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This paper presents some methods of designing experiments in a block design
with nested rows and columns. The treatments consist of all combinations
of levels of two treatment factors, with an additional control treatment.
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1. Introduction

We consider nested row-column designs, which are often used in agricul-
tural experiments. The plots are arranged in n1 rectangular blocks, each of
which has n2 rows and n3 columns.

The treatments consist of complete factorial combinations of two treat-
ment factors, plus an untreated control. This is also common in agricultural
experiments. The treatment factors are T and U , with t and u levels respec-
tively. Thus the total number v of treatments satisfies v = w + 1, where
w = tu.
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One natural context for these designs is plant protection experiments.
Here the factors T and U are different types of plant protection product,
such as fungicide, insecticide, plant growth regulator, rodenticide or herbi-
cide, and their levels are different non-zero concentrations. Although it is
not practical to consider using only one of the two protection products, an
untreated control is needed for both scientific and regulatory reasons (FAO,
2006; Hedayat et al., 1988). Here the blocks are fields, or parts thereof, and
the rows and columns are real rows and columns on the ground.

In a similar agricultural context, the levels of T are different non-zero
quantities of fertilizer, the levels of U are different times for applying the
fertilizer, and the control treatment is ‘no fertilizer’. This situation happens
whenever T is quantitative, U is qualitative, and the levels of U are irrelevant
when the quantity of T is zero: for example, U may be type of chemical, time
of application, or part of the plant to be treated. See Cochran and Cox (1957,
Chapters 3 and 4) and Bailey (2008, Chapter 10).

Clinical trials of medication for chronic diseases give another practical
context. The blocks are health centres, the rows are patients and the columns
are time periods. The levels of factor T are different doses of some drug, and
the levels of U are different regimes of administering the drug, such as solid
or liquid, time of day, one full dose or two half doses, and so on. Again, a
placebo control is often required: see Matthews (2006, Chapter 1).

The paper presents several constructions of designs with our assumed
structure. All these designs have general balance and control orthogonality,
as described in Section 2. We also assume that there is an association scheme
on the non-control treatments with a associate classes. Five different schemes
suitable for two treatment factors are considered in Section 2.

Thus our designs for near-factorial experiments can be classified by the
association schemes on the non-control treatments.

For each of these classes, Section 3 gives some constructions of designs
with certain specified parameters. Section 3.1 shows two constructions of de-
signs with supplemented balance (a = 1). They are based on some properties
of Latin squares and give designs with n2 = n3.

Section 3.2 gives constructions of supplemented group-divisible designs,
for which a = 2. In Sections 3.3 and 3.4 various constructions for a = 3 are
shown. Section 3.3 gives two constructions of supplemented extended group-
divisible designs; again, n2 = n3. For all the designs presented in Sections
3.1–3.3, all basic constrasts have, in the bottom stratum, either full efficiency
or efficiency tending to one when the number of treatments increases. In Sec-
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tion 3.4 one construction of supplemented rectangular designs is considered.
Section 3.5 gives two constructions which may be used when the numbers of
levels of both experimental factors are the same.

Of course, for each of these constructions, the design should be random-
ized before being used for an experiment. The blocks should be random-
ized, the rows randomized independently within each block, and the columns
within each block randomized independently of the rows.

Depending on the practical context, the experimenter may be most inter-
ested in comparing all active treatments with control, may value all treatment
contrasts equally, may be more interested in the main effects of T and U than
in their interaction, or may be more interested in the interaction than in the
main effects. For each construction, we show how to calculate the variance
of these estimators, so that the experimenter can choose among different
designs according to the priorities of the experiment.

Section 4 compares the proposed constructions with other constructions
in the literature and discusses the choice of an adequate design for the exper-
iment. Examples presented here compare designs with the same parameters.
These show that no single design is always best: it depends on the purpose
of the experiment.

2. General properties of the designs

Denote the control treatment by 0 and the others by 1, . . . , w, which
will sometimes be replaced by appropriate factorial combinations. Put n =
n1n2n3, so that n is the total number of plots.

2.1. Information matrices

Data from an experiment using a nested row-column design is usually
analysed by using a mixed model (see Bailey and Williams, 2007;  Lacka et al.,
2009). However, the blocks, rows and columns give what Nelder (1965a)
called an orthogonal block structure, which is defined by the block factor B
with n1 levels, the row factor R with n2 levels for each level of B, and the
column factor C with n3 levels for each level of B. These define four strata
apart from the grand mean. These are the between-blocks stratum, which we
shall also denote by B or 1; the between-rows-within-blocks stratum R[B] or
2; the between-columns-within-blocks stratum C[B] or 3, and the so-called
bottom stratum or rows-by-columns stratum R#C[B] or 4. All our designs
have general balance, in the sense of Houtman and Speed (1983); Mejza
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(1992); Nelder (1965b, 1968), so the data may be analysed by the methods
proposed by Mejza and Mejza (1994); Nelder (1968).

Let N1 be the v×n1 incidence matrix for treatments in blocks: the entries
show how often each treatment occurs in each block. Let N2, N3 and N4

be the incidence matrices for rows, columns and plots respectively, so that
N4 defines the design completely and N4N

′
4 is equal to the diagonal matrix

R of treatment replications. Denote by R−1/2 the diagonal matrix whose
non-zero entries are the inverses of the positive square roots of the treatment
replications. General balance means that the matrices R−1/2NkN

′
kR
−1/2, for

k = 1, . . . , 4, all commute with each other.
Let Iv be the identity matrix of order v, let Jv be the v× v matrix whose

entries are all equal to 1, and let r be the column vector of treatment repli-
cations. The information matrices Ck in strata 1–4 are given by: C1 =
(n2n3)

−1N1N
′
1−n−1r′r; C2 = n−1

3 N2N
′
2− (n2n3)

−1N1N
′
1; C3 = n−1

2 N3N
′
3−

(n2n3)
−1N1N

′
1; and C4 = R−n−1

2 N3N
′
3−n−1

3 N2N
′
2 + (n2n3)

−1N1N
′
1. Gen-

eral balance implies that the matrices R−1/2CkR
−1/2, for k = 1, . . . , 4, all

commute with each other. Thus they have common eigenvectors. For any
such vector, its eigenvalue for R−1/2CkR

−1/2 is called its canonical efficiency
factor in stratum k: see also Ceranka and Mejza (1979); Pearce et al. (1974).
The vector 1v is always such an eigenvector; we are usually interested in the
other eigenvectors, which all correspond to treatment contrasts. For each
eigenvector, the canonical efficiency factors are non-negative and sum to 1,
so they are also called the proportions of information, for the corresponding
contrast, in each stratum.

