
www.thelancet.com/diabetes-endocrinology   Vol 3   April 2015 243

Articles

Lancet Diabetes Endocrinol 
2015; 3: 243–53

Published Online
February 26, 2015
http://dx.doi.org/10.1016/
S2213-8587(15)00034-0

See Comment page 228

*Authors listed at end of paper

Correspondence to:
Dr Daniel Freitag or 
Prof John Danesh, The Interleukin 
1 Genetics Consortium 
Coordinating Centre, 
Department of Public Health and 
Primary Care, University of 
Cambridge, Strangeways 
Research Laboratory, Cambridge 
CB1 8RN, UK
IL1GC@medschl.cam.ac.uk

Cardiometabolic eff ects of genetic upregulation of the 
interleukin 1 receptor antagonist: a Mendelian 
randomisation analysis
The Interleukin 1 Genetics Consortium*

Summary
Background To investigate potential cardiovascular and other eff ects of long-term pharmacological interleukin 1 (IL-1) 
inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of infl ammation.

Methods We created a genetic score combining the eff ects of alleles of two common variants (rs6743376 and 
rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous 
inhibitor of both IL-1α and IL-1β); both alleles increase soluble IL-1Ra protein concentration. We compared eff ects on 
infl ammation biomarkers of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has 
previously been studied in randomised trials of rheumatoid arthritis and other infl ammatory disorders. In primary 
analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type 2 
diabetes, coronary heart disease, ischaemic stroke, and abdominal aortic aneurysm; 453 411 total participants). In 
exploratory analyses, we studied the relation of the score to many disease traits and to 24 other disorders of proposed 
relevance to IL-1 signalling (746 171 total participants).

Findings For each IL1RN minor allele inherited, serum concentrations of IL-1Ra increased by 0·22 SD (95% CI 
0·18–0·25; 12·5%; p=9·3 × 10–³³), concentrations of interleukin 6 decreased by 0·02 SD (–0·04 to –0·01; –1·7%; 
p=3·5 × 10–³), and concentrations of C-reactive protein decreased by 0·03 SD (–0·04 to –0·02; –3·4%; p=7·7 × 10–¹⁴). 
We noted the eff ects of the genetic score on these infl ammation biomarkers to be directionally concordant with 
those of anakinra. The allele count of the genetic score had roughly log-linear, dose-dependent associations with 
both IL-1Ra concentration and risk of coronary heart disease. For people who carried four IL-1Ra-raising alleles, 
the odds ratio for coronary heart disease was 1·15 (1·08–1·22; p=1·8 × 10–⁶) compared with people who carried no 
IL-1Ra-raising alleles; the per-allele odds ratio for coronary heart disease was 1·03 (1·02–1·04; p=3·9 × 10–¹⁰). Per-
allele odds ratios were 0·97 (0·95–0·99; p=9·9 × 10–⁴) for rheumatoid arthritis, 0·99 (0·97–1·01; p=0·47) for type 2 
diabetes, 1·00 (0·98–1·02; p=0·92) for ischaemic stroke, and 1·08 (1·04–1·12; p=1·8 × 10–⁵) for abdominal aortic 
aneurysm. In exploratory analyses, we observed per-allele increases in concentrations of proatherogenic lipids, 
including LDL-cholesterol, but no clear evidence of association for blood pressure, glycaemic traits, or any of the 
24 other disorders studied. Modelling suggested that the observed increase in LDL-cholesterol could account for 
about a third of the association observed between the genetic score and increased coronary risk.

Interpretation Human genetic data suggest that long-term dual IL-1α/β inhibition could increase cardiovascular risk 
and, conversely, reduce the risk of development of rheumatoid arthritis. The cardiovascular risk might, in part, be 
mediated through an increase in proatherogenic lipid concentrations.
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Commission Framework Programme 7.
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Introduction
Interleukin 1 (IL-1), a cytokine that acts as a master 
regulator of infl ammation, triggers a cascade of infl amm-
atory mediators by activation of the IL-1 receptor.1 Drugs 
that inhibit IL-1 are licensed for treatment of infl ammatory 
disorders, such as rheumatoid arthritis. Trials are in 
progress for a broad range of additional indications,1 such 
as cardiometabolic disorders,2–4 because some evidence 
suggests that persistent infl ammation increases cardio-
vascular risk and that IL-1 signalling is increased in the 

pancreatic islet cells of patients with type 2 diabetes.5 
However, potential concerns exist about the safety of 
long-term IL-1 inhibition. The IL-1 receptor is present on 
nearly all human cells, and IL-1 has key roles in host 
defence, wound healing, and many other processes.6 
Potential cardiovascular and other eff ects of sustained 
inhibition therefore need to be understood.7

One important approach to gain such information is 
through randomised trials of IL-1-inhibiting drugs. 
However, although trials of IL-1 inhibitors have shown 
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rapid reductions in disease severity and symptoms in 
infl ammatory disorders,1,8 they have been too brief or 
insuffi  ciently powered to assess the eff ect on cardio-
vascular and other disease outcomes. A complementary 
approach is to study genetic variants known to result in 
IL-1 inhibition. Because genotypes are fi xed at conception, 
human genetic studies could help to predict the eff ects of 
long-term IL-1 inhibition.9,10

