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Abstract. 

Regeneration of lost or damaged appendages is a widespread and ecologically important 

ability in the animal kingdom, and also of great significance to developing regenerative 

medicine. The operculum of serpulid polychaetes is one among the many diverse 

appendages found in the lophotrochozoan superphylum, a clade hitherto understudied with 

respect to the mechanisms of appendage regeneration. In this study, we establish the 

normal time course of opercular regeneration in the serpulid Pomatoceros lamarckii and 

describe cell proliferation patterns in the regenerating opercular filament. The P. lamarckii 

operculum regenerates through a rapid and consistent series of morphogenetic events. 

Based on 5-bromo-2'-deoxyuridine (BrdU) labelling and anti-phosphohistone H3 

immunohistochemistry, opercular regeneration appears to be a mixture of an early 

morphallactic stage and a later phase characterised by widespread proliferative activity 

within the opercular filament. Tracking residual pigmentation suggests that the distal part 

of the stump gives rise to the most distal structures of the operculum via morphallactic 

remodelling, whereas more proximal structures are derived from the proximal stump. Our 

work underscores the diversity of regenerative strategies employed by animals and 

introduces P. lamarckii as an emerging model of appendage regeneration. 
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Introduction. 

 

Appendages may be defined as outgrowths from an animal's body with their own axes of 

polarity distinct from the main body axis or axes. Appendages include the limbs of many 

vertebrates and arthropods, the various parapodia, palps and cirri of annelids, or the 

tentacles of cnidarians. Appendages contribute to the great morphological and ecological 

diversity of animals, and are often capable of some degree of regeneration when lost, thus 

providing useful and often amenable systems with which to investigate the mechanisms of 

regeneration.  

 

To date, the mechanisms of appendage regeneration have been best studied in vertebrates, 

especially the limbs of urodele amphibians (reviewed in Brockes, '97; Nye et al., 2003; 

Stocum and Cameron, 2011). Among non-vertebrate deuterostomes, cell proliferation and 

morphogenesis have been described in arm regeneration in several echinoderms (Candia 

Carnevali et al., '95, '97; Moss et al., '98; Thorndyke et al., 2001; Biressi et al., 2010; Fan et 

al., 2011), and investigations into the molecular mechanisms of arm regeneration also exist 

(Thorndyke et al., 2001; Patruno et al., 2002; Bannister et al., 2005; Burns et al., 2011). 

However, whether the arms of echinoderms are true appendages (Hotchkiss, '98; Peterson 

et al., 2000), or instead are elements of the main body axis/axes is a contentious issue 

(Morris, 2012). It could be argued instead that the tube feet of echinoderms are the 

appendages in this phylum, in which case less is known about echinoderm appendage 

regeneration. 
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The study of leg regeneration in arthropods is a significant contributor to classical 

developmental biology, with a wealth of 20th century work concerning positional 

information, polarity, intercalation, and cell behaviour (Bohn, '70a, b; French et al., 1976; 

French, '78, '80, '82; Anderson and French, '85). More recently, arthropod leg regeneration 

has become the subject of renewed interest, including studies of molecular mechanisms 

(Nakamura et al., 2008; Bando et al., 2013; Shah et al., 2011; Mitten et al., 2012; Lee et al., 

2013). In addition, imaginal discs in the holometabolous insect Drosophila melanogaster 

provide a study system that takes advantage of the sophisticated tools available in this 

species (see Bergantiños et al., 2010; Repiso et al., 2011; Worley et al., 2012 for reviews). 

 

Vertebrates, echinoderms and arthropods span two of the three great bilaterian 

“superphyla”: the Deuterostomia and the Ecdysozoa. Members of the third “superphylum”, 

the Lophotrochozoa, also sport a great variety of appendages, many of which are capable of 

regeneration. These include the arms, siphons and sensory tentacles of molluscs (Lange, 

‘20; Pekkarinen, ‘84; Chase and Kamil, ‘83; Bobkova et al., 2004), and the diverse anterior 

appendages of annelid worms (Bubel et al., ‘80, ‘85; Lindsay et al., 2007; Dualan and 

Williams, 2011;). Such appendages play an important ecological role. Sub-lethal predation 

on regenerative body parts such as bivalve siphons is a significant contributor to benthic 

productivity (reviewed in Lindsay, 2010). Also, regeneration may place a burden on the 

animal through, for example, the cost of re-growing the missing structure, impairment of 

activities such as feeding and reproduction during regeneration, and increasing predation 

risk (Maginnis, 2006). Ecophysiological aspects of appendage regeneration have been 

studied in a number of lophotrochozoan species (de Vlas, '85; Tomiyama and Ito, 2006; 
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Berke et al., 2009; Nuñez et al., 2010, Dualan and Williams, 2011; Hoso, 2012). However, the 

mechanisms underlying lophotrochozoan appendage regeneration have thus far received 

much less attention. 

 

Planarians, which include some of the best regenerators in the Bilateria and undoubtedly 

the best-studied lophotrochozoan regeneration models, possess a pharynx that may be 

considered an appendage under our definition. However, relatively few studies address 

pharynx regeneration outside the context of a more general regeneration process (for a 

review of pharynx regeneration, see Kreshchenko, 2009). 

 

Traditionally, regenerative processes have been classified in two broad categories defined 

by T. H. Morgan (Morgan, '01). Epimorphosis, or growth of undifferentiated tissue before 

differentiation of the new structure, can be contrasted with morphallaxis, or regeneration 

through remodelling of existing tissues without proliferation. Morgan emphasised that the 

distinction between the two is not necessarily sharp, and they may occur together in the 

same system. Recently, Agata et al. (2007) reiterated these points, and proposed 

distalisation and intercalation as a new unifying principle of regeneration. These authors 

argue that regardless of proliferation, the regeneration of lost structures in animals tends to 

proceed by forming the most distal part of the structure first, and intercalating the rest of 

the missing tissue between this and the remainder of the old structure. The diverse 

lophotrochozoan appendages represent an untapped resource to test the generality of this 

principle. 
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The serpulid polychaete Pomatoceros lamarckii (Figure 1) provides an ideal system in 

which to investigate lophotrochozoan appendage regeneration. P. lamarckii is a common 

member of intertidal communities around the British Isles. This sessile suspension feeder 

lives in calcareous habitation tubes attached to hard substrata. It possesses two types of 

functionally important and highly regenerative head appendages. The radioles (tentacles) 

serve in food capture and respiration, while the operculum is a defensive structure that can 

close the tube when the animal withdraws, or autotomise as a sacrificial body part. Both 

structures regenerate rapidly when lost, and are commonly seen regenerating in wild-

collected worms (personal observation), consistent with their importance to the animal. 

Preliminary descriptions of the histology of intact and regenerating opercular filaments in 

P. lamarckii have been previously provided (Hanson, 1949; Bubel et al., ‘80, ‘83, ‘85; Bubel 

and Thorp, ‘85). Here we establish the time-course of opercular regeneration using a large 

sample of worms, and describe cell proliferation patterns during regeneration. The P. 

lamarckii opercular filament regenerates quickly and consistently, unaffected by factors 

such as size, sex and non-life-threatening injuries. Opercular regeneration appears to 

involve morphallactic remodelling of existing tissue combined with subsequent extensive 

cell proliferation, especially in the epidermis. We provide preliminary evidence that P. 

lamarckii operculum regeneration operates via the type of ‘distalisation-intercalation’ 

process proposed by Agata et al (2007), and thus provide a description of a system for 

studying adult appendage regeneration in a lophotrochozoan invertebrate, with several 

features that should facilitate its establishment as a useful comparative model. 
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Materials and Methods. 

 

Animal collection and husbandry 

Rocks with Pomatoceros lamarckii tubes were obtained from the intertidal rock pools at 

East Sands beach, St Andrews, Scotland, and kept in a circulating seawater aquarium system 

at ambient temperature. Adult worms were removed from their tubes by breaking the 

posterior end of the tube and gently pushing the worm out with blunt forceps. After 

detubing, animals were kept in filtered seawater (FSW) in an air-conditioned room at 16-

17°C. Worms for the cell proliferation experiments were housed in plastic Petri dishes (9 

cm diameter) containing up to ten worms in 25-30 ml FSW changed every few days. Worms 

that were followed individually to record the time course of regeneration were kept in 

Nunclon four-well plates, one worm per well in 1 ml FSW changed daily. Opercular 

amputations were performed with a scalpel at the easy break point (Figure 1B). 

Time course of regeneration 

To establish the time course of regeneration, a sample of 100 worms was used. Immediately 

after detubing, each animal was photographed in left lateral view with a Nikon Coolpix 

4500 camera mounted on a dissecting microscope. Worms were also sexed where possible 

(94/100), making use of the fact that detubing induces spawning in sexually mature 

individuals. The photographs were used to estimate the size of each worm as a proxy for 

age. Size was estimated using ImageJ 1.46 and recorded as the distance (to the nearest 1/10 

mm) from the top of the folded-down collar to the last thoracic uncinus. These markers 
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were chosen because they are relatively robust to the animal’s movement and identifiable 

in imperfect photographs.  

After amputation, each worm was observed daily for 14 days, and scored each day for the 

presence of seven morphogenetic landmarks as well as five components of pigmentation 

(Figure 2). In total, four animals were excluded from analysis: one died on day 4, one had a 

highly abnormal regenerate that was short and malformed from the early stages and failed 

to develop any pigmentation by the end of the observation period, another animal still had 

an open wound on its abdomen on day 14, and in a fourth, the regenerate was hidden from 

view by the tentacles for most of the observation period. 

BrdU labelling and immunohistochemistry 

The S-phase marker 5-bromo-2'-deoxyuridine (BrdU) was used to assay cell proliferation 

during the first ten days of regeneration. BrdU was added to the water in the dishes of 

experimental animals for 48 h at a starting concentration of 1 mg/ml. After the pulse, the 

worms were washed 3-5 times with clean FSW and checked for regeneration defects. 

Anterior portions were removed with a scalpel and fixed in 4% paraformaldehyde (PFA) in 

1 x phosphate buffered saline (PBS) overnight at 4°C. Fixed heads were washed three times 

in PBS before staining. Whole-mount specimens were stained as is, with head and thoracic 

tissue still present. To investigate proliferation in the interior of the opercular filament, 

some fixed regenerates were dissected from the head and cut into portions with a 

razorblade. 
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The procedure for BrdU immunohistochemistry was adapted from de Rosa et al. (2005), 

with the following changes: proteinase K (Sigma molecular grade solution) was used at 

~270 μg/ml for 15 minutes to permeabilise the specimens, and antibody incubations were 

performed overnight at 4°C. Specimens were stained using the 3,3'-diaminobenzidine (DAB; 

Sigma) substrate according to the manufacturer's instructions, rinsed four times to stop the 

reaction, and photographed under a dissecting microscope. 

Phosphohistone H3 immunohistochemistry 

As a second marker, we used the mitosis-specific phosphorylation of histone H3. Specimens 

for this experiment were decapitated as above, fixed for 30 min at room temperature, 

washed, and dissected to remove non-opercular tissue. The regenerates were 

permeabilised with a one-hour incubation in PBS with 2% Triton X-100. For all other steps, 

PBS with 0.1% Tween-20 (PBT) was used as a buffer. Permeabilisation was followed by 

three PBT washes, then incubation in block-PBT (PBT with 5% sheep serum) for two hours. 

After this, a 1:500 dilution of rabbit polyclonal antibody against histone H3 phosphorylated 

on Ser28 (Millipore) was added for an overnight incubation at 4°C. The primary antibody 

was removed with four PBT washes of at least 15 minutes each. Secondary incubation and 

staining was done with the Vectastain Elite ABC kit (Vector Laboratories). The antibody 

incubation was performed overnight at 4°C, followed by four 15-minute washes and 

incubation with the ABC reagent from the kit according to the manufacturer's instructions. 

The specimens were then washed again and stained with DAB as in the BrdU experiments. 

Stained and washed specimens were dehydrated through an ethanol series, mounted in 

60% glycerol, and photographed with a QImaging Retiga 2000R camera mounted on a Leica 
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microscope equipped with Nomarski optics, using the QCapture Suite ™ (version 2.9.3) or 

ImagePro® Insight version 8. 

 

Results 

 

The mature opercular filament 

 

The anatomy of P. lamarckii and the opercular filament is shown in Figure 1. The cup- or 

funnel-shaped operculum sits on top of a stout peduncle. In the mature structure, the two 

regions are separated by a prominent groove. The peduncle has a triangular cross-section, 

more pronounced distally. An autotomy plane, called the easy break point, is situated 

partway down the peduncle (Figure 1B, dashed line); all experimental amputations in this 

study were carried out at or very near this point. The cup is closed distally by a flat or 

concave opercular plate. The plate bears a spine with two large dorsal prongs and a smaller 

ventral one; these are often eroded in wild worms or broken off during detubing. In P. 

lamarckii, the opercular plate and spine are calcified (Bubel et al., '83). The mature 

opercular filament is strikingly pigmented with a pattern of alternating white and dark 

bands. Pigmentation patterns display considerable individual variation, but several 

features, including a prominent dark band immediately distal to the easy break point, are 

generally recognisable (Figure 1B). 