In this paper, we are particularly interested in estimation using the bot-
tom stratum, so from now on we write C4 simply as C.

2.2. Control orthogonality and supplemented partial balance

All of our designs have two special properties, which we now define. There
are positive integers m2 and m3 such that the control treatment occurs m2

times in each row and m3 times in each column. Hence n2m2 = n3m3, and
the overall replication r0 of the control satisfies r0 = n1n2m2. This condition
ensures that the contrast between the control and the other treatments is
orthogonal to both rows and columns, so it has full efficiency in the bottom
stratum. We call this condition control orthogonality.

For the second property, we assume that there is an association scheme
S on the w non-control treatments: see Bailey (2004). For k = 1, 2 and 3
separately, the off-diagonal entries in row 0 of NkN

′
k are all equal, and, if
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1 ≤ i ≤ j ≤ w, the value of the entry in row i and column j of NkN
′
k depends

only on the associate class of S containing the pair (i, j). The condition is
phrased in this way to allow the possibility that rows, columns or blocks have
repeated non-control treatments, although our constructions in Section 3 do
not give such repeats in either rows or columns. Furthermore, each non-
control treatment has replication r, where wr + r0 = n (this does not follow
from the other conditions if blocks are not binary). If S has a single associate
class then the design has supplemented balance in the sense of Pearce (1960).
Otherwise, we say that the design has supplemented partial balance, as this
is a special case of the supplemented partial balance introduced by Bailey
(2004, Section 12.3).

Under these conditions, the information matrix C for the bottom stratum
is given by

C =

[
wd −d1′w
−d1w L + d

w
Jw

]
,

where d = r0r/n and L is in the Bose–Mesner algebra A of S with L1w = 0w.
Hence the Moore–Penrose generalized inverse C− of C is given by

C− =

[
we −e1′w
−e1w L− + e

w
Jw

]
,

where dev2 = 1 and L− is the Moore–Penrose generalized inverse of L, which
is also in A.

2.3. Variance and efficiency

Let σ2 be the stratum variance for the bottom stratum, and let τ be
the vector of v treatment parameters. If x′τ is a treatment contrast, then
the variance of the estimator of x′τ , using only information in the bottom
stratum, is x′C−xσ2. To compare designs, we use the variances of normalized
contrasts, which have the form x′C−xσ2/x′x. If there are no blocks, rows or
columns then a design with the same replications gives an estimator of x′τ
with variance x′R−1xσ2. The ratio x′R−1x/x′C−x is called the efficiency
factor for this contrast in the bottom stratum: it is the same as its canonical
efficiency factor when x is an eigenvector of C. If this is equal to 1, the
contrast is said to have full efficiency in the bottom stratum. However,
because we allow different values of r0 and r, full efficiency in the bottom
stratum is not the same thing as lowest variance in the bottom stratum, as
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was pointed out by Wang and Morgan (2011). We discuss this further in
Section 4.

If x = (1,−w−1, . . . ,−w−1)′, which is the contrast for comparing the
control treatment with the rest, then

x′C−x = we+ 2e+
e

w
=
ev2

w
=

n

r0rw
=

1

r0
+

1

rw
.

Since x′x = 1 + w−1 = v/w, the value for the corresponding normalized
contrast is n/r0rv. These values are the same as those for a completely
randomized design of the same size and replications, so this contrast has full
efficiency in the bottom stratum.

Since L− ∈ A, all diagonal entries of L− are equal. Denote this common
value by `. If x is the contrast for comparing the control treatment with any
one other treatment i, then

x′C−x = C−(0, 0) + C−(i, i)−C−(0, i)−C−(i, 0)

= we+ `+
e

w
+ 2e =

1

r0
+

1

rw
+ `.

For the corresponding normalized contrast, divide this value by 2.
The sum of the variances of any v − 1 orthonormal contrasts is equal to

Trace(C−)σ2 (Shah and Sinha, 1989), which is (we+ w`+ e)σ2, or

w

v

(
1

r0
+

1

rw
+ v`

)
σ2.

A design which minimizes this value (in a given class of designs, for fixed σ2)
is called A-optimal.

Thus, for any given value of r0, whether we seek to minimize the common
variance for contrasts comparing the control treatment with any non-control
treatment, or whether we seek to minimize the sum of the variances of any
v − 1 orthonormal contrasts, we should minimize `. However, when r0 is
allowed to vary, the designs which minimize one criterion may not minimize
the other.

If x is a contrast among non-control treatments, then x = (0,y′)′ for some
contrast y of length w. Then x′C−x = y′L−y. If the association scheme S
has a associate classes then A has a basis of a + 1 primitive idempotents
S0, S1, . . . , Sa, where S0 = w−1Jw,

∑a
i=0 Si = Iw and SiSj = 0 if i 6= j.
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For a connected design, there are positive constants λ1, . . . , λa such that
L = r

∑a
i=1 λiSi. Therefore, L− = r−1

∑a
i=1 λ

−1
i Si. If contrast y is in the

subspace corresponding to Si then y′L−y = r−1λ−1
i y′Siy = r−1λ−1

i y′y. In
a completely randomized design with the same size, replications and error
variance, the variance of the estimator of (0,y′)τ is r−1y′yσ2, so the efficiency
factor for this contrast in the bottom stratum is λi.

The trace of an idempotent is equal to its rank, so

` = w−1 Trace(L−) = w−1r−1

a∑
i=1

λ−1
i rank(Si) = w−1r−1(w − 1)A−1,

where A is the harmonic mean of the canonical efficiency factors λi, weighted
according to multiplicity.

2.4. Association schemes suitable for two treatment factors

In our designs, the w non-control treatments consist of all tu combinations
of levels of a treatment factor T with t levels and another treatment factor
U with u levels. For an experiment with no additional control treatment,
Yates (1935) defined an equireplicate factorial design with two treatment
factors T and U to be factorially balanced if there are constants λT , λU and
λTU such that all contrasts for the main effect of T have efficiency factor
λT , all contrasts for the main effect of U have efficiency factor λU , and all
contrasts for the interaction have efficiency factor λTU . This is equivalent to
saying that the design is partially balanced with respect to the rectangular
association scheme R(t, u).

This association scheme has others as special cases. When the three ef-
ficiency factors are all equal then the design is balanced in the usual sense,
which means that it is partially balanced with respect to the trivial asso-
ciation scheme. If only λU and λTU are equal then the design is partially
balanced with respect to the group divisible association scheme GD(t, u). If
t = u then it is possible to have λT = λU but different from λTU : then the
design is partially balanced with respect to one of the association schemes of
Latin-square type.

These, and some related schemes, are used in our constructions. The rest
of this section explains them in more detail.

2.4.1. The trivial association scheme

This has a single associate class, so that L and L− are both multiples
of Iw − w−1Jw. In this case the design has supplemented balance as well as
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control orthogonality. If L = α(Iw − w−1Jw) then L− = α−1(Iw − w−1Jw)
and so ` = (w − 1)/αw. If y is a contrast of length w then y′L−y = α−1y′y
and the variance of the corresponding normalized contrast is α−1σ2. The
efficiency factor for y is α/r.

2.4.2. The group-divisible association scheme GD(t, u)

This has two associate classes. Distinct treatments are first associates if
they have the same level of T ; otherwise, they are second associates. Thus
there are constants α and β such that

L = [(u− 1)α + (t− 1)uβ]Iw − αIt ⊗Ku − βKt ⊗ Ju,

where Ku = Ju − Iu. In spectral form

L = wβST + u[α + (t− 1)β]SU [T ],

where ST = u−1It ⊗ Ju − S0, which is the idempotent for the main effect
of T , and SU [T ] = Iw − ST − S0, which is the idempotent for all contrasts
orthogonal to T . Hence

L− = (wβ)−1ST + u−1[α + (t− 1)β]−1SU [T ].

Therefore

` = (t− 1)w−2β−1 + t(u− 1)(wu)−1[α + (t− 1)β]−1.

The normalized variance for any contrast associated with the main effect
of T is (wβ)−1σ2, while the normalized variance for any contrast between
levels of U within one level of T is u−1[α+ (t− 1)β]−1σ2. The corresponding
efficiency factors are λT = wβ/r and λU [T ] = u[α + (t− 1)β]/r.

2.4.3. The extended group-divisible association scheme EGD(p, q, u)

This may be appropriate when t = pq and a p-level pseudofactor P groups
the levels of T into p groups of size q, where p 6= 1 and q 6= 1. Now distinct
treatments are first associates if they have the same level of T , second as-
sociates if they have the same level of P but different levels of T , and third
associates otherwise. The primitive idempotents are S0, SP , ST [P ] and SU [T ],
where SP = (qu)−1Ip ⊗ Jqu − S0, ST [P ] = ST − SP , and ST and SU [T ] are as
before.
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In this case there are constants α, β and γ such that

L = [(u− 1)α + (q − 1)uβ + (p− 1)quγ]Iw − αIt ⊗Ku − βIp ⊗Kq ⊗ Ju

− γKp ⊗ Jqu

= wγSP + qu[β + (p− 1)γ]ST [P ] + u[α + (q − 1)β + (p− 1)qγ]SU [T ].

It follows that

L− = (wγ)−1SP + (qu)−1[β + (p− 1)γ]−1ST [P ]

+ u−1[α + (q − 1)β + (p− 1)qγ]−1SU [T ].

Hence the normalized variance for contrasts between levels of P is (wγ)−1σ2;
for contrasts between levels of T within a level of P is (qu)−1[β+(p−1)γ]−1σ2;
while for contrasts between levels of U within any single level of T it is
u−1[α + (q − 1)β + (p − 1)qγ]−1σ2. The corresponding efficiency factors are
λP = wγ/r, λT [P ] = qu[β+(p−1)γ]/r and λU [T ] = u[α+(q−1)β+(p−1)qγ]/r.
Moreover,

` = (p− 1)w−2γ−1 + p(q − 1)(wqu)−1[β + (p− 1)γ]−1

+ t(u− 1)(wu)−1[α + (q − 1)β + (p− 1)qγ]−1.

If p = 1 or q = 1 the foregoing algebra is still valid but the association
scheme is GD(t, u). If p = 1 then SP = 0, while if q = 1 then ST [P ] = 0.

2.4.4. The rectangular association scheme R(t, u)

This has three associate classes. Distinct treatments are first associates
if they have the same level of T , second associates if they have the same level
of U , and third associates otherwise. The primitive idempotents of A are
S0, ST , SU and STU , where ST is as before, SU = t−1Jt ⊗ Iu − S0, which
corresponds to the main effect of U , and STU = Iw − ST − SU − S0, which
corresponds to the interaction between T and U .

Now there are constants α, β and γ such that

L = [(u− 1)α + (t− 1)β + (t− 1)(u− 1)γ]Iw − αIt ⊗Ku − βKt ⊗ Iu

− γKt ⊗Ku

= t[β + (u− 1)γ]ST + u[α + (t− 1)γ]SU

+ [uα + tβ + (tu− t− u)γ]STU .
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The efficiency factors for the main effect of T , the main effect of U , and the
interaction between T and U are λT = t[β+(u−1)γ]/r, λU = u[α+(t−1)γ]/r
and λTU = [uα + tβ + (tu− t− u)γ]/r respectively.

Furthermore,

L− = t−1[β + (u− 1)γ]−1ST + u−1[α + (t− 1)γ]−1SU

+ [uα + tβ + (tu− t− u)γ]−1STU .

Therefore

` = (t− 1)(wt)−1[β + (u− 1)γ]−1 + (u− 1)(wu)−1[α + (t− 1)γ]−1

+ (t− 1)(u− 1)w−1[uα + tβ + (tu− t− u)γ]−1.

The normalized variance for any contrast associated with the main effect of T
is t−1[β + (u− 1)γ]−1σ2; for the main effect of U it is u−1[α+ (t− 1)γ]−1σ2;
and for the interaction between T and U it is [uα+ tβ + (tu− t− u)γ]−1σ2.

2.4.5. An association scheme defined by mutually orthogonal Latin squares

This may be appropriate when t = u. Suppose that there are h − 2
mutually orthogonal Latin squares of order t, where 2 ≤ h ≤ t + 1. Use the
levels of T and U to the label the rows and columns, respectively, of a t× t
array. Define pseudofactors F1, . . . , Fh, each with t levels, as follows: F1 = T
and F2 = U ; for i = 1, . . . , h − 2, the levels of Fi+2 are the letters of the
i-th Latin square. The pseudofactors F1, . . . , Fh form the constraints of an
orthogonal array of strength 2.

