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ABSTRACT 

MBD4 is the only methyl-CpG binding protein that possesses a C-terminal glycosylase domain. 

It has been associated with a number of nuclear pathways including DNA repair, DNA damage 

response, the initiation of apoptosis, transcriptional repression and DNA demethylation. 

However, the precise contribution of MBD4 to these processes in development and relevant 

diseases remains elusive. We identified UHRF1 and USP7 as two new interaction partners for 

MBD4. Both UHRF1, a E3 ubiquitin ligase, and USP7, a de-ubiquinating enzyme, regulate the 

stability of the DNA maintenance methyltransferase, Dnmt1. The ability of MBD4 to directly 

interact with and recruit USP7 to chromocenters implicates it as an additional factor that can 

potentially regulate Dnmt1 activity during cell proliferation. 
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MBD4 is the only methyl-CpG binding protein that possesses a C-terminal glycosylase domain. It has 

been associated with a number of nuclear pathways including DNA repair, the DNA damage response, 

initiation of apoptosis, transcriptional repression and DNA demethylation [Bellacosa et al., 1999; 

Cortellino et al., 2003; Hendrich et al., 1999; Meng et al., 2011; Rai et al., 2008; Ruzov et al., 2009; 

Screaton et al., 2003; Thillainadesan et al., 2012]. A naturally occurring frameshift mutation in MBD4 

results in a truncated protein, lacking its intervening region and glycosylase domain, occurs in human 

colon and other carcinomas that exhibit microsatellite instability (MSI), generally associated with 

defects in mismatch repair (MMR) [Bader et al., 1999; Bader et al., 2007; Riccio et al., 1999]. 

However, mutant mice targeted to create an Mbd4 null mutation did not exhibit increased 

tumorigenesis, reduced survival rates, or increased MSI; although a 2-3 fold increase in G:T mutation 

at CpG sites was observed [Millar et al., 2002; Wong et al., 2002]. Loss of MBD4 function also does 

not affect MMR-dependent tumorigenesis [Sansom et al., 2004; Sansom et al., 2003], however it plays 

a role in mediating the apoptotic response resulting from exposure to DNA damaging agents or 

inactivation of the maintenance methyltransferase, Dnmt1 [Loughery et al., 2011; Ruzov et al., 2009; 

Sansom et al., 2003]. Depletion of DNMT1 in cancer cell lines can result in decreases in MMR protein 

levels, including MBD4, possibly mediated by their physical interaction [Laget et al., 2014; Loughery 

et al., 2011; Ruzov et al., 2009]. MBD4 strongly associates with heterochromatin [Hendrich and Bird, 

1998; Ruzov et al., 2009], and has also been shown to physically interact with and recruit MMR 

protein MLH1 (MutL homolog 1) to heterochromatin sites during MMR-dependent apoptosis 

[Bellacosa et al., 1999; Cortellino et al., 2003; Ruzov et al., 2009]. These findings suggest that MBD4 

may have additional roles [Cortellino et al., 2003], possibly through unknown protein associations of 

MBD4 that can contribute to genome stability. Indeed, MBD4 interacting proteins such as Fas-

associated death domain protein (FADD), MLH1 and DNA methyltransferase 1 (DNMT1) potentially 

link genome surveillance and DNA repair with apoptosis during cell proliferation and DNA replication 

[Ruzov et al., 2009; Screaton et al., 2003].  

UHRF1 (Ubiquitin-like, with PHD and RING finger domains 1, also known as Np95 and ICBP90) 

interacts with and recruits DNMT1 to hemi-methylated DNA to facilitate methylation of daughter 

strands [Bostick et al., 2007; Sharif et al., 2007]. It also has a binding specificity for 5-

hydroxymethylcytosine (5hmC)-containing DNA that is similar to its affinity for 5-methylcytosine 

DNA [Rajakumara et al., 2011]. UHRF1 is strongly linked to heterochromatin replication and 

formation [Papait et al., 2008; Papait et al., 2007], which may depend on its specific localization 

during cell proliferation to the chromocenters (via modified histones) that undergo large-scale 

reorganization and progressive clustering at heterochromatin regions [Nishiyama et al., 2013; Papait et 

al., 2008]. UHRF1 is preferentially expressed in the cells undergoing proliferation [Papait et al., 2008], 

during which UHRF1 forms a complex with Dnmt1 and USP7 (ubiquitin specific peptidase 7, herpes 

virus-associated, also known as HAUSP) [Felle et al., 2011; Ma et al., 2012; Qin et al., 2011]. USP7 

regulates the stability of UHRF1 via its deubiquitylase activity [Felle et al., 2011; Ma et al., 2012; Qin 

et al., 2011], and modulates the enzymatic activity of Dnmt1 on the UHRF1 platform [Bostick et al., 

2007; Felle et al., 2011; Qin et al., 2011; Sharif et al., 2007]. However, the nuclear distribution pattern 

of USP7 per se, is generally diffuse [Holowaty et al., 2003; van der Horst et al., 2006] and is similar to 

that of MLH1 [Ruzov et al., 2009], which contrasts with the strong heterochromatin and chromocenter-
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associated expression of UHRF1 during cell proliferation [Dunican et al., 2013]. USP7 can be 

recruited and relocated to nuclear foci by its protein partners [Daubeuf et al., 2009; Everett et al., 1997; 

Zaman et al., 2013], and previous studies have suggested a direct interaction between USP7 and 

UHRF1 [Felle et al., 2011; Ma et al., 2012]. However, this interaction may be transient and 

stabilization of the trimeric USP7/UHRF1/DNMT1 complex has been suggested to depend on their 

mutual engagement on chromatin [Felle et al., 2011].  

In this study we performed biochemical isolation and identification of MBD4 associating proteins, 

and we found that MBD4 specifically interacts with UHRF1 and USP7. We characterized a novel 

interaction domain in the intervening region of MBD4 and demonstrate a direct role for MBD4 in 

recruiting USP7 to chromocenters. 

 

MATERIALS AND METHODS 

PLASMID CONSTRUCTION AND CELL CULTURE 

The following plasmids were kindly provided by the laboratories below: SF-TAP (Dr Marius Ueffing) 

[Gloeckner et al., 2007], HA-UHRF1, FLAG-UHRF1 (Dr John Peter McPherson) [Mistry et al., 2008], 

MCherry-USP7 (Drs Heinrich Leonhardt and Fabio Spada) [Qin et al., 2011]. GFP-MLH1 [Ruzov et 

al., 2009], FLAG-p75 (Drs Madapura M. Pradeepa and Wendy A. Bickmore) [Pradeepa et al., 2012], 

GFP-mMBD4 (Dr Adrian Bird) [Hendrich and Bird, 1998], p21b-TF-UB vector (Dr Il-Seon Park) 

[Thapa et al., 2008]. To make FLAG-hMBD4 (SF-TAP-hMBD4), human full length MBD4 was 

cloned to SF-TAP vector using EcoRI and NotI. To make 6HIS-TF-UB-hMBD4 mutants, the 18-

amino acid (aa) 6-HIS tag was induced into the upstream of TF-UB site of the original p21b-TF-UB 

vector, using the QuikChange site-directed mutagenesis kit (Stratagene). Human MBD4 mutants were 

then cloned to the p21b-6his-TF-UB vector using BamhI and XhoI. CMT93 and HEK293T were 

cultured in Dulbecco's Modified Eagle Medium (DMEM; Invitrogen) supplemented with 10% FCS, 

1000U/ml Pen, and 650μg/ml Strep. 

NUCLEAR EXTRACT PREPARATION AND IMMUNOPRECIPITATION 

Nuclear extract was prepared from HEK293T cells according to [Pradeepa et al., 2012]. HEK293T 

were transfected with SF-TAP-hMBD4 and were lysed with a hypotonic lysis buffer (0.05% NP-40, 10 

mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 5 mM EDTA, and complete protease inhibitor cocktail 

(Roche), pH 7.4, 30 x 10
6
 cells/ml). Cytosolic fraction was discarded and the separated cell nuclei 

were lysed in a nuclear extract buffer (20 mM HEPES, 300 mM NaCl, 20 mM KCl, EDTA-free 

complete protease inhibitor cocktail (Roche), pH 7.4, 30 x 10
6
 cells/ml) with or without MNase 

(Nuclease S7; Roche) as indicated in the result chapter. A final concentration of 5mM EDTA was used 

to stop the chromatin digestion if MNae is added, and the sample was centrifuged at 20,000g for 30 

minutes twice to get post nuclear supernatants. 50ul sepharose beads covalently conjugated to Flag- 

specific mAb (Sigma) or GFP beads (ChromoTek) were added to samples and incubated for 2 hours 

with rotation at 4°C. Beads were washed three times with ice-cold nuclear extract buffer containing 

0.05% NP40, and once with pure ice-cold PBS. Bound proteins were eluted by boiling in sample 

buffer, and the eluted samples were loaded on a large 10% SDS-PAGE (BioRad) and separated, 

followed by Western Blot analysis.  

MASS SPECTROMETRY (MS) ANALYSIS 

For MS analysis, gels were stained with Colloidal Blue (NuPAGE, Invitrogen). Several chunks of 

bands of diverse molecular weights were excised from the experimental and control lane of a 

corresponding molecular weights. The gel chunks were sent to St. Andrews Mass Spectrometry 

services for analysis. The gel chunk was excised and cut into 1mm cubes. These were then subjected to 
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in-gel digestion, using a ProGest Investigator in-gel digestion robot (Genomic Solutions, Ann Arbor, 

MI) using standard protocols [Shevchenko et al., 1996]. The MS/MS data file generated was analyzed 

using the Mascot 2.1 search engine (Matrix Science, London, UK) against the NCBInr database Feb 

2011 (12852469 sequences) with no species restriction.  

