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A combined analytical and numerical study of magnetic reconnection in two-dimensional resistive

magnetohydrodynamics is carried out by using different explicit spatial variations of the resistivity.

A special emphasis on the existence of stable/unstable Petschek’s solutions is taken, comparing with

the recent analytical model given by Forbes et al. [Phys. Plasmas 20, 052902 (2013)]. Our results

show good quantitative agreement between the analytical theory and the numerical solutions for a

Petschek-type solution to within an accuracy of about 10% or better. Our simulations also show that

if the resistivity profile is relatively flat near the X-point, one of two possible asymmetric solutions

will occur. Which solution occurs depends on small random perturbations of the initial conditions.

The existence of two possible asymmetric solutions, in a system which is otherwise symmetric, con-

stitutes an example of spontaneous symmetry breaking. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4901918]

I. INTRODUCTION

Magnetic reconnection is a fundamental process in astro-

physical and laboratory plasmas, where a change of magnetic

field line connectivity allows the conversion of magnetic

energy into kinetic and fast particle energy. For example, it is

widely accepted that magnetic reconnection plays a crucial

role for observed fast energy release and associated particle

acceleration in solar flares (see Ref. 1 and references therein).

The classical model of reconnection is based on Sweet-Parker

theory in the two-dimensional (2D) resistive magnetohydro-

dynamics (MHD) framework, in which a steady-state current

sheet structure with a small central diffusion layer controls the

reconnection between two regions of oppositely directed mag-

netic fields.2,3 However, the Sweet-Parker (SP) model gives a

reconnection rate too small to explain the fast time scales of

solar flares or laboratory plasma disruptions.

A considerable amount of work has also been devoted to

an alternative reconnection model, initially introduced by

Petschek.4 Petschek’s model was thought to provide a uni-

versal fast reconnection mechanism thanks to the formation

of four standing slow-mode shocks surrounding a very small

central diffusion region. However, it was progressively real-

ized that Petschek reconnection is generated only when spe-

cific conditions are satisfied, most of which depend on the

spatial dependence of the resistivity.

After years of debate on the latter puzzling aspect, a

recent theoretical analysis has helped to clarify the situa-

tion.5 The new analysis shows that Petschek solutions are

structurally unstable when the resistivity is uniform. This in-

herent instability also explains why Sweet-Parker solutions

are the only stable steady-state solutions seen in simulations

with uniform resistivity. The situation is different when a

nonuniform resistivity profile is employed. In this case, a sta-

ble steady-state Petschek solution may occur if the resistivity

profile is suitably shaped. For symmetric configurations, a

suitably shaped profile is one in which the resistivity

decreases with the square of the distance near the X-point. A

symmetric resistivity profile that increases with distance

from the X-point or is relatively flat is predicted not to gener-

ate a stable symmetric solution. However, as we show here,

such profiles may generate asymmetric solutions that are

both Petschek like and stable.

The aim of the present work is to address the validity of

the predictions made by the recent theoretical analysis of

Forbes et al.,5 by carrying out time-dependent simulations

with the full set of two-dimensional resistive MHD equa-

tions. More precisely, we investigate the formation and sta-

bility of Petschek reconnection by prescribing different

spatial variations for the resistivity profile.

The organization of the paper is as follows. In Sec. II,

we present the governing equations and numerical setup. In

Sec. III, we expand the previously published analytical

theory5 to allow for asymmetry and compressibility. The

simulations results are presented in Sec. IV. Finally, we end

with a discussion and conclusion in Sec. V.

II. NUMERICAL MODEL AND INITIAL SETUP

We solve the standard set of compressible resistive

MHD equations (viscosity and thermal conductivity are

ignored) written in the following dimensionless form:

@q
@t
þr � qvð Þ ¼ 0; (1)

@qv

@t
þr � qvvT þ ptotI� BBT

� �
¼ 0; (2)
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@B

@t
þr � vBT � BvTð Þ ¼ �r � gJð Þ; (3)

@e

@t
þr � evþ ptotv� v � BBT

� �
¼ gJ2 � B � r � gJð Þ; (4)

J ¼ r� B; (5)

r � B ¼ 0: (6)

Here, q is the plasma density, p is the thermal pressure, v is

the fluid velocity, B is the magnetic fluid, and J is the electri-

cal current density. The total pressure (thermalþmagnetic)

is defined as ptot¼ pþB2/2, and the total energy density is

e¼ qv2/2þB2/2þ p/(c – 1), where c is the ratio of specific

heats. I is the identity tensor. Note that the magnetic perme-

ability is taken to be unity.

We assume a Harris current sheet configuration (see

Fig. 1), