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Abstract 1 

Steroid hormones, including those produced by the gonads and the adrenal glands, are known to 2 

influence brain development during sensitive periods of life. Until recently, most brain 3 

organisation was assumed to take place during early stages of development, with relatively little 4 

neurogenesis or brain re-organisation during later stages. However, an increasing body of 5 

research has shown that the developing brain is also sensitive to steroid hormone exposure 6 

during adolescence (broadly defined as the period from nutritional independence to sexual 7 

maturity). In this review, we examine how steroid hormones that are produced by the gonads and 8 

adrenal glands vary across the lifespan in a range of mammalian and bird species, and we 9 

summarise the evidence that steroid hormone exposure influences behavioural and brain 10 

development during early stages of life and during adolescence in these two taxonomic groups. 11 

Taking a cross-species, comparative perspective reveals that the effects of early exposure to 12 

steroid hormones depend upon the stage of development at birth or hatching, as measured along 13 

the altricial-precocial dimension. We then review the evidence that exposure to stress during 14 

adolescence impacts upon the developing neuroendocrine systems, the brain and behaviour. 15 

Current research suggests that the effects of adolescent stress vary depending upon the sex of the 16 

individual and type of stressor, and the effects of stress could involve several neural systems, 17 

including the serotoninergic and dopaminergic systems. Experience of stressors during 18 

adolescence could also influence brain development via the close interactions between the stress 19 

hormone and gonadal hormone axes. While sensitivity of the brain to steroid hormones during 20 

early life and adolescence potentially leaves the developing organism vulnerable to external 21 

adversities, developmental plasticity also provides an opportunity for the developing organism to 22 

respond to current circumstances and for behavioural responses to influence the future life 23 

history of the individual. 24 

  25 
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Introduction 1 

The role of steroid hormones in the development of the brain and behaviour has been a central 2 

topic within behavioural neuroendocrinology for over half a century (Wingfield, 2005; Wallen, 3 

2009). In the 1950s, a ground-breaking study by Phoenix and colleagues showed that injecting 4 

pregnant female guinea pigs with testosterone resulted in female offspring that exhibited 5 

masculinised and defeminised behaviour in adulthood (Phoenix et al., 1959). Prenatal or 6 

perinatal treatment of female rats with testosterone was also shown to alter the development of 7 

sexually dimorphic nuclei within the brain (e.g., Gorski et al., 1978; Ito et al., 1986). A 8 

substantial body of literature has since confirmed that early exposure to gonadal steroid 9 

hormones exerts long-lasting, ‘organisational’ effects on the brain in a broad range of species 10 

(Cooke et al., 1998; Groothuis et al., 2005; Crews et al., 2009; Wright et al., 2010). Steroid 11 

hormones can exert such effects by crossing the blood-brain barrier and influencing processes 12 

such as neurogenesis, synapse formation, dendritic growth and cell death (Arnold, 2009; Charil 13 

et al., 2010). 14 

Steroid hormones produced by the adrenal glands in response to stress are also known to 15 

influence neural development during early life (Weinstock, 2008; Lupien et al., 2009; Romeo et 16 

al., 2009; Charil et al., 2010; Henriksen et al., 2011). The term ‘stress’ is generally used to 17 

describe events that are threatening to an individual and that elicit stabilising behavioural and 18 

physiological responses (McEwen and Wingfield, 2003). Prenatal exposure to stress has been 19 

shown to influence the development of the brain and behaviour in mammals (e.g., Vallée et al., 20 

1997), and injection of corticosterone into birds’ eggs similarly impacts upon behavioural and 21 

neuroendocrine development (e.g. Love and Williams, 2008a; 2008b). In many instances, the 22 

effects of early exposure to stressors differ between the sexes (Weinstock, 2007; Charil et al., 23 

2010), and such sex differences could partly result from the complex interactions between the 24 

developing gonadal and adrenal hormone systems (e.g., Ward et al., 2003; Bowman et al., 2004). 25 
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The effects of steroid hormone exposure on behavioural and brain development are 1 

particularly strong during delineated stages of development, known as ‘sensitive periods’. While 2 

most research has focused on the effects of steroid hormone exposure during prenatal or early 3 

postnatal life, adolescence has been hypothesised to be another highly sensitive period of neural 4 

development (Spear, 2000; Romeo et al., 2002; Andersen, 2003; Sisk and Zehr, 2005; 5 

McCormick and Mathews, 2010). Adolescence is broadly defined as the period of life that 6 

includes attainment of sexual maturity (Spear, 2000), and, using this definition, adolescence can 7 

be considered to be a specific stage of life in a broad range of taxonomic groups. Research on 8 

human and non-human animals, such as primates, rodents and several songbird species, has 9 

confirmed that the brain undergoes significant re-organisation during adolescence in many taxa 10 

(Spear, 2000; McCormick and Mathews, 2010; Brenhouse and Andersen, 2011; Blakemore, 11 

2012; Catchpole and Slater, 2008), and a growing number of studies have shown that the 12 

developing brain is sensitive to steroid hormone exposure during the adolescent period (Romeo, 13 

2003; McCormick and Mathews, 2007; Schulz et al., 2009; McCormick and Mathews, 2010). 14 

The aim of this review is to evaluate the current evidence that adolescent stress 15 

influences behavioural and brain development, focusing on two major taxonomic groups, namely 16 

mammals and birds. Taking a comparative perspective provides an opportunity to search for 17 

commonalities in the effects of steroid hormone exposure on brain development and to highlight 18 

the differences in hormone action across species with different life-histories. The effects of stress 19 

during adolescence are predicted to vary between species, depending upon the relative stage of 20 

neural development at the time of stress exposure and the relevance of the stressor to the 21 

particular species, and stress effects are also likely to vary within species, depending upon the 22 

sex of the individual and environmental factors, such as the presence of social partners (Kikusui 23 

et al., 2006; McCormick and Mathews, 2007; Oldehinkel and Bouma, 2011). Many studies on 24 
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mammals and birds provide relevant data with which to test these predictions, yet evidence from 1 

these two taxa are rarely evaluated together. 2 

 3 

Development of the neuroendocrine systems in mammals and birds 4 

The first section of the review provides a brief introduction to the neuroendocrine systems that 5 

are involved in steroid hormone production from the gonads and the adrenal glands. The 6 

ontogenetic development of these neuroendocrine axes is summarised from prenatal life to early 7 

adulthood. 8 

 9 

i) Development of the hypothalamic-pituitary-gonadal axis 10 

The hypothalamic-pituitary-gonadal (HPG) axis is highly conserved across mammals and birds 11 

(Lovejoy, 2005). In both taxonomic groups, gonadotrophin-releasing hormone (GnRH) is 12 

produced by the hypothalamus and travels through the hypophysial blood system to the pituitary 13 

gland. By binding to specific receptors in the pituitary, GnRH stimulates the release of 14 

gonadotrophins (luteinising hormone, LH, and follicle stimulating hormone, FSH). These 15 

hormones are then transported through the bloodstream to the gonads and stimulate production 16 

of the gonadal steroid hormones (e.g., testosterone, estradiol and progesterone). Hormone 17 

receptors are located in numerous tissues, including the brain (Pak and Handa, 2008), and 18 

negative feedback loops modulate the activity of the HPG axis via these conserved receptor 19 

systems (Meethal and Atwood, 2005). The HPG axis is intimately involved in sexual maturation 20 

and the onset of reproductive function in both mammals and birds (Johnson, 2007). 21 

During early life, the HPG axis exhibits specific periods of activity and inactivity, 22 

depending upon the stage of development and sex of the animal. Many animal species (including 23 

Norway rats, Rattus norvegicus, house mice, Mus musculus, and most passerine birds) are 24 

altricial in nature; juveniles are born with their eyes closed and rely heavily on parental care and 25 
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feeding in order to survive the first few weeks of life. In altricial rodents, the fetal testes secrete 1 

testosterone during late gestation and during the first few hours after birth (e.g., Corbier et al., 2 

1978; Weiss and Ward, 1980), while the fetal ovary is assumed to be inactive during comparable 3 

stages of life (Bakker and Baum, 2008). In rodents of both sexes, gonadal hormone and 4 

gonadotrophin levels are reported to be somewhat elevated again during the pre-weaning phase 5 

(prior to postnatal day, pnd, 21), remain low during early adolescence (pnd 21-33), then rise 6 

substantially during mid- (pnd 34-46) and late adolescence (pnd 47-59; age categories based on 7 

Tirelli et al., 2003) (e.g., Ojeda and Ramírez, 1972; Meijs-Roelofs et al., 1973; Paz et al., 1980; 8 

Zapatero-Cabellero et al., 2003; Figure 1a). In mammals, re-activated of the HPG axis during 9 

adolescence results from an elevation in GnRH pulsatility (Sisk and Foster, 2004). In some 10 

altricial bird species, the gonads are mostly inactive during prenatal and early postnatal life , 11 

while a diphasic post-natal response is observed: GnRH levels in both sexes surge in early post-12 

natal life (e.g., day 4 in European starlings, Sturnus vulgaris; Williams et al., 1987), followed by 13 

a quiescent period regulated by several inhibitory factors, including Gonadotropin Inhibitory 14 

Hormone (GnIH), and then a second increase during puberty (Perfito and Bentley, 2009). 15 

However, in some species there is a lack of a quiescent period (e.g., zebra finch, Taeniopygia 16 

guttata), where testosterone levels are relatively high during both the post-natal and adolescent 17 

periods and then begin to increase further during puberty (around 75 days of age; Prove, 1983; 18 

but see Adkins-Regan et al. 1990; Figure 1b), while estradiol levels in females remain stable 19 

during the period of sexual maturation (Adkins-Regan et al., 1990).  20 

 In precocial and semi-precocial species, such as guinea pigs (Cavia porcellus), primates 21 

and birds such as the chicken (Gallus gallus) and Japanese quail (Coturnix japonica), juveniles 22 

are born in a more developed state than in altricial species, with eyes open and greater mobility. 23 

In precocial and semi-precocial mammals, the pattern of HPG axis activity is similar to that in 24 

altricial mammals; testosterone levels are higher in males than females in utero, immediately 25 
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after birth and during an early postnatal period (e.g., guinea pig; Rigaidière et al., 1976; rhesus 1 

macaques, Macaca mulatta: Resko, 1970; Brown et al., 1999; Figure 1c), and the hypothalamic-2 

pituitary-ovarian axis is also transiently active during early postnatal life (e.g., human beings, 3 