TRANSIENT TRANSFECTION, RECIPROCAL PULL-DOWN ASSAY AND WESTERN 

BLOT ANALYSIS 

Lipofectamine 2000 (Invitrogen) was used in accordance with manufacturer’s instructions. For 

reciprocal pull-down assays, cell nuclear lysates (without chromatin digestion) from 293T cells that 

were transiently transfected with plasmids containing FLAG-UHRF1 or GFP-Mlh1 were mixed with 

purified 6HIS-TF-UB human MBD4 mutants that were pre-incubated with Ni-NTA agarose 

(Invitrogen) overnight at 4 °C on a rotating wheel. After 1 hour incubation at 4 °C, the mixture 

containing agarose beads was loaded onto a column, followed by extensive washes (4 X) with RIPA 

buffer followed by pure ice-cold PBS. The Ni-NTA agarose was then immediately boiled in loading 

buffer for western blotting analysis. Western blots were probed with the following primary antibodies: 

anti-FLAG antibody (Sigma; mouse F1804, rabbit F7425), anti-GFP (Roche, mouse 11814460001), 

anti-MCherry (Chromotek, RFP antibody [5F8]), anti-6HIS antibody (gift from Anne Seawright, MRC 

Human Genetics Unit).  

EXPRESSION AND PURIFICATION OF PROTEINS FROM E. COLI 

The respective 6-HIS-TF-UB hMBD4 mutants were transformed into BL21-CodonPlus®(DE3)-RIPL 

cells (Agilent Technologies) in accordance with manufacturer’s instructions. Cells were harvested and 

resuspended in either 20 ml BugBuster® Protein Extraction Reagent (Novagen) with 1μl/ml 

Benzonase Nuclease (Novagen), or buffer A [50 mM Na2HPO4/NaH2PO4, pH 7.4, 300 mM NaCl, 10 

mM imidazole, 10 mM 2-mercaptoethanol (2-ME), 30% glycerol] containing 1 mM 4-(2-aminoethyl) 

benzenesulfonyl fluoride (AEBSF). The cells were then lysed by sonication, or with BugBuster reagent. 

The soluble fraction was recovered after centrifugation for 30 min at 15,000g at 4°C. The 6xHis-

tagged protein was purified by a standard protocol on Nickel agarose (Invitrogen). Proteins were 

generally eluted with either in a Tris- or a phosphate-based buffer containing 200 mM imidazole, 150–

300 mM NaCl, 1 mM  beta-mercaptoethanol, and glycerol if required. After SDS–PAGE analysis to 

judge yield and purity, the eluted protein was dialyzed against buffer (50 mM Tris- or phosphate-based 

buffer, pH 8.0, containing 150–300 mM NaCl and 1 mM beta-mercaptoethanol, and glycerol as 

necessary) to remove imidazole.  

IMMUNOFLUORESCENCE 

The mouse colon cancer cell line, CMT93, was grown on slides and were fixed in 4% 

paraformaldehyde (pFa) as previously described [Pradeepa et al., 2012]. The primary antibodies were 

anti-FLAG antibody (Sigma; mouse F1804, rabbit F7425). Secondary antibodies (Goat α-rabbit IgG-

Alexafluor Red conjugate (Invitrogen); Goat α-mouse IgG-Alexafluor Green conjugate (Invitrogen)) 

were diluted 1:1000 in block solution. Coverslips were mounted in 'Vectashield' mounting media 

(Vector Laboratories) (250ng/ml DAPI pre-mixed).  Fluorescence images were taken using a 

Hamamatsu Orca AG CCD camera (Hamamatsu Photonics), Zeiss Axioplan II fluorescence 

microscope with Plan-neofluar objectives and Chroma #83000 triple band pass filter set (Chroma 

Technology), and 'IP Lab' software was used for image analysis. 

YEAST TWO-HYBRID  

The Y2H assays were performed as previously described [Dellaire et al., 2002]. The full length mouse 

MBD4 was cloned into a GAL4 BD-Bait construct pGBKT7 (Clontech). Yeast strains carrying each 

plasmid were mated with a strain pretransformed with a mouse embryonic day 11.5 cDNA library 

cloned into pGADT7 (Clontech). Bait and library clone interaction was identified by β-Galactosidase 
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assays and appropriate dropout selections and confirmation of restreaking. Confirmed colonies were 

picked for following colony PCR and plasmid rescue followed by sequencing confirmation.  