We aimed to create a genetic score that combines 
information on rs6743376 and rs1542176, two uncorrelated 
variants located upstream of ILRN, the gene encoding the 
IL-1 receptor antagonist (IL-1Ra). These variants are the 
strongest known genetic determinants of circulating 
IL-1Ra protein concentrations.11 IL-1Ra is an endogenous 
inhibitor of IL-1 that blocks activation of the IL-1 receptor 
by either IL-1α or IL-1β.1 This genetic score could thus 
mimic the eff ects of IL-1 inhibitors (eg, anakinra) that have 
the same mechanism of action as IL-1Ra (appendix p 41). 
By contrast, this genetic score would not necessarily be 
expected to mimic the eff ects of drugs that selectively 
inhibit either IL-1α (eg, MABp1) or IL-1β (eg, canakinumab). 
We investigated this genetic score in relation to rheumatoid 
arthritis and four cardiovascular disorders (type 2 diabetes, 
coronary heart disease, ischaemic stroke, and abdominal 
aortic aneurysm), and, in exploratory analyses, in relation 
to additional disorders and disease traits.

Methods
Study design and procedures
Figure 1 summarises the study approach, and the table 
provides defi nitions and sources of data used. First, we 
constructed a score containing two genetic variants 
(rs6743376 and rs1542176) previously robustly linked with 
IL-1Ra concentration,11 and then investigated the biological 
relevance of the score through analysis of gene expression 
data (fi gure 1, appendix pp 1–4). Second, we assessed the 
eff ects of our genetic score on circulating concentrations 
of IL-1Ra, interleukin 6 (IL-6), and C-reactive protein 
(CRP; table, appendix pp 5–10). We then compared the 

score’s eff ects on these infl ammation biomarkers with 
those of anakinra, the recombinant form of IL-1Ra, from 
existing randomised trial data (appendix p 10). Third, 
because anakinra is licensed for treatment of rheumatoid 
arthritis, we assessed the score in patients with rheumatoid 
arthritis and in healthy controls (table, appendix p 11). 
Fourth, we assessed the score in relation to type 2 diabetes, 
coronary heart disease, ischaemic stroke, and abdominal 
aortic aneurysm (table, appendix pp 11–12) because each 
of these disorders is either being investigated as an 
outcome in trials of IL-1 inhibitors,1 or has been previously 
robustly linked with a functional genetic variant for 
infl ammation,31 or both. Fifth, to gain insight into 
mechanisms that might link IL-1α/β signalling with 
cardiovascular disorders, we did exploratory analyses of 
the score in relation to disease traits (appendix pp 13–15). 
Sixth, to help predict the broad eff ects of long-term dual 
IL-1α/β inhibition, we explored the score in relation to 
several additional disorders (appendix p 12).

Samples and data collection
To investigate the biological relevance of the genetic 
score, we investigated associations with mRNA 
concentrations of genes in the vicinity of rs6743376 and 
rs1542176. We accessed information from the Multiple 
Tissue Human Expression Resource, which contains 
information on adipose tissue, skin, and lymphoblastoid 
cell lines from 850 people, and from the Genotype-Tissue 
Expression project, which includes information on 
13 diff erent tissue types derived from 60–170 people.

In up to 63 442 participants, we quantifi ed the eff ects of 
the genetic score on concentrations of IL-1Ra, IL-6, and 
CRP using data from the Cardiovascular Health Study, 
Copenhagen City Heart Study, Copenhagen General 
Population Study, European Prospective Investigation 
into Cancer and Nutrition-Cardiovascular Disease Study, 
SardiNIA study, and UK10K consortium (table, 
appendix pp 5–10, 21–22, and 29).

To compare the eff ects on infl ammation biomarkers of 
IL-1Ra-raising alleles with those of anakinra, we did a 
systematic review of published randomised trials, 
including data for 1125 patients in eight trials (appendix 
pp 10, 38, 44). We calculated standardised treatment eff ects 
for anakinra doses of 75 mg or 100 mg (the most widely 
used doses in treatment of rheumatoid arthritis) on 
concentrations of infl ammation biomarkers, and then 
pooled the results by fi xed-eff ect inverse-variance weighted 
meta-analysis.

In 453 411 total participants, we investigated the genetic 
score in relation to rheumatoid arthritis and four 
cardiovascular disorders (type 2 diabetes, coronary heart 
disease, ischaemic stroke, and abdominal aortic 
aneurysm). For each disorder, we sought results from the 
largest available consortium. For rheumatoid arthritis, 
we accessed results from Okada and colleagues;15,32 for 
type 2 diabetes, from the Diabetes Genetics Replication 
and Meta-analysis consortium and European Prospective 

Figure 1: Study design
CRP=C-reactive protein. GWAS=genome-wide association study. IL-1Ra=interleukin 1 receptor antagonist. 
IL-6=interleukin 6; RCT=randomised controlled trial. *Refers to the Multiple Tissue Human Expression Resource 
and Genotype-Tissue Expression project. 
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For the Multiple Tissue Human 
Expression Resource see http://

www.muther.ac.uk

See Online for appendix

For the Genotype-Tissue 
Expression project see http://

www.gtexportal.org

For UK10K consortium see 
http://www.uk10k.org
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Investigation into Cancer and Nutrition-InterAct;16–18 for 
abdominal aortic aneurysm, from the Abdominal Aortic 
Aneurysm Genetics Consortium;26–30 and ischaemic 
stroke, from the METASTROKE consortium (appendix 
pp 26 and 29).25

For coronary heart disease, we had access to study-level 
data for 70 532 patients and 126 374 controls. For 98 961 of 
these participants (36 650 patients and 62 311 controls), we 
did de-novo genotyping of rs6743376 and rs1542176 
(table and appendix pp 5–8). We did genotyping using 
customised arrays in a central laboratory by technicians 
masked to the phenotypic status of the participants’ 
samples for the following fi ve studies contributing 
participant-level data: the Bangladesh Risk of Acute 
Vascular Events Study, Copenhagen City Heart Study, 
Copenhagen Ischaemic Heart Disease/Copenhagen 
General Population Study, European Prospective 
Investigation into Cancer and Nutrition-Cardiovascular 
Disease Study, and Pakistan Risk of Myocardial Infarction 
Study (appendix pp 9 and 23–25). Similar methods were 
used in three studies that did de-novo genotyping in 
local laboratories (deCODE, the German Myocardial 
Infarction Family Study, and the Ottawa Heart Genomics 
Study/Cleveland Clinic GeneBank). We supplemented 
genotyping with existing tabular data from the 
transatlantic Coronary Artery Disease Genome-wide 
Replication and Meta-analysis and Coronary Artery 
Disease Genetics consortia,19,20 which enabled us to 
ascertain cases and controls within each allele count 
category of the genetic score (appendix p 12). About 90% 
of patients had myocardial infarction or other major acute 
coronary events; the remainder had angiographic evidence 
alone (eg, >50% coronary stenosis; appendix pp 35–36).

In up to 116 937 participants, we did exploratory 
analyses of the genetic score in relation to diff erent 
disease traits to gain insight into mechanisms that might 
link IL-1α/β signalling with cardiometabolic disorders. 
We fi rst examined 18 conventional cardiometabolic risk 
factors (total cholesterol, HDL cholesterol, triglycerides, 
LDL cholesterol,33,34 apolipoprotein A1 and B, 
lipoprotein[a], systolic and diastolic blood pressure, 
fasting glucose,35 HbA1c,36 fasting insulin,35 2 h glucose,37 
fasting proinsulin,38 height, BMI, waist circumference, 
and waist to hip ratio).39,40 For each trait, we sought results 
from the largest available consortium (appendix p 33), 
supplemented with data from de-novo genotyping from 
the fi ve studies mentioned previously providing 
participant-level data (appendix pp 5–8 and 21–22). When 
we noted suggestive associations between the genetic 
score and specifi c proatherogenic lipid concentrations, 
we extended this exploration to further traits, including 
metabolic profi les (eg, nuclear magnetic resonance 
spectroscopy metabolomics), subclinical cardiovascular 
phenotypes (eg, carotid intima-media thickness), and 
infl ammatory cell subsets (eg, regulatory CD4 T-cell 
count). Appendix pp 33–34 provide a full account of the 
biological traits that we explored.

In a total of 205 329 patients and 423 905 controls, we 
did exploratory analyses of the genetic score in relation 
to 24 additional disorders of proposed relevance to IL-1 
signalling, including autoimmune, degenerative, 
neoplastic, and infectious diseases. Again, we sought 
results from the largest available disease-specifi c con-
sortia. Appendix pp 13–15, 27–28, and 30–34 provide a 
full account of the disorders that we explored.

For the Diabetes Genetics 
Replication and Meta-analysis 
consortium see http://diagram-
consortium.org

For glycaemic traits see http://
www.magicinvestigators.org

For anthropometric traits see 
http://www.broadinstitute.org/
collaboration/giant/

Participants* Assessment method or endpoint 
defi nition

Interleukin 1 receptor antagonist

CHS11 3081 Validated, commercially available ELISA-
based system (Mesoscale, Maryland, USA)

Interleukin 6

CHS11 2917 Validated, commercially available ELISA-
based systems (eg, R&D systems, 
Minnesota, USA, or Millipore, Missouri, 
USA)

SardiNIA12 5924

UK10K consortium 7311

C-reactive protein

CHS11 3181 Validated, commercially available ELISA-
based systems (eg, Millipore), nephelometric 
systems (Dade Behring, Illinois, USA), or 
turbidimetric systems (eg, Dako, Glostrup, 
Denmark)

CCHS13 3806

CGPS13 2728

EPIC-CVD14 14 100

SardiNIA12 5716

UK10K consortium 33 911

Rheumatoid arthritis

Okada et al15 14 361/43 923 1987 criteria of the ACR

Type 2 diabetes

DIAGRAM and EPIC-InterAct16–18 18 715/61 692 ADA, WHO criteria, or similar

Coronary heart disease

C4D19 11 733/11 816 MI and other major coronary events (about 
90% of cases); angiographic stenosis only 
(about 10% of cases)