Homo sapiens; Chellakooty et al., 2003). GnRH levels exhibit a peak during early postnatal life 4 

and another rise during adolescence (Plant, 2008). In precocial birds, there is often substantial 5 

pre-natal development of the HPG axis in comparison to altricial species. For example, in the 6 

precocial Japanese quail, sex-specific developmental patterns have been revealed in ovo: male 7 

embryos show a rapid peak in testosterone a few days before hatching (around day 14, where 8 

hatching is day 18), whilst females show a steady increase in estradiol throughout embryonic 9 

development (Ottinger et al., 2002). Gonadal hormone levels then gradually rise from low 10 

postnatal levels in both sexes to peak in adulthood (e.g, chickens: Heiblum et al., 2000; Japanese 11 

quail: Sedqyar et al. 2008; Figure 1d). In ducklings (Anas platyrhynchos: Ni et al., 2011), GnRH 12 

levels have been shown to be relatively low during early development (days 30-60) then rise 13 

steadily to sexual maturation (day 120), while inhibitory peptides show the opposite trend. Thus, 14 

the pattern of HPG axis maturation is partly dependent upon the developmental strategy of the 15 

species. 16 

Studies of mammals have suggested that a substantially greater proportion of brain 17 

development occurs before birth in precocial species compared to altricial species (Matthews, 18 

2002; Wallen and Baum, 2002) and that hormone manipulations during the early postnatal 19 

period have a much greater effect on behavioural development in altricial species (e.g., rats, 20 

Brand and Slob, 1988) than precocial species (e.g., rhesus macaques: Wallen et al., 1995; Brown 21 

and Dixson, 1999). The maturing brain has been shown to regain sensitivity to gonadal 22 

hormones during adolescence, as manipulating gonadal hormone levels during this period has 23 

significant effects on behavioural and brain development, affecting areas such as the 24 

hippocampus, medial amygdala, the pre-frontal cortex (e.g. anterior cingulate cortex) and the 25 
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hypothalamus (e.g., Hebbard et al., 2003; Ahmed et al., 2008; Sanz et al., 2008; Cooke and 1 

Woolley, 2009; Cyrenne and Brown, 2011). While developmental changes in the avian brain 2 

during the adolescence have been less well documented than in mammals, current evidence 3 

suggests that the early sensitive period for sexual differentiation ceases at a later stage in altricial 4 

compared to precocial birds (Balthazart et al., 2009). Whether the rate of HPG development prior 5 

to sexual maturity affects any long term responses to steroid hormone exposure during 6 

adolescence remains to be tested. 7 

 8 

ii) Development of the hypothalamic-pituitary-adrenal axis 9 

In all vertebrate animals, stress generally leads to the release of glucocorticoid hormones 10 

(Sapolsky et al., 2000). Stressful stimuli cause the hypothalamus to release corticotrophin 11 

releasing factor (CRF), which works in conjunction with arginine vasopressin (AVP: mammals) 12 

or vasotocin (AVT: birds) to promote the release of adrenocorticotrophin hormone (ACTH) from 13 

the pituitary gland (Lamberts et al., 1984; Romero & Sapolsky, 1996). ACTH then stimulates the 14 

synthesis and release of glucocorticoids (GC) from the adrenal cortex, which enter the blood 15 

stream to act on target tissues. The activity of the HPA axis is tightly regulated by classical 16 

negative feedback loops that utilise two receptor types; glucocorticoid receptors (GR), which are 17 

widespread in the brain and other organs and important in the regulation of acute stress 18 

responses, and mineralocorticoid receptors (MR), which are mainly found in the hippocampus, 19 

medial amygdala, lateral septum, brain stem nuclei and cerebellum and regulate basal hormone 20 

levels (Ahima and Harlan, 1990; De Kloet et al., 1998, McCormick and Mathews, 2007). Sex 21 

differences in adult functioning of the HPA axis have been reported in a range of mammalian 22 

species (Kudielka and Kirschbaum, 2005; Young et al., 2008; Walker and McCormick, 2009), 23 

with females generally having more pronounced stress-induced HPA activity than males (e.g., 24 

Pignatelli et al., 2006), although similar sex differences have only rarely been reported in birds. 25 



 

9 

 

In altricial rodents, the fetal adrenal glands begin to secrete glucocorticoids, mainly 1 

corticosterone (CORT), during gestation, and fetal surges of ACTH and CORT play a key role in 2 

initiating parturition (Johnson, 2007). Basal CORT levels remain high during the first post-natal 3 

day of life, and then drop to low levels over the following days (e.g., Laviola et al., 2002; 4 

Pignatelli et al., 2006; Womack and Delville, 2007; Figure 2a). Stressors generally fail to elicit a 5 

normal CORT response during this early postnatal period (e.g., Levine et al., 1991; Schmidt et 6 

al., 2003), partly due to reduced sensitivity of the adrenal glands to circulating ACTH, and this 7 

stage of development is commonly known as the Stress Hyporesponsive Period (SHRP; Levine, 8 

1994; 2001). However, the SHRP does not represent a period of complete inactivity of the HPA 9 

axis, as exposure to substantial stressors, such as prolonged maternal separation, can trigger 10 

CORT release in altricial rodents (e.g., Levine et al., 1991; Rosenfeld et al., 1991). Similarly, 11 

while several altricial bird species show reduced adrenal responsiveness during early post-natal 12 

development (e.g., Northern mockingbirds, Mimus polyglottos: Sims and Holberton, 2000; white 13 

storks, Ciconia ciconia: Blas et al., 2006; white-crowned sparrows, Zonotrichia leucophrys: 14 

Wada et al., 2007; zebra finch: Wada et al., 2009), measurable increases in glucocorticoids can 15 

still occur following acute stress (Sims and Holberton, 2000; Blas et al., 2006; Wada et al., 2007: 16 

Spencer et al., 2009: Figure 2b).  17 

The ‘developmental hypothesis’ (Schwabl, 1999; Sims and Holberton, 2000) predicts that 18 

adrenocortical capacity to respond to a stressor is likely to be correlated with developmental 19 

strategy and should develop in conjunction with the ability of the young animal to cope with and 20 

avoid stressors. In altricial species, as youngsters do not have some of the behavioural coping 21 

mechanisms that are available to more mobile precocial animals, the SHRP is likely to provide 22 

protection from detrimental stress effects (Wada, 2008). In contrast, in precocial and semi-23 

precocial mammals, both infants and juveniles exhibit a strong corticosteroid response to 24 

stressors and apparently lack the SHRP (e.g., common marmosets, Callithrix jacchus: Pryce et 25 
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al., 2002; degu, Octodon degus: Gruss et al., 2006; rhesus macaques: Sanchez et al., 2010; 1 

Figure 2c). These observations fit with the developmental hypothesis, as precocial and semi-2 

precocial species have behavioural mechanisms (e.g. moving away from stressors) to respond to 3 

the physiological changes in HPA activity. Thus, the timecourse of HPA reactivity differs 4 

markedly between altricial and precocial mammals (Matthews, 2002). In birds, the pattern is 5 

more mixed; some precocial species appear to lack an SHRP (e.g., wood ducks, Aix sponsa: 6 

DuRant et al., 2010; Japanese quail: Marasco, Robinson, Herzky and Spencer, unpublished data; 7 

Figure 2d), while others show evidence of blunted HPA axis activity post-hatching (e.g. 8 

chickens, Freeman, 1982); however, precocial species rarely have a total lack of response to 9 

stressful stimuli during this time. Recent work in the Japanese quail has shown that young chicks 10 

actually exhibit and exaggerated CORT response to an acute stressor than those in later 11 

developmental stages or adults, again in line with the developmental hypothesis as young chicks 12 

may have less experience of their environment (Marasco et al, unpublished data). 13 

Following the SHRP, basal CORT levels rise gradually in altricial rodents and reach 14 

adult-like levels by mid-adolescence, with females having higher baseline levels than males from 15 

adolescence onwards (e.g., Pignatelli et al,. 2006; reviewed by McCormick and Mathews, 2007; 16 

Walker and McCormick, 2009). During early and mid-adolescence (around pnd 28-50), rodents 17 

exhibit a highly exaggerated CORT response to at least some stressors, with CORT levels taking 18 

longer to return to baseline in adolescents than in adults (e.g., Adriani and Laviola, 2000; Romeo 19 

et al., 2004; Hodes and Shors, 2005; Romeo et al., 2006; Goel and Bale, 2007; Foilb et al., 2011; 20 

reviewed by McCormick and Mathews, 2007; McCormick et al., 2010; Romeo, 2010a; 2010b). 21 

Stress-induced CORT responses then decrease again in adulthood in rodents (Romeo, 2010b), 22 

although not all results are consistent with this pattern across ages (e.g., Viau et al., 2005). In 23 

primates, basal CORT levels rise during adolescence (e.g., chimpanzees, Pan troglodytes: 24 

Seraphin et al., 2008; rhesus macaques, McCormack et al., 2009), and studies of human 25 
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adolescents have reported enhanced stress reactivity in adolescents compared to children (e.g., 1 

Gunnar et al., 2009; Stroud et al., 2009). Sex differences in HPA activity also emerge across the 2 

adolescent period (e.g., human beings: Yim et al., 2010). In many altricial bird species, basal and 3 

stress-induced CORT levels gradually increase during the period between hatching and fledging 4 

(Wada, 2008), with fairly stable levels after this; however, some studies showing an exaggerated 5 

HPA activity during this adolescent period compared to adulthood (e.g., American kestrels, 6 

Falco sparverius: Love et al., 2003), whilst others suggest no real variation in basal levels over 7 

time (e.g. zebra finch: Wada et al., 2009). Thus, several species (both altricial and precocial) 8 

exhibit pronounced stress-induced HPA activity during the adolescent period, although this 9 

effect is not consistently reported and could depend upon the type of stressor experienced. 10 

 11 

Interactions between HPG and HPA axes 12 

Both the HPG and HPA axes undergo considerable development during prenatal and postnatal 13 

life, and these systems appear to share similar developmental trajectories during some periods 14 

and to act antagonistically at other times. These correlations are perhaps unsurprising, as there is 15 

a large body of literature showing a significant number of complex interactions between these 16 

two neuroendocrine axes (Viau, 2002; Young et al., 2008; Walker and McCormick, 2009). For 17 

example, it is widely accepted that, in a range of taxa, CRH and glucocorticoids directly inhibit 18 

GnRH secretion in the hypothalamus, LH secretion in the pituitary and, to a lesser extent, steroid 19 

hormone synthesis in the gonads (Tilbrook et al., 2000), and this is thought to be the primary 20 

route for reproductive suppression during stressful events (Rivier and Rivest, 1991; Tilbrook et 21 

al., 2000). During adolescence, when HPG functioning is starting to reach a peak, it would 22 

therefore be advantageous to reduce stress-induced glucocorticoid release to facilitate normal 23 

reproductive development. 24 
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Several mammalian and avian studies have reported negative correlations between basal 1 

levels of glucocorticoids and gonadal hormones such as testosterone (Viau, 2002; Buchanan et 2 

al., 2004; Van Hout et al., 2010), and long-term chronic stress appears to have direct negative 3 

effect on both pituitary and gonadal secretion of LH and T (Deviche, 1983; Tilbrook et al., 2000; 4 

Chichinadze and Chichinadze, 2008). In contrast, acute stress can have both negative and 5 

positive effects on the functioning of the HPG axis (Tilbroook et al., 2000). For example, a 6 

recent study of adult male rufous-winged sparrows (Aimophilia carpalis) showed that, as 7 

corticosterone rises following handling stress, circulating testosterone levels are reduced by up to 8 