RESULTS 

MBD4 FORMS COMPLEXES WITH UHRF1 AND USP7  

In order to identify MBD4 interaction partners, we carried out affinity purification of FLAG epitope-

tagged MBD4 from 293T cells using nuclei extracts prepared with micrococcal nuclease (MNase) 

digestion (Figure 1A). We identified UHRF1 and USP7 as two novel interacting proteins by mass 

spectrometry of the excised regions (Figure 1A. two brackets). To verify the specific interaction 

between MBD4 and the two protein partners UHRF1 and USP7, and to clarify if their associations are 

chromatin-interaction dependent, we preformed immunoprecipitations (IPs) with FLAG epitope-

tagged human MBD4 in MNase digested nuclear extracts, as well as with GFP epitope-tagged mouse 

MBD4 in nuclear extracts without chromatin digestion (Figure 1B. UHRF1 left & USP7 right). In 

addition, a reciprocal IP was carried out with FLAG epitope-tagged human UHRF1 in MNase digested 

nuclear extracts (Figure 1B. UHRF1 lower lane). The presence of UHRF1, USP7 as well as MBD4 in 

a reciprocal IP was tested by Western Blot analysis. MBD4 IP showed co-precipitation of UHRF1 and 

USP7 in both conditions with and without chromatin digestion (Figure 1B. UHRF1 upper two lanes), 

suggesting these interactions are direct and independent from chromatin binding. Human and mouse 

MBD4 exhibited similar affinity with UHRF1 (Figure 1B. UHRF1 upper three lanes) and USP7 

(Figure 1B. USP7), and MBD4 showed a similar interaction by IP with human and mouse versions of 

UHRF1 (Figure 1B. UHRF1 upper three lanes), suggesting their interaction is specific and conserved 

between human and mouse. In addition, a reciprocal IP of UHRF1 precipitated MBD4 (Figure 1B. 

UHRF1 lower lane). A co-IP of MBD4 and Mlh1 confirmed their positive interaction (Figure 1B. 

positive control), while the negative control p75 was not precipitated with MBD4 (Figure 1B. negative 

control), consistent with the previous reports [Bellacosa et al., 1999; Pradeepa et al., 2012]. 

Collectively, our data show that MBD4 can interact with UHRF1 and USP7. 

 

MBD4 INTERACTS WITH UHRF1 COMPLEX THROUGH ITS INTERVENING REGION 

To identify the protein domains of MBD4 mediating the association with UHRF1 complex, we 

purified the recombinant MBD4 proteins containing the MBD domain (amino acid 1–156), the MBD 

and the intervening region (amino acid 1–408), the glycosylase domain and its known upstream 

interaction region (amino acid 408–580), and the intervening region and the downstream interaction 

region (156-455) (Figure 2A & B). The four truncated versions of MBD4 were designed to represent 

the MBD, the intervening region, and glycosylase domains of MBD4, and to overlap with each other to 

minimize the interacting regions that may be responsible for partner protein associations (Figure 2A). 

These mutants were 6xHis-tagged fusion proteins that have a thermostable protein called ‘Trigger 

Factor’ as well as ubiquitin at its C-terminal region (Fig. 2B upper), which allows for the isolation of 

soluble fusion proteins [Thapa et al., 2008]. The four versions of human MBD4 were cloned into the 

prokaryotic expression vector, induced and purified from E.coli; individual elutions were collected for 

the respective mutants (Fig. 2B lower). Reciprocal in vitro pull-down experiments were performed 

using the purified proteins to identify the domains interacting with FLAG epitope-tagged UHRF1 
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complex purified from 293T cells (Figure 2C). GFP epitope-tagged Mlh1 was selected as positive 

control, because the interaction region of MBD4 responsible for its association with Mlh1 was 

previously identified in a previous yeast two-hybrid (Y2H) study [Millar, 2002]. Mutant 3 and 

particularly mutant 4 of MBD4 efficiently co-precipitated Mlh1 (Figure 2D upper left). An IP with 

Mlh1 also indicated an interaction with MBD4 recombinants 2, 3 and 4 (Figure 2D upper right). These 

data reveal that the interaction region of MBD4 responsible for the association with Mlh1 resides in 

the intervening region and glycosylase domain of MBD4 (Figure 2D. lower cartoon). Amino acids 

410-455 corresponds to the overlapping region between mutants 3 and 4 and likely represents the 

minimum requirement for the association (Figure 2D. lower cartoon). This was consistent with the 

previous Y2H study in which amino acid 415-420 of MBD4 was mapped as MBD4 minimum 

interaction region with Mlh1 [Millar, 2002]. We then tested the interaction region of MBD4 with 

