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ABSTRACT

U-Pb detrital zircon ages from Meso-
protero zoic and Cambrian siliciclastic 
units in west Texas (USA) constrain the 
depositional setting, provenance, and tec-
tonic history of the region within a late 
Mesoproterozoic Grenville foreland basin 
and the early Paleozoic Sauk transgressive 
sequence. Two key units, the Hazel and La-
noria Formations, have detrital zircon age 
spectra dominated by detritus  derived from 
the Grenville orogen (the Llano uplift and 
eroded equivalents), the ca. 1.4 Ga Granite-
Rhyolite, and the ca. 1.7–1.6 Ga Yavapai/
Mazatzal provinces. These data, combined 
with sedimentological data, permit inter-
preting those formations as the proximal 
and distal deposits, respectively, of a mo-
lasse shed into the Grenvillian foreland 
basin.

Detrital zircons as young as ca. 520 Ma 
show that the Van Horn Formation, previ-
ously considered to be Precambrian in age, 
is no older than middle Cambrian. Further, 
the overall detrital zircon age spectrum 
of the Van Horn Formation is similar to 
that of the overlying Cambro-Ordovician 
Bliss Formation: both indicate derivation 
from sources that included the Colorado-
Oklahoma aulacogen, Grenville, Granite-
Rhyolite, and Yavapai/Mazatzal provinces. 
The similarities between the depositional 
history of the Van Horn and Bliss Forma-
tions lead us to conclude that the base of the 
Sauk Sequence in west Texas occurs at the 
base of the Van Horn Formation. Base-level 
rise associated with the Sauk transgression 
affected drainage patterns and sediment 
deposition along southwestern Lauren-
tia some 20 m.y. earlier than previously 
assumed.

INTRODUCTION

The Grenville orogeny is a record of the 
assembly of the supercontinent Rodinia. In Lau-
rentia, syn-collisional detritus shed off the evolv-
ing Grenville deformation front is preserved in a 
variety of settings, ranging from widely dispersed 
extensional basins (e.g., Midcontinent Rift, Fort 
Wayne Rift) to broad, fl uvial aprons hundreds to 
even thousands of kilometers in width (Cawood 
et al., 2007; Hadlari et al., 2012; Rainbird et al., 
2012, and references therein). In contrast, the 
preserved lateral extent of foreland basin depo-
sition (as defi ned by Allen and Allen, 2005) is 
thought to be limited to a small number of locali-
ties proximal to the Grenville thrust front (Santos  
et al., 2002; Cawood et al., 2007; Baranoski 
et al., 2009; Rainbird et al., 2012). In west 
Texas (USA), the late Mesoproterozoic Lanoria 
and Hazel Formations have been interpreted as 
having formed in extensional basins (Bickford 
et al., 2000) or as proximal molasse (Soegaard 
and Callahan, 1994). Consequently, those units 
should contain a provenance signal fi ngerprint-
ing their connection to source terranes exhumed 
by the Grenville orogeny. We use laser ablation 
inductively coupled plasma–mass spectrometry 
(ICP-MS) detrital zircon U-Pb geochronology 
to assess this prediction and as a potential test of 
correlations of the formations in west Texas.

Nearly 300 m.y. after the assembly of Rodinia, 
the supercontinent fragmented. The initial epi-
sode of rifting along Laurentia’s margins began 
in the early Neoproterozoic (ca. 780–740 Ma), 
and extensional tectonism continued for nearly 
250 m.y. (Macdonald et al., 2013, and refer-
ences therein). Thermal subsidence analyses 
have revealed that, despite this protracted period 
of continental rifting, the rift-to-drift transition 
occurred near the time of the Precambrian-Cam-
brian boundary along both the eastern and west-
ern margins of Laurentia (ca. 540 Ma) (Armin 
and Mayer, 1983; Bond and Kominz, 1984; Wil-
liams and Hiscott, 1987; Cawood et al., 2001). 

This is recorded by the progressive onlap and 
blanketing of North America as preserved in the 
Sauk Sequence (Sloss, 1963).

The stratigraphic location of the base of the 
Sauk Sequence has been one of prolonged debate 
and has generally been ascribed on the basis of 
sedimentology and biostratigraphy (e.g., Hogan 
et al., 2011; Peters and Gaines, 2012). In west 
Texas and New Mexico, its position is placed at 
the base of the Cambrian–Ordovician Bliss For-
mation (Hayes, 1972; Amato and Mack, 2012). 
In New Mexico, this surface is a nonconformity 
with Mesoproterozoic igneous and metamor-
phic rocks or the Cambrian Florida Mountains 
pluton (Clemons, 1988). In west Texas, how-
ever, the Bliss Formation overlies the braided 
fl uvial sandstones of the Van Horn Formation, 
the age of which has been ambiguous but typi-
cally considered to be latest Precambrian (Deni-
son, 1980; Davidson, 1980) because of the lack 
of trace- and/or macrofossils. We use detrital 
zircon U-Pb ages in the Van Horn Formation to 
assess its maximum depositional age and rela-
tion of the Van Horn Formation to the location 
of the basal Sauk surface in west Texas.

GEOLOGICAL SETTING

Pre–1.3 Ga Rocks

Pre–1.3 Ga basement rocks in the southwestern 
United States belong to the 1.8–1.6 Ga Yavapai/
Mazatzal and 1.5–1.3 Ga Granite-Rhyolite prov-
inces (Fig. 1). These units incorporate arc and 
arc-related supracrustal rocks as well as A-type 
granites emplaced behind active continental arcs 
during intra- and back-arc extension (Karlstrom 
and Bowring, 1993; Slagstad et al., 2009).

Grenville Orogeny and Sedimentation

Along the southeast Laurentian margin, the 
Grenville orogeny (Rivers, 1997; Carr et al., 
2000; Chiarenzelli et al., 2010) is attributed to 
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collision with the Kalahari and/or Amazon cra-
tons (Dalziel et al., 2000; Tohver et al., 2006; 
Jacobs et al., 2008; Hynes and Rivers, 2010). 
This orogenic episode is archived in rocks form-
ing the broad Grenville province in southeastern 
Canada, inliers in the Appalachian Mountains, 
and the Llano uplift of central Texas (Fig. 1) 
where three main phases of magmatic activ-
ity are known: arc volcanism and accretion 
between 1288 and 1232 Ma, collision-related 
magmatism between 1150 and 1120 Ma, and 
post-collisional magmatism between 1120 and 
1070 Ma (Mosher, 1998).

In west Texas, exposures of Precambrian 
rocks are restricted to the Franklin Mountains 
north of El Paso, and the region around Van 
Horn (Fig. 2). The former contains a metasedi-
mentary succession ~1200 m thick (Fig. 3), con-
sisting of the basal Castner Marble, the overly-
ing and laterally discontinuous volcanic Mundy 
Breccia (Bickford et al. 2000), and the Lanoria 
Formation, a ~700-m-thick succession of shal-
low marine sandstone and mudstone (Shan-
non et al., 1997; Seeley, 1999). These units are 
capped by the trachytic to rhyolitic ignimbrites 
and lavas of the Thunderbird Group with a zir-
con isotope-dillution–thermal ionization mass 
spectrometry (ID-TIMS) U-Pb age of 1111 ± 
43 Ma (Roths, 1993). The Red Bluff Granite 
intrudes the entire sequence and has yielded 
a zircon ID-TIMS U-Pb age of 1120 ± 35 Ma 
(Shannon et al., 1997).

In the Van Horn area, the post–1.3 Ga stra-
tigraphy (Fig. 3) begins with the limestone-
bearing Allamoore Formation, which contains a 
tuff with zircon ID-TIMS U-Pb ages of 1256 ± 
5 Ma (Bickford et al., 2000) and 1255 ± 2 Ma 
(Timmons et al., 2005) and is considered to be 

broadly equivalent to the Castner Marble as well 
as with the Bass Limestone in the Grand Can-
yon. Overlying the Allamoore is the Tumble-
down Formation, a unit of volcanic and carbon-
ate breccia in which a felsic tuff near the top of 
the formation has yielded an ID-TIMS U-Pb zir-
con age of 1243 ± 10 Ma (Bickford et al., 2000). 
The Tumbledown Formation is overlain by the 
Hazel Formation, which is a ~3000-m-thick unit 
of conglomerate and interbedded fi ne-grained 
sandstone whose thickness decreases signifi -
cantly to the north (Bickford et al., 2000).

The initial Neoproterozoic rifting of the west-
ern margin of Laurentia is recorded by a ca. 
780 Ma magmatic event stretching from Utah to 
the Yukon (Jefferson and Parrish, 1989; Harlan 
et al., 2003; Dehler et al., 2010; Spencer et al., 
2012; Mahon et al., 2014; Kingsbury-Stewart 
et al., 2013), whereas rifting and associated 
magmatism along the eastern Laurentian mar-
gin occurred between 760 and 700 Ma (Su et al., 
1994; Aleinkoff et al., 1995; Tollo and Hutson, 
1996). Thermal subsidence studies show that the 
eventual rift-to-drift transition occurred along 
both margins at ca. 620–550 Ma (Williams and 
Hiscott, 1987; Levy and Christie-Blick, 1991; 
Thomas, 1991; Aleinikoff et al., 1995; Cawood 
et al., 2001; Cawood and Pisarevsky, 2006).