50 percent via the direct action of corticosterone on testicular hormone production (Deviche et 9 

al., 2010). Similarly, stress resulted in a significant increase in GnIH-positive neurons in house 10 

sparrows (Passer domesticus) in breeding condition, leading to a reduction in pituitary 11 

gonadotropin release (Ubuka et al., 2006; Calisi et al., 2008). Conversely, a growing body of 12 

literature suggests that HPG activity is upregulated during acute stress in birds (e.g., Mays et al., 13 

1991; Heiblum et al., 2000; Van Hout et al., 2010). In mammals, the relationship between HPA 14 

and HPG activity is also complicated and varies across age groups. For example, in adulthood, 15 

male rats show increases in testosterone levels following an acute stressor (Foilb et al., 2011), 16 

while juvenile rats show no change or inhibition of testosterone secretion (Gomez et al., 2002; 17 

Romeo et al., 2004; Foilb et al., 2011). These studies suggest that, while elevated stress in 18 

adolescence could have significant implications for HPG functioning in later life, the exact 19 

effects will depend upon factors such as the type and severity of the stressor. 20 

In addition to glucocorticoids regulating HPG functioning, a reciprocal relationship 21 

between these two neuroendocrine axes exists: gonadal hormones have been shown to have 22 

direct effects on the HPA axis (McCormick and Mathews, 2007; Young et al., 2008; Solomon 23 

and Herman, 2009). For example, estrogen has been shown to have an excitatory effect on the 24 

HPA axis through numerous routes, including actions on corticosteroid binding globulin and GR 25 
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receptors (e.g., Burgess and Handa, 1992), while testosterone generally suppresses HPA activity 1 

(Viau, 2002). However, the nature of the relationship between the HPA and HPG axes can differ 2 

between age groups (e.g., Gomez et al., 2002; 2004; Romeo et al., 2004; Evuarherhe et al., 3 

2009a); for example, in pre-adolescent rats, estrogens have been reported to suppress adrenal 4 

CORT production and neural GR activation (e.g., Evuarherhe et al., 2009a), while administration 5 

of testosterone fails to dampen the HPA activity in preadolescent male rats (Romeo et al., 2004), 6 

in contrast to the effects of these hormones on the adult HPA axis.  7 

The interactions between the HPG and HPA axes are known to begin early in life, and 8 

exposure to gonadal hormones during the early postnatal period has long-term, organisational 9 

effects on the developing HPA axis (Walker and McCormick, 2009); for example, suppressing 10 

early postnatal testosterone activity in male rats increases stress-induced ACTH and CORT 11 

levels in adulthood, while treatment of female rats with T during this period reduces adult HPA 12 

activity (McCormick and Mahoney, 1999; Seale et al., 2005a; 2005b). In addition, current 13 

evidence from rodents suggests that developmental changes in HPA reactivity during 14 

adolescence are also dependent upon gonadal hormone exposure; for example, administration of 15 

testosterone to male rats that were castrated during preadolescence did not lead to the 16 

suppression of stress-induced corticosterone secretion, while testosterone treatment did suppress 17 

corticosteroid secretion in males that were castrated in adulthood (Evuarherhe et al., 2009b). 18 

These data suggest that exposure to gonadal hormones during adolescence has long-term effects 19 

on the developing HPA axis. 20 

Given the cross-communication between the HPA and HPG axes, adolescent stress could 21 

have substantial consequences for a range of physiological systems and for brain development 22 

through interactions with the HPG axis, as well as via direct activation of the HPA axis 23 

(McCormick and Mathews, 2010). The effects of adolescent stress are likely to vary between 24 

male and female adolescents, as a result of sex differences in circulating gonadal hormone levels 25 
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and prior organisational effects of gonadal hormones on brain development (McComick and 1 

Mathews, 2007). Adolescent stress could to be particularly impactful in species in which the 2 

HPA is hyper-reactive during adolescence. However, species in which the HPA axis is 3 

dampened during adolescence are also likely to be susceptible to stress effects, particularly the 4 

regulatory feedback mechanisms, such as GR and MR; glucocorticoid levels can become 5 

elevated even during the well characterised post-natal SHRP in altricial rodents, and significant 6 

stress could thus potentially impact on brain development during later stages of dampened HPA 7 

activity. In the next section, we explore the evidence for the effects of adolescent stress on a 8 

range of behavioural and neural traits, and examine whether such effects differ between the 9 

sexes. 10 

 11 

Effects of adolescence stress on behavioural and brain development 12 

 13 

i) Mammals 14 

Numerous studies of mammals have reported dramatic effects of prenatal and early postnatal 15 

stress exposure on the developing neuroendocrine systems (Weinstock, 2008; Lupien et al., 16 

2009; Romeo et al., 2009; Charil et al., 2010). Early stressors are thought to ‘programme’ adult 17 

neuroendocrine responses through a range of mechanisms (Matthews, 2002), including 18 

epigenetic modification of steroid hormone receptors (McEwen et al., 2012). The adolescent 19 

period potentially provides another opportunity for neural and endocrine systems to respond to 20 

current environmental and social inputs, allowing for flexibility during development (Andersen, 21 

2003). Given that some stress-induced changes in neuroendocrine functioning and hippocampal 22 

gene expression are potentially reversible (e.g., Morley-Fletcher et al., 2003; Weaver et al., 23 

2006), adolescence has been described as a period of opportunity, when positive experiences 24 

could partial compensation for earlier adversity (Andersen, 2003). However, while positive 25 
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inputs can potentially mediate against earlier negative events, the sensitivity of the adolescent 1 

central nervous system can lead to enhanced vulnerability to further insults (Andersen and 2 

Teicher, 2008).  3 

Over the past decade, a number of studies have investigated the effects of adolescent 4 

stress exposure on behaviour and brain function. Adolescent stress could directly impact 5 

behaviour by actions on the developing adolescent brain, leading to long-term changes in brain 6 

functioning, or indirectly by influencing the developing HPG and HPA axes. Current evidence 7 

suggests that adolescent stress has a negative impact on the adult HPG system (e.g., Laroche et 8 

al., 2009), which could have implications for sexual differentiation of the brain during 9 

adolescence and also for behavioural patterns that are sensitive to circulating levels of gonadal 10 

hormones in adulthood, such as sexual behaviour. In contrast, studies on HPA axis development 11 

are more inconsistent (McCormick et al., 2010). Adolescent stress exposure has been reported to 12 

either dampened (e.g., Toth et al., 2008), heighten (e.g., Isgor et al., 2004, Schmidt et al., 2007) 13 

or have no effect (e.g., McCormick et al., 2005) on HPA activity in adult rodents, and such 14 

effects are modest when compared to those of perinatal stress exposure (McCormick et al., 15 

2010). Therefore, the effects of adolescent stress exposure on later stress-induced HPA responses 16 

appear variable, perhaps depending upon the type and extent of stress exposure and the method 17 

of assessing HPA activity in adulthood. 18 

In contrast, recent studies of rodents have shown that exposure to stressors during 19 

adolescence has substantial, long-lasting effects on brain development, particularly those 20 

involved in learning and memory, such as the pre-frontal cortex and the hippocampus, those 21 

underlying the functioning and regulation of the HPA axis, such as the PVN (paraventricular 22 

nucleus of the hypothalamus) and the hippocampus (McCormick and Mathews, 2010; 23 

McCormick et al., 2010), and on behavioural profiles (Sachser et al., 2011). Given that brain 24 

regions involved in emotional regulation undergo considerable remodelling during adolescence 25 
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(e.g., amygdala, hippocampus, prefrontal cortex; McCormick and Mathews, 2010; Brenhouse 1 

and Andersen, 2011), these aspects of later life are predicted to be strongly affected by 2 

adolescent stressors. In line with this prediction, exposure to chronic social stress or deprivation 3 

during adolescence has been shown to alter emotional reactivity in adulthood, as measured by 4 

elevated-plus maze activity (e.g., McCormick et al., 2008; Doremus-Fitzwater et al., 2009; 5 

Wilkin et al., 2012), and exposure to adolescent stress reduces glucocorticoid receptor densities 6 

in the adult hippocampus (Schmidt et al., 2007) and elevates metabolic activation of 7 

hippocampus, basal amygdala and areas of the pre-frontal cortex (e.g. cingulate) during fear 8 

memory extinction tests (e.g., Toledo-Rodriguez et al., 2012). Adolescent stress has also been 9 

reported to have long-term, negative impacts on spatial cognition; for example, rats that were 10 

exposed to daily physical stressors during adolescence exhibited poorer performance on a water 11 

maze when tested in adulthood compared to controls, while performance on other memory tasks 12 

was unaffected, and stress-exposed males exhibit reduced hippocampal volume (Isgor et al., 13 

2004; Sterlemann et al., 2009; McCormick et al., 2012). 14 

Systems other than the HPA axis are likely to be involved in mediating the long-term 15 

effects of adolescent stress on later behaviour, including the serotonin and dopamine systems 16 

(Deville et al., 1998; Wommack and Deville, 2002). The serotonergic system is crucial in the 17 

response to stress, particularly social stress, and also modulates behaviours such as fear, 18 

aggression and memory (Dennis and Cheng, 2010; Kiser et al., 2012). There are significant 19 

interactions between the HPA axis and serotonin; for example when selective serotonin reuptake 20 

inhibitors (SSRIs) are used in fish to enhance synaptic serotonin levels, this potentiates 21 

behaviour driven by CRF, a fundamental component of the HPA cascade (Lowry and Moore, 22 

2006). In addition, serotonin has an excitatory role in the regulation of CRF in the hypothalamus 23 

(Pomili et al., 2010). The mesocorticolimbic dopamine system also plays a key role in the stress 24 

response (Sullivan and Gratton, 2002) and undergoes significant modification during 25 
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adolescence (e.g., Andersen and Teicher, 2000; Andersen et al., 2000). The dopamine system has 1 

been found to be sensitive to stress during adolescence (Trainor, 2011); for example, exposure of 2 

adolescent rats to predator odour reduces levels of dopamine D2 receptor in the prefrontal cortex 3 

(infralimbic and dorsopeduncular regions) (Wright et al., 2008). Thus, the effects of adolescent 4 

stress on behaviour could be mediated by multiple routes, some of which may interact, in 5 

addition to the direct actions of CORT via GR and MR receptors. 6 

In adult rodents, the effects of stress on neural functioning and behaviour often depend 7 

upon both the type of stressor and sex of the individual (e.g., Wood and Shors, 1998; Dalla et al., 8 

2005). For example, while stress can sometimes enhance, rather than diminish, cognitive 9 

performance when individuals are learning about threatening stimuli (Shors, 2006), the direction 10 

of stress effects varies between the sexes (Luine et al., 2007). The effects of stress can also be 11 

moderated by social and environmental factors; studies have shown that social support and 12 

environmental enrichment can ameliorate some stress effects (Kikusui et al., 2006; Fox et al., 13 

2006). Therefore, the effects of adolescent stress are likely to vary with the age and sex of the 14 

individual, the type of stressor, and social and environmental parameters (Romeo, 2010b). In line 15 

with this prediction, responses to adolescent stress have been reported to vary with these factors 16 