 

Time course of opercular regeneration 
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Upon amputation at the easy break point, regeneration begins rapidly. Immediately after 

amputation, the end of the stump contracts so that there is virtually no blood loss from the 

large opercular blood vessel. The first sign of regeneration is the elongation of the stump 

and the emergence of the future prongs of the opercular spine from the tips of the 

triangular amputation surface. By one day post-operation (dpo), a small swelling is usually 

present around the middle of the stump (Figure 2B). This swelling subsequently enlarges 

(Figure 2C), develops a rim distinct from the base of the spine (Figure 2D), and becomes 

cup-shaped with an expanding distal plate (Figure 2E). Calcification (Figure 2F) normally 

becomes visible at the base of the spine soon after rim formation, often before there is a 

clear cup or plate. At 3 dpo, nearly all opercula are visibly calcifying. Once a cup is present, 

the groove between it and the peduncle begins to form. It first appears as a narrow line 

marking the previously smooth peduncle-operculum boundary (Figure 2G). Shortly after 

groove formation, wing buds develop on either side of the peduncle just below the groove 

(Figure 2H). After this point, no new anatomical structures appear, but existing structures 

such as wings continue to grow, and pigmentation is added. 

 

The timing of these morphogenetic landmarks is largely consistent between individuals, 

with most animals reaching a given landmark within a day of each other. Although there is 

slight variation in their absolute timing, the order of the landmarks appears fixed, such that 

no regenerate develops a groove before it has a well-differentiated cup, etc. (data not 

shown). The relative timing of calcification and cup formation do vary slightly, but all 

animals in our sample began calcifying before the appearance of a groove (data not shown). 
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New pigmentation does not develop until all of the morphogenetic landmarks described 

above have appeared. Usually, the first visible pigmentation is dispersed red or brown dots 

on the cup. Other elements of pigmentation that were scored in this study are the dark 

banding on the cup, the proximal and distal dark pigment bands of the peduncle, and the 

white banding on the peduncle and/or cup (Figure 1B; Figure 2J, drawings in Figure 2K). 

These appear much less constrained than the morphogenetic landmarks; both absolute 

timing and the order in which they appear is more variable (Figure 2K, data not shown), 

particularly for the dark bands in various locations. 

 

To investigate potential factors influencing regeneration, we recorded the sex and 

approximate size of each animal, as well as any non-opercular injuries they sustained 

during detubing. Apart from extreme cases where injuries caused serious illness in the 

worm, these factors do not appreciably change the time course of regeneration. 

Comparative plots for sex and size are shown in Figure 3. 

 

Cell proliferation patterns 

 

We first used the S-phase marker BrdU to assay cell proliferation in regenerating opercula. 

Live animals were exposed to BrdU for 48 h before being fixed and stained. During the 

earliest stages of regeneration, relatively little proliferation is detected (Figure 4A; 40 

animals labelled at 0-2 dpo). However, the number of labelled cells in the epidermis 

increases dramatically during rim and cup morphogenesis (Figure 4B), and remains at high 

levels until morphogenesis is virtually complete (Figure 4C-D). Of 125 animals labelled in 1-
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3 dpo to 5-7 dpo pulses, 65 showed staining in both the cup wall and peduncle, and a 

further 31 displayed partial staining patterns (e.g. cup only). In late-stage regenerates (8-10 

dpo), staining is often concentrated in the developing wings and the associated lateral 

ridges along the distal peduncle (Figure 4E-F; 21/24 animals showed this pattern compared 

to 9/37 for 4-6 dpo). During peak proliferation, epidermal staining is present from the base 

of the peduncle to the wall of the cup, with no obvious regionalisation within this area. 

Notably, no similar proliferation increase was observed outside the regenerate, although 

the whole-mount BrdU experiments included substantial amounts of anterior tissue. The 

(presumptive) rim, plate and spine remain unstained throughout regeneration. Control 

heads from mid-regeneration stages (4-6 dpo) that received no BrdU treatment or no 

primary antibody (n = 10 each) display only a faint, even background throughout the 

opercular filament (Supplementary Figure). 

 

Since the opercular filament is a large, opaque structure, we cut portions of tissue from 

opercula and peduncles to be able to examine proliferation patterns inside the structure. 

Proliferation in the connective tissue, muscle and the wall of the blood vessel appears to lag 

behind the epidermis, remaining low or undetectable until a well-developed cup is present 

(Figure 4G-H; 5/6 0-2 dpo specimens with a cup had staining in epidermis but not 

mesodermal tissues; 7/8 labelled at 1-3 dpo show strong mesodermal staining). From cup 

stage, labelled cells are abundant in the connective tissue and muscle within the peduncle 

(5/7 peduncle pieces from 5 animals at 4-6 dpo), as well as the wall of the blood vessel 

(Figure 4 H-I, K). Interestingly, the connective tissue inside the cup is always unstained, in 

sharp contrast to the blood vessel, which is densely stained during mid-regeneration 
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(Figure 4K; 5/5 cups). Proliferation in the peduncle connective tissue, muscle and the blood 

vessel wall seems to drop off in the 8-10 dpo sample, even though epidermal proliferation 

in the cup wall may still be high at this time (Figure 4J, L; 7/7 cups and 9/12 peduncle 

pieces from 7 animals). 

