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ABSTRACT: The asymmetric synthesis of tri- and tetrasubstituted trifluoromethyl dihydropyranones via an NHC-
catalyzed redox process, introducing methyl, benzyl and aryl substituents to the C(s) position is presented. Their sub-
strate-controlled derivatization into §-lactones and cyclic hemi-acetals containing stereogenic trifluoromethyl groups is
also described.
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tionalities when preparing C(5) substituted dihydropyra-
nones (Scheme 2).7?

INTRODUCTION

The asymmetric synthesis of complex molecules con-
taining contiguous stereocenters has been the focus of

extensive research owing to the prevalence of such motifs Scheme 1. NHC-redox catalysis mode of reactivity.

in Nature and the significant challenges in their synthe- o
sis." Organocatalysis has become a highly efficient method RJJ\(L,\"L“
for the synthesis of these systems,” with N-heterocyclic o~
carbenes (NHCs) established as effective organocatalysts Mes/%\N
for asymmetric transformations.> Within this field, NHC- a‘g' azolium
catalyzed redox chemistry allows access to three distinct o] 0 . o)
reactivity modes through which constructive bond-form. Rj)J\H RJK(N% F@ R/\/U\H
Acyl azoliums and azolium enolates can be accessed from X Mes ® N
a-functionalized aldehydes, while homoenolates, as well azolium enolate
as acyl azoliums and azolium enolates, can be utilized o M
from enals (Scheme 1).* RNF ; N)jr -

[4+2] Cycloadditions are a key reaction class within Mes/(%‘\'\‘
NHC-catalyzed redox azolium enolate chemistry. Cur- homoenolate
rently reported processes utilize [4+2] cycloadditions al- We have previously shown that o-aroyloxyaldehydes
most exclusively, with B-substituted o,B-unsaturated ke- can act as acyl azolium precursors, allowing the synthesis
tones, ketimines and aldimines the most common sub- of both esters and amides in good yield.”* Alternatively,
strates for such reactions.>® To date little work has exam- these a-aroyloxyaldehydes can be used as azolium enolate
ined o,B-disubstituted o,B-unsaturated ketones in these precursors, able to undergo formal [4+2] cycloaddition
processes, which would introduce substituents at the C(5) processes with «,f-unsaturated B-trifluoroketones and N-
position of the dihydropyranone. The state of the art in aryl-N'-aroyldiazines.” These aldehydes offer bench-
this area is represented by work from Kobayashi and Chi, stable alternatives to  a-haloaldehydes® or a-

which has been limited to activated bis-carbonyl func- aryloxyaldehydes" and can be synthesized in a single step



from the corresponding aldehyde using the protocol of
Ishihara et al.”

Scheme 2. Previous work of Kobayashi and Chi in
incorporating C(5) substituents within dihydropyra-
nones

Kobayashi et al. (2009)
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In this manuscript the asymmetric NHC-catalyzed re-
dox [4+2] cycloaddition of w«-aroyloxyaldehydes with a
range of trifluoromethylenones is reported. This process
accommodates variation at both the a- and B-positions
within the trifluoromethylenone acceptor, as well as in-
corporation of the pharmaceutically relevant trifluorome-
thyl unit (Scheme 3).*" This protocol allows methyl,
benzyl and aryl substituents to be introduced at the C(s)
position of the dihydropyranone products through NHC-
redox catalysis. The synthetic utility of the dihydropyra-
nones formed has also been shown through their conver-
sion into §-lactones through substrate controlled stere-
oselective hydrogenation.

Scheme 3. Expansion of C(5) scope and derivatization
to highly functionalized 3-lactones.
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The §-lactone motif is a privileged structural class with-
in Nature, appearing within numerous natural products,
that exhibit a wide range of biological activity.® Many of
these §-lactones contain multiple, contiguous stereocen-
ters, and as such there is great interest in the preparation
of such synthetically challenging molecules.'” The majori-
ty of currently reported processes for §-lactone synthesis
rely on the prevalence of C(4) hydroxy substituents in 8-

lactone-containing natural products. Usual approaches to
8-lactone synthesis tackle the problem in the same way as
Nature,” namely through an aldol condensation and sub-
sequent lactonization. A common method of approaching
this aldol reaction stereoselectively is through the chiral
auxiliary chemistry developed by Evans (Scheme 4),* *
The method described within this article therefore offers
an alternative, catalytic, two-step route towards tetrasub-
stituted §-lactones allowing access to unusual substitu-
tion patterns that have not been previously accessed.