Now distinct treatments are i-th associates if they have the same level of
Fi, for 1 ≤ i ≤ h. If h < t+ 1 then there is a further associate class, for pairs
of treatments which differ in their levels of Fi for 1 ≤ i ≤ h.

Any two distinct factors Fi and Fj define a rectangular association scheme,
with idempotents Si and Sj defined like ST ; that is, the entry in t(Si + S0)
is 1 if the corresponding treatments have the same level of Fi, and it is 0
otherwise. If h = t + 1 then S0 +

∑h
i=1 Si = Iw; if h < t + 1 then there is a

further primitive idempotent Iw − S0 −
∑h

i=1 Si, which we shall denote S∞.

Put Ai = t(Si + S0) − Iw for 1 ≤ i ≤ h, and A∞ = Jw − Iw −
∑h

i=1 Ai

if h < t + 1. If the design has supplemented partial balance with respect to
this association scheme, there are constants α1, . . . , αh, α∞ such that

L = (t− 1)θIw −
h∑

i=1

αiAi − α∞A∞,
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where θ =
∑h

i=1 αi + (t+ 1− h)α∞. Hence

L = (t− 1)θIw −
h∑

i=1

αiAi − α∞(Jw − Iw −
h∑

i=1

Ai)

= (t− 1)θIw + α∞Iw −
h∑

i=1

(αi − α∞)Ai − α∞Jw

= (t− 1)θIw + α∞Iw −
h∑

i=1

(αi − α∞)[t(Si + S0)− Iw]− α∞t2S0

= t(θ − α∞)Iw − t
h∑

i=1

(αi − α∞)Si − t(θ − α∞)S0

= t
h∑

i=1

(θ − αi)Si + t(θ − α∞)S∞.

Therefore

L− = t−1

h∑
i=1

(θ − αi)
−1Si + t−1(θ − α∞)−1S∞.

Taking the trace gives

` = t−3(t− 1)

[
h∑

i=1

(θ − αi)
−1 + (t+ 1− h)(θ − α∞)−1

]
.

The variance for a normalized contrast for Si (which is a contrast between
levels of Fi if i 6= ∞) is t−1(θ − αi)

−1σ2, and the efficiency factor for Si is
λi = t(θ − αi)/r.

2.5. Canonical efficiency factors in other strata

Control orthogonality and supplemented (partial) balance imply that, for
k = 1, 2 and 3,

Ck =

[
0 0′w
0w Lk

]
,

where Lk ∈ A and Lk1w = 0w. Moreover,

3∑
k=1

Lk + L = r

(
I− 1

w
Jw

)
.

11



Thus

C−k =

[
0 0′w
0w L−k

]
.

The contrast for comparing the control treatment with the rest cannot be es-
timated in this stratum, so its canonical efficiency factor here is 0. Efficiency
factors, and variances of normalized contrasts among the non-control treat-
ments, when estimated in stratum k, are calculated just as in Section 2.4,
by expressing Lk as a linear combination of the primitive idempotents of the
association scheme S.

3. Constructions

In this section we give several constructions for nested row-column designs
with control orthogonality and either supplemented balance or supplemented
partial balance. In each case we give the values of n1, n2 and n3 and may
specify conditions on t and u. Section 2.5 shows that, for k = 1, 2 and 3,
it suffices to give Lk to identify Ck. Sections 2.2 and 2.4 show that C4 is
defined by the values of d and as many of α, β are γ are relevant: these are
all shown in Table 11, along with r and r0.

3.1. Designs with supplemented balance

For these constructions, n1 is arbitrary, and n2 = n3 = w + c for some
non-negative c.

3.1.1. Construction 1

Take c > 0. In each block start with a Latin square of order n2. Replace
c of the letters by the control, and match the rest to non-control treatments.
When c =

√
w, Hedayat et al. (1988); Bailey (2008) show that this is the

best possible for the given values of n1, n2 and n3 for minimizing the average
variance of the comparison of the control with another treatment. Now
r0 = cn1n2, r = n1n2, and L1 = L2 = L3 = 0. The canonical efficiency
factors are shown in Table 1.

3.1.2. Construction 2

Now take c = 0. In each block start with a Latin square of order n2 using
the w non-control treatments as letters. The square should have the property
that every letter occurs once on the main diagonal (this is possible, because
w 6= 2). Then replace every treatment on the diagonal with the control. Now
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Table 1: Canonical efficiency factors in
each stratum for the design given by
Construction 1

type with control other
df 1 w − 1
B 0 0

R[B] 0 0
C[B] 0 0

R#C[B] 1 1

Table 2: Canonical efficiency factors in each
stratum for the design given by Construc-
tion 2

type with control other
df 1 w − 1
B 0 0

R[B] 0 1
(w−1)w

C[B] 0 1
(w−1)w

R#C[B] 1 1− 2
(w−1)w

r0 = wn1, r = (w − 1)n1, L1 = 0, and L2 = L3 = n1w
−1 (Iw − w−1Jw). The

canonical efficiency factors are in Table 2.

3.2. Supplemented group-divisible designs

3.2.1. Construction 3

Here n1 = t and n2 = n3 = w.
The construction uses t Latin squares of order w, for the w non-control

treatments. In the first square, replace those treatments with the first level
of factor T by the control. In block j, the control replaces all treatments
with level j of T . When t = 3 and u = 2, this method gives the design in
Example 1.

In each block we lose exactly one level of factor T , so the contrasts for
this factor are involved in the between-blocks stratum. The design in rows is
the same as the design in columns, and both are proportional to the design
in blocks, so L2 = L3 = 0. Also L1 = t−1[(t−1)Iw +(t−1)It⊗Ku−Kt⊗Ju].
These lead to the canonical efficiency factors in Table 3.