(e.g., Pohl et al., 2007; Toledo-Rodriguez et al., 2012; reviewed by McCormick et al., 2010; 17 

Sachser et al., 2011); for example, exposure of male and female adolescent rats to a chronic 18 

variable stress paradigm resulted in altered sucrose consumption and locomotor activity in adult 19 

females, with no effects in males (Bourke and Neigh, 2011). 20 

 21 

ii) Birds  22 

The majority of avian studies on early stress have focussed on pre- and post-natal manipulations, 23 

or observations, of stress and have tracked the short and long-term effects on behaviour, brain 24 

and physiology. One benefit of studying early development in birds, rather than mammals, 25 
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though, is that hormone levels in the egg can be manipulated independently of any influences on 1 

other maternal physiological systems (Henriksen et al., 2011). Some bird species also have the 2 

advantage of being easier to study in the wild than are small, nocturnal mammals, allowing for 3 

better integration of results from field and laboratory studies. Many studies of early stress have 4 

focused on relatively short periods within post-natal development, typically 1-3 weeks post-5 

hatching, and the timing of these manipulations tends to finish prior to nutritional independence 6 

in altricial birds and pre-puberty in precocial ones (Spencer et al., 2003; Buchanan et al., 2004; 7 

Groothuis et al., 2005; Spencer and Verhulst, 2007; Wada, 2008). Whilst these studies are pre-8 

adolescence, they provide a useful framework from which we can understand the potential long-9 

term effects of stress during later development.  10 

Studies of altricial species, such as the zebra finch and Western scrub jay (Aphelocoma 11 

californica), have shown that exposure to a short period of developmental stress can have several 12 

effects that manifest later in life, specifically during late adolescence and early adulthood, 13 

including elevated and prolonged CORT secretion in response to a standardised stressor, reduced 14 

competitive ability, reduced neophobia, and cognitive deficits (Pravosudov and Kitasysky, 2006; 15 

Spencer and Verhulst, 2007; 2008; Spencer et al., 2009). Further early stressed birds also exhibit 16 

increased mortality after breeding (Monaghan et al., 2012). Similar responses have also been 17 

seen in semi-precocial and precocial species, with early developmental stress causing reduced 18 

spatial and associative learning and increased fear responses (e.g., black-legged kittiwake, Rissa 19 

tridactyla: Kitaysky et al., 2003). Thus, exposure to stress prior to sexual maturation has been 20 

shown to have profound effects on development of the HPA axis, behaviour and life history in 21 

birds. However, if adolescence is defined as the period of life that includes attainment of sexual 22 

maturity, few bird studies have investigated the long-term effects of stress exposure during only 23 

this specific period of life; these studies are reviewed in the rest of this section. 24 
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Altered physiological responses to stress in later life could be due to a range of changes 1 

in the HPA axis; in mammals, prolonged responses have been linked to a reduction in the density 2 

of mineralocorticoid and glucocorticoid receptors, which reduces the negative feedback 3 

capability of the entire system. Indirect evidence in birds suggests that this may also be the case 4 

(Hodgson et al., 2007). Adult zebra finches from an F3 population selected for elevated CORT 5 

secretion in response to capture and restraint (Evans et al., 2006) exhibited reduced MR mRNA 6 

expression in the hippocampus, a brain area known to be actively involved in the negative 7 

feedback of the HPA axis in both birds and mammals (Hodgson et al., 2007). Interestingly, these 8 

birds were selected based on their CORT response during early adolescence (around 8 weeks of 9 

age, sexual maturity around 14 weeks). Whilst it is tempting to suggest that this study may 10 

provide a link between adolescent stress and later effects on the HPA axis, stress responses were 11 

not measured prior to adolescence and hence we can only speculate as to the relevance of this 12 

work. Other selection studies can also provide useful data on the long-term effects of elevated 13 

stress. A range of selection studies in the Japanese quail have shown that low CORT secretion 14 

following a standardised stressor during development correlates with accelerated puberty, 15 

enhanced T maze performance, increased sociality, damped CORT secretion in later life, reduced 16 

fearfulness and increased sexual behaviour (Satterlee et al., 2002; Marin et al., 2002; Martin and 17 

Satterlee, 2003; 2004). This work highlights the interaction between HPA activity and HPG 18 

functioning, as well as the potential programming of fear-related and social behaviour. 19 

A few studies have experimentally manipulated stress during the adolescent period in 20 

birds, although to date there are no direct manipulations of CORT itself. It is well established 21 

that chronic stress can have deleterious effects on avian memory systems in the short term (Joels 22 

et al., 2006; Linqvist and Jensen, 2009). In a study using juvenile chickens exposed to 10 weeks 23 

of unpredictable light:dark cycles, Linqvist and colleagues (2007) showed that there can be long-24 

term disruptions to spatial memory in later life. Housing conditions during adolescence can also 25 
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significantly alter later responses to stress: chickens individually housed in battery cages exhibit 1 

raised basal CORT levels and elevated adrenocortical activity in response to acute stress in later 2 

life, compared to animals housed in social groups (Heiblum et al., 2000). In addition, stress 3 

induced increases in testosterone concentrations were also higher in the battery housed group, 4 

suggesting not only altered HPA activity, but a change in the interaction between HPA and HPG 5 

responsiveness. These results could have implications for social behaviour, aggression and 6 

ultimately reproductive performance. A large literature on bird song has shown that the avian 7 

brain exhibits a sensitive period of development during adolescent life (Catchpole and Slater, 8 

2008); for example, birds raised in social isolation between nutritional independence and sexual 9 

maturity display altered non-species specific song signals in later life coupled with changes in 10 

the volume of brain nuclei important in learning and producing song, such as the HVC and RA 11 

(robust nucleus of the arcopallium) (Spencer et al., 2007; Catchpole and Slater, 2008).  Thus, 12 

adolescent stress exposure could impact upon courtship and mate selection. 13 

Finally, another manipulation of housing conditions during adolescence in chickens has 14 

provided an insight into the importance of this life stage in mediating the serotonin system 15 

(Patzke et al., 2009). Birds were housed socially in either battery cages, litter pens or under a free 16 

range system from puberty to sexual maturity. In adulthood, free range hens developed larger 17 

cells in the dorsomedial hippocampus and exhibited greater asymmetry in dopaminerigic fibre 18 

density in the hippocampus; this is undoubtedly related to the differences in spatial complexity 19 

between the housing treatments, but could also impact on feedback mechanisms within the HPA 20 

(Hodgson et al., 2007). In addition, serotonergic innervation was altered in the Neostriatum 21 

caudolaterale (NCL) (mammalian homologue of the pre-frontal cortex and associated with 22 

behavioural flexibility; Kroner and Gunturkun, 1999), with free range hens exhibiting higher 23 

serotonin (5-HT) cell density (Patzke et al., 2009). Chickens given injections of a 5-HT agonist 24 

show immediate reductions in fear-related behaviour and neophobia (Dennis and Cheng, 2010), 25 
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and another study suggests that the ability to cope in unpredictable or stressful environments is 1 

linked to the density of 5-HT receptor 1A (Koolhaas et al., 2007). These combined results 2 

suggest that social experience during adolescence can alter stress responses in later life in birds, 3 

significantly reducing fear-related behaviour and potentially sociality. Unfortunately, Patzke and 4 

colleagues (2009) did not quantify the effects of their housing conditions on HPA activity during 5 

the manipulation and, therefore, we cannot relate CORT levels directly to the neural changes 6 

seen later. 7 

 8 

Conclusions 9 

The aim of this review was to bring together research on the effects of adolescent stress on 10 

behavioural and brain development in mammals and birds. Relevant data on these two 11 

taxonomic groups have tended to form distinct literatures, with mammalian studies being 12 

published in physiology and neuroendocrinology journals and bird studies being published in 13 

general endocrinology and behavioural ecology journals. By comparing the development of the 14 

HPG and HPA axis in these two groups, we have shown that the underlying neuroendocrine 15 

systems are strongly conserved and the developmental time courses are somewhat similar. A 16 

distinction between altricial and precocial species arises in both taxonomic groups, when 17 

comparing whether the prenatal sensitive period to steroid hormone exposure extends into the 18 

early postnatal period. We also presented evidence that the HPG and HPA axes are characterised 19 

by numerous interactions throughout the lifespan, suggesting that adolescent stress will impact 20 

upon the developing HPG axis and sexual differentiation of the brain and behaviour. Sex 21 

differences in the effects of adolescent stress could also involve interactions between the HPA 22 

and HPG axes.  23 

 Studies of adolescent stress have shown that the brain and neuroendocrine systems are 24 

sensitive to adrenal hormones during this stage of life in both mammals and birds, although the 25 
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literature on birds is more limited. Exposure to stress during adolescence appears to impact upon 1 

numerous brain areas and to influence several neurotransmitter systems, including the 2 

serotonergic and dopaminergic systems. By exhibiting sensitivity to steroid hormones during 3 

early periods of development, organisms can potentially gain information about the state of the 4 

environment, allowing the neural and endocrine systems to be ‘programmed’ to provide adaptive 5 

matches with the external environment. However, alternatives perspectives on development have 6 

been proposed (Sih, 2011), including the idea that organisms continually engage in complex 7 

interactions with the external environment (Laland et al., 2008). Such interactions provide the 8 

opportunity for an organism to influence later stages of its own development, for example by 9 

engaging in activities that lead to stress exposure, and steroid hormones are likely to play a key 10 

role in these interactions.   11 



 

23 

 

Acknowledgements 1 

We are very grateful to two anonymous reviewers for comments on the manuscript and to Dr 2 

Russell Romeo for the invitation to contribute to this Special Issue. We are also grateful to 3 

Elizabeth Adkins-Regan, Mary Ann Ottinger, Haruka Wada, Donna Toufexis, Mark Wilson and 4 

Russell Romeo for comments on the figures. 5 

 6 

References 7 

Adkins-Regan E, Adelnabi M, Mobarak M, Ottinger MA (1990) Sex steroid levels in developing 8 

and adult male and female zebra finches (Poephila guttata). Gen Comp Endocrinol 78: 93-9 

109. 10 

Adriani W, Laviola G (2000) A unique hormonal and behavioral hyporesponsiveness to both 11 

forced novelty and d-amphetamine in periadolescent mice. Neuropharmacol 39: 334-346. 12 

Ahima RS, Harlan RE (1990) Charting of type II glucocorticoid receptor-like immunoreactivity 13 

in the rat central nervous system. Neurosci 39: 579-604. 14 

Ahmed EI, Zehr JL, Schulz KM, Lorenz BH, DonCarlos LL, Sisk CL (2008) Pubertal hormones 15 

modulate the addition of new cells to sexually dimorphic brain regions. Nat Neurosci 11: 16 

995-997. 17 

Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of 18 

opportunity? Neurosci Biobehav Rev 27: 3-18. 19 

Andersen SL, Teicher MH (2000) Sex differences in dopamine receptors and their relevance to 20 