CARDIoGRAM20 22 149/52 247

Studies in CARDIoGRAM20 with de-novo 
genotyping (deCODE,21 GerMIFS I-V,22 
and OHGS/CCGB)23

14 703/38 817

Studies with de-novo genotyping in a 
central laboratory (BRAVE,† CCHS,13 
CIHDS/CGPS,13 EPIC-CVD,14 and 
PROMIS)24

21 947/23 494

Ischaemic stroke

METASTROKE25 12 389/62 004 Clinical with radiological confi rmation, 
subtyping done with TOAST classifi cation 
system

Abdominal aortic aneurysm

AAA Genetics Consortium26–30 4682/38 739 Infrarenal aortic diameter of less than 
30 mm, ascertained by ultrasonography or 
cross-sectional imaging, and patients who 
presented with acute rupture

CHS=Cardiovascular Health Study. CCHS=Copenhagen City Heart Study. CGPS=Copenhagen General Population Study. 
EPIC-CVD=European Prospective Investigation into Cancer and Nutrition-Cardiovascular Disease study. ACR=American 
College of Rheumatology. DIAGRAM=Diabetes Genetics Replication and Meta-analysis consortium. ADA=American 
Diabetes Association. C4D=Coronary Artery Disease Genetics consortium. MI=myocardial infarction. 
CARDIoGRAM=transatlantic Coronary Artery Disease Genome-wide Replication and Meta-analysis consortium. 
deCODE=deCODE genetics coronary heart disease study. GerMIFS I-V=German Myocardial Infarction Family studies. 
OHGS=Ottawa Heart Genomics Study. CCGB=Cleveland Clinic GeneBank. BRAVE=Bangladesh Risk of Acute Vascular Events 
study. CIHDS=Copenhagen Ischaemic Heart Disease Study. PROMIS=Pakistan Risk of Myocardial Infarction Study. 
TOAST=Trial of Org 10172 in Acute Stroke Treatme nt. AAA=abdominal aortic aneurysm. *Data are n or cases/controls. 
†Chowdhury R, et al, unpublished. 

Table: Defi nitions and sources of contributing data for main study outcomes
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Statistical analysis
We constructed a genetic score for IL-1 inhibition by 
counting the number of IL-1Ra-increasing alleles—ie, the 
C-alleles at rs6743376 and rs1542176 (appendix p 2). Our 
objective was to investigate the relevance of a biologically 
meaningful genetic score to eight pre specifi ed 
outcomes—ie, three soluble infl ammation biomarkers, 
rheumatoid arthritis, and four cardio metabolic disorders. 
To reduce the possibility of artifactual results and enable 
analysis of additional data, we constructed an alternative 
score consisting of two other IL-1Ra-increasing alleles 
(rs6759676 and rs4251961, which are each correlated with 
one of the variants used in the main score) that were 
identifi ed in a separate genome-wide association study of 
IL-1Ra concentration41 (appendix p 3). We made allowances 
for study of eight main outcomes by using a Bonferroni-
corrected signifi cance threshold guideline of p=0·006 (ie, 
0·05/8). For exploratory analyses (fi gure 1), we used as 
guidelines to help interpretation: p=0·003 (0·05/18) for 
analyses of 18 conventional cardiovascular risk factors and 
p=0·002 (0·05/24) for analyses of the additional 24 
disorders. We could not use data from gene arrays that did 
not have information on both rs6743376 and rs1542176, or 
suitable proxies (eg, CardioMetabochip, Immunochip, 
ITMAT-Broad-CARE, or Exome array [Illumina, 
California, USA]). We included information on 

participants of European or south Asian ancestry, but not 
on east Asians (rs6743376 and rs1542176 are correlated 
variants in east Asians, preventing creation of an 
appropriate genetic score; appendix pp 3 and 42).

To analyse summary-level data from consortia, we did 
a fi xed-eff ect meta-analysis of the separate eff ects of 
rs6743376 and rs1542176 because these two variants are 
independent in European and south Asian ancestry 
populations (r²=0·00; D’=0·03 in 1000 Genomes).42 In 
an analysis of available individual participant data, we 
natural log transformed values of infl ammation 
biomarkers and other continuous traits that had skewed 
distributions. We regressed standardised trait values on 
the genetic score, adjusting for age, sex, and ancestry-
informative principal components. To help comparisons 
across markers, we primarily expressed associations as 
SD diff erences in concentrations and, secondarily, as 
percentage diff erences. For loge-transformed variables, 
we obtained percentage changes as the exponent of the 
pooled loge-transformed diff erences. For non-loge-
transformed variables, we obtained percentage change 
with reference to the pooled mean of each variable 
across studies. For estimates derived from consortia, 
the mean value and SD corresponded to that of the 
largest study. For all analyses, we used complete 
participant analysis—ie, we excluded participants with 
missing data.