Scheme 4. Typical §-lactone synthesis via Evans aldol
chemistry.*
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RESULTS AND DISCUSSION

Initial studies probed the effect of the a-substituent on
the o,p-unsaturated trifluoromethylketone in a model
cycloaddition using o-aroyloxyaldehyde 2. Synthesis of
the o,B-unsaturated trifluoromethylketone was achieved
by the protocol of Yuan et al® using N-
phenyltrifluoroacetimidoyl chloride. The o,B-
disubstituted o,B-unsaturated trifluoromethylketones
were synthesized by an enamine-aldol reaction between a
trifluoroketone and a substituted benzaldehyde. Treat-
ment of aminoindanol-derived NHC precatalyst 1 (10
mol%), with cesium carbonate in dichloromethane with
1.5 equivalents of a-aroyloxyaldehyde and 1 equivalent of
o,B-unsaturated trifluoromethylketone gave the syn-
dihydropyranone in 65% yield, >95:5 dr and 99% ee (Ta-
ble1).

Further investigations varied the a-substituent on the
o,B-unsaturated trifluoromethylketone, giving differing
substitution at the C(5) position of the dihydropyranone.
Applying the same conditions to an a-methyl of-
unsaturated trifluoromethylketone gave 44% conversion
into the tetrasubstituted syn-dihydropyranone 4 in >95:5
dr. Changing the solvent to THF gave the product in 59%
yield, >95:5 dr and >99% ee.” With an optimized process
for the synthesis of C(5) substituted dihydropyranones,
investigation of the scope of the a-substituent on the o,3-
unsaturated trifluoromethylketone was undertaken. In-
corporation of C(5) benzyl and phenyl substituents (5 and
6), as well as electron-donating and electron-withdrawing
aryl substituents (7 and 8) proceeded in good to excellent
yield, with excellent diastereo- and enantioselectivity
throughout (Table 1).



Table 1. [4+2] Cycloadditions: a-substituent variation
of trifluoromethylenone.

o o) 1 (10 mol%) Me,

Cs,CO3 (1.1 eq.) 2 o)
ME\HJ\H + PhT Y CFy (T» L
HoCl, or THF PR’ CF,4
OCOAr t, 4A MS

Ar = 4-NO,CgH,

(1.5eq.)
2
b b
product dr product dr
yield %" (time)  (ee)®  yield %" (time) (ee)©
O o}
Me, Me,
“ (o] >95:5 g (0] >95:5
(99%) (>99%)
PR O CF, PR CF,
H Me
3, 65%7 4, 59%°
(16 h) (16 h)
O o}
Me Me,
’ 0 >95:5 “ O >95:5
{99%) (599%)
A PR N CF,
Bn Ph
5, 65%° 6, 99%°¢
(16 h) (16 h)
O o}
Me Me,
“ 0 >95:5 “ 0 95:5
) (>99%) (>99%)
A PR N CF,
OMe F
7, 80%° 8, 70%®
{16 h) {6 h)

“Isolated yield of major diastereoisomer. °dr determined by
analysis of the crude 'H NMR spectra. ‘ee determined by chi-
ral HPLC or chiral GC analysis. dUsing CH,CL,. “Using THF.

Further work probed variation at the C(3) position of
the dihydropyranone arising from modification of the «-
aroyloxyaldehyde component. A methyl group is readily
incorporated (3 and 11) as well as an extended alkyl chain
(Bu, 9 and 12) and an alkyl group containing a protected
pendant heteroatom (R = CH,CH,OBn, 10 and 13) (Table
2). However a-aroyloxyaldehydes containing B-branching
(e.g. R = i-Pr) are completely unreactive in this system.*

Table 2. [4+2] Cycloadditions: a-aroyloxyaldehyde

variation.
o (10 mol%)
Q 052003 (1.1eq.) ® le)
®\(U\H + Ar/\)J\C%
CHzclzuor THF
OCOAr H/Me i, 4A MS H/Me
= 4-NO,CgH,
(1.5eq.)
product dr® product dr
yield % (time) (ee)*  yield %" (time) (ee)”
(0] O
Me, Bu,
" (e} >95:5 " (0] >95:5
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(16 h) {16 hy
(0]
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~ 94:6 >0 >95:5
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PR N CF,
Me
10, 62% 11, 58%°
(6 h) (16 h)
(0] O
Bu nO ",
" N0 >95:5 o >95:5
(>99%) (>99%)
SN NCR, SN R,
Me Me
Me 12, 78%¢ Me 13, 71%¢
(16 h) (16 h)

“Isolated yield of major diastereoisomer °dr determined by
analysis of the crude 'H NMR spectra ‘ee determined by chi-
ral HPLC or chiral GC analysis. Usmg CH,CL,. “Using THF.

Further variation of the (-position of the o,f-
unsaturated trifluoromethylketone was investigated. In-
troducing a para-bromophenyl substituent to the C(4)
position of the dihydropyranone (14) allowed for the ab-
solute configuration to be assigned by X-ray crystallog-
raphy as (35,4S5).” Interestingly this example required a
reduced reaction time compared to other substrates, sug-
gesting the electronic nature of the «,B-unsaturated tri-
fluoromethylketone is important in controlling reactivity
within this system. Electron-donating aryl groups were
also tolerated, as well as heteroaromatic groups, ortho-
substituted aryl groups and the 2-naphthyl group (15-18).
Exploration of the scope continued using o-methyl o, -
unsaturated trifluoromethylketone, with the introduction
of a para-bromo substituent (19) well tolerated.” The
electron-withdrawing para-nitro group again required
reduced reaction times (20), and other -electron-
withdrawing aryl groups (R = p-FCsH,, 21) could also be
incorporated. Electron-donating aryl groups (R = p-
OMeC¢H,, 22; R = p-MeC4H,, 11) and heteroaromatic
groups (R = 2-furyl, 23) were tolerated (Table 3), however
no conversion into the desired product was observed
when attempting to introduce an ortho-bromo group.



