish for large |v|. Also

(
∂fs

∂vx

)
vy ,vz

= ms

[
vx

(
∂fs

∂Hs

)
pxs,pys

+
(
∂fs

∂pxs

)
Hs,pys

]
, (A2)

using Hs = msv
2/2 + qsφ and pxs = msvx + qsAx. We obtain
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d3v
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s

q2s
ms

∫ (
∂fs

∂vx

)
vy ,vz

d3v = 0,

which leads to Eq. (3.15). Equation (3.16) can be derived in exactly the same way by replacing

vx with vy and Ax by Ay.

Equation (3.17) can be verified by direct differentiation of Eqs. (3.13) and (3.14). It can be seen

that

∂jx
∂Ay

=
∑

s

q2s

∫
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)
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d3v

=
∑
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1
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= −
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s
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vxvy

(
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)
pxs,pys

d3v,
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where again the chain rule has been used in the first step and integration by parts in the second

step. The first term vanishes during integration by parts as any admissible fs has to go to zero as

|v| → ∞ faster than any power of v. Replacing Ay by Ax, pys by pxs and exchanging vx and vy

it is found with a similar calculation that

∂jy
∂Ax

= −
∑

s

q2s

∫
vxvy

(
∂fs

∂Hs

)
pxs,pys

d3v,

which shows the general validity of Eq. (3.17).

Equation (3.19) can also be directly derived by differentiation of the pressure tensor in the follow-

ing way:

∂P
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msqs

∫
v2
z
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d3v

=
∑

s

qs

∫
vz

(
∂fs

∂vz

)
vx,vy
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where integration by parts has been used in the last step and(
∂fs

∂vz

)
vx,vy

= msvz

(
∂fs

∂Hs

)
pxs,pys

(A3)

in the previous step.

Equations (3.20) and (3.21) are similar in structure and thus the derivation is explicitly shown only

for one of them. Differentiating the zz-component of the pressure tensor with respect to Ax we

get

∂P

∂Ax
=
∑

s

qsms

∫
v2
z

(
∂fs

∂pxs

)
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d3v.

Equation (A2) can be used to express the partial derivative of fs as
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and Eq. (A3) to replace msvz (∂fs/∂Hs)pxs,pys
to obtain
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=
∑

s

qs

∫
vxfsd

3v = jx.

Integration by parts has been used again in the final step and only the non-vanishing terms have

been retained. Equation (3.21) follows in exactly the same way by replacing vx by vy and Ax by

Ay.



Appendix B: Movies

This is a directory for the movies that are on the CD which accompany this thesis.

Harris Sheet Cases

Zero Guide Field

• harriscxz.mpg: Evolution of the magnetic field lines with the y component of the current

density colour coded.

• harrispxye.mp4: Evolution of the Pxy,e component of the electron pressure tensor zoomed

in around the X-point.

• harrispyze.mp4: Evolution of the Pyz,e component of the electron pressure tensor zoomed

in around the X-point.

Guide Field By0 = 0.5

• harrisby05cxz.mpg: Evolution of the magnetic field lines with the y component of the

current density colour coded.

• harrisby05pxye.mp4: Evolution of the Pxy,e component of the electron pressure tensor

zoomed in around the X-point.

• harrisby05pyze.mp4: Evolution of the Pyz,e component of the electron pressure tensor

zoomed in around the X-point.

Guide Field By0 = 1.0

• harrisby1cxz.mpg: Evolution of the magnetic field lines with the y component of the cur-

rent density colour coded.
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• harrisby1pxye.mp4: Evolution of the Pxy,e component of the electron pressure tensor

zoomed in around the X-point.

• harrisby1pyze.mp4: Evolution of the Pyz,e component of the electron pressure tensor

zoomed in around the X-point.

Anisotropic bi-Maxwellian (mi/me = 1)

Zero Guide Field

• cxzaniso.mpg: Evolution of the magnetic field lines with the y component of the current

density colour coded.

• anisopxye.mp4: Evolution of the Pxy,e component of the electron pressure tensor.

• anisopyze.mp4: Evolution of the Pyz,e component of the electron pressure tensor.

Guide Field By0 = 0.5

• cxzanisoby05.mpg: Evolution of the magnetic field lines with the y component of the

current density colour coded.

• anisopxyeby05.mp4: Evolution of the Pxy,e component of the electron pressure tensor.

• anisopyzeby05.mp4: Evolution of the Pyz,e component of the electron pressure tensor.

Guide Field By0 = 1.0

• cxzanisoby1.mpg: Evolution of the magnetic field lines with the y component of the current

density colour coded.

• anisopxyeby1.mp4: Evolution of the Pxy,e component of the electron pressure tensor.

• anisopyzeby1.mp4: Evolution of the Pyz,e component of the electron pressure tensor.

Linear Force-Free

• cxzff.mpg: Evolution of the magnetic field lines with the y component of the current density

colour coded.

• anisopxyeff.mp4: Evolution of the Pxy,e component of the electron pressure tensor.
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• anisopyzeff.mp4: Evolution of the Pyz,e component of the electron pressure tensor.

• jxff.mp4: Evolution of the x component of the current density.

Double Harris Sheet

Zero Guide Field

• cxzdblh.mpg: Evolution of the magnetic field lines with the y component of the current

density colour coded.

• dblhpxye.mp4: Evolution of the Pxy,e component of the electron pressure tensor.

• dblhpyze.mp4: Evolution of the Pyz,e component of the electron pressure tensor.

Guide Field By0 = 0.5

• cxzdblhby05.mp4: Evolution of the magnetic field lines with the y component of the cur-

rent density colour coded.

• dblhpxyeby05.mp4: Evolution of the Pxy,e component of the electron pressure tensor.

• dblhpyzeby05.mp4: Evolution of the Pyz,e component of the electron pressure tensor.

Guide Field By0 = 1.0

• cxzdblhby1.mp4: Evolution of the magnetic field lines with the y component of the current

density colour coded.

• dblhpxyeby1.mp4: Evolution of the Pxy,e component of the electron pressure tensor.

• dblhpyzeby1.mp4: Evolution of the Pyz,e component of the electron pressure tensor.

Anisotropic bi-Maxwellian (mi/me = 25)

Guide Field By0 = 0.5

• cxzanisomime25by05.mp4: Evolution of the magnetic field lines with the y component of

the current density colour coded.



Appendix B 263

• anisomime25pxyeby05.mp4: Evolution of the Pxy,e component of the electron pressure

tensor.

• anisomime25pyzeby05.mp4: Evolution of the Pyz,e component of the electron pressure

tensor.

Guide Field By0 = 1.0

• cxzanisomime25by1.mp4: Evolution of the magnetic field lines with the y component of

the current density colour coded.

• anisomime25pxyeby1.mp4: Evolution of the Pxy,e component of the electron pressure

tensor.

• anisomime25pyzeby1.mp4: Evolution of the Pyz,e component of the electron pressure

tensor.

Linear Force-Free

• cxzffmime25.mp4: Evolution of the magnetic field lines with the y component of the cur-

rent density colour coded.

• ffmime25pxye.mp4: Evolution of the Pxy,e component of the electron pressure tensor.

• ffmime25pyze.mp4: Evolution of the Pyz,e component of the electron pressure tensor.

• jxffmime25.mp4: Evolution of the x component of the current density.

Force-Free Harris Sheet

Simulation Run with mi/me = 1

• cxzffharris.mp4: Evolution of the magnetic field lines with the y component of the current

density colour coded.

• jxffharris.mp4: Evolution of the Pxy,e component of the electron pressure tensor.

• pxyeffharris.mp4: Evolution of the Pyz,e component of the electron pressure tensor.