Intra-Cratonic Cambrian Magmatism

The Oklahoma-Colorado aulacogen is inter-
preted as a failed rift basin (Keller and Stephen-
son, 2007), which extends from southeast 
Oklahoma to western Colorado with a spur 
extending into New Mexico (Fig. 1) and 
is bounded by the Wichita, Sierra Grande, 
Cimarron, Tusas, and Uncompahgre uplifts 

(McMillan and McLemore, 2004; Keller and 
Stephenson, 2007). Extensive exposures of 
Cambrian-age bimodal igneous rocks within 
the Oklahoma-Colorado aulacogen indicate that 
crustal extension (Larson et al., 1985; McMil-
lan and McLemore, 2004; Gilbert and Hogan, 
2010) propagated broadly cratonward with ages 
ranging from 539 Ma to 528 Ma, based on laser 
ablation (LA)–ICP–MS and ID-TIMS U-Pb zir-
con geochronology (Larson et al., 1985; Lam-
bert et al., 1988; Hames et al., 1995; Hogan and 
Gilbert, 1998; McConnell and Gilbert, 1990; 
McMillan and McLemore, 2004). In southwest-
ern New Mexico, the Florida Mountains pluton 
has also been dated by zircon U-Pb geochronol-
ogy as crystallizing at ca. 510 Ma (Amato and 
Mack, 2012).

Sauk Transgression

The breakup of Rodinia and subsequent ther-
mal subsidence of the Laurentian margins facili-
tated deposition of a thick sequence of largely 
marine sediments (e.g., Bond and Kominz, 
1984; Levy and Christie-Blick, 1991). These 
defi ne the Sauk Sequence (Sloss, 1963), which 
spans the late Neoproterozoic to mid-Ordovi-
cian and blankets approximately half of North 
America (outcrop and borehole data; Peters and 
Gaines, 2012).

The Sauk Sequence overlies progressively 
older units cratonward, from rift/post-rift–
related Neoproterozoic sequences along the 
margins of Laurentia to Archean–Proterozoic 
basement in the central regions of the craton 
(Rankin, 1993). This transgressive episode was 
long lived, with the base of the Sauk Sequence 
being ~30–40 m.y. younger in the craton inte-
rior than at the margins. In west Texas, the base 
of the Sauk Sequence has been placed at the 
base of the Cambro-Ordovician Bliss Formation 
(Hayes, 1972), but, as detailed herein, we sug-
gest it should be placed at the base of the under-
lying Van Horn Formation.

Van Horn Formation

The Van Horn Formation near its type local-
ity in Texas consists of >500 m of conglomerate 
with varying amounts of interbedded sandstone 
and, largely because it is devoid of macro- and 
trace fossils, has been considered to be Pre-
cambrian in age (King and Flawn, 1953). It 
is arkosic and contains abundant lithic frag-
ments derived from the felsic volcanic rocks 
of the Thunderbird Group (and its equivalents, 
e.g., metavolcanic rocks at Pump Station Hills; 
Thomann, 1981), as well as from the under-
lying Hazel Formation, and is interpreted as 
recording deposition in a system of coalescing 
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Figure 1. Map showing tec-
tonic provinces and distribu-
tion of surface exposure of 
Precambrian and Cambrian 
rocks (after  Whitmeyer and 
Karlstrom, 2007; Stoeser et al., 
2007; position of Pre cordi llera 
after Thomas, 2006). U-Pb 
crystallization ages of Meso-
proterozoic and Cambrian ig-
neous rocks are also indicated 
(see text for references). Politi-
cal boundary base map is from 
Wikimedia Commons (http:// 
commons .wikimedia .org /wiki 
/File: Blank _US _Map .svg) and 
is used under the Creative 
Commons Attribution-Share-
Alike license. Oklahoma Aul.—
Oklahoma aulacogen.
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alluvial fans marked by high-gradient streams 
(McGowen and Groat, 1971). Where exposed, 
the Van Horn Formation can be seen to infi ll and 
mantle an irregular paleotopography formed on 
the underlying Hazel Formation.