To assess associations of the genetic score with 
dichotomous disease outcomes, we used logistic 
regression models that adjusted for age, sex, and 
ancestry-informative principal components. In the 
analysis of tabular data, we used logistic regression 
models to estimate the per-allele odds ratio, or calculated 
odds ratios within each score category compared with 
the reference category. We assessed dose–response 
relations for the genetic score with IL-1Ra concentrations 
or coronary heart disease risk, irrespective of an 
arbitrarily chosen reference group by attributing a 
fl oating variance estimate to each category, including the 
reference group, based on Plummer’s method.43 We did 
analyses separately by study, and pooled β coeffi  cients 
across studies using fi xed-eff ect inverse-variance-
weighted meta-analysis. We assessed heterogeneity with 
the I² statistic. To test for deviation from a linear dose–
response association of the genetic score with coronary 
heart disease risk, we compared the fi t of models that 
assumed a linear trend of the genetic score with those 
that made no assumption about the shape of the 
association, using a likelihood ratio test. We used Stata 
13.1 for statistical analyses.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. DF and JD had full access to all the 
data in the study and had fi nal responsibility for the 
decision to submit for publication. 

Figure 2: Relation of the genetic score allele count with soluble IL-1Ra concentrations and risk of coronary 
heart disease
Box sizes correspond to the number of coronary heart disease cases or participants with IL-1Ra concentration 
measurements contributing to analyses. Error bars represent 95% CIs, calculated with the method of 
Plummer.43 Estimates are derived from fi xed-eff ect meta-analyses of study-specifi c estimates. Contributing 
studies are listed in the appendix pp 35–36. The underlying study-specifi c results used to construct this fi gure 
are provided in the appendix p 48, which includes study-specifi c tabulations of cases and controls within each 
score category, study-specifi c odds ratios, and the pooling of these results across contributing studies. 
IL-1Ra=interleukin 1 receptor antagonist.
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Results 
The frequency of IL-1Ra-raising alleles was about 30% for 
rs6743376 and 50% for rs1542176. Analysis of the 
Encyclopedia of DNA Elements (ENCODE) suggested 
that the locus around rs6743376 and rs1542176 is a gene-
regulatory region (appendix p 42). In the Multiple Tissue 
Human Expression Resource, we noted signifi cant 
associations between the genetic score and IL1RN mRNA 
concentrations in subcutaneous adipose tissue 
(p=3·9 × 10–⁶) and lymphoblastoid cell lines (p=1·7 × 10–⁴; 
appendix pp 20 and 42–43). However, in these tissues 
(and in about ten further tissues we studied in the 
Genotype-Tissue Expression project; appendix p 4), we 
did not note signifi cant associations between this score 
and mRNA concentrations of other genes in this region 
(data not shown).

We noted a roughly log-linear, dose-dependent 
association of the genetic score with IL-1Ra concentration 
(fi gure 2; appendix p 43). For each IL1RN C-allele 
inherited, IL-1Ra concentrations increased by 0·22 SD 
(95% CI 0·18 to 0·25; 12·5%; p=9·3 × 10–³³), IL-6 
concentrations decreased by 0·02 SD (–0·04 to –0·01; 
–1·7%; p=3·5 × 10–³), and CRP concentrations decreased 
by 0·03 SD (–0·04 to –0·02; –3·4%; p=7·7 × 10–¹⁴; 
fi gure 3). The eff ects of the genetic score on these 
infl ammation biomarkers were directionally concordant 
with those observed in anakinra trials. However, the 
absolute per-allele eff ects of the genetic score were much 
weaker than the eff ects of anakinra. Per-allele odds ratios 
with the score were 0·97 (0·95–0·99; p=9·9 × 10–⁴) for 
rheumatoid arthritis, 0·99 (0·97–1·01; p=0·47) for type 2 
diabetes, 1·03 (1·02–1·04; p=3·9 × 10–¹⁰) for coronary 
heart disease, 1·00 (0·98–1·02; p=0·92) for ischaemic 
stroke, and 1·08 (1·04–1·12; p=1·8 × 10–⁵) for abdominal 
aortic aneurysm (fi gure 4).

In subsidiary analyses, we noted that rs6743376 and 
rs1542176 each had similar-sized eff ects, both on IL-1Ra 
concentration and coronary heart disease risk (appendix 
pp 46–47). We used an alternative score described in the 
methods section consisting of two further SNPs 

(rs6759676 and rs4251961, which each are correlated with 
one of the SNPs used in our main score) (appendix pp 17 
and 50–51). Per-allele odds ratios with the alternative 
score were similar to those in the primary score for 
rheumatoid arthritis (odds ratio 0·96 [0·94–0·98; 
p=4·7 × 10–⁴]), type 2 diabetes (1·00 [0·98–1·01; p=0·53]), 
coronary heart disease (1·03 [1·02–1·04; p=3·7 × 10–⁸]), 
and abdominal aortic aneurysm (1·04 [1·01–1·08; 
p=0·011]; appendix pp 50–51).