ADHD. Neurosci Biobehav Rev 24: 137-141. 21 

Andersen SL, Teicher MH (2008) Stress, sensitive periods and maturational events in adolescent 22 

depression. Trends Neurosci 31: 183-191. 23 

Andersen SL, Thompson AT, Rutstein M, Hostetter JC, Teicher MH (2000) Dopamine receptor 24 

pruning in prefrontal cortex during the periadolescent period in rats. Synapse 37: 167-169. 25 



 

24 

 

Arnold AP (2009) The organizational-activational hypothesis as the foundation for a unified 1 

theory of sexual differentiation of all mammalian tissues. Horm Behav 55: 57-578. 2 

Bakker J, Baum MJ (2008) Role of estradiol in female-typical brain and behavioral sexual 3 

differentiation. Front Neuroendocrinol 29: 1-16. 4 

Balthazart J, Arnold AP, Adkins-Regan E (2009) Sexual differentiation of brain and behavior in 5 

birds. In: Hormones, Brain and Behavior (2
nd

 Edition). Ed. DW Pfaff, AP Arnold, SE 6 

Fahrbach, AM Etgen, RT Rubin. Academic Press, USA. Pp 1745-1787. 7 

Bercovitch FB, Clarke AS (1995) Dominance rank, cortisol concentrations, and reproductive 8 

maturation in male rhesus macaques. Physiol Behav 58: 215-221. 9 

Blakemore S-J (2012) Imaging brain development: the adolescent brain. NeuroImage 61: 397-10 

406. 11 

Blas J, Baos R, Bortolotti GR, Marchant TA, Hiraldo F (2006) Age-related variation in the 12 

adrenocortical response to stress in nestling white storks (Ciconia ciconia) supports the 13 

developmental hypothesis. Gen Comp Endocrinol 148: 172–180. 14 

Bourke CH, Neigh GN (2011) Behavioral effects of chronic adolescent stress are sustained and 15 

sexually dimorphic. Horm Behav 60: 112-120. 16 

Bowman LA, MacLusky NJ, Sarmiento Y, Frankfurt M, Gordon M, Luine VN (2004) Sexually 17 

dimorphic effects of prenatal stress on cognition, hormonal responses, and central 18 

neurotransmitters. Endocrinol 145: 3778-3787. 19 

Brand T, Slob AK (1988) Peripubertal castration of male rats, adult open field ambulation and 20 

partner preference behavior. Behav Brain Res 30: 111-117. 21 

Brenhouse HC, Andersen SL (2011) Developmental trajectories during adolescence in males and 22 

females: a cross-species understanding of underlying brain changes. Neurosci Biobehav Rev 23 

35: 1687-1703. 24 



 

25 

 

Brown GR, Dixson AF (1999) Investigation of the role of postnatal testosterone in the 1 

expression of sex differences in behavior in infant rhesus macaques (Macaca mulatta). 2 

Horm Behav 35: 186-194. 3 

Brown GR, Nevison CM, Fraser HM, Dixson AF (1999) Manipulation of postnatal testosterone 4 

affects phallic and clitoral development in infant rhesus monkeys. Int J Androl 22: 119-128. 5 

Buchanan KL, Leitner S, Spencer KA, Goldsmith AR, Catchpole, CK (2004) Developmental 6 

stress selectively affects brain nuclei HVC in the zebra finch. Proc R Soc Lond B 271: 2381-7 

2386. 8 

Burgess LH, Handa RJ (1992) Chronic estrogen-induced alterations in adrenocorticotropin and 9 

corticosterone secretion, and glucocorticoid receptor-mediated functions in female rats. 10 

Endocrinol 131: 1261-1269. 11 

Calisi RM, Rizzo NO, Bentley GE (2008) Seasonal differences in hypothalamic EGR-1 and 12 

GnIH expression following capture-handling stress in house sparrows (Passer domesticus). 13 

Gen Comp Endocrinol 157: 283–287. 14 

Catchpole CK, Slater PJB (2008) Bird Song: Biological Themes and Variations, 2
nd

 Ed. 15 

Cambridge University Press.  16 

Charil A, Laplante DP, Vaillancourt C, King S (2010) Prenatal stress and brain development. 17 

Brain Res Rev 65: 56-79. 18 

Chichinadze K, Chichinadze N (2008) Stress-induced increase of testosterone: contributions of 19 

social status and sympathetic reactivity. Physiol Behav 94: 595–603. 20 

Chellakooty M, Schmidt IM, Haavisto AM, Boisen KA, Damgaard IN, Mau C, Petersen JH, Juul 21 

A, Skakkebaek NE, Main KM (2003) Inhibin A, inhibin B, follicle-stimulating hormone, 22 

luteinizing hormone, estradiol, and sex hormone-binding globulin levels in 473 healthy 23 

infant girls. J Clin Endocrinol Metab 88: 3515-3520. 24 



 

26 

 

Cooke B, Hegstrom CD, Villeneuve LS, Breedlove SM (1998) Sexual differentiation of the 1 

vertebrate brain: principles and mechanisms. Front Neuroendocrinol 19: 323-362. 2 

Cooke BM, Woolley CS (2009) Effects of prepubertal gonadectomy on a male-typical behavior 3 

and enxitatory synaptic transmission in the amygdala. Dev Neurobiol 69: 141-152. 4 

Corbier P, Kerdelhue B, Picon R, Roffi J (1978) Changes in testicular weight and serum 5 

gonadotrophin and testosterone levels before, during, and after birth in the perinatal rat. 6 

Endocrinol 103: 1985-1999. 7 

Crews D, Sanderson N, Dias BG (2009) Hormones, brain, and behavior in reptiles. In: 8 

Hormones, Brain and Behavior (2
nd

 Ed). Ed. DW Pfaff, AP Arnold, SE Fahrbach, AM 9 

Etgen, RT Rubin. Academic Press, USA. Pp 771-816. 10 

Cyrenne DA, Brown GR (2011) Effects of suppressing gonadal hormones on response to novel 11 

objects in adolescent rats. Horm Behav 60: 625-631. 12 

Dalla C, Antoniou K, Drossopoulou G, Xagoraris M, Kokras N, Skikakis A, Papadopoulou-13 

Daifoti  Z (2005) Chronic mild stress impact: are females more vulnerable? Neurosci 135: 14 

703-714. 15 

De Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M (1998) Brain corticosteroid receptor balance in 16 

health and disease. Endocr Rev 19: 269–301. 17 

Dennis RL, Cheng H (2010) Effects of postnatal serotonin agonism on fear response and 18 

memory. Poultry Sci 89: T7(E-Suppl 1). 19 

Deviche P (1983) Interaction between adrenal function and reproduction in male birds. In: Avian 20 

Endocrinology: Environmental and Ecological Perspectives. Ed. S Mikami et al. Springer-21 

Verlag, Berlin. Pp 243–254.  22 

Deviche PJ, Hurley LL, Fokidis B, Lerbour B, Silverin B, Silverin B, Sabo J, Sharp PJ (2010) 23 

Acute stress rapidly decreases plasma testosterone in a free-ranging male songbird: potential 24 

site of action and mechanism. Gen Comp Endocrinol 169  82–90. 25 



 

27 

 

Delville Y, Melloni Jr RH, Ferris CF (1998) Behavioral and neurobiological consequences of 1 

social subjugation during puberty in golden hamsters. J Neurosci 18: 2667-2672. 2 

Doremus-Fitzwater TL, Varlinskaya EI, Spear LP (2009) Social and non-social anxiety in 3 

adolescent and adult rats after repeated restraint. Physiol Behav 97: 484-494. 4 

DuRant, S. E., Hepp, G. R., Moore, I. T., Hopkins, B. C. and Hopkins, W. A. 2010. Slight 5 

differences in incubation temperature affect early growth and stress endocrinology of wood 6 

duck (Aix sponsa) ducklings. J Exp Biol 213: 45-51. 7 

Evans MR, Roberts ML, Buchanan KL, Goldsmith AR. 2006. Heritability of corticosterone 8 

response and changes in life history traits during selection in the zebra finch. J Evol Biol 19: 9 

343-52. 10 

Evuarherhe O, Leggett J, Waite E, Kershaw Y, Lightman S (2009a) Reversal of the 11 

hypothalamic-pituitary-adrenal response to oestrogens around puberty. J Endocrinol 202: 12 

279-285. 13 

Evuarherhe O, Leggett J, Waite E, Kershaw Y, Atkinson HC, Lightman S. (2009b) 14 

Organizational role for pubertal androgens on adult hypothalamic-pituitary-adrenal 15 

sensitivity to testosterone in the male rat. J Physiol 587: 2977-2985. 16 

Foilb AR, Lui P, Romeo RD (2011) The transformation of hormonal stress responses through 17 

puberty and adolescence. J Endocrinol 210: 391-398. 18 

Fox C, Merali Z, Harrison C (2006) Therapeutic and protective effect of environmental 19 

enrichment against psychogenic and neurogenic stress. Behav Brain Res 175: 1-8. 20 

Freeman BM (1982) Stress non-responsiveness in the newly-hatched fowl. Comp Biochem 21 

Physiol A: Physiol 72: 251-253. 22 

Goel N, Bale TL (2007) Identifying early behavioral and molecular markers of future stress 23 

sensitivity. Endocrinol 148: 4585-4591. 24 



 

28 

 

Gomez F, Houshyar H, Dallman MF (2002) Marked regulatory shifts in gonadal, adrenal, and 1 

metabolic system responses to repeated restraint stress occur within a 3-week period in 2 

pubertal male rats. Endocrinol 143: 2852-2862. 3 

Gomez F, Manalo S, Dallman, MF (2004) Androgen-sensitive change in regulation of restrain-4 

induced andrenocorticotrophin secretion between early and late puberty in male rats. 5 

Endocrinol 145: 59-70. 6 

Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex 7 

difference within the medial preoptic area of the rat brain. Brain Res 148: 333-346. 8 

Groothuis TGG, Müller W, van Engelhardt N, Carere C, Eising C (2005) Maternal hormones as 9 

a tool to adjust offspring phenotype in avian species. Neurosci Biobehav Rev 29: 329-352. 10 

Gruss M, Westphal S, Luley C, Braun K (2006) Endocrine and behavioural plasticity in response 11 

to juvenile stress in the semi-precocial rodent Octodon degus. Psychoneuroendocrinol 31: 12 

361-372. 13 

Gunnar MR, Wewerka S, Frenn K, Long JD, Griggs C (2009) Developmental changes in 14 

hypothalamus-pituitary-adrenal activity over transition to adolescence: normative changes 15 

and associations with puberty. Dev Psychopathol 21: 69-85. 16 

Hebbard PC, King RR, Malsbury CW, Harley CW (2003) Two organizational effects of pubertal 17 

testosterone in male rats: transient social memory and a shift away from long-term 18 

potentiation following a tetanus in hippocampal CA1. Exp Neurol 182: 470-475. 19 

Heiblum R, Arnon E, Gvaryahu G, Robinzon B, Snapir N (2000) Short-term stress increases 20 

testosterone secretion from testes in male domestic fowl. Gen Comp Endocrinol 120, 55–66. 21 