Bliss Formation and Ordovician 
Carbonates

The Bliss Formation in Texas is 30–80 m 
thick and consists of medium- to fi ne-grained 
quartzitic arenite (LeMone, 1969; Davidson, 
1980). The contact between the Bliss and the 
Van Horn has not been resolved and is vari-
ously ascribed to being unconformable or depo-
sitional (McGowen and Groat, 1971). On the 
basis of trilobite and conodont biostratigraphy, 
the Bliss Formation is known to be upper Cam-

brian to Lower Ordovician in age (Taylor et al., 
2004). Overlying the Bliss Formation is a thick 
sequence of Ordovician carbonate rocks docu-
menting the fi nal stages of the Sauk transgres-
sion (Hayes, 1972) (Fig. 3).

METHODS AND RESULTS

Four ~5 kg sandstone samples were col-
lected from the Van Horn and Franklin Moun-
tain regions of west Texas within the Lanoria, 
Hazel, and Van Horn Formations. Zircons were 
extracted using standard techniques (i.e., Wilf-
ley table, heavy liquid, Franz magnetic sepa-
ration), mounted in epoxy resin, and polished 
to expose the interior of the grains. Zircons 
were imaged using cathodoluminescence (CL) 
and back-scattered electron (BSE) techniques 

(Fig. 4) prior to analysis. Zircon U-Pb geochro-
nology was performed by LA–single-collector 
(SC)–ICP–MS at the NERC Isotope Geosci-
ences Laboratory (NIGL), Keyworth, United 
Kingdom. All unknown and standard data are 
reported in the GSA Data Repository.1

The instrumentation used for analyses com-
prises a Nu Instruments Attom single-collector 
high resolution–ICP-MS-coupled to a New 
Wave Research UP193 solid-state laser ablation 
system; the full method is described in Thomas 
et al. (2013). Laser ablation was accomplished 
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1GSA Data Repository item 2014179, U-Pb geo-
chronologic analyses by laser ablation  multicollector–
inductively coupled plasma–mass spectrometery 
and analytical parameters, is available at http:// www 
.geosociety .org /pubs /ft2014 .htm or by request to 
editing@ geosociety .org.
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with a 25- or 35-µm-diameter spot size with a 
laser fl uence of 2.0–2.2 J/cm2 at 10 Hz for 15 
seconds of integration (December 2012) or 
5Hz for 30 seconds (November 2013). On-peak 
dwell times were adjusted to give the best preci-
sion on the Pb/Pb and U/Pb ratios for an aver-
age zircon composition: 200 μs on 202Hg, 204Pb, 

204Hg, 206Pb, 208Pb, and 232Th; 3 ms on 207Pb; and 
4 ms on 235U. 238U was calculated using 235U * 
137.818 (Hiess et al., 2012). The Pb/Pb and 
U/Pb ratios were normalized to bracketing pri-
mary reference materials of 91500 and GJ-1, on 
the basis of the average measured value of the 
reference materials compared to the ratio deter-
mined by ID-TIMS (Wiedenbeck et al., 1995; 
Jackson et al., 2004; see also DR2). All Pb/Pb 
and U/Pb reference material analyses have an 
external reproducibility of 1%–2% (2 standard 
deviations [2σ]). Analyses signifi cantly above 
204Pb (common lead) detection limits (~600 cps) 
were rejected.

Systematic uncertainties were propagated 
using quadratic addition incorporating the inter-
nal and external reproducibility of the reference 
material during each analytical session; these 
are the isotopic uncertainties of the reference 
material as determined by ID-TIMS, long-term 
excess variance of the NIGL Nu Attom SC-
ICP-MS, and decay constant uncertainties (e.g., 
Schoene et al., 2006).

Given the natural break in U-Pb ages between 
ca. 1000 and 500 Ma concordance is defi ned for 
ages above 700 Ma using the ratio of 206Pb/238U 
and 207Pb/206Pb ages, and 206Pb/238U and 
207Pb/235U ages are used for those younger than 
700 Ma. The accepted ages were selected from 
a 95% concordant subset, wherein the 206Pb/238U 
and 207Pb/206Pb ages are used for zircons 
younger and older than 700 Ma, respectively; 
this age was chosen because there is a natural 
gap in the ages of the zircons in these samples. 
Visualization of U-Pb concordia and zircon ages 
is achieved using Isoplot 4.0 (Ludwig, 2003) 
and densityplotter software (Vermeesch, 2012) 
(Figs. 5 and 6). GPS locations of samples are 
presented in Table 1.