We noted a roughly log-linear and dose-dependent 
association between the score and coronary heart disease 
risk (fi gure 2), with no evidence to support the existence 
of a non-linear association (p=0·59). For the 3% of people 
who carried four IL-1Ra-raising alleles, the odds ratio for 
coronary heart disease was 1·15 (1·08–1·22; p=1·8 × 10–⁶). 
Results were similar in analyses restricted to studies of 
myocardial infarction (appendix p 49). We did not attempt 
dose–response analyses for other main outcomes studied 
because we did not have suffi  cient power.

We noted that, per allele, the genetic score was 
associated with a 0·016 SD (0·009–0·022) increase 
(0·3%; p=5·8 × 10–⁷) in total cholesterol concentration, a 
0·014 SD (0·007–0·022) increase in LDL cholesterol 
concentration (0·3%; p=9·5 × 10–⁵), and a 0·009 SD 
(0·003–0·015) increase in triglyceride concentration 
(0·4%; p=2·6 × 10–³; fi gure 5; appendix p 18). To estimate 
how much of the association we observed between the 
genetic score and coronary heart disease could be 
accounted for by LDL cholesterol concentration, we 
estimated the causal eff ect of life-long change in LDL 
cholesterol concentration in two ways. First, our genetic 
estimation used published reports that identifi ed variants 
that were robustly and exclusively associated with LDL 
cholesterol concentrations.44 Second, our phenotypic 
estimation used individual participant data for long-term 
average serum lipid concentrations from 302 430 
participants in the Emerging Risk Factors Collaboration.45 
These complementary approaches yielded broadly 
concordant fi ndings, suggesting that LDL cholesterol 
concentration could account for 20–40% of the association 

Figure 3: Eff ects on infl ammation biomarkers of the genetic score compared with administration of 75 mg or 100 mg anakinra in eight randomised trials
Error bars show 95% CIs. To enable comparison of the magnitude of associations across several diff erent markers, we did analyses with standardised units of 
measurement for each marker. Associations are presented as per 75 mg or 100 mg dose of anakinra compared with placebo, or per-allele change in the biomarker 
expressed as SDs. Study descriptions, individual study estimates, and meta-analysis results are provided for trial results in the appendix pp 16, 38, and 45. Genetic 
analyses are also provided in the appendix p 46. CRP=C-reactive protein. IL-1Ra=interleukin 1 receptor antagonist. IL-6=interleukin 6.
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we observed between the score and risk of coronary heart 
disease (appendix pp 18–19).

We did not observe clear evidence of associations 
between the score and apolipoprotein B concentration, 
perhaps because available data on apolipoprotein B were 
only about a fi fth as great as those for total cholesterol. 
Similarly, we did not observe clear evidence of associations 
between the score and several glycaemic traits. Perhaps 
because we generally had low power to study some traits, 
we did not note any clear associations of the genetic score 

with a range of proatherogenic lipid subclasses, metab-
olites, and other intermediate traits (eg, carotid intima-
media thickness, presence of carotid plaque, or 
carotid-femoral pulse wave velocity; appendix p 37). For 
these traits, we typically analysed data for about a tenth of 
the number of participants we studied for total cholesterol.

We did not observe clear evidence of associations 
between the score and any of the 24 additional disorders 
that we studied, including a range of autoimmune, neo-
plastic, degenerative, and infectious disease outcomes. 

Figure 5: Associations of the genetic score with cardiovascular and metabolic risk factors
Box sizes correspond to the number of participants contributing to analyses. Error bars represent 95% CIs. To enable comparison of the magnitude of associations across 
several diff erent traits, we did analyses with standardised units of measurement for each trait. Associations are presented as per-allele changes in the traits expressed as 
SDs. Further information on contributing studies and a wider range of risk factors and biomarkers than shown in the fi gure is provided in the appendix pp 17–18, 21–22, 
33–34, 37, and 53. The I² value shows between-study heterogeneity. For LDL cholesterol, insulin, 2 h glucose, and proinsulin, estimates are derived from summary results 
from one single consortium for which heterogeneity statistics are not available. For most cohorts (about which relevant data were available), analyses of lipids and blood 
pressure excluded individuals taking lipid-lowering or blood pressure-lowering drugs. Analyses of glycaemic traits excluded individuals with known diabetes. NA=not 
applicable. *Contributing data include, in part, data on rs6761276[T] as a proxy for rs6743376[C]. †Not applicable because eff ect estimates derive from a single result.
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Figure 4: Associations of the genetic score with rheumatoid arthritis and four cardiometabolic disorders
Box sizes correspond to the number of cases contributing to analyses. Error bars show 95% CI. Summary statistics for individual single-nucleotide polymorphisms in 
the genetic score are provided in the appendix p 56. Coronary heart disease analyses are based on fi xed-eff ects meta-analyses of study-level tabular data, assuming a 
per-allele model. Individual study estimates and meta-analysis results are provided in the appendix p 47. The I² value for between-study heterogeneity for coronary 
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the odds ratios derive from a single result provided by a consortium. Analyses of ischaemic stroke subtypes are provided in the appendix p 52. IL-1=interleukin 1. 
NA=not applicable. *Contributing data include, in part, rs6761276[T] as a proxy for rs6743376[C]. 
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However, we noted substantial variation in the amount of 
available data (and, hence, power to detect associations) 
across the diff erent disorders that we explored (appendix 
pp 54–56).