In the first stratum, only contrasts for the main effect of T are estimable,
and the efficiency factor has the low value 1/t(t−1), which tends to zero as t
increases. No contrasts can be estimated in the strata R[B] or C[B], because
both information matrices are zero. In the bottom stratum, all constrasts
for comparing levels of U within any one level of T are estimated with full
efficiency, and contrasts for the main effect of T have an efficiency factor
which tends to 1 as t increases.
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Table 3: Canonical efficiency factors in each stratum for the design given by Construction 3

type with control factor T
factor U within
each level of T

T U [T ]
df 1 t− 1 t (u− 1)
B 0 1

t(t−1)
0

R[B] 0 0 0
C[B] 0 0 0

R#C[B] 1 1− 1
t(t−1)

1

Example 1. Put t = 3 and u = 2. Denote by 21 the treatment which has
level 2 of factor T and level 1 of factor U ; denote other combinations in a
similar way. One choice of three 6× 6 Latin squares in Construction 3 gives
the design in Figure 1.
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row 2 0 21 22 31 32 0
row 3 21 22 31 32 0 0
row 4 22 31 32 0 0 21
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11 12 21 22 0 0
12 21 22 0 0 11
21 22 0 0 11 12
22 0 0 11 12 21
0 0 11 12 21 22
0 11 12 21 22 0

Figure 1: Design in Example 1.

3.3. Supplemented extended group-divisible designs

The next two constructions are suitable when t = pq, so that T may be
replaced by pseudofactors P and Q with p and q levels respectively. Let Λ
be a t× t Latin square with the property that there are q letters which occur
on the main diagonal p times each (such a square exists unless p = 1 and
q = 2). For i = 1, . . . , p, create Latin square Λi by allocating level i of P to

14



the letters on the diagonal and dividing the remaining letters equally among
the other levels of P . Within each level of P , levels of Q can be assigned to
the q letters in any way. Then the main diagonal of Λi has all the letters
with level i of P , each occurring p times.

These squares serve as the basis for constructing designs with n1 = p and
n2 = n3 = w. For i = 1, . . . , p, block i is constructed from Latin square Λi.

3.3.1. Construction 4

In block i, use Latin square Λi. Off the diagonal, replace letter m by
a u × u Latin square on the treatments which have level m of T . On the
diagonal, replace letter m by a u× u square which has the treatments with
level m of T on the diagonal and the control elsewhere. Then

L1 = (u− 1)2 t−1q−1u−2[(p−1)Iw+(p−1)It⊗Ku+(p−1)Ip⊗Kq⊗Ju−Kp⊗Juq]

and

L2 = L3 = u−2q−2[(u− 1)(uq − u+ 1)Iw

+ (u(u− 2)(q − 1)− 1)It ⊗Ku − (u− 1)2 Ip ⊗Kq ⊗ Ju].

Canonical efficiency factors are shown in Table 4.

Table 4: Canonical efficiency factors in each stratum for the design given by Construction 4

type
with

control
between p

groups of T

between q
groups within
each P group

factor U
within each
level of T

P T [P ] U [T ]
df 1 p− 1 p (q − 1) (u− 1)pq

B 0 (u−1)2

w(w−u+1)
0 0

R[B] 0 0 (u−1)2

w(w−u+1)
1

w(w−u+1)

C[B] 0 0 (u−1)2

w(w−u+1)
1

w(w−u+1)

R#C[B] 1 1− (u−1)2

w(w−u+1)
1− 2(u−1)2

w(w−u+1)
1− 2

w(w−u+1)
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Base block 1 Base block 2
A0 B C D
B C0 D A
C D A0 B
D A B C0

B0 C D A
C D0 A B
D A B0 C
A B C D0

replace with:

A→
13 11 12
11 12 13
12 13 11

B →
23 21 22
21 22 23
22 23 21

C →
33 31 32
31 32 33
32 33 31

D →
43 41 42
41 42 43
42 43 41

A0 →
13 0 0
0 12 0
0 0 11

B0 →
23 0 0
0 22 0
0 0 21

C0 →
33 0 0
0 32 0
0 0 31

D0 →
43 0 0
0 42 0
0 0 41

Figure 2: Squares used in the construction in Example 2

Example 2. Take p = q = 2 and u = 3. Use two Latin squares of order 4,
such that the diagonal of one contains letters A and C twice each and the
diagonal in the second contains the letters B and D twice each. Figure 2
shows possible choices. For each letter A–D build a Latin square of order 3
for the treatments with a single level of T . In each of the two base squares,
replace all non-diagonal letters by the new Latin squares, and replace each
diagonal letter by a square with the corresponding treatments on the diagonal
and the control treatment elsewhere. Possible squares to use in the second
stage of the construction are shown in Figure 2.

Two special cases of this construction occur when q = 1 but p 6= 1 and
when p = 1 but q 6= 1. In both cases we lose one associate class and one
group of contrasts, as the association scheme reverts to the group-divisible
type. The basic contrasts are analogous to those described in the study by
 Lacka and Koz lowska (2009). In the first case, the design has t blocks, each
constructed from a Latin square of order t with the same letter throughout
the diagonal, different in each square: see Example 3. If p = 1 then there is
only one block, made from a single Latin square of order t with all letters on
the diagonal: see Example 4.

Example 3. Construction 4 for p = 4, q = 1 and u = 3 can give the design
in Figure 3, where A, A0, B, B0, C, C0, D and D0 are given in Figure 2.

16



Base block 1 Base block 2 Base block 3 Base block 4
A0 B C D
D A0 B C
C D A0 B
B C D A0

B0 A C D
D B0 A C
C D B0 A
A C D B0

C0 B A D
D C0 B A
A D C0 B
B A D C0

D0 B C A
A D0 B C
C A D0 B
B C A D0

Figure 3: Design in Example 3: A, A0, B, B0, C, C0, D and D0 are given in Figure 2

Example 4. Figure 4 shows a design made using Construction 4 for p = 1,
q = 4 and u = 3. Again, A, A0, B, B0, C, C0, D, and D0 are given in
Figure 2.

Base block 1
A0 D B C
C B0 D A
D A C0 B
B C A D0

Figure 4: Design in Example 4: A, A0, B, B0, C, C0, D and D0 are given in Figure 2

3.3.2. Construction 5

Start like Construction 4, but make the replaced squares on the diagonal
all controls. When q = 1 this gives Construction 3 as a special case. When
p = 1 it gives another supplemented group-divisible design. For example,
when t = 4 and u = 3 we obtain the design in Figure 4, with A, B, C and
D as in Figure 2 and A0, B0, C0 and D0 all being 3× 3 squares of controls.
Now L1 = pt−2[(p− 1)Iw + (p− 1)It⊗Ku + (p− 1)Ip⊗Kq ⊗ Ju−Kp⊗ Juq]
and L2 = L3 = pt−2[(t−p)Iw +(t−p)It⊗Ku−pIp⊗Kq⊗Ju]. The canonical
efficiency factors are in Table 5.