Lanoria Formation

One sample of the Lanoria Formation (sam-
ple CS12-1) was collected along the Trans-
mountain Road (Fig. 2) from the L3 member 

of Seeley (1999) in the Franklin Mountains. 
The sample is a fi ne- to medium-grained 
quartz arenite with well-rounded grains and 
abundant trough and planar cross-bedding. 
Zircons are mainly colorless with moderate 
degrees of rounding and sphericity and range 
in size from 80 to 300 μm (Fig. 4). Zircons 
from this sample yield an age distribution 
with three main populations at 1235, 1460, 
and 1840 Ma (207Pb/206Pb), and subordinate 
populations of 1.6 Ga and Neoarchean ages 
(Figs. 5 and 6). Although only 115 of the 
172 analyses were <5% discordant [using 
(206Pb/238U age) / (207Pb/206Pb age)], all analy-
ses have the same age distributions as the con-
cordant subset. The youngest zircon (1124 ± 
28 Ma, 3% discordant) was reanalyzed three 
times following a re-polishing of the initial 
ablation pit, which yielded all concordant 
analyses (<2% discordant). The weighted 
mean of the four analyses is 1094 ± 9 Ma 
(mean square weighted deviation, [reduced 
chi-squared] MSWD = 0.9).

Hazel Formation

One sample from the Hazel Formation 
(sample CS12-4) was collected from the upper 
sandstone unit in the Millican Hills (Fig. 2) of 
the Van Horn area. The sample is composed 
of a fi ne- to coarse-grained litharenite with 
subrounded sand grains. Zircons from this 
sample are euhedral to well rounded, range 
from dark purple to light pink in color, and are 
70–500 μm in size.

The zircon age distributions show one domi-
nant population at 1120 Ma, with two sub-
ordinate peaks at 1440 and 1800 Ma (Figs. 5 
and 6). There is also a large population of dis-
cordant analyses with ca. 1200 Ma 207Pb/206Pb 
ages. Similar to the Lanoria Formation sample 
CS12-1, nearly half (64 out of 121) of the analy-
ses are discordant (>5% discordant), although 
the discordant age peaks show no major differ-
ences from those that are concordant.
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Van Horn Formation

Two samples were collected from the Van 
Horn Formation from the southern end of the 
Millican Hills northwest of the town of Van 
Horn. One sample was from near the base of the 
formation (CS12-5) and the other was taken one 
meter below the contact with the overlying Bliss 
Formation (CS12-3) (Fig. 2; see Table 1 for 
geographic locations). Both samples are coarse-
grained arkoses with small pebbles (<0.5 mm) 
of volcanic fragments derived from the under-
lying Hazel Formation; the fragments are more 
abundant in the lower sample. Zircons in both 
samples are mostly light pink to colorless and 
range from euhedral to subrounded with several 
angular fragments. The zircons from the lower 
Van Horn Formation are 80–900 μm in size, and 
those from the upper part of the formation range 
from 50 to 500 μm.

The age distribution from the lower Van 
Horn is similar to the age distribution of the 
underlying Hazel Formation, with dominant 
age peaks at 1060 and 1400–1480 Ma and a 
few late Paleoproterozoic grains (Figs. 5 and 
6). Similar to the Hazel Formation, there is 
also a large number of discordant ca. 1180 Ma 
analyses: the total number of concordant (<5% 
discordant) zircon analyses is 36 of 139 in the 
lower sample (CS12-5) and 75 of 150 in the 
upper sample (CS12-3). The upper Van Horn 
hosts a similar zircon age spectrum (major and 
subordinate peaks at 1080 and 1400 Ma, respec-
tively), but with an additional variably discor-
dant age population at ca. 520 Ma (see DR1). 
Each of the youngest zircons were reanalyzed 
multiple times following a re-polishing of the 
initial ablation pit. They yielded concordant 
analyses (<1% discordant) ranging between 
509 ± 13 and 533 ± 12 Ma (206Pb/238U). The 
weighted means of the four youngest grains 
overlap within error and are 522 ± 6 Ma (n = 4; 

MSWD = 1.9), 521 ± 6 Ma (n = 6; MSWD = 
2.0), 519 ± 10 Ma (n = 2; MSWD = 0.1), and 
527 ± 8 Ma (n = 3; MSWD = 0.2) (Fig. 7). 
The weighted average of all the analyses of the 
youngest four grains (n = 15) is 522 ± 7 Ma 
(MSWD = 0.3). It should be noted, however, 
that a weighted average of a single detrital 
population assumes that all of the youngest 
zircons came from a single igneous source of 
a single age, which is extremely unlikely and 
ultimately untestable.

DISCUSSION

Provenance and Correlation of the Lanoria 
and Hazel Formations

The post-Grenvillian detrital zircon age spec-
tra of the Lanoria and Hazel Formations are 
similar and can be linked to proximal prove-
nance areas along the Grenville/Llano deforma-
tion front and the Granite-Rhyolite and Yavapai/
Mazatzal provinces (see Fig. 2). The offset in 
the Grenvillian-age peak from 1120 Ma in the 
Hazel Formation to 1235 Ma in the Lanoria 
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Quartzite likely refl ects derivation from differ-
ent portions of the Grenville orogen. The young-
est single-grain (<1% discordance) detrital zir-
cons from the Lanoria and Hazel Formations 
are 1094 ± 9 (weighted mean of 4 analyses) and 
1079 ± 27 Ma, respectively. A minimum age 
of the Hazel Formation is constrained by the 

age of the Streeruwitz thrust. This thrust fault 
emplaces pre–1.3 Ga Carrizo Mountain Group 
rocks on top of the formation, and hornblende 
from the basal mylonite yields an 40Ar/39Ar age 
of ca. 1035 Ma (Bickford et al., 2000). The 
minimum age of the Lanoria Formation is con-
strained by the cross-cutting Red Bluff Granite 

which is imprecisely dated at 1120 ± 34 Ma. 
The youngest detrital zircon in the Lanoria For-
mation is within uncertainty of the intrusion age 
of the Red Bluff Granite (albeit with a younger 
mean). Despite this, the maximum depositional 
age of 1094 ± 9 Ma for the Lanoria Formation 
should be used with caution, and if the 1094 Ma 
zircon does constrain the maximum deposi-
tional age, then the two formations may be 
contemporaneous .

Depositional Model for West Texas 
Grenvillian Sedimentation

The Hazel Formation is mostly composed 
of clast-supported pebble conglomerate with 
minor interbeds of planar-laminated to cross-
bedded sandstone and thin mudstone layers 
having desiccation cracks attesting to subaerial 
deposition (Soegaard and Callahan, 1994). Sys-
tematic variation of pebble composition in the 
Hazel Formation defi nes a shift in source mate-
rial from dominantly footwall to hanging-wall 
derivation as the Streeruwitz thrust exhumed the 
Grenvillian basement (Soegaard and Callahan, 
1994). The Lanoria Formation outcrop belt is 
~180 km northeast from that of the Hazel Forma-
tion. Its facies character, paleocurrent data, and 
signifi cant northward thinning suggest that sedi-
ment was shed from southern highlands (present 
coordinates) onto a wave- and tide-dominated 
marine platform (Seeley, 1997, 1999). Previous 
interpretations have considered the Lanoria and 
the Hazel Formations as being temporally dis-
crete units (e.g., Bickford et al., 2000; Timmons 
et al., 2005). Given our fi ndings, with both units 
displaying similar age spectra and depositional 
age constraints, and combining those with the 
sedimentological observations of Seeley (1997, 
1999) and Soegaard and Callahan (1994), we 
hypothesize that the Hazel and Lanoria Forma-
tions represent, respectively, a proximal to distal 
transect of a nonmarine to marine system mar-
ginal to the Grenville/Llano deformation front 
(Fig. 8A).

Provenance and Age of the 
Van Horn Formation

The vast majority of clasts (50%–75%) 
present in the Van Horn Formation are felsic 
volcanic detritus, presumably derived from 
the volcanogenic formations in the west Texas 
area (McGowen and Groat, 1971). Zircons 
from the two Van Horn samples analyzed in 
this study further attest to input from these 
source regions (ca. 1.0–1.2 Ga). However, the 
sample collected from the upper part of the Van 
Horn Formation also contains mid-Cambrian–
age zircons. The provenance for these zircons 
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Figure 7. (A) 206Pb/238U and 207Pb/235U ages (in Ma) of multiple analyses of the youngest detrital 
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fect concordance between the 206Pb/238U and 207Pb/235U ages, and the dashed lines represent 
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TABLE 1. GPS LOCATIONS AND LITHOLOGY OF SAMPLES FROM THIS STUDY

Sample Formation Lithology Latitude Longitude Elevation (ft)
CS12-1 Lanoria Quartzite 31°53′9.65″N 106°29′12.05″W 5189
CS12-3 Upper Van Horn CGSs 31°3′48.9″N 104°51′46.2″W 4387
CS12-4 Hazel MG to FGSs 31°6′45.8″N 104°54′12.3″W 4645
CS12-5 Mid–Van Horn CGSs 31°6′59.9″N 104°53′51.1″W 4488

Note: CG—coarse grained; MG—medium grained; FG—fi ne grained; Ss—sandstone.
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is somewhat problematic in that paleocurrent 
data (mostly southwesterly fl ow directions) 
would appear to discount the locations of 
Cambrian granitoids in New Mexico and Okla-
homa (Amato and Mack, 2012, and references 
therein) as sources, hence the source of these 
zircons remains speculative. Nevertheless, the 
zircons show that at least the upper Van Horn 
Formation is no older than Cambrian, not Pre-
cambrian, in age. There is no obvious break 
between the upper and lower parts of the Van 

Horn Formation, thus the entire unit is likely 
Cambrian in age.

Zircon age spectra from the overlying Bliss 
Formation in southwestern New Mexico are 
somewhat variable, but show ca. 1.4 and 1.7 Ga 
peaks with some samples containing a dominant 
peak at ca. 505 Ma (Amato and Mack, 2012). 
The compiled zircon age spectra of the Bliss 
Sandstone are similar to that of the upper por-
tion of the Van Horn Formation, indicating that 
both share a broadly similar provenance.

Depositional Model for the Van Horn 
Formation and Implications for the 
Sauk Transgression

The Van Horn Formation is interpreted to be 
a south-prograding alluvial fan to braided fl uvial 
system that infi lled and buried paleotopography 
(McGowen and Groat, 1971; Fig. 8B). This is 
similar in depositional style to other siliciclastic 
units that mark the basal Sauk Sequence such 
as the Mount Simon Formation in Ohio (Reuter 
and Watts, 2004; Leetaru and McBride, 2009), 
Flathead Sandstone of northern Wyoming (Bell, 
1970), and Tapeats Sandstone of northern Ari-
zona (Rose, 2006).

As originally noted by Sloss (1963), the age 
of the basal Sauk Sequence boundary is pro-
gressively older toward the cratonic margins. In 
southeast California, the lower boundary of the 
Sauk Sequence is either at the base of the lower 
member of the Wood Canyon Formation (Fedo 
and Cooper, 2001) or the base of the Stirling 
Quartzite (Hogan et al., 2011) and corresponds 
in age to the latest Ediacaran (see Colpron 
et al., 2002; Macdonald et al., 2013), post-dat-
ing the fi nal rift event at ca. 580–560 Ma. The 
overlying sedimentary succession records the 
rift-to-drift transition along the southern mar-
gin of Laurentia, for example, and from west 
to east, the Zabriskie, Proveedora, Tapeats, 
Bolsa, Coronado, and Bliss formations (Figs. 
9 and 10). This age progression is also shown 
by progressively younger concordant detrital 
zircon U-Pb ages from the western margin to 
the cratonic interior: the youngest concordant 
zircon within the Wood Canyon Formation of 
southeast California is 524 ± 18 Ma (<2% dis-
cordant, 2σ, LA-ICP-MS; Stewart et al., 2001; 
from the geochron.org database), 521 ± 23 Ma 
for the Bolsa Formation of south-central Ari-
zona (<1% discordant, 2σ, LA-ICP-MS; Stew-
art et al., 2001), 503 ± 14 Ma for the Coronado 
Sandstone of southeast Arizona (<1% discor-
dant, 2σ, LA-ICP-MS; Stewart et al., 2001), 
and between 459 ± 23 and 468 ± 5 Ma for the 
Bliss Formation of southern New Mexico and 
west Texas (<1% discordant, 2σ, LA-ICP-MS; 
Amato and Mack, 2012) (Figs. 9 and 10). It 
should be noted that the youngest concordant 
zircon age determined for these units is sub-
stantiated by the bio- and lithostratigraphy 
throughout the basal Sauk Sequence.

Throughout the western margin of Laurentia, 
the majority of paleofl ow directions within the 
Sauk Sequence are directed to the west with 
few exceptions (see Stewart et al., 2001; Hogan 
et al., 2011). However, those for the Sauk 
Sequence in New Mexico and west Texas dis-
play a shift from south-southeast in New Mex-
ico and Texas to west-southwest in northern 
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Chihuahua (Mexico) and Arizona (McGowen 
and Groat, 1971; Stewart et al., 2001; Amato 
and Mack, 2012). This implies a southwest-
facing paleoslope or possible topographic high 
along the eastern edge of the Transcontinen-
tal Arch (see Amato and Mack, 2012) during 
middle Cambrian time. Further, if the southern 
margin of Laurentia rifted later than the west-
ern one (Dalziel et al., 1994; Poole et al., 2005; 

Naipauer et al., 2010), an overall westward 
depositional slope could have been generated 
due to the earlier onset of differential thermal 
subsidence in the west.