Henriksen R, Rettenbacher S, Groothuis TGG (2011) Prenatal stress in birds: pathways, effects, 22 

function and perspectives. Neurosci Biobehav Rev 35: 1484-1501. 23 

Hodes GE, Shors TJ (2005) Distinctive stress effects on learning during puberty. Horm Behav 24 

48: 163-171. 25 



 

29 

 

Hodgson ZG, Meddle SL, Roberts ML, Buchanan KL, Evans MR, Metzdorf R, Gahr M, Healy 1 

SD. (2007) Spatial ability is impaired and hippocampal mineralocorticoid receptor mRNA 2 

expression reduced in zebra finches (Taeniopygia guttata) selected for acute high 3 

corticosterone response to stress. Proc Roy Soc B 274: 239-245. 4 

Isgor C, Kabbaj M, Akil H, Watson SJ (2004) Delayed effects of chronic variable stress during 5 

peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis 6 

functions in rats. Hippocampus 14: 636-648. 7 

Ito S, Murakami S, Yamanouchi K, Arai Y (1986) Prenatal androgen exposure, preoptic area and 8 

reproductive function in the female rat. Brain Dev 8: 463-468. 9 

Joëls M, Pu Z, Wiegert O, Oitzl MS, Krugersa HJ (2006) Learning under stress: how does it 10 

work? Trends Cogn Sci 10: 152-158. 11 

Johnson MH (2007) Essential Reproduction, 6
th

 Edition. Wiley-Blackwell. 12 

Kikusui T, Winslow JT, Mori Y (2006) Social buffering: relief from stress and anxiety. Phil 13 

Trans R Soc B 361: 2215-2228. 14 

Kiser A, Steemer B, Branchi I, Homberg JR (2012) The reciprocal interaction between serotonin 15 

and social behaviour. Neurosci Biobehav Rev 36: 786–798. 16 

Kitaysky AS, Kitaiskaia EV, Piatt JF, Wingfield JC. 2003. Benefits and costs of increased levels 17 

of corticosterone in seabird chicks. Horm Behav. 43:140-9. 18 

Koolhaas JM, de Boer SF, Buwalda B, van Reenen K (2007) Individual variation in coping with 19 

stress: a multidimensional approach of ultimate and proximate mechanisms. Brain Behav 20 

Evol: 70:218-226. 21 

Kroner S, Gunturkun O 1999. Afferent and efferent connections of the caudolateral neostriatum 22 

in the pigeon (Columba livia): a retro- and anterograde pathway tracing study. J Comp 23 

Neurol 407:228–260. 24 



 

30 

 

Kudielka BM, Kirschbaum C (2005) Sex differences in HPA axis responses to stress: a review. 1 

Biol Psychol 69: 113-132. 2 

Laland KN, Odling-Smee J, Gilbert SF (2008) EvoDevo and niche construction: building 3 

bridges. J Exp Zool Part B: Mol Dev Evol 310B: 549-566. 4 

Lamberts SW, Verleun T, Oosterom R, de Jong F, Hackeng WH (1984) Cortictrophin releasing 5 

factor (ovine) and vasopressin exert a synergistic effect on adrenocorticophin release in man. 6 

J Clin Endocrinol Metab: 58: 298-303. 7 

Laroche J, Gasbarro L, Herman JP, Blaustein JD (2009) Enduring influences of 8 

peripubertal/adolescent stressors on behavioral responses to estradiol and progestereone in 9 

adult female mice. Endocrinol 150: 3717-3725. 10 

Laviola G, Adriani W, Morley-Fletcher S, Terranova ML (2002) Peculiar response of adolescent 11 

mice to acute and chronic stress and to amphetamine: evidence of sex differences. Behav 12 

Brain Res 130: 117-125. 13 

Levine S (1994) The ontogeny of the hypothalamic-pituitary-adrenal axis: the influence of 14 

maternal factors. Anna New York Acad Sci 746: 275–288. 15 

Levine S (2001) Primary social relationships influence the development of the hypothalamic-16 

pituitary-adrenal axis in the rat. Physiol Behav 73: 255-260. 17 

Levine S, Hutchon DM, Wiener SG, Rosenfeld P (1991) Time course of the effect of maternal 18 

deprivation on the hypothalamic-pituitary-adrenal axis in the infant rat. Dev Psychobiol 24: 19 

547-558. 20 

Lindqvist C, Kanczak AM, Natt D, Baranowska I, Lindqvist N, Wichman A, Lundeberg J, 21 

Lindberg J, Torjesen P, Jensen P (2007) Transmission of stress-induced learning impairment 22 

and associated brain gene expression from parents to offspring in chickens. PLoS ONE 2: 23 

e364. 24 



 

31 

 

Lindqvist C, Jensen P (2009) Domestication and stress effects on contrafreeloading and spatial 1 

learning performance in red jungle fowl (Gallus gallus) and White Leghorn layers. Behav 2 

Proc 81: 80-84. 3 

Love OP, Bird DM, Shutt LJ (2003) Corticosterone levels during post-natal development in 4 

captive American kestrels (Falco sparverius). Gen Comp Endocrinol 130: 135-141. 5 

Love OP, Williams TD (2008a) Plasticity in the adrenocortical response of a free-living 6 

vertebrate: the role of pre- and post-natal developmental stress. Horm Behav 54: 496-505. 7 

Love OP, Williams TD (2008b) The adaptive value of stress-induced phenotypes: effects of 8 

maternally derived corticosterone on sex-biased investment, cost of reproduction, and 9 

maternal fitness. Am Nat 172: E135-E149. 10 

Lovejoy DA (2005) Neuroendocrinology: an Integrated Approach. Wiley. 11 

Lowry CA, Moore FL (2006) Regulation of behavioral responses by corticotropin-releasing 12 

factor. Gen Comp Endocrinol 146:19-27. 13 

Luine VN, Beck KD, Bowman RE, Frankfurt M, MacLusky NJ (2007) Chronic stress and neural 14 

functioning: accounting for sex and age. J Neuroendocrinol 19: 743-751. 15 

Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on 16 

the brain, behaviour and cognition. Nature Rev Neurosci 10: 434-445. 17 

Mann DR, Akinbami MA, Gould KG, Tanner JM, Wallen K (1993) Neonatal treatment of male 18 

monkeys with a gonadotrophin-releasing hormone agonist alters differentiation of central 19 

nervous system centers that regulate sexual and skeletal development. J Clin Endocrinol 20 

Metab 76: 1319-1324. 21 

Marin RH, Satterlee DG (2004) Cloacal gland and testes development in male Japanese quail 22 

selected for divergent adrenocortical responsiveness. Poult Sci 83: 1028-1034. 23 



 

32 

 

Marin RH, Saterlee DG (2003) Selection for contrasting adrenocortical responsiveness in 1 

Japanese quail (Coturnix japonica) influences sexual behaviour in males. App Anim Behav 2 

Sci 83: 187-199 3 

Marin RH, Saterlee DG, Cadd GG, Jones RB (2002) T-maze behavior and early egg production 4 

in Japanese quail selected for contrasting adrenocortical responsiveness. Poult Sci 81: 981-5 

986 6 

Matthews SG (2002) Early programming of the hypothalamo-pituitary-adrenal axis. Trends 7 

Endocrinol Metab 13: 373-380. 8 

Mays NA, Vleck CM, Dawson J (1991) Plasma luteinizing-hormone, steroidhormones, 9 

behavioral role, and nest stage in cooperatively breeding harris hawks (Parabuteo 10 

unicinctus). Auk 108: 619-637. 11 

McCormack K, Newman TK, Higley JD, Maestripieri D, Sanchez, MM (2009) Serotonin 12 

transporter gene variation, infant abuse, and responsiveness to stress in rhesus macaque 13 

mothers and infants. Horm Behav 55: 538-447.  14 

McCormick CM, Mahoney E (1999) Persistent effects of prenatal, neonatal, or adult treatment 15 

with flutamide on the hypothalamic-pituitary-adrenal stress response of adult male rats. 16 

Horm Behav 35: 90-101. 17 

McCormick CM, Mathews IZ (2007) HPA function in adolescence: role of sex hormones in its 18 

regulation and the enduring consequences of exposure to stressors. Pharm Biochem Behav 19 

86: 220-233. 20 

McCormick CM, Mathews IZ (2010) Adolescent development, hypothalamic-pituitary-adrenal 21 

function, and programming of adult learning and memory. Prog Neuro-Psychopharmacol 22 

Biol Psychiat 34: 756-765. 23 



 

33 

 

McCormick CM, Mathews IZ, Thomas C, Waters P (20100 Investigations of HPA function and 1 

the enduring consequences of stressors in adolescence in animal models. Brain Cogn 72: 73-2 

85. 3 

McCormick CM, Robarts D, Kopeikina K, Kelsey JE (2005) Long-lasting, sex- and age-specific 4 

effects of social stressors on corticosterone responses to restraint and on locomotor 5 

responses to psychostimulants in rats. Horm Behav 48: 64-74. 6 

McCormick CM, Smith C, Mathews IZ (2008) Effects of chronic social stress in adolescence on 7 

anxiety and neuroendocrine response to mild stress in male and female rats. Behav Brain 8 

Res 187: 228-238. 9 

McCormick CM, Thomas CM, Sheridan CS, Nixon F, Flynn JA, Mathews IZ (2012) Social 10 

instability stress in adolescent male rats alters hippocampal neurogenesis and produces 11 

deficits in spatial location memory in adulthood. Hippocampus 22: 1300-1312. 12 

McEwen BS, Eiland L, Hunter RG, Miller MM (2012) Stress and anxiety: structural plasticity 13 

and epigenetic regulation as a consequence of stress. Neuropharmacol 62: 3-12. 14 

McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm 15 

Behav 43: 2-15.  16 

Meethal SV, Atwood CS (2005) The role of hypothalamic-pituitary-gonadal hormones in the 17 

normal structure and functioning of the brain. Cell Mol Life Sci 62: 257-270. 18 

Meijs-Roelofs HMA, Uilenbroek JTJ, de Jong FH, Welschen R (1973) Plasma oestradiol-17β 19 

and its relationship to seum follicle-stimulating hormone in immature female rats. J 20 

Endocrinol 59: 295-304. 21 

Monaghan P, Heidinger BJ, D’Alba LB, Evans NP, Spencer KA (2012) For better or worse: 22 

reduced adult lifespan following early-life stress is transmitted to breeding partners. Proc R 23 

Soc B 279: 709-714. 24 



 

34 

 

Morley-Fletcher S, Rea M, Maccari S, Laviola G (2003) Environmental enrichment during 1 

adolescence reverses the effects of prenatal stress on play behaviour and the HPA axis 2 

reactivity in rats. Europ J Neurosci 18: 3367-3374. 3 

Ni Y, Lu1 L, Chen R, Zhao R (2011) Changes of hypothalamic GnRH-I, POMC and NPY 4 

mRNA Expression and Serum IGF-I and Leptin Concentrations during Maturation of 5 

Shaoxing Ducks (Anas platyrhynchos) Asian-Aust J Anim Sci 24: 1211-1216. 6 

Ojeda SR, Ramírez VD (1972) Plasma levels of LH and FSH in maturing rats: response to 7 

hemigonadectomy. Endocrinol 90: 466-472. 8 

Oldehinkel AJ, Bouma EMC (2011) Sensitivity to the depressogenic effect of stress and HPA-9 

axis reactivity in adolescence: a review of gender differences. Neurosci Biobehav Rev 35: 10 