Table 3. [4+2] Cycloadditions: B-substituent variation
of the trifluoromethylenone.
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(1.5eq.)
2
b b
product dr product dr
yield %" (time)  (ee)®  yield %" (time) (ee)©
o) o}
Me, Me,
- (o) >95:5 " (0] >95:5
(>99%) (>99%)
SINNCR, SONFCR,
H H
Br 14, 60% MeO 15, 55%¢
3h) (16 h)
o) o)
Me, Me,
(0] >95:5 " (0] >05:5
(>99%) (99%)
ot
H H
r
1(?,1 gaht;/od 17, 51%4
o) o
Me, Me,
“” N0 >05:5 " 0 >95:5
(97%) (>99%)
e ol
H Me
18, 71%9 Br 19, 97%¢
(16 h) (16 h)
o o}
Me, Me,
o >05:5 “” 0 >95:5
(>99%) (>99%)
N 7 CFy SN,
Pz Me Me
O2N 20, 84%¢ F 21, 66%
(6 (16 h)
o} o)
Me, Me,
" (e} >95:5 “ (¢} >95:5
(>99%) ) (>99%)
SNFNCE, © T 7 CFy
oo Me \ Me
e 22, 65%¢ 23, 73%¢
(16 h) (i6h)
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FURTHER FUNCTIONALIZATION: SYNTHESIS
OF 6-LACTOLS AND 6-LACTONES

Having successfully synthesized a variety of dihydropy-
ranones, their further transformation into synthetically
useful chiral building blocks containing a stereogenic tri-
fluoromethyl group was examined. Treatment of dihydro-
pyranone 3 with lithium aluminium hydride gave the qua-
ternary trifluoromethyl lactol 24 in 81% yield as a single
diastereoisomer."* The generality of this process was ex-
amined, with incorporation of a variety of C(3) substitu-
ents (R' = CH,CH,OBn, 25; R' = Bu, 26), as well as a C(4)

electron-rich (R* = p-OMeC¢H,, 27) and halogenated (R* =
p-BrCsH,, 28) aryl substituent, with products formed in
good yield, excellent dr and ee™ (Table 4).

Table 4. Reduction of dihydropyranones with LiAlH4.

. d L|A|H4 (4.0 eq.) CL_
CFs THF. rtor -78 °C ® OoH

10 min CFy
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yield %" (ee)© yield % (ee)”
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analysis of the crude 'H NMR spectra. ‘ee determined by chi-
ral HPLC or chiral GC analysis. 4Reaction performed at —78
°C.

To access a 3-lactone containing four contiguous stere-
ocenters, hydrogenation of dihydropyranone 11 gave §-
lactone 29 in good yield” and as a single diastereoisomer.
The relative configuration within 29 was confirmed by
NOESY analysis.” Ring-opening of §-lactone 29 through
treatment with catalytic DMAP in methanol provided 30
in good yield, >95:5 dr and >99% ee (Scheme 5).

Scheme 5. Hydrogenation of dihydropyranone 11 and
ring-opening to hydroxyester 3o0.
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PROPOSED MECHANISM

The mechanism and stereoselectivity of this NHC-redox
process is believed to proceed in a similar manner to that
proposed by the groups of Bode and Kozlowski, through
a concerted, but highly asynchronous hetero-Diels-Alder



reaction (Scheme 6).*° After deprotonation of triazolium
salt pre-catalyst 1, reversible addition of the free NHC I to
the aldehyde gives adduct II*” A deprotona-
tion/reprotonation step allows access to Breslow inter-
mediate III, which can eliminate para-nitrobenzoate to
leave azolium enol IV. Deprotonation allows access to the
azolium enolate intermediate V, which undergoes a con-
certed, but highly asynchronous, hetero-Diels-Alder [4+2]
cycloaddition to leave VI.** Elimination of the free car-
bene catalyst completes the catalytic cycle and provides
the product.

Scheme 6. Proposed catalytic cycle.
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CONCLUSION

In summary, the synthesis of a number of tri- and
tetrasubstituted trifluoromethyl dihydropyranones from
o,B-unsaturated trifluoromethylketones  and o-
aroyloxyaldehydes using an NHC-catalysed redox process
has been demonstrated, producing synthetically useful
products in good yield, diastereoselectivity and enantiose-
lectivity. Stereoselective derivatization of the products
under substrate control has also been shown. Current
research within this laboratory is focused on developing
alternative novel asymmetric processes using o-
aroyloxyaldehydes in NHC-redox catalysis.
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