• pyzeffharris.mp4: Evolution of the x component of the current density.
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Simulation Run with mi/me = 9

• cxzffharrismime9.mp4: Evolution of the magnetic field lines with the y component of the

current density colour coded.
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collisions (CN-21/71). In Plasma Physics and Controlled Nuclear Fusion Research, Volume II,

pages 259–+.

Lee, L. C. and Kan, J. R. (1979a). A unified kinetic model of the tangential magnetopause struc-

ture. Journal of Geophysical Research (Space Physics), 84:6417–6426.

Lee, L. C. and Kan, J. R. (1979b). Transition layer between two magnetized plasmas. Journal of

Plasma Physics, 22:515–524.

Lemaire, J. and Burlaga, L. F. (1976). Diamagnetic boundary layers - A kinetic theory. Astro-

physics and Space Science, 45:303–325.

Lerche, I. (1967). On the Boundary Layer between a Warm, Streaming Plasma and a Confined

Magnetic Field. Journal of Geophysical Research (Space Physics), 72:5295–+.

Li, H., Nishimura, K., Barnes, D. C., Gary, S. P., and Colgate, S. A. (2003). Magnetic dissipation

in a force-free plasma with a sheet-pinch configuration. Physics of Plasmas, 10:2763–2771.



Bibliography 268

Ma, Z. W. and Bhattacharjee, A. (2001). Hall magnetohydrodynamic reconnection: The Geospace

Environment Modeling challenge. J. Geophys. Res., 106:3773–3782.

Marder, B. (1987). A Method for Incorporating Gauss’ Law into Electromagnetic PIC Codes.

Journal of Computational Physics, 68:48–+.

Mottez, F. (2003). Exact nonlinear analytic Vlasov-Maxwell tangential equilibria with arbitrary

density and temperature profiles. Physics of Plasmas, 10:2501–2508.

Mottez, F. (2004). The pressure tensor in tangential equilibria. Annales Geophysicae, 22:3033–

3037.

Mynick, H. E., Sharp, W. M., and Kaufman, A. N. (1979). Realistic Vlasov slab equilibria with

magnetic shear. Physics of Fluids, 22:1478–1484.

Neukirch, T. (1993). Deformation of a magnetic dipole field by trapped particles. Journal of

Geophysical Research, 98:3753–3765.

Neukirch, T. (1998). Introduction to the Theory of MHD Equilibria. http://www-solar.mcs.st-

andrews.ac.uk/ thomas.

Nicholson, R. B. (1963). Solution of the Vlasov Equations for a Plasma in an Externally Uniform

Magnetic Field. Physics of Fluids, 6:1581–1586.

Nishimura, K., Gary, S. P., Li, H., and Colgate, S. A. (2003). Magnetic reconnection in a force-free

plasma: Simulations of micro- and macroinstabilities. Physics of Plasmas, 10:347–356.

Otto, A. (2001). Geospace Environment Modeling (GEM) magnetic reconnection challenge:

MHD and Hall MHD-constant and current dependent resistivity models. J. Geophys. Res.,

106:3751–3758.

Parker, E. N. (1957). Sweet’s Mechanism for Merging Magnetic Fields in Conducting Fluids. J.

Geophys. Res., 62:509–520.

Parker, E. N. (1963). The Solar-Flare Phenomenon and the Theory of Reconnection and Annihil-

iation of Magnetic Fields. Astropjys. J. Supp., 8:177–+.

Parker, E. N. (1967). Confinement of a Magnetic Field by a Beam of Ions. Journal of Geophysical

Research (Space Physics), 72:2315–+.

Petschek, H. E. (1964). Magnetic Field Annihilation. In Hess, W. N., editor, The Physics of Solar

Flares, pages 425–+.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical recipes in

FORTRAN. The art of scientific computing. Cambridge: University Press, —c1992, 2nd ed.

Priest, E. (1984). Solar Magnetohydrodynamics. Reidel.