Discussion
Drugs such as anakinra that produce dual IL-1α/β 
inhibition are licensed for treatment of infl ammatory 
disorders, but the long-term eff ects of such treatment on 
cardiovascular and other outcomes remain unknown 
(panel). Our powerful and multilayered analysis of 
human genetic data has suggested the surprising 
conclusion that sustained dual IL-1α/β inhibition could 
increase the risk of cardiovascular diseases, in part via 
increased proatherogenic lipids. These fi ndings provide 
new insights into the clinical and biological eff ects of 
IL-1α/β signalling.

We anchored our investigation in a genetic score that 
was associated with upregulation of IL-1Ra and that 
produced eff ects on soluble biomarkers consistent with 
IL-1α/β inhibition. The score’s biological relevance was 
suggested by its exclusive association with IL1RN mRNA 
concentrations in two tissues, by its roughly log-linear 
dose–response relation with soluble IL-1Ra concentration, 
and by its eff ects on soluble infl ammation biomarkers 
that were directionally concordant with those of anakinra. 
We studied this genetic score in relation to rheumatoid 
arthritis, a disorder already treated with anakinra. We 
noted that our score was associated with a decreased risk of 
rheumatoid arthritis, a new fi nding that reinforces the 
relevance of our score to the known clinical eff ects of 
IL-1α/β inhibition. This fi nding raises the possibility that 
long-term IL-1α/β inhibition could prevent (or at least 
delay) development of rheumatoid arthritis. Moreover, this 
fi nding provides a further example of the overlap noted 
between targets related to genes implicated in rheumatoid 
arthritis and treatments already approved for it.15

Contrary to expectation, however, several of our fi ndings 
suggest that long-term IL-1α/β inhibition could increase 
the risk of cardiovascular diseases. First, our genetic score 
was associated with an increased risk of coronary heart 
disease in a roughly log-linear and dose-dependent 
manner, analogous to the association we observed between 
the same score and IL-1Ra concentration. However, even 
taken together, investigators of trials of anakinra have 
recorded fewer than 40 coronary heart disease outcomes 
(appendix pp 16 and 39–40), and none have specifi cally 
addressed cardiovascular safety. Thus, we could not 
compare our results on cardiovascular risk with those 
from randomised trials.

Second, we noted potential associations between the 
genetic score and increased concentrations of LDL 
cholesterol and triglycerides. Our modelling analysis 
suggested that such associations could explain about a 
third of the observed association between the score and 
increased coronary heart disease risk.45,49 However, we 
were again unable to compare our fi ndings meaningfully 

with results from relevant randomised trials. Findings 
from two small anakinra trials (together consisting of 
fewer than 100 participants)46,47 showed no signifi cant 
increases in proatherogenic lipid concentrations, but the 
magnitude of lipid increases detectable in these trials is 
unknown because the studies did not report numerical 
results. By contrast, investigators of a trial of canakinumab 
(a selective IL-1β inhibitor) in about 500 participants50 
reported signifi cant elevations in triglyceride (but not 
LDL cholesterol) concentrations. However, the relevance 
of our genetic score to canakinumab is uncertain because 
although our score should mimic the eff ects of dual 
IL-1α/β inhibition, it does not necessarily mirror selective 
IL-1β inhibition. Indeed, we note that suitable genetic 
scores do not exist that distinguish the eff ects of long-
term inhibition of IL-1α from those of long-term 
inhibition of IL-1β, and the two cytokines seem distinct 
and non-redundant.6,51 Hence, our results do not 
necessarily have implications for trials such as the 
Canakinumab Anti-infl ammatory Thrombosis Outcome 
Study, which is designed to test selective IL-1β inhibition 
in secondary prevention of cardiovascular disease.4,52

Third, our genetic score was associated with increased 
risk of abdominal aortic aneurysm. Whereas our fi ndings 
show that inhibition of IL-1α/β signalling could increase 
the risk of coronary heart disease and abdominal aortic 
aneurysm, fi ndings from previous human genetic 
studies (including our own) have shown that inhibition 

Panel: Research in context

Systematic review
We searched Medline for randomised clinical trials published 
before Feb 18, 2014, without any language restrictions, by 
combining keywords related to IL-1α/β-blocking drugs and 
randomised clinical trials—eg, “anakinra”, “rilonacept”, 
“IL-1R1”, and “AMG108” (the full search strategy is provided in 
the appendix p 10). We identifi ed 29 randomised, 
placebo-controlled trials of dual IL-1α/β inhibitors, such as 
anakinra, which have mainly been done in patients with 
rheumatoid arthritis and other infl ammatory disorders. 22 of 
these trials reported on serious adverse events, but none 
specifi cally assessed cardiovascular safety. Investigators of 
only a few small trials46–48 have reported on glycosylated 
haemoglobin values and other metabolic measures, and they 
have reported confl icting results. Neither of two small trials of 
anakinra46,47 have reported increases in proatherogenic lipid 
concentrations, but they did not report numerical results. 