1757-1770. 11 

Ottinger, MA, Wu, J, Pelican, K 2002. Neuroendocrine regulation of reproduction in birds and 12 

clinical applications of GnRH analogues in birds and mammals. Seminars in Avian and 13 

Exotic Pet Medicine 11: 71-79. 14 

Ottinger, MA, Abdelnabi, MA, 1997. Neuroendocrine systems and avian sexual differentiation.  15 

Am Zoologist 37: 514-523. 16 

Pak TR, Handa RJ (2008) Steroid hormone receptors and sex differences in behavior. In: Sex 17 

Differences in the Brain: from Genes to Behavior. Eds. JB Becker, KJ Berkley, N Geary, E 18 

Hampson, JP Herman, EA Young. Oxford University Press. Pp. 109-138. 19 

Patzke N, Ocklenburg S, van der Staay FJ, Güntürkün O, Manns M (2009) Consequences of 20 

different housing conditions on brain morphology in laying hens. J Chem Neuroanat 37: 21 

141-148. 22 

Paz GF, Winter JSD, Reyes FI, Faiman C (1980) Developmental patterns of testosterone 23 

production by the rat testis. Steroids 36: 675-688. 24 



 

35 

 

Perfito N, Bentley G (2009) Opportunism, photoperiodism, and puberty: Different mechanisms 1 

or variations on a theme? Integr Comp Biol 49: 538-549. 2 

Phoenix CH, Goy RW, Gerall AA, Young WC (1959) Organizing action of prenatally 3 

administered testosterone propionate on the tissues mediating mating behaviour in the 4 

female guinea pig. Endocrinol 65: 369-382. 5 

Pignatelli D, Xiao F, Gouveia AM, Ferreira JG, Vinson GP (2006) Adrenarche in the rat. J 6 

Endocrinol 191: 301-308. 7 

Plant TM (2008) Hypothalamic control of the pituitary-gonadal axis in higher primates: key 8 

advances over the last two decades. J Neuroendocrinol 20: 719-726. 9 

Pohl J, Olmstead MC, Wynne-Edwards KE, Harkness K, Menard JL (2007) Repeated exposure 10 

to stress across the childhood-adolescent period alters rats’ anxiety- and depression-like 11 

behaviors in adulthood: the importance of stressor type and gender. Behav Neurosci 121: 12 

462-474. 13 

Pomili M, Serafini G, Innamorati M, Moller-Leimkulher AM, Guipponi G, Giradi P, Tatarelli R, 14 

Lester D (2010) The hypothalamic-pituitary-adrenal axis and serotonin abnormalities: a 15 

selective overview for the implications of suicide prevention. Eur Arch Psychiatry Clin 16 

Neurosci 260:583–600. 17 

Pravosudov VV, Kitaysky AS (2006) Effects of nutritional restrictions during post-hatching 18 

development on adrenocortical function in western scrub-jays (Aphelocoma californica). 19 

Gen Comp Endocrinol 145: 25-31. 20 

Prove E (1983) Hormonal correlates of behavioral development in male zebra finches. In: 21 

Hormones and behaviour in higher vertebrates (Balthazart J, Prove E, Gilles R, eds), pp 368-22 

374. Berlin: Springer. 23 



 

36 

 

Pryce CR, Palme R, Feldon J (2002) Development of pituitary-adrenal endocrine function in the 1 

marmoset monkey: infant hypercortisolism is the norm. J Clin Endocrinol Metab 87: 691-2 

699. 3 

Resko JA (1970) Androgen secretion by the fetal and neonatal rhesus monkey. Endocrinol 87: 4 

680-687. 5 

Rigaudière N, Pelardy G, Robert A, Delost P (1976) Changes in the concentration of testosterone 6 

and androstenedione in the plasma and testis of the guinea-pig from birth to death. J Reprod 7 

Fert 48: 291-300.  8 

Rivier C, Rivest S (1991) Effects of stress on the activity of the hypothalamic-pituitary-gonadal 9 

axis: perpheral and central mechanisms. Biol Reprod 45: 523-532. 10 

Romeo RD (2003) Puberty: a period of both organizational and activational effects of steroid 11 

hormones on neurobehavioural development. J. Neuroendocrinol. 15: 1185-1192. 12 

Romeo RD (2010a) Adolescence: a central event in shaping stress reactivity. Dev Psychobiol 52: 13 

244-253. 14 

Romeo RD (2010b) Pubertal maturation and programming of hypothalamic-pituitary-adrenal 15 

reactivity. Front Neuroendocrinol 31: 232-240. 16 

Romeo RD, Bellani R, Karatsoreos IN, Chhua N, Vernov M, Conrad CD, McEwen BS (2006) 17 

Stress history and pubertal development interact to shape hypothalamic-pituitary-adrenal 18 

axis plasticity. Endocrinol 147: 1664-1674. 19 

Romeo RD, Lee SJ, Chhua N, McPherson CR, McEwen BS (2004) Testosterone cannot activate 20 

an adult-like stress response in prepubertal male rats. Neuroendocrinol 79: 125-132. 21 

Romeo RD, Richardson HN, Sisk CL (2002) Puberty and the maturation of the male brain and 22 

sexual behavior: recasting a behavioral potential. Neurosci Biobehav Rev 26: 381-391. 23 

Romeo RD, Tang AC, Sullivan RM (2009) Early-life experiences: enduring behavioral, 24 

neurological, and endocrinological consequences. In: Hormones, Brain and Behavior (2
nd

 25 



 

37 

 

Ed). Edited by D W Pfaff, AP Arnold, SE Fahrbach, AM Etgen, RT Rubin. Academic Press, 1 

USA. Pp. 1975-2004. 2 

Romero LM, Sapolsky RM (1996)  Patterns of ACTH secretagog secretion in response to 3 

psychological stimuli. J Neuroendocrinol : 8: 243-258. 4 

Rosenfeld P, Gutierrez YA, Martin AM, Mallett HA, Alleva E, Levine S (1991) Maternal 5 

regulation of the adrenocortical response in preweanling rats. Physiol Behav 50: 661-671. 6 

Sachser N, Hennessy MB, Kaiser S (2011) Adaptive modulation of behavioural profiles by 7 

social stress during early phases of life and adolescence. Neurosci Biobehav Rev 35: 1518-8 

1533. 9 

Sánchez MM, McCormack K, Grand AP, Fulks R, Graff A, Maestripieri D. (2010) Effects of sex 10 

and early maternal abuse on adrenocorticotropin hormone and cortisol responses to the 11 

corticotropin-releasing hormone challenge during the first 3 years of life in group-living 12 

rhesus macaques. Dev Psychopathol 22: 45-53. 13 

Sanz A, Carrero P, Pernía O, Garcia-Segura LM (2008) Pubertal maturation modifies the 14 

regulation of insulin-like growth factor-I receptor signaling by estradiol in the rat prefrontal 15 

cortex. Develop Neurobiol 68: 1018-1028. 16 

Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress 17 

responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr 18 

Rev 21: 55-89. 19 

Satterlee DG, Marin RH, Jones RB (2002) Selection of Japanese quail for reduced adrenocortical 20 

responsiveness accelerates puberty in males. Poult Sci 81: 1071–1076. 21 

Sims CG, Holberton RL (2000) Development of the corticosterone stress response in young 22 

Northern mockingbirds (Mimus polyglottos). Gen Comp Endocrinol 119: 193-201. 23 



 

38 

 

Schmidt M, Enthoven L, van der Mark M, Levine S, de Kloet ER, Oitzl MS (2003) The 1 

postnatal development of the hypothalamic-pituitary-adrenal axis in the mouse. Int J Devl 2 

Neurosci 21: 125-132. 3 

Schmidt MV, Sterlemann V, Ganea K, Liebl C, Alam S, Harbich D, Greetfeld M, Uhr M, 4 

Holsboer F, Müller MB (2007) Persistent neuroendocrine and behavioral effects of a novel, 5 

etiologically relevant mouse paradigm for chronic social stress during adolescence. 6 

Psychoneuroendocrinol 32: 417-429. 7 

Schulz KM, Molenda-Figueira HA, Sisk CL (2009) Back to the future: the organizational-8 

activational hypothesis adapted to puberty and adolescence. Horm Behav 55: 597-604. 9 

Schwabl H (1999) Developmental changes and among-sibling variation of corticosterone levels 10 

in an altricial avian species. Gen Comp Endocrinol 116: 403–408. 11 

Seale JV, Wood SA, Atkinson HC, Harbuz MS, Lightman SL (2005a) Postnatal masculinization 12 

alters the HPA axis phenotype in the adult female rat. J Physiol 563: 265-274. 13 

Seale JV, Wood SA, Atkinson HC, Lightman SL, Harbuz MS (2005b) Organizational role for 14 

testosterone and estrogen on adult hypothalamic-pituitary-adrenal axis activity in the male 15 

rat. Endocrinol 146: 1973-1982. 16 

Sedqyar M, Weng Q, Watanabe G, Kandiel MM, Takahashi S, Suzuki AK, Taneda S, Taya K 17 

(2008) Secretion of inhibin in male Japanese quail (Coturnix japonica) from one week of 18 

age to sexual maturity. J Reprod Dev 54: 100-106. 19 

Seraphin SB, Whitten PL, Reynolds V (2008) The influence of age on fecal steroid hormone 20 

levels in male Budongo forest chimpanzees (Pan troglodytes schweinfurthii). Am J Primatol 21 

70: 661-669. 22 

Shors TJ (2006) Stressful experiences and learning across the lifespan. Annu Rev Psychol 57: 23 

55-85. 24 



 

39 

 

Sih A (2011) Effects of early stess on behavioral syndromes: an integrated adaptive perspective. 1 

Neurosci Biobehav Rev 35: 1452-1565. 2 

Sisk CL, Foster DL (2004) The neural basis of puberty and adolescence. Nat Neurosci 7: 1040-3 

1047. 4 

Sisk CL, Zehr JL (2005) Pubertal hormones organize the adolescent brain and behavior. Front 5 

Neuroendocrinol 26: 163-174. 6 

Solomon MP, J P Herman JP (2009) Sex dDifferences in HPA-axis regulation: the role of 7 

gonadal hormones. In: Hormones, Brain and Behavior. Ed. D. W. Pfaff, A. P. Arnold, S. E. 8 

Fahrbach, A. M. Etgen and R. T. Rubin. Academic Press, USA. Pp. 2291-2306. 9 

Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci 10 

Biobehav Rev 24: 417-463. 11 

Spencer KA, Buchanan KL, Goldsmith AR, Catchpole CK (2003) Song as an honest signal of 12 

developmental stress in the zebra finch (Taeniopygia guttata). Horm Behav 44, 132-139. 13 