Priest, E. and Forbes, T. (2000). Magnetic Reconnection. Magnetic Reconnection, by Eric Priest

and Terry Forbes, pp. 612. ISBN 0521481791. Cambridge, UK: Cambridge University Press,

June 2000.

Pritchett, P. L. (2001). Geospace Environment Modeling magnetic reconnection challenge: Sim-

ulations with a full particle electromagnetic code. J. Geophys. Res., 106:3783–3798.



Bibliography 269

Pritchett, P. L. (2005). Onset and saturation of guide-field magnetic reconnection. Physics of

Plasmas, 12(6):062301–+.

Pritchett, P. L. and Coroniti, F. V. (2004). Three-dimensional collisionless magnetic recon-

nection in the presence of a guide field. Journal of Geophysical Research (Space Physics),

109(A18):1220–+.

Ricci, P., Brackbill, J. U., Daughton, W., and Lapenta, G. (2004a). Collisionless magnetic recon-

nection in the presence of a guide field. Physics of Plasmas, 11:4102–4114.

Ricci, P., Brackbill, J. U., Daughton, W., and Lapenta, G. (2004b). Influence of the lower hybrid

drift instability on the onset of magnetic reconnection. Physics of Plasmas, 11:4489–4500.

Ricci, P., Brackbill, J. U., Daughton, W., and Lapenta, G. (2005). New role of the lower-hybrid

drift instability in the magnetic reconnection. Physics of Plasmas, 12(5):055901–+.

Rogers, B. N., Denton, R. E., and Drake, J. F. (2003). Signatures of collisionless magnetic recon-

nection. Journal of Geophysical Research (Space Physics), 108:6–1.

Roth, M. (1976). The plasmapause as a plasma sheath: a minimum thickness. Journal of Atmo-

spheric and Terrestrial Physics, 38:1065–1070.

Roth, M., de Keyser, J., and Kuznetsova, M. M. (1996). Vlasov Theory of the Equilibrium Struc-

ture of Tangential Discontinuities in Space Plasmas. Space Science Reviews, 76:251–317.

Sakai, J.-I. and Matsuo, A. (2004). Three-dimensional dynamics of relativistic flows in pair plas-

mas with force-free magnetic configuration. Physics of Plasmas, 11:3251–3258.

Schindler, K. (2007). Physics of Space Plasma Activity. Cambridge.

Schindler, K. and Birn, J. (2002). Models of two-dimensional embedded thin current sheets from

Vlasov theory. Journal of Geophysical Research (Space Physics), 107:20–1.

Schindler, K., Pfirsch, D., and Wobig, H. (1973). Plasma Physics, 15:1165.

Scholer, M., Sidorenko, I., Jaroschek, C. H., Treumann, R. A., and Zeiler, A. (2003). Onset of col-

lisionless magnetic reconnection in thin current sheets: Three-dimensional particle simulations.

Physics of Plasmas, 10:3521–+.

Sestero, A. (1964). Structure of Plasma Sheaths. Physics of Fluids, 7:44–51.

Sestero, A. (1966). Vlasov Equation Study of Plasma Motion across Magnetic Fields. Physics of

Fluids, 9:2006–2013.

Sestero, A. (1967). Self-Consistent Description of a Warm Stationary Plasma in a Uniformly

Sheared Magnetic Field. Physics of Fluids, 10:193–197.

Sestero, A. and Zannetti, M. (1967). Self-consistent astron e layer with spread in energy and

angular momentum. Phys. Rev. Lett., 19(24):1377–1379.

Shay, M. A., Drake, J. F., Denton, R. E., and Biskamp, D. (1998). Structure of the dissipation

region during collisionless magnetic reconnection. J. Geophys. Res., 103:9165–9176.

Shay, M. A., Drake, J. F., Rogers, B. N., and Denton, R. E. (2001). Alfvénic collisionless magnetic
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