Interpretation
Our powerful and multilayered analysis of human genetic 
data has suggested the surprising conclusion that long-term 
IL-1α/b inhibition could increase the risk of cardiovascular 
diseases, in part, via increased proatherogenic lipids. These 
fi ndings provide new insights into the clinical and biological 
eff ects of IL-1α/β signalling, and could have implications for 
patients taking anakinra and related drugs. 
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of IL-6 signalling could actually reduce the risk of these 
disorders.53–55 Together, these fi ndings highlight the 
complexity of infl ammatory pathways underlying cardio-
vascular diseases. Studies are needed to help to 
understand mechanisms that account for the divergent 
eff ects of these two interrelated infl ammation pathways.

Our fi ndings also challenge studies in animals that 
have reported reductions in atherosclerosis, or slowing of 
aneurysm growth, after pharmacological dual IL-1α/β 
inhibition or genetic deletion of components of the 
IL-1α/β system.56,57 For example, fi ndings from some 
studies of mice without the IL-1 receptor have suggested 
a protective role of IL-1α/β signalling in atherosclerosis.58 
The contrast between most previous animal studies and 
the results from our study of human genetic data might 
be due, at least in part, to the limited ability of model 
organisms to fully represent the human immune system 
and human cardiovascular diseases.59

Fourth, we noted no evidence of associations between 
our genetic score and the risk of type 2 diabetes, insulin 
sensitivity, other glycaemic traits, blood pressure, or 
adiposity. By comparison, investigators of three small 
randomised trials of anakinra (collectively comprising 
about 150 participants)46–48 reported confl icting results in 
relation to eff ects on HbA1c values. Furthermore, fi ndings 
from a trial of canakinumab in about 500 participants did 
not show signifi cant reductions in HbA1c values.50 
Nevertheless, our genetic study had substantially less 
power to assess type 2 diabetes and measures of glycaemia 
than it did to assess coronary heart disease and 
proatherogenic lipids. Hence, although our results suggest 
that long-term IL-1α/β inhibition is unlikely to prevent 
type 2 diabetes or improve metabolic features associated 
with the disease,46,47 further studies might be needed to 
assess any moderate eff ects. Similar considerations apply 
to the null association between our genetic score and the 
risk of ischaemic stroke.

Our study had major strengths and potential limitations. 
One strength was that we used a prespecifi ed analysis 
plan. We also replicated our main fi ndings using an 
alternative genetic score that contained diff erent variants 
from those used in our main score. We accessed results 
from about 1 million people in worldwide consortia of 
relevant diseases and traits, which we supplemented with 
data from de-novo genotyping in nearly a further 100 000 
participants. Because we showed that our genetic score 
was exclusively associated with IL1RN mRNA 
concentrations in adipose tissue and lymphoblastoid cell 
lines, the associations that we observed of the genetic score 
with cardiovascular diseases and traits were unlikely to be 
driven by neighbouring genes or variants. However, we did 
not have access to data for other potentially relevant tissues 
(eg, primary leucocytes or hepatocytes). Because our 
genetic score should provide information about the eff ects 
of lifelong IL-1α/β inhibition, reduced IL-1α/β signalling 
from early life could lead to compensatory changes that 
aff ect cardiovascular risk. However, our genetic score was 

associated with reduced concentrations of both IL-6 and 
CRP in adults, consistent with the expected downstream 
eff ects of uncompensated IL-1 inhibition.

One limitation of our study is that its fi ndings can 
suggest only qualitative concordance of the eff ects on 
infl ammation biomarkers of our genetic score and 
anakinra. Genetic and pharmacological IL-1 inhibition 
diff er with respect to the magnitude and duration of 
inhibition, shown by the 5–10-times weaker eff ects that we 
observed of our genetic score on infl ammation bio markers 
compared with those of anakinra. Few people in 
randomised trials of anakinra have had IL-1Ra concen-
trations measured. In addition, whereas anakinra has 
mainly been studied in trials of people with pre-existing 
infl ammatory disorders, we related our genetic score to 
infl ammation biomarkers mainly in healthy people.

For the aforementioned reasons, the data in this report 
are diffi  cult to use to estimate the magnitude of potential 
cardiovascular hazard associated with dual IL-1α/β 
inhibition. Nevertheless, the robust but moderate 
associations that we identifi ed in this study between 
genetic IL-1α/β inhibition and cardiovascular risk do not 
preclude a substantial clinical eff ect because the size of 
an odds ratio conferred by natural variation in a 
particular gene bears no necessary relation to the size of 
hazard or benefi t that might accrue from intervention 
directed at the pathway that the gene identifi es.10 For 
example, statins confer substantial reductions in 
cardiovascular risk, despite slight associations between 
common variants in genes that are the target of statins 
(LDLR and HMGCR) and coronary heart disease.9 In 
summary, our study—which has introduced the concept 
of use of a wide-angle genetic approach to predict the 
broad phenotypic eff ects of perturbation of a biological 
pathway—has provided new insights into the clinical 
and biological eff ects of dual IL-1α/β signalling in 
relation to several cardiometabolic disorders and disease 
traits.
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