East of the Transcontinental Arch, the basal 
Sauk Sequence strata are progressively older 
eastward (see Thomas, 1991). The three young-
est detrital zircon ages from the Van Horn For-
mation in our study are 519 ± 10, 521 ± 6, and 

522 ± 6 Ma (weighted means of <1% discordant 
analyses; see Fig. 7 and Table 2) and support 
the overall younging pattern in the maximum 
depositional ages of the Sauk transgression 
from the margin of the craton toward the inte-
rior. Additionally, in the tectonic reconstruc-
tions that place the Precordillera east of Texas 
(Fig. 1; Thomas and Astini, 1999), that region 
becomes a viable provenance as indicated by 
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the El Quemado  and El Desecho formations 
of the Pie de Palo region of western Argentina 
(Fig. 6) which have yielded concordant zircon 
ages of 532 ± 20 and 531 ± 31 Ma, respectively 
(<4% discordant) (Naipauer et al., 2010). Sev-
eral rift-related igneous units exposed east of the 
Transcontinental Arch also provide important 
depositional constraints on the Sauk Sequence, 
such as those in the Wichita Mountains (534 ± 
2 Ma; Gilbert and Hogan, 2010), the Shenan-
doah felsic dikes (555 ± 4 Ma and 567 ± 4 Ma; 
revised from Aleinkoff et al., 1995, by Burton 
and Southworth, 2010), and the Catoctin Rhyo-
lite (571 ± 1 Ma; Southworth et al., 2009). It is 
noteworthy that the timing of deposition based 
upon biostratigraphic studies substantiates the 
maximum depositional age as constrained by 
the youngest most concordant single zircon 
grain from this and other detrital zircon stud-
ies (e.g., Wood Canyon Formation: Hunt, 1990; 
Hagadorn et al., 2000; Bolsa Formation: Jones 
and Bacheller, 1953; Gilluly et al., 1956; Coro-
nado Formation: Ethington and Clark, 1964; 
Bliss Formation: LeMone, 1969; La Paz and 
El Desecho formations: Naipauer et al., 2010). 
However, we note that the youngest zircon 
age likely represents an underestimation of the 
maximum depositional age given the assumed 
normal age distribution of the youngest contrib-
uting source of detrital zircons.

The redefi nition of the basal Sauk Sequence 
in west Texas described in this study shifts the 

timing of base-level rise and associated marine 
transgression from the Cambrian-Ordovician 
boundary (within the Bliss Formation; Lemone, 
1969) at ca. 490 Ma to ca. 520 Ma within the 
Van Horn Formation, some several tens of mil-
lions of years subsequent to the beginning of 
the Sauk transgression on the east and west 
margins of Laurentia at ca. 550 Ma (Kominz, 
1995; Fig. 9).

CONCLUSIONS

Detrital zircon ages and depositional facies 
determinations from the Hazel and Lanoria For-
mations in west Texas suggest that these strata 
respectively represent distal to proximal depos-
its of the Grenvillian foreland basin, respec-
tively. Detrital zircons were primarily derived 
from the Llano (Grenville), Granite-Rhyolite, 
and Yavapai/Mazatzal provinces.

Some 400 m.y. following the Grenville orog-
eny and formation of Rodinia, Laurentia began 
rifting along its western and eastern margins 
(e.g., Li et al., 2008), and the consequent ther-
mal subsidence gave rise to a signifi cant marine 
transgression responsible for the deposition of 
the Sauk Sequence (Sloss, 1963). The base of 
the Sauk Sequence in Texas is herein redefi ned 
as the base of the Van Horn Formation, which 
places the timing of Sauk transgression across 
this part of the Laurentian craton as mid-Cam-
brian rather than Early Ordovician as thought 
previously. Both the Van Horn Formation and 
the overlying Cambrian Bliss Formation have 
similar facies characteristics and detrital zir-
con age distributions with a main peak at ca. 

1150 Ma and other signifi cant peaks attrib-
utable to derivation from rocks in the Okla-
homa aulaco gen and the Granite-Rhyolite and 
Yavapai/Mazatzal provinces.
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