Spencer KA, Evans NP, Monaghan P (2009) Postnatal Stress: A novel model of glucocorticoid 14 

programming of the hypothalamic-pituitary-adrenal axis. Endocrinol 150: 1931–1934. 15 

Spencer KA, Harris S, Baker P, Cuthill IC (2007) Song development in birds: the effects of early 16 

conditions and implications for rehabilitation protocols. Anim Welfare 16: 1-22.  17 

Spencer KA, Verhulst S (2007) Delayed behavioral effects of developmental stress in birds. 18 

Horm Behav 51: 273-280.  19 

Spencer KA, Verhulst S (2008) Post-natal exposure to corticosterone affects standard metabolic 20 

rate in the zebra finch (Taeniopygia guttata). Gen Comp Endocrinol 159: 250-256. 21 

Sterlemann V, Rammes G, Wolf M, Liebl C, Ganea K, Müller MB, Schmidt MV (2009) Chronic 22 

social stress during adolescence induces cognitive impairment in aged mice. Hippocampus 23 

20: 540-549. 24 



 

40 

 

Stroud LR, Foster E, Papandonatos GD, Handweger K, Granger DA, Kivlighan KT, Niaura R 1 

(2009) Stress repsonse and the adolescent transition: performance versus peer rejection 2 

stressors. Dev Psychopathol 21: 47-68. 3 

Sullivan RM, Gratton A (2002) Prefrontal cortical regulation of hypothalamic–pituitary–adrenal 4 

function in the rat and implications for psychopathology: side matters. 5 

Psychoneuroendocrinol 27: 99–114. 6 

Tilbrook AJ, Turner AI, Clarke IJ (2000) Effects of stress on reproduction in non-rodent 7 

mammals: the role of glucocorticoids and sex differences. Rev Reprod 5: 105-113. 8 

Tirelli E, Laviola G, Adriani W (2003) Ontogenesis of behavioral sensitization and conditioned 9 

place preference induced by psychostimulants in laboratory rodents. Neurosci Biobehav Rev 10 

27: 163-178. 11 

Toledo-Rodriguez M, Pitio A, Paus T, Sandi C (2012) Stress during puberty boosts metabolic 12 

activation associated with fear-extinction learning in hippocampus, basal amygdala and 13 

cingulate cortex. Neurobiol Learn Mem 98: 93-101. 14 

Toth E, Gersner R, Wilf-Yarkoni A, Raizel H, Dar DE, Richter-Levin G, Levit O, Zangen A 15 

(2008) Age-dependent effects of chronic stress on brain plasticity and depressive behavior. J 16 

Neurochem 107: 522-532. 17 

Trainor BC (2011) Stress responses and the mesolimbic dopamine system: social contexts and 18 

sex differences. Horm Behav 60: 457-469. 19 

Ubuka T, Ukena K, Sharp PJ, Bentley GE, Tsutsui K (2006) Gonadotropin-inhibitory hormone 20 

inhibits gonadal development and maintenance by decreasing gonadotropin synthesis and 21 

release. Endocrinol 147: 1187–1194. 22 

Vallée M, Mayo W, Dellu F, Le Moal M, Simon H, Maccari S (1997) Prenatal stress induces 23 

high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with 24 

stress-induced corticosterone secretion. J Neurosci 17: 2626-2636. 25 



 

41 

 

Van Hout AJM, Eens M, Darras VM, Pinxten R (2010) General and plasma testosterone in a 1 

free-ranging male songbird: Potential site of action and mechanism. Gen Comp Endocrinol 2 

168: 505–510. 3 

Viau V (2002) Functional cross-talk between the hypothalamic-pituitary-gonadal and –adrenal 4 

axes. J Neuroendocrinol 14: 506-513. 5 

Viau V, Bingham B, Davis J, Lee P, Wong M (2005) Gender and puberty interact on the stress-6 

induced activation of parvocellular neurosecretory neurons and corticotropin-releasing 7 

hormone messenger ribonucleic acid expression in the rat. Endocrinol 146: 137-146. 8 

Wada H (2008) Glucocorticoids: mediators of vertebrate ontogenetic transitions. Gen Comp 9 

Endocrinol 156: 441-453. 10 

Wada H, Hahn TP, Breuner CW (2007) Development of stress reactivity in whitecrowned 11 

sparrow nestlings: total corticosterone response increases with age, while free corticosterone 12 

response remains low. Gen Comp Endocrinol 150: 405–413.  13 

Wada H, Salvante KG, Stables C (2008) Adrenocortical responses in zebra finches (Taeniopygia 14 

guttata): individual variation, repeatability, and relationship to phenotypic quality. Horm 15 

Behav 53: 472-480. 16 

Wada H, Salvante KG, Wagner E, Williams TD, Breuner CW (2009) Ontogeny and individual 17 

variation in the adrenocortical response of zebra finch (Taeniopygia guttata) nestlings. 18 

Physiol Biochem Zool 82: 325–331. 19 

Walker C-D, McCormick CM (2009) Development of the stress axis: maternal and 20 

environmental influences. In: Hormones, Brain and Behavior (2
nd

 Ed). Edited by D W Pfaff, 21 

AP Arnold, SE Fahrbach, AM Etgen, RT Rubin. Academic Press, USA. Pp. 1931-1973. 22 

Wallen K (2009) The organizational hypothesis: reflections on the 50
th

 anniversary of the 23 

publication of Phoenix, Goy, Gerall, and Young (1959). Horm Behav 55: 561-565. 24 



 

42 

 

Wallen K, Baum MJ (2002) Masculinization and defeminization in altricial and precocial 1 

mammals: comparative aspects of steroid hormone action. In: Hormones, Brain and 2 

Behavior (1
st
 Ed). Ed DW Pfaff, A Arnold, A Etgen, S Fahrbach, R Rubin. Pp. 385-423. 3 

Wallen K, Maestripieri D, Mann DR (1995) Effects of neonatal testicular suppression with a 4 

GnRH antagonist on social behavior in group-living juvenile rhesus monkeys. Horm Behav 5 

29: 322-337. 6 

Ward IL, Ward OB, Affuso JD, Long WD, French JA, Hendricks SE (2003) Fetal testosterone 7 

surge: specific modulations induced in male rats by maternal stress and/or alcohol 8 

consumption. Horm Behav 43: 531-539. 9 

Weaver ICG, Meaney MJ, Szyf M (2006) Maternal care effects on the hippocampal 10 

transcriptome and anxiety-mediated behaviors in the offspring that are reversible in 11 

adulthood. PNAS 103: 3480-3485.  12 

Weinstock M (2007) Gender differences in the effects of prenatal stress on brain development 13 

and behaviour. Neurochem Res 32: 1730-1740. 14 

Weinstock M (2008) The long-term behavioural consequences of prenatal stress. Neurosci 15 

Biobehav Rev 32: 1073-1086. 16 

Weisz J, Ward IL (1980) Plasma testosterone and progesterone titers of pregnant rats, their male 17 

and female fetuses, and neonatal offspring. Endocrinol 106: 306-316. 18 

Wilkin MM, Water P, McCormick CM, Menard JL (2012) Intermittent physical stress during 19 

early- and mid-adolescence differentially alters rats’ anxiety- and depression-like behaviors 20 

in adulthood. Behav Neurosci 126: 344-360. 21 

Williams TD, Dawson A, Nicholls TJ, Goldsmith AR (1987) Reproductive endocrinology of 22 

free-living nestling and juvenile starlings, Sturnus vulgaris—an altricial species. J Zool 23 

212:619–28. 24 



 

43 

 

Wingfield JC (2005) Historical contributions of research on birds to behavioral 1 

neuroendocrinology. Horm Behav 48: 395-402. 2 

Wommack JC, Delville Y (2002) Chronic social stress during puberty enhances tyrosine 3 

hydroxylase immunoreactivity within the limbic system in golden hamsters. Brain Res 933: 4 

139-43. 5 

Wood GE, Shors TJ (1998) Stress facilitates classical conditioning in males, but impairs 6 

classical conditioning in females through activational effects of ovarian hormones. PNAS 7 

95: 4066-4071. 8 

Wright CL, Schwarz JS, Dean SL, McCarthy MM (2010) Cellular mechanisms of estradiol-9 

mediated sexual differentiation of the brain. Trends Endocrinol Metab 21: 553-561. 10 

Wright LD, Hébert KE, Perrot-Sinal TS (2008) Periadolescent stress exposure exerts long-term 11 

effects on adult stress responding and expression of prefrontal dopamine receptors in male 12 

and female rats. Psychoneuroendocrinol 33: 130-142. 13 

Yim IS, Quas JA, Cahill L, Hayakawa CM (2010) Children’s and adults’ salivary cortisol 14 

responses to an identical psychosocial laboratory stressor. Psychoneuroendocrinol 35: 241-15 

248. 16 

Young EA, Korszum A, Figueiredo HF, Banks-Solomon M, Herman JP (2008) Sex differences 17 

in HPA axis regulation. In: Sex Differences in the Brain: from Genes to Behavior. Eds. JB 18 

Becker, KJ Berkley, N Geary, E Hampson, JP Herman, EA Young. Oxford University Press. 19 

Pp. 95-105. 20 

Zapatero-Caballero H, Sanchez-Franco F, Fernandez-Mendez C, García-San Frutos M, Botella-21 

Cubells LM, Fernandez-Vazquez G (2004) Gonadotropin-releasing hormone receptor gene 22 

expression during pubertal development of female rats. Biol Reprod 70: 348-355. 23 

  24 



 

44 

 

Figure legends 1 

 2 

Figure 1 Developmental timecourse (postnatal day, pnd; month, mth) of circulating testosterone 3 

(T) levels in males in: a) Norway rats (an altricial mammal) (based on Paz et al., 1980; Zapatero-4 

Cabellero et al., 2003; the postnatal T surge immediately after birth is not depicted), b) zebra 5 

finches (an altricial bird) (based on Prove, 1983; Adkins-Regan et al., 1990), c) rhesus macaques 6 

(a semi-precocial mammal) (based on Mann et al., 1993; Brown et al., 1999; the postnatal T 7 

surge immediately after birth is not depicted), and d) quail (a precocial bird) (based on Sedqyar 8 

et al., 2008). 9 

 10 

 11 
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Figure 2 Developmental timecourse (postnatal day, pnd; month, mth) of circulating levels of 1 

CORT (corticosterone or cortisol) (solid lines) and stress-induced CORT responses (depicted in 2 

the small graphs as either exaggerated, average or low CORT responses; the shapes of the small 3 

graphs are not exact representations of CORT responses) in: a) Norway rats (an altricial 4 

mammal) (based on Romeo et al., 2004; Pignatelli et al., 2006; Foilb et al., 2011), b) zebra 5 

finches (an altricial bird) (based on Wada et al., 2008, 2009; Spencer et al., 2009), c) rhesus 6 

macaques (a semi-precocial mammal) (based on Bercovitch and Clarke, 1995; Sanchez et al., 7 

2010), and d) quail (a precocial bird) (based on Marasco et al., unpublished data; Spencer, 8 

unpublished data). 9 
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