3.4. Supplemented rectangular designs

3.4.1. Construction 6

Sometimes the previous constructions require too much replication of
treatments. In such a situation, if u 6= 2 we suggest creating a design with
n2 = u and n3 = w. All blocks have the same construction, so n1 is arbitrary.
To create each block of the design, start with Latin squares Λ1, . . . , Λt of
order u. The letters of Λi are the treatments with level i of T ; the diagonal

17



Table 5: Canonical efficiency factors in each stratum for the design given by Construction 5

type
with

control
between p

groups of T

between q
groups within
each P group

factor U
within each
level of T

P T [P ] U [T ]
df 1 p− 1 p (q − 1) (u− 1)pq
B 0 1

t(t−1)
0 0

R[B] 0 0 1
t(t−1)

0

C[B] 0 0 1
t(t−1)

0

R#C[B] 1 1− 1
t(t−1)

1− 2
t(t−1)

1

elements of each square should all be different, and the levels of U must be
in the same positions in each square. Replace all diagonal elements with a
control treatment. Put all the squares together in one row to make the block
(see Example 5). Now T has only one level per column, while U has one level
missing from each row and from each column. Hence the main effect of T has
some information in the columns-within-blocks stratum, and the main effect
of U has information in both the columns-within-blocks and rows-within-
blocks strata. Every block contains all treatments. For n1 blocks, L1 = 0,
L2 = n1u

−2t−1[(u− 1)Iw − It ⊗Ku + (u− 1)Kt ⊗ Iu −Kt ⊗Ku] and

L3 = n1u
−2t−1[(w − u+ 1)(u− 1)Iw + (wu− u2 − 2w + 2u− 1)It ⊗Ku

− (u− 1)2 Kt ⊗ Iu − (u− 1)2 Kt ⊗Ku].

These lead to the canonical efficiency factors in Table 6.
In this design, the main effect of T has relatively low estimation efficiency

in the bottom stratum. Thus, when planning the experiment, one should take
T to be the factor that is less interesting or, in the analysis of that group of
contrasts, combine information from the third and fourth strata ( Lacka et al.,
2009). Other contrasts, both those for the main effect of U and those for the
interaction, are estimated with efficiencies which tend to 1 as the number of
levels of the factor U increases.

Example 5. Put t = 3 and u = 4 in Construction 6. One possible design is
shown in Figure 5.
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Table 6: Canonical efficiency factors in each stratum for the design given by Construction 6

type with control factor T factor U interaction
T U T#U

df 1 t− 1 u− 1 (t− 1) (u− 1)
B 0 0 0 0

R[B] 0 0 1
u(u−1)

0

C[B] 0 u−1
u

1
u(u−1)

1
u(u−1)

R#C[B] 1 1
u

1− 2
u(u−1)

1− 1
u(u−1)
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row 1 0 11 13 12 0 21 23 22 0 31 33 32
row 2 12 0 11 14 22 0 21 24 32 0 31 34
row 3 11 14 0 13 21 24 0 23 31 34 0 33
row 4 13 12 14 0 23 22 24 0 33 32 34 0

Figure 5: Design in Example 5
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3.5. Designs for factors with the same number of levels

When t = u, all the previous constructions may be used, and some others
are available.

3.5.1. Construction 7

This construction requires t to be a power of a prime. It gives n2 = t+ 1
and n3 = t(t + 1), while n1 is arbitrary because each block is made in the
same way.

For each block make t2 + t+1 columns of t+1 letters, so that they form a
balanced incomplete block design on t2 + t+ 1 letters. It is often possible to
find a perfect difference set of t+ 1 numbers modulo t2 + t+ 1. For example,
{1, 2, 5, 7} is a perfect difference set modulo 13 because the twelve difference
1− 2, 1− 5, . . . , 7− 5 give every non-zero number modulo 13 exactly once.
Write the perfect difference set in the first column. Obtain each successive
column by adding 1 modulo t2 + t+ 1.

If the design has been made from a perfect difference set, every element
should appear once in each row. Otherwise, make the block design from t−1
mutually orthogonal Latin squares of order t as described in Bailey (2008,
Section 11.3) and then use the technique in Bailey (2008, Section 11.10) to
re-arrange the letters in each column so that each letter occurs once in each
row.

Remove one column and replace all other occurrences of the letters in
that column by the control. Match the remaining letters to the non-control
treatments. Then r0 = t(t+ 1)n1, r = (t+ 1)n1 and the resulting design has
supplemented balance.

Now d = n1, L1 = L2 = 0 and L3 = n1t(t + 1)−1(Iw − w−1Jw), where
w = t2. Table 7 gives the canonical efficiency factors.

Table 7: Canonical efficiency factors in each stratum for the design given by Construction 7

type with control all other
df 1 t2 − 1
B 0 0

R[B] 0 0
C[B] 0 t

(t+1)2

R#C[B] 1 1− t
(t+1)2
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Example 6. Take t = u = 3, so that t2 + t+1 = 13. Translating the perfect
difference set {1, 2, 5, 7} into letters in the obvious way gives the following
4× 13 rectangle.

A B C D E F G H I J K L M
B C D E F G H I J K L M A
E F G H I J K L M A B C D
G H I J K L M A B C D E F

Removing the final column and replacing the remaining letters lexico-
graphically, gives:

0 11 12 0 13 0 21 22 23 31 32 33
11 12 0 13 0 21 22 23 31 32 33 0
13 0 21 22 23 31 32 33 0 0 11 12
21 22 23 31 32 33 0 0 11 12 0 13

3.5.2. Construction 8

In this construction, n1 is arbitrary, n2 = t and n3 = t2. Put the treat-
ments into a square array, with the rows labelled by levels of T and the
columns labelled by levels of U . Use h − 2 orthogonal Latin squares of or-
der t, as described in Section 2.4.5. For the first block, let Fi and Fj be any
two distinct pseudofactors among F1, . . . , Fh. Use Construction 6 with Fi

in place of T and Fj in place of U . Write the information matrices for this

block with superscript (1). Then L
(1)
1 = 0, and the results in Table 6 give

tL
(1)
2 = Sj;

tL
(1)
3 = Sj + (t− 1)2Si + (Iw − S0 − Si − Sj) = t(t− 2)Si + Iw − S0;

tL(1) = (t2 − t− 2)Sj + (t− 1)Si + (t2 − t− 1)(Iw − S0 − Si − Sj)

= −Sj − t(t− 2)Si + (t2 − t− 1)(Iw − S0).

Subsequent blocks are made similarly, but the row and column factors
may be chosen freely among F1, . . . , Fh so long as the two pseudofactors
used in each block are different. For i = 1, . . . , h, let ψ(i) be the number
of blocks in which Fi is used in place of T (bad confounding with columns),
and let ρ(i) be the number of blocks in which Fi is used in place of U (small
confounding with rows). Treatments are orthogonal to blocks, so the matrices
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L1, L2, L3 and L for the whole design are obtained by summing the relevant
matrices for the individual blocks. Hence L1 = 0, and

tL2 =
h∑

i=1

ρ(i)Si;

tL3 = t(t− 2)
h∑

i=1

ψ(i)Si + n1(Iw − S0);

tL = −
h∑

i=1

[ρ(i) + t(t− 2)ψ(i)] Si + n1(t
2 − t− 1)(Iw − S0)

=
h∑

i=1

[
n1(t

2 − t− 1)− ρ(i)− t(t− 2)ψ(i)
]
Si + n1(t

2 − t− 1)S∞.

Taking generalized inverses gives

n1

t
L− =

h∑
i=1

[
t2 − t− 1− ρ(i)

n1

− t(t− 2)
ψ(i)

n1

]−1

Si + (t2 − t− 1)−1S∞

and so

` =
t− 1

tn1

[
h∑

i=1

[
t2 − t− 1− ρ(i)

n1

− t(t− 2)
ψ(i)

n1

]−1

+ (t+ 1− h)(t2 − t− 1)−1

]
.

To minimize this, the values ρ(i) + t(t − 2)ψ(i) should be chosen to be as
equal as possible.

If h = t+ 1 = n1, we can make ρ(i) = ψ(i) = 1 for i = 1, . . . , t+ 1, so the
whole design has supplemented balance. Now d = (t− 1) (t+ 1) /t, L1 = 0,
L2 = t−1(Iw − w−1Jw) and L3 = (t2 − t + 1)L2. Table 8 gives the canonical
efficiency factors in this case.

Example 7. When t = u = 3 we can use Construction 8 with h = n1 = 4 to
obtain a design with supplemented balance. Table 9 shows the pseudofactors
F1, . . . , F4 as an orthogonal array. Using each pseudofactor once in each role
of Construction 6 gives the design in Figure 6.

If fewer blocks are used, the design still has supplemented partial balance
with respect to the Latin-square type of association scheme in Section 2.4.5,
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Table 8: Canonical efficiency factors in each stratum for one design given by Construction 8

type with control all other
df 1 t2 − 1
B 0 0

R[B] 0 1
t(t2−1)

C[B] 0 t2−t+1
t(t2−1)

R#C[B] 1 1− t2−t+2
t(t2−1)

Table 9: Four pseudofactors in Example 7

non-control treatments
factors 1 2 3 4 5 6 7 8 9 groups for each pseudofactor

F1 = T 1 1 1 2 2 2 3 3 3
1 4 7
2 5 8
3 6 9

F2 = U 1 2 3 1 2 3 1 2 3
1 2 3
4 5 6
7 8 9

F3 1 2 3 2 3 1 3 1 2
1 2 3
6 4 5
8 9 7

F4 1 2 3 3 1 2 2 3 1
1 2 3
5 6 4
9 7 8
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row 1 0 21 31 0 22 32 0 23 33 0 12 13 0 23 21 0 31 32
row 2 21 0 11 22 0 12 23 0 13 12 0 11 23 0 22 31 0 33
row 3 31 11 0 32 12 0 33 13 0 13 11 0 21 22 0 32 33 0

Block 3 (F3 and F2) Block 4 (F4 and F3)

row 1 0 23 32 0 33 12 0 13 22 0 22 33 0 31 12 0 13 21
row 2 23 0 11 33 0 21 13 0 31 22 0 11 31 0 23 13 0 32
row 3 32 11 0 12 21 0 22 31 0 33 11 0 12 23 0 21 32 0

Figure 6: Design in Example 7

which specializes to R(t, t) when h = 2. Now there is considerable flexibility
in how we choose the pseudofactors for each block. Table 11 cannot show all
the possibilities.

Example 8. Table 10 shows the canonical efficiency factors for four of the
possible designs when t = u = 3 and n1 = 2. There is no information in
stratum B. For each design, A denotes the harmonic mean of the canonical
efficiency factors in the bottom stratum, excluding the one for the contrast
between the control and all other treatments.

The design in Table 10(a) uses Block 4 from Figure 6 together with a
second block made from this by interchanging the roles of F3 and F4. This
maximizes the efficiency for the main effects of T and U in the bottom
stratum. The design in Table 10(b) uses Block 3 from Figure 6 together with
a second block made by using F4 and F1 in place of F3 and F2. This gives
A-optimality, among these designs, for treatment contrasts not involving the
control. The design in Table 10(c) uses Blocks 3 and 4 from Figure 6. The
design in Table 10(d) uses Block 3 from Figure 6 together with a second
block made from this by using F4 in place of F3.
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Table 10: Canonical efficiency factors for four designs in Example 8

(a) (b) (c) (d)

ρ(3) = ρ(4) = 1 ρ(1) = ρ(2) = 1 ρ(2) = ρ(3) = 1 ρ(2) = 2

ψ(3) = ψ(4) = 1 ψ(3) = ψ(4) = 1 ψ(3) = ψ(4) = 1 ψ(3) = ψ(4) = 1

T , U T#U T , U T#U T U F3 F4 T U T#U

R[B] 0 1
12

1
12

0 0 1
12

1
12

0 0 1
6

0

C[B] 1
6

5
12

1
6

5
12

1
6

1
6

5
12

5
12

1
6

1
6

5
12

R#C[B] 5
6

1
2

3
4

7
12

5
6

3
4

1
2

7
12

5
6

2
3

7
12

A = 0.625 A = 0.656 A = 0.640 A = 0.653

4. Discussion

4.1. Comparison with other designs in the literature

The designs proposed in this paper give numerous possibilities for con-
structing near-factorial nested row-column designs for the assumed numbers
of levels of two treatment factors. We propose designs whose treatments,
apart from the control treatment, either have the structure typical for facto-
rial experiments or have the trivial association scheme. The last possibility
gives designs with supplemented balance, which have also been considered in
other papers.

Gupta and Kageyama (1991) gave three constructions of designs with
supplemented balance. A special case of the first one is our Construction 1
with c = 1, which is just a Latin square for v treatments. The general version
of this construction uses n1 blocks, each like Construction 1 but using only a
subset of the non-control treatments, in such a way that the n1 subsets form
a balanced incomplete-block design. Typically n1 is larger than the values in
our constructions.

The second construction of Gupta and Kageyama (1991) uses 2×2 blocks,
each with two replications of the control treatment on the diagonal. There
is one block for each pair of non-control treatments, so again n1 is large.

These two constructions both guarantee control orthogonality.  Lacka and
Koz lowska (2009) proposed other ways of constructing designs with supple-
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mented balance for blocks with two rows per block (n2 = 2), but without
control orthogonality.

Supplemented group-divisible designs with nested rows and columns can
be obtained by the method proposed by Koz lowska et al. (2011). Most of
these designs do not have control orthogonality.

4.2. Choosing a design for an experiment

Of course, the values of the canonical efficiency factors are not the only
parameters which should be considered when choosing the experimental de-
sign. Usually the values of t, u, n1, n2 and n3 are specified, but different
patterns of replication may give different variances for the contrasts of inter-
est.

Example 9. Suppose that t = 2, u = 3, n1 = 2 and n2 = n3 = 6. Con-
structions 4 and 5 with p = 2 and q = 1 give two possible designs. In both,
the contrast comparing the control treatment with all other treatments has
full efficiency in the bottom stratum. In spite of this, the normalized vari-
ance for this contrast is smaller in the design made from Construction 5
(0.0476σ2) than in the design made from Construction 4 (0.0536σ2). For a
contrast comparing the control with a single other treatment, the situation is
the opposite: the normalized variance is 0.0892σ2 if Construction 4 is used,
or 0.1111σ2 if Construction 5 is used. The contrasts for U [T ] have full effi-
ciency in the bottom stratum in Construction 5, but not in Construction 4;
however, Construction 4 gives a smaller normalized variance (0.1364σ2) than
Construction 5 (0.1667σ2). See Table 12.

Those two constructions differed in the pattern of treatment replication.
However, this is not the only cause of different variances in different designs.

Example 10. Suppose that t = u = n1 = 2 and n2 = n3 = 4. Construc-
tion 2, and Construction 4 with p = 2 and q = 1, both give designs with
r0 = 8 and r = 6. The only difference is the allocation of treatments to
experimental units. Both designs have control orthogonality, and the nor-
malized variance of the bottom-stratum estimator of the difference between
the control and the average of the other treatments is 0.1333σ2. However, for
the contrast between the control and a single other treatment, the normalized
variance is 0.1561σ2 if Construction 4 is used, or 0.1583σ2 if Construction 2
is used; the former has a smaller value of `. Similar comparisons are made
for other types of contrast in Table 13.
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Table 12: Comparing designs with t = 2, u = 3, n1 = 2 and n2 = n3 = 6

Con- variance of normalized contrast/σ2

struc- control versus
tion r0 r ` A rest another T U [T ]

2 12 10 0.0893 0.9333 0.0857 0.0946 0.1071 0.1071
4 24 8 0.1159 0.8987 0.0536 0.0892 0.1500 0.1364
5 36 6 0.1667 0.8333 0.0476 0.1111 0.3333 0.1667

Table 13: Comparing designs with t = u = 2, n1 = 2 and n2 = n3 = 4

Con- variance of normalized contrast/σ2

struc- control versus
tion r0 r ` A rest another T U [T ]

2 8 6 0.1500 0.8333 0.1333 0.1583 0.2000 0.2000
4 8 6 0.1455 0.8594 0.1333 0.1561 0.1818 0.2000
3 16 4 0.2500 0.7500 0.1000 0.1875 0.5000 0.2500

The control treatment occurs m3 times in each column. Since r0 =
n1n3m3 and rw = n1n2n3 − r0, we have r0/r = m3w/(n2 − m3). In an
unblocked design, if it is only the contrasts between the control and individ-
ual other treatments that are important, we should try to make r0/r close to√
w (Hedayat et al., 1988). Since our designs have high canonical efficiency

factors, this seems to be a good strategy here too, so we should try to make
(n2 − m3)/m3 close to

√
w. If possible, we should try values of m3 giving

(n2−m3)/m3 either side of
√
w. If n2 ≤

√
w, this suggests that designs with

m3 > 1 will not be good.
If contrasts with the control are less important, then r0 (and hence m3)

should probably be chosen smaller than above.
Table 12 compares the two designs in Example 9, as well as a further

design made from Construction 2. Those from Constructions 2 and 4 give
r0/r close to, and either side of,

√
w, and the former is better for contrasts

not involving the control.
Table 13 gives a similar comparison for the designs in Example 10 and

a design made from Construction 3. The first two have m3 = 1, so that
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Table 14: Comparing designs with t = u = 3, n1 = 2, n2 = 3 and n3 = 9

variance of normalized contrast/σ2

control versus
Design r0 r ` A rest another T , U T#U

Table 10(b) 18 4 0.3386 0.6562 0.0750 0.2110 0.3333 0.4286
See text 36 2 0.7778 0.5714 0.0750 0.4306 0.7500 1.0000

(n2−m3)/m3 = 3, while the third has m3 = 2 and (n2−m3)/m3 = 1. These
values are either side of 2, which is

√
w, but the larger value of m3 in the

third design increases the variances of all contrasts except the one comparing
the control with all the rest.

In Example 8, n2 = 3 =
√
w, and so it is unlikely that any design with

m3 > 1 will be competitive for any of the contrasts. Table 14 compares the
design in Table 10(b) with another design which has m3 = 2; the non-control
treatments in the rows correspond to the levels of F3 and F4 in the two blocks.
As expected, the second design performs poorly for all contrasts except the
one comparing the control with the average of the rest.

There is no single rule for which construction should be chosen for an ex-
periment. The decision should depend not only on the technical possibilities,
but mainly on the goal of the experiment: for example, which contrasts are of
most interest. This is especially true when several constructions are available
for the chosen parameters. Depending on the purpose of the experiment, the
experimenter will have a view about the relative importance of the various
contrasts, and can use a weighted optimality criterion of the kind suggested
by Morgan and Wang (2010); Wang and Morgan (2011) to choose the best
design.
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