UHRF1 (Figure 2E). Mutants 2 and 4 of MBD4 efficiently co-precipitated UHRF1 in vitro, while 

mutants 1 and 3, containing the MBD and glycosylase domain respectively, were not capable of 

interacting with UHRF1 (Figure 2E. upper left). Reciprocal IP of UHRF1 strongly co-precipitated 

mutant 2 of MBD4, by contrast, the other mutants containing MBD and glycosylase domains were 

very weak (Figure 2E. upper right). Therefore, we were able to map the interaction region of MBD4 to 

its intervening region (Figure 2E. lower). The intervening region of MBD4 does not contain an 

obvious functional domain [Meng et al., 2011], in addition, our data show that MBD4 recombinant 4 

successfully co-precipitated UHRF1 (similar to the binding of MBD4 recombinant 2) (Figure 2E. 

upper left), which contrasts to the very weak binding affinity in the reciprocal assay (Figure 2E. upper 

right). This supports the view that the intervening region of MBD4 constitutes a major protein 

interaction region. The naturally occurring MBD4 truncation at amino acid 313 in MMR-deficient 

human carcinomas presumably has the potential to affect the protein interaction profile of MBD4 in 

addition to losing the catalytically active C-terminal glycosylase domain (Figure 2A, black arrow). 

Taken together, our in vitro studies show that MBD4 can directly interact with UHRF1, and the 

intervening region of MBD4 can mediate the association. 

 

MBD4 TIGHTLY COLOCALIZES WITH UHRF1 AT CHROMOCENTERS IN 

HETEROCHROMATIN REPLICATION AND FORMATION 

Previous studies have found that MBD4 and UHRF1 respectively localize to heterochromatic sites in 

mouse cells [Dunican et al., 2013; Gelato et al., 2014; Hendrich and Bird, 1998; Karagianni et al., 

2008; Nady et al., 2011; Papait et al., 2007; Ruzov et al., 2009], suggesting they may be involved in 

heterochromatin regulation and maintenance. To determine if MBD4 occupies the same cellular space 

with UHRF1 at heterochromatin, and if their association affects particular cellular phenotypes such as 

chromatin organization, we performed co-transfection followed by immunofluorescence (IF) 

microscopy to determine their potential co-localization and subcellular distribution (Figure 3). We 

used mouse CMT93 cells, a colon cancer cell line that has prominent heterochromatin sites as 

evidenced by DAPI staining, to test our hypothesis that MBD4 and UHRF1 might associate with each 

other at heterochromatin sites.  

 

Ectopic GFP epitope-tagged mouse MBD4 protein exhibited a strong signal that was coincident with 

DAPI bright spots in the nucleus (Figure 3A. left & white arrows in right magnification); this 
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resembles the endogenous mouse MBD4 distribution [Hendrich and Bird, 1998; Ruzov et al., 2009]. 

The DAPI bright spots correspond to methylated satellite DNA, a natural methylated ligand for MBD4 

[Ruzov et al., 2009]. Additional non-heterochromatic staining of ectopic MBD4 is also observed in 

CMT93 cells (Figure 3A. MBD4 light green staining). FLAG epitope-tagged human UHRF1 showed a 

condensed nuclear distribution that also co-localized with DAPI bright dots (Figure 3B. left & right 

magnification), resembling the location of endogenous UHRF1 protein [Dunican et al., 2013; Gelato et 

al., 2014]. In CMT93 cells, ectopic expression of either MBD4 or UHRF1 induced minor 

heterochromatin clustering (Figure 3A & B, white arrows); a cellular phenomenon previously reported 

for overexpression of UHRF1 or MeCP2 [Brero et al., 2005; Papait et al., 2008; Papait et al., 2007]. 

UHRF1 has been demonstrated to regulate cell proliferation [Jenkins et al., 2005], and is expressed at 

high levels in proliferating cells [Papait et al., 2007]. Consistently and intriguingly, co-overexpression 

of UHRF1 and MBD4 resulted in marked large-scale reorganization events occurring at 

heterochromatic sites (Figure 3C. upper & lower magnification), manifested by either bridging (Figure 

3C. left), fragmentation (Figure 3C. middle), or major clustering (Figure 3C, right); possibly implying 

heterochromatin reformation (Figure 3C, left) or perhaps replication (Figure 3C, middle) occurs at 

their co-localization sites. The cells with such cellular phenotypes are concomitant with a marked 

increase in cell size (Figure 3 C vs. A & B). In all cases, ectopic MBD4 tightly co-localized with 

UHRF1 at chromocenters in CMT93 cells (Figure 3C i, ii, iii MBD4 vs. UHRF1 and Merge & 

Supplementary Figure 1B). Specifically, MBD4 and UHRF1 tightly occupied the same cellular space 

which may perturb chromocenter dynamics during heterochromatin replication and formation (Figure 

3C. lanes of MBD4, UHRF1 & Merge in i, ii & iii, black circle or square). Decondensin 

heterochromatin or remodeling at chromocenters was manifested by less intense DAPI bright spots, 

but did not lead to changes in the tight co-localization of MBD4 and UHRF1 (Figure 3C middle, DAPI 

lane & ii vs. i, iii, DAPI lane, white square or circle).. Interestingly, we observed some moderate co-

localization of MBD4 and UHRF1 that may be indicative of dividing cell nuclei (Figure 3Ciii. white 

arrows); forming ring-like clusters that are adjacent to their strong staining at chromocenters (Figure 

3Ciii. black arrows). This may represent an intermediate transition, in which MBD4 and UHRF1 are 

involved in large-scale reorganization of heterochromatin (Figure 3C iii. black arrows in DAPI lane).  

 

MBD4 DIRECTLY RECRUITS USP7 TO CHROMOCENTERS 

Consistent with our finding that MBD4 directly interacts with USP7, we also identified USP7 as an 

interactor in a Y2H assay using mouse Mbd4 protein as bait (Figure 4A), supporting the possibility 

that the interaction between MBD4 and USP7 is direct. The cDNA fragment of USP7 was aligned to 

USP7 coding sequence, and it overlaps with C-terminal TRAF-like domain of USP7 (Figure 4A 

vertical gray shadow), suggesting that this may be one route through which MBD4 directly interacts 

with USP7 at the vicinity of the TRAF-like binding domain of USP7.  

 

Despite different cellular system and conditions used, previous studies have reported a diffused 

distribution of USP7 within cell nuclei as well as some cytoplasmic staining [Holowaty et al., 2003; 

van der Horst et al., 2006]. We determined the subcellular localization of ectopic expression of 

MCherry epitope-tagged USP7 in the CMT93 cell model, and out data is consistent with the previously 

reported nuclear distribution of USP7 as diffused (Figure 4B. left). More specifically, we characterized 
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that the prominent DAPI bright spots were largely excluded from the nuclear distribution of USP7 

(Figure 4B. left & right magnification, white arrows), implying USP7 may require additional 

heterochromatin-associating interaction partner(s) to be recruited to the chromocenters where UHRF1 

is tightly bound. Indeed, a number of studies have shown that USP7 can be recruited and relocated to 

particular nuclear loci via physical interactions with its protein partners, to effectively participate in 

cellular processes such as DNA damage and repair, apoptosis, and innate immunity response [Daubeuf 

et al., 2009; Everett et al., 1997; Zaman et al., 2013]. Moreover, MBD4 has been reported to possess a 

recruitment function by which it leads to the re-distribution of diffused MLH1 to accumulate at DAPI 

bright spots that are associated with heterochromatic chromatin in MEF cells [Ruzov et al., 2009], and 

we have observed the same phenomenon in the CMT93 cell model (Supplementary Figure 1A). This 

suggested to us that MBD4 might possess the ability to participate in the UHRF1/Dnmt1/USP7 

trimeric complex by facilitating the recruitment of USP7 to the chromocenters. To address this 

question, we studied the subcellular localization of USP7 in the presence of ectopic MBD4 (Figure 

4C). GFP epitope-tagged MBD4 was detected exclusively at chromocenters (Figure 4C. green 

staining), to which UHRF1 was shown in Figure 3 to be tightly bound. Strikingly, chromocenter-

binding MBD4 was able to recruit USP7 to chromocenters in all co-transfected CMT93 cells tested 

(Figure 4C. MBD4, USP7 and Merge, white arrows & Supplementary Figure 1C). In agreement with 

the above observations of co-localization of MBD4 and UHRF1 in Figure 3, the MBD4-induced USP7 

relocation and their co-localization at chromocenters also leads to a degree of heterochromatin 

reorganization that was not evident in the single transfections (Figure 4C upper, left & right vs. middle 

DAPI lane & disappearing heterochromatin spots indicated by black arrows in 4C. ii & iii). We 

observed heterochromatin clustering and diminution (Figure 4C. i DAPI lane, white arrows), 

chromocenter linkage and fragmentation (Figure 4C. ii DAPI lane, white arrows), and marked 

heterochromatin remodeling at chromocenters (Figure 4C. iii DAPI lane, white arrows). Collectively, 

our data show that MBD4 directly interacts with and recruits USP7 to chromocenters during 

interphase, where MBD4 and UHRF1 can also be tightly co-localized and this is concomitant with 

large-scale reorganization of heterochromatin. 

 

DISCUSSION 

During cell proliferation, UHRF1 may act as a recruitment platform to facilitate faithful inheritance of 

DNA methylation patterns [Bostick et al., 2007; Sharif et al., 2007]. Mounting evidence indicates that 

USP7 can regulate the protein stability of UHRF1 as well as Dnmt1 through its deubiquitylase activity 

[Ma et al., 2012; Sharif et al., 2007]. In this report, we have shown that MBD4 can directly interact 

with and recruit USP7 to the UHRF1 platform at heterochromatin-associated chromocenters. 