 

In addition to BrdU labelling, we employed antibodies against the mitotic marker 

phosphohistone H3 (PH3) to get finer time resolution than the requisite long BrdU pulses. 

In accordance with its ‘snapshot’ nature, PH3 immunohistochemistry detects far fewer cells 

than do the BrdU experiments. Proliferation in connective tissue and muscle is generally too 

low to be detectable with this method, and even the blood vessel inside the cup is largely 

negative. The distribution of epidermal staining is consistent with our observations with 

BrdU. From cup formation onwards, PH3-positive cells are present throughout the cup wall 

and the entire length of the peduncle (Figure 5), confirming the lack of regionalisation seen 

with BrdU (>100 specimens tested). PH3 staining also allowed us to examine stages earlier 

than 2 dpo. At 8 hpo, no proliferation is seen with this marker (n = 12), but a few cells are 

stained in 1 dpo regenerates with small swellings (>30 animals tested)..  

 

Prompted by the lack of proliferation in the plate region, we conducted a preliminary 

investigation into the origin of the distal structures of the operculum using residual stump 

pigmentation as a simple lineage-tracing tool. White pigmentation, when present, is often 

patchy, allowing fine-scale tracking of its fate. Our observations thus far show recognisable 

patterns of stump pigmentation carried over onto the forming distal structures, but not to 

any structure proximal to the opercular rim. An example time series is shown in Figure 6. 
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Discussion 

 

The morphogenesis of the P. lamarckii operculum during regeneration follows a 

stereotyped sequence of events. Bubel and Thorp (’85) noted that the opercular filament 

regenerates without a blastema. Our observations agree with this assessment. At the 

amputation surface, the earliest sign of regeneration is the formation of prongs, without any 

sign of an undifferentiated growth preceding morphogenesis. 

 

It should be noted that cup morphogenesis from a smooth swelling is a continuum, and 

furthermore, some of our morphogenetic landmarks are logically dependent on each other 

(e.g. it would be difficult to imagine cup formation without a swelling). Nevertheless, with 

the exception of calcification, landmarks that could occur in varying orders (e.g. rims and 

grooves, or prongs and cups) in fact develop in a consistent order, indicating a tightly 

regulated developmental program. Neither this order nor the absolute timing of events 

appears affected by factors one might expect to influence regeneration, such as sex 

(Nachtrab et al., 2011) or size, which we used as a rough proxy for age (Tartakovskaya et 

al., 2003; Somorjai et al., 2012; Seifert and Voss, 2013). One caveat to this size/age 

conclusion is that, although they covered a range of sizes (thorax length 1.3-3.2 mm), nearly 

all of our animals (91/96 in the final sample) were reproductively active, and therefore 

certainly could be considered adults. Thus, while age does not seem relevant to the study of 

adult regeneration in P. lamarckii, age-related differences in regeneration between adults 

and juveniles cannot be excluded. 
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Opercular pigmentation develops after morphogenesis is essentially complete, and shows 

more variation in timing and order than does the development of anatomical landmarks. 

Pigmentation also displays considerable variation in mature opercular filaments. The 

ecological aspects of operculum regeneration are beyond the scope of this study, but we 

might hypothesise that the presence of a complete opercular filament with a differentiated 

cup, plate and peduncle is more important for its defensive function than the presence or 

precise pattern of pigmentation. This may explain the greater variability and longer time 

scales seen in the regeneration of pigmentation compared to morphology. 

 

Cell proliferation and morphallaxis 

 

It is clear from our results that opercular morphogenesis in P. lamarckii begins without 

extensive proliferation. Therefore, early opercular regeneration fits Morgan's original 

definition of morphallaxis as the transformation of a part “directly into a new organism or 

part of an organism without proliferation at the cut-surfaces” (Morgan, '01, p. 23). Since 

Morgan’s time, the definition of morphallaxis has broadened to include any reorganisation 

of pre-existing tissue during regeneration. Early opercular regeneration appears to be a 

largely morphallactic process in both senses. Later, cell proliferation does occur throughout 

most of the opercular filament, including the base of the peduncle, which is approximately 

0.5 mm proximal to the level of amputation. A similar spread of proliferative cells beyond 

the level of amputation was observed in regenerating heads of the oligochaete annelid 

Pristina leidyi (Zattara and Bely, 2011), the arms of the crinoid Antedon mediterranea 
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(Candia Carnevali et al., '97) and the regenerating tail of the cephalochordate 

Branchiostoma lanceolatum (Somorjai et al., 2012), all of which regenerate via a blastema. 

In contrast, in regenerating heads of the polychaete Dorvillea bermudensis (Paulus and 

Müller, 2004) and arms of the brittle star Ophiotrix fragilis (Thorndyke et al., 2001), 

proliferation is almost exclusive to the blastema, underscoring the diversity of the 

regenerative strategies employed by animals. Cell proliferation far away from the 

regenerate itself has been described, or at least suggested, for some annelids in the context 

of segment regeneration (Sugio et al., 2012). In planarians, proliferation does not occur in 

the regeneration blastema itself. Upon amputation, a proliferative response is seen not only 

near the blastema but also in body regions far from the amputation site (Saló and Baguñà, 

’84), and neoblasts appear capable of migrating long distances in order to contribute to 

regeneration (Reddien and Sánchez Alvarado, 2004). In particular, the planarian pharynx, 

which might be described as an appendage, appears to rely on the proliferation and 

migration of neoblasts anterior to the pharynx for regeneration (Ito et al., 2001).  

 

Our observations with phosphohistone H3 (Figure 5) confirm that the global distribution of 

BrdU-positive cells within the opercular filament accurately represents the distribution of 

in situ proliferation rather than that of the descendants of a more localised proliferation 

zone. It will be interesting to investigate the mechanisms that trigger a proliferative 

response at a distance from the wound. Does the operculum possess a signalling centre that 

can convey signals to more proximal portions of the stump? For example, Bubel et al. ('85) 

observed that the cells of the future opercular rim are morphologically distinct from the 

rest of the epithelium already at the swelling stage. Could early-differentiating structures 
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such as these serve as a source of long-range signals? It is also tempting to speculate about 

a role for the opercular nerves. Innervation is known to control the proliferative response 

in vertebrate limb regeneration (Stocum, 2011; Kumar and Brockes, 2012), and injury to 

one of the three opercular nerves can trigger the development of a new operculum in 

another serpulid (Schochet, '73).  

 

BrdU labelling indicates a time delay between proliferation in the epidermis and in the 

internal tissues, including the connective tissue, muscle and blood vessel wall. Similar 

delays have been observed in segment regeneration in other annelids (Marilley and 

Thouveny, '78; Yoshida-Noro and Tochinai, 2010); however, in both of the cited cases, 

proliferation in the internal tissues preceded that in the epidermis in contrast to the P. 

lamarckii situation. 

 

A striking observation from both of our markers is that there appears to be no proliferation 

at any stage of regeneration in the opercular rim, plate and spine. Bubel et al. (’85) 

remarked on the lack of mitotic figures in the same regions. Thus, three independent 

approaches confirm the lack of proliferation in the distal-most portion of an opercular 

regenerate. Since BrdU exposure affected whole animals, the lack of BrdU staining in this 

region also excludes migration of cells that proliferated elsewhere, although it does not 

exclude the participation of cells that went through S-phase before amputation (Nishimura 

et al., 2011). This strongly suggests that these distal structures are of morphallactic origin, 

and based on our BrdU results, the same is likely true of the connective tissue inside the 

cup. 
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Given the outcome of the cell proliferation assays, we hypothesised that the rim, plate and 

spine derived from the tissues of the stump through morphallactic remodelling. As a 

preliminary test of this hypothesis, we followed the fate of the pigmentation found on a 

significant fraction of proximal peduncles. White pigmentation is often patchy, forming 

unique patterns that can be tracked throughout regeneration. Our observations 

(exemplified by Figure 6) indicate that all of the residual white pigmentation is pushed to 

the distal portion of the regenerate and stretched, mostly occupying the spine and plate by 

the time a cup is formed. If the amputation did not occur precisely at the easy break point, 

remnants of the proximal pigment band can be present at the tip of the stump (Figure 6A), 

but these appear to be discarded early in regeneration (Figure 6B). Thus, we provisionally 

conclude that the distal half of the peduncle stump is the exclusive source of the new plate 

and spine region, while the cup wall and peduncle develop through the proliferation of the 

proximal stump. In the future, lineage-tracing approaches such as DiI labelling could offer a 

more rigorous test of this hypothesis. 

 

Opercular regeneration in P. lamarckii appears to be in good agreement with Agata et al.'s 

(2007) recently proposed unifying principle of regeneration. These authors observed that 

regenerating structures in animals tend to form by distalisation and intercalation 

regardless of the mode of regeneration (epimorphic, morphallactic or mixed). Consistent 

with this model, in P. lamarckii the distal-most structure, i.e. the end of the spine, forms 

early, while more proximal structures, i.e. the cup and peduncle, later intercalate between 

these and the base of the old peduncle. Remarkably, some distal structures also appear to 
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form directly from pre-existing tissue, while the peduncle and the cup wall are derived 

largely from the subsequent phase of proliferation. However, distalisation and intercalation 

is by no means established as a universal principle. For example, Roensch et al. (2013) 

recently argued, based on Hox protein expression patterns and cell transplantation 

experiments, that regenerating salamander limbs establish their positional identities in a 

proximodistal sequence. Until reliable molecular markers of proximal and distal identities 

are established for the P. lamarckii opercular filament, the possibility of alternative 

scenarios cannot be conclusively excluded. 