Importantly, regulation of the interaction between UHRF1 and deubiquitylase USP7 has been shown to 

be cell cycle dependent [Ma et al., 2012]; UHRF1 is expressed and protected by USP7 from auto-

ubiquitinylation during G1 and S phases of the cell cycle, and M phase-specific phosphorylation of 

UHRF1 expels USP7 from UHRF1 platform [Ma et al., 2012], leading to proteasomal degradation of 

UHRF1 and perhaps Dnmt1 as well [Felle et al., 2011; Ma et al., 2012]. MBD4 may have a role in this 

process via its interaction with all three components.  
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Recent evidence indicates that the MBD4 protein is essential for cell survival following oxidative 

stress [Laget et al., 2014]. MBD4 and DNMT1 can be recruited at sites of oxidation-induced DNA 

damage, where they may participate in DNA repair or cell death pathways [Laget et al., 2014; Ruzov 

et al., 2009]. Although cell models and physiological conditions are different, our MBD4 interaction 

data suggest that UHRF1 and USP7 might also participate in these pathways. Our current study 

provides a foundation for future functional studies of these new MBD4 interactions and roles in related 

pathways of cell proliferation, stress response or DNA methylation machinery. 

 

The intervening region within MBD4 was previously viewed as a functional desert [Meng et al., 2011], 

our characterization strongly suggests that this region may possess a significant potential for novel 

protein interactions, which may augment MBD4’s well-characterized methyl-CpG binding and 

glycosylase repair functions [Meng et al., 2011; Millar, 2002; Screaton et al., 2003]. Motif and primary 

sequences of the intervening region are poorly conserved between lower and higher vertebrates, 

suggesting additional protein structure and/or motifs acquired in the latter may attract new functional 

interactions. This might link to recurrent frameshift mutations in MBD4 found in a number of human 

cancers exhibiting MMR deficiency resulting in human MBD4 protein truncation at amino acid 313, 

which would presumably deconstruct the interaction function of intervening region in addition to loss 

of the glycosylase domain of MBD4. 

 

Recent studies have documented the overexpression of MBD4 partner proteins, UHRF1 and USP7, in 

a variety of human cancers, which often correlate with a poor outcome [Mudbhary et al., 2014; Unoki 

et al., 2010; Unoki et al., 2009]. In addition, MBD4 activation has been shown to be a consequence of 

RON overexpression that results in reprogrammed DNA methylation at specific target genes, which is 

associated with metastasis and poor patient outcomes [Cunha et al., 2014]. Future studies will be 

required to address if the MBD4 protein interaction with UHRF1, USP7 and the previously identified 

partner DNMT1 have novel functions with respect to targeting specific methylation patterns at defined 

loci as well as in maintaining genome-wide methylation patterns at chromocenters. This interaction 

may also impact on nuclear organization, chromatin remodeling, and histone modifications in relevant 

cancers [Cunha et al., 2014; Jones, 2012].  
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Figure Legends 

Figure 1. MBD4 complexes with UHRF1 and USP7. (A) UHRF1 and USP7 are identified as new 

interaction partners of MBD4. MBD4 was immunoprecipitated from nuclear extracts with MNase 

treatment and subjected to SDS–PAGE and Coomassie blue staining. Protein bands of UHRF1 and 

USP7 specific for the FLAG-MBD4-IP were identified by MS analysis (ctrl: Empty vector). 

Precipitated MBD4 and the molecular weight marker (M) are indicated. (B) Immunoprecipitation of 

ectopic proteins with FLAG epitope-tagged (MNase treated nuclear extract) or GFP epitope-tagged (no 

MNase treated nuclear extract) with anti-FLAG or anti-GFP antibodies. Co-precipitated proteins were 

detected by Western Blot analysis. 3% of the input (Lane 1) and the antibody coupled IP (Lane 2) were 

loaded. The migration of the molecular weight is indicated on the left. 

Figure 2. MBD4 interacts with UHRF1 via its intervening region. (A) Schematic representation of the 

domains of MBD4 (MBD4 domains are to scale) and the representative scheme of generating the four 

MBD4 mutant proteins. A black arrow indicates the natural occurring MBD4 protein truncation site 

313 in human MMR-deficiency carcinomas. (B) The schematic representation of the fusion proteins of 

MBD4 mutants, and comaissie staining of the purified MBD4 proteins fused with trigger factor and 

ubiquitin. Respective total lysates of transformed E.coli cells of MBD4 mutants 1-4 and their protein 

elutions are shown as indicated. The dye marker lanes are indicated on the left of lysate lanes with 

their molecular weight. The empty vector control (labeled as 0. TFUB control) containing TFUB only 

was from pre-purified storage, and loaded on the left. The three elutions of individual MBD4 mutants 

were pooled together and 500μg of each MBD4 protein mutant was measured for the subsequent 

reciprocal co-immunoprecipitation (co-IP) assays. (C) Flow chart of the reciprocal co-IP procedure. (D 

& E) Co-IP assay to determine the interaction of recombinant MBD4 mutants with Mlh1 (D. control) 

and UHRF1 (E). Co-precipitated proteins were detected via western blot. Input (3% of 500μg GFP-

Mlh1 (D. 6HIS IP) or FLAG-UHRF1 (E. 6HIS IP), and 3% of 500μg MBD4 protein mutants in D and 

E) and the antibody coupled IP are indicated with antibodies used for immunodetection. The migration 

of the molecular weight is indicated on the left of each blot. The regions labelled by a square on the 

schematic representation of MBD4 are identified the interacting domains responsible for the 

associations with Mlh1 (D. control) and UHRF1 (E). 

Figure 3. MBD4 tightly co-localizes UHRF1 at chromocenters. Asynchronously growing mouse 

CMT93 cells were grown on coverslips and transfected by GFP-MBD4 (A), FLAG-UHRF1 (B), or co-

transfected by GFP-MBD4 and FLAG-UHRF1 (C). The cells were fixed 48 hours later and analyzed 

directly by immunofluorescence (IF) (A), or immunostained with anti-FLAG rabbit primary and goat 

anti-rabbit IgG-Alexafluor Red conjugate secondary antibodies and analyzed (B & C). Nuclear 

counterstaining was visualized with DAPI. Scale bars, 10μm. (A) Distribution of GFP-MBD4 in 

CMT93 cells. (B) Distribution of FLAG-UHRF1 in CMT93 cells. (C) GFP-MBD4 and FLAG-UHRF1 

exclusively colocalized with each other at chromocenters in CMT93 cells. In the immunostaining 

images in (C. i & ii), the cells exhibit an increase in cell size and marked large-scale reorganization of 

heterochromatin, which may be indicative of heterochromatin reformation and replication in interphase. 

In (C. iii), the cells appear to be undergoing orderly division into two daughter cells. The insets on the 

right (A & B) or below (C. i, ii, iii) correspond to magnifications of the areas indicated by the two 

parallel white line. Scale bars, 10μm. 

Figure 4. MBD4 directly interacts with and recruits USP7 to chromocenters. (A) The representative 

scheme for alignment and mapping of a USP7 cDNA fragment that iinteracts with MBD4 in a Y2H 

screen (i) USP7 coding sequence (ii) corresponding peptide sequence (iii), schematic representation of 

domains of USP7. Protein domains are identified by searching Blast integrated SMART domain 

database (USP7 domains are to scale). The vertical gray shadow indicates the domain region of USP7 

overlapping with interacting cDNA fragment. (B & C) Asynchronously growing mouse CMT93 cells 

were grown on coverslips and transfected by MCherry-USP7 (B), or co-transfected by GFP-MBD4 



A
cc

ep
te

d 
A

rt
ic

le
 16 

 

 

and MCherry-USP7 (C). The cells were fixed 48 hours later and analyzed directly by IF. Nuclear 

counterstaining was visualized with DAPI. (B) Distribution of MCherry-USP7 in CMT93 cells. (C) 

GFP-MBD4 recruits MCherry-USP7 exclusively to chromocenters in all the CMT93 cells co-

transfected. In all the immunostaining images in C, the cells exhibit marked heterochromatin 

remodeling. The insets on the right (B) or below (C. i, ii, iii) correspond to magnifications of the areas 

indicated by the two parallel white line. White arrows indicate triple co-localization of MBD4, USP7 

and DAPI bright spots, while black arrows indicate colocalization of MBD4 and USP7 with 

diminishing or disappearing DAPI bright spots. Scale bars, 10μm. 

Supplementary Figure 1. Co-localization of MBD4 with Mlh1, UHRF1, and recruitment of USP7 at 

heterochromatic foci. (A) MBD4 recruits Mlh1 to bright DAPI spots that are tightly associated with 

heterochromatic condensed chromatins. Mouse CMT93 cells were grown asynchronously, then 

transfected, stained and analyzed as in (Figure 3 & 4). (i) Diffused nucleus distribution pattern of 

MLH1 in which heavily stained DAPI spots were excluded from the MLH1 distribution. (ii) Co-

transfection of FLAG-MBD4 and GFP-Mlh1 resulted in the recruitment of GFP-MLH1 to DAPI bright 

spots. (B) MBD4 tightly colocalizes UHRF1 at chromocenters in all the cells co-transfected. 

Additional examples are represented to supplement Figure 3. (C) MBD4 recruits USP7 to 

chromocenters in all the cells co-transfected. More cells are represented to supplement Figure 4. Scale 

bars, 10μm. 
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