 

Lophotrochozoans represent a diverse and largely unexploited resource for studying the 

mechanisms of appendage regeneration in metazoans. As a common and easily maintained 

animal with rapidly regenerating head appendages, the serpulid polychaete P. lamarckii 

offers a tractable system for such research. In this study, we established a time course and 

cell proliferation dynamics of the regeneration of the operculum, a unique appendage of 

serpulids. Based on a sample of 100 worms, opercular regeneration in P. lamarckii follows a 

consistent series of morphogenetic events whose timing is unaffected by factors such as sex 

and size. Cell proliferation in the regenerating opercular filament extends to the base of the 

peduncle well below the level of amputation, but not to areas outside the opercular 

filament. It will be interesting to determine the nature of the signals that regulate the 

boundary of the proliferative response. Also, P. lamarckii operculum regeneration appears 

to be an unusual mixture of morphallactic and epimorphic elements, with the opercular 

spine, plate and rim forming without detectable proliferation, and the cup, peduncle and 

wings differentiating from an actively proliferating region. The fate of residual stump 
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pigmentation suggests that tissue distal to the easy break point is not incorporated into the 

regenerate, morphallactic remodelling happens in the distal half of the stump, and the 

peduncle and cup intercalate behind this remodelling zone. Thus, opercular regeneration 

appears to be an example of Agata et al.'s (2007) distalisation-intercalation model.  
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Figure legends 

Figure 1. General anatomy of Pomatoceros lamarckii and the operculum. A. Adult P. lamarckii 

removed from its tube. Right lateral view, anterior to the top. B. Close-up of the opercular filament 

from A. Abbreviations are as follows: ppb = proximal pigment band, dpb = distal pigment band, g = 

groove between the peduncle and the cup (= operculum proper), w = wing, pl = opercular plate, sp 

= spine. The dashed line marks the easy break point, the site of autotomy and experimental 

amputation throughout this study. Scale bars are approximately 1 mm. 

 

Figure 2. The time course of opercular regeneration. A-J – stages of regeneration. All 

photographs are in dorsal view except F, G and J (left lateral). Scale bars are approximately 0.5 mm. 

A. Peduncle stump shortly after amputation at the easy break point. The triangular end of the stump 

has contracted to close the wound. B. Initiation/early swelling (specimen pictured is 1 day post-

operation [dpo]). The stump has elongated, and the prongs (arrow) of the future spine have begun 

to form from the corners of the amputation surface. Most specimens are also beginning to show a 

swelling (arrowhead) by 1 dpo. C. Large swelling (specimen is 2 dpo). D. Rim formation (specimen 

is 2 dpo). Arrowhead marks the opercular rim differentiating from the base of the spine. E. Cup 

formation (specimen is 2 dpo). The opercular plate expands and the swelling becomes cup-shaped. 

F. Calcification (specimen is 2 dpo). G. Groove formation (specimen is 5 dpo). The groove separating 

the peduncle from the cup is first visible as a narrow line (arrowhead) where previously there was a 

smooth boundary. H. Wing bud formation (specimen is 6 dpo). The lateral wings begin to form as 

small triangular protrusions at the end of the peduncle. Inset shows close-up of boxed area, with 

arrowhead marking the wing bud. I. Dotted pigmentation on the cup (specimen is 6 dpo). Inset 

shows close-up of the boxed area. J. 14 dpo regenerate displaying all elements of the mature 

pigment pattern. K. Timing of regeneration stages in a sample of 96 worms. The boxes represent 
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interquartile ranges (IQR), with a median line and whiskers extending to 1.5 IQR. Diagrammed 

morphogenetic stages under the boxes correspond to those pictured in B-H as indicated by the 

letters below the drawings. The appearance of pigmentation (I-J, Fig. 1B) is further subdivided to 

record appearances of the following components, sketched below each box: dotted pigmentation on 

cup, dark banding on cup, proximal peduncular pigment band, distal peduncular pigment band, 

white banding on cup and/or peduncle. The numbers under each stage represent the number of 

animals that reached that stage before the end of the 14-day observation period or before they 

aborted their first regenerate and restarted regeneration (n = 7). 

 

Figure 3. Size and sex do not affect regeneration. Comparison of the time course of regeneration 

between A. females (n = 49) and males (n = 42), B. lower quartile of thorax length (1.3 – 2.2 mm, n = 

30) and upper quartile (2.5 – 3.1 mm, n = 27). Stages are the same as Fig. 2. 

 

Figure 4. BrdU labelling of regenerating opercula. A-F whole heads, G-L portions of peduncles 

and cups. In G-L, the inset drawings indicate the approximate location of the cut surface imaged, and 

the asterisks mark the lumen of the opercular blood vessel. Scale bars are approximately 0.5 mm in 

B-F, K and L, and 0.2 mm in A and G-J. A. 0-2 dpo pulse, early swelling stage regenerate. B. 1-3 dpo 

pulse, slightly end-on view of rim stage regenerate. Note the unstained presumptive plate and spine 

region. The out of focus tip of the spine has non-specific staining. C. 2-4 dpo pulse. Inset shows 

magnification of the boxed area. D. 4-6 dpo pulse. Inset shows unstained plate of the same 

specimen. E. 8-10 dpo pulse. F. Right lateral view of the specimen in E, showing the heavily labelled 

lateral ridge and wing. Inset shows close-up of the right wing from the boxed area. G. Early cup 

stage specimen (pulse 0-2 dpo) cut just below the cup. Arrowheads mark the thickness of the 
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epidermis. The gaps between the epidermis and internal tissues in G and H are regions where the 

epidermal and mesodermal tissues have become detached from each other during the staining 

procedure. H. Same cut in a regenerate with a well-developed cup (pulse 1-3 dpo). I. Mid-peduncle 

cut of a 4-6 dpo specimen. J. Mid-peduncle cut of an 8-10 dpo specimen; note greatly decreased 

density of staining compared to I. K. Oblique cut through the cup of a 4-6 dpo specimen. Note 

strongly stained blood vessel wall and lack of labelled cells in the cup mesenchyme. The fainter 

staining around the blood vessel is located in the far wall of the cup. L. Distal cup of an 8-10 dpo 

specimen. Note that the cut sliced through the opercular blood vessel, which forms a large blind-

ended spiral inside the cup. Three portions of the lumen are exposed (asterisks), and the wall of the 

vessel is unstained. 

 

Figure 5. Epidermal phosphohistone H3 staining is present throughout the opercular 

filament. The squares in A indicate the approximate locations of regions shown in B-D. B. Dorsal 

cup wall of a 3 dpo specimen. C. Peduncle of a different 3 dpo specimen. D. Base of the peduncle in a 

2 dpo specimen. Scale bars represent 100 μm. 

 

Figure 6. Possible morphallaxis in the operculum. A single regenerating operculum pictured in 

left lateral view A. immediately after amputation, with residual white and grey pigmentation, and at 

B. 1 dpo, C. 2 dpo, and D. 3 dpo. Note how the pattern of white pigmentation appears to remain 

intact but transform as the plate and spine form. The arrow and arrowhead each mark the same 

white spot across the panels. Scale bars are approximately 0.5 mm. 

 

Page 37 of 45

John Wiley & Sons

JEZ Part B: Molecular and Developmental Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 38

Supplementary Figure. Control experiments for BrdU labelling. A. 4 dpo specimen without 

BrdU treatment, but subjected to the full staining protocol. B. BrdU-treated specimen (4-6 dpo) 

stained without primary antibody. All specimens in both samples (n = 10 each) appear the same 

with noticeable background colouration when stained for long enough, but no specific nuclear 

staining. Dorsal views; scale bars are approximately 0.5 mm. 

 

 

 

Page 38 of 45

John Wiley & Sons

JEZ Part B: Molecular and Developmental Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

368x187mm (72 x 72 DPI)  

 

 

Page 39 of 45

John Wiley & Sons

JEZ Part B: Molecular and Developmental Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

164x200mm (300 x 300 DPI)  

 

 

Page 40 of 45

John Wiley & Sons

JEZ Part B: Molecular and Developmental Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

160x220mm (300 x 300 DPI)  

 

 

Page 41 of 45

John Wiley & Sons

JEZ Part B: Molecular and Developmental Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

133x179mm (300 x 300 DPI)  

 

 

Page 42 of 45

John Wiley & Sons

JEZ Part B: Molecular and Developmental Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

188x52mm (300 x 300 DPI)  

 

 

Page 43 of 45

John Wiley & Sons

JEZ Part B: Molecular and Developmental Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

133x46mm (300 x 300 DPI)  

 

 

Page 44 of 45

John Wiley & Sons

JEZ Part B: Molecular and Developmental Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

209x139mm (300 x 300 DPI)  

 

 

Page 45 of 45

John Wiley & Sons

JEZ Part B: Molecular and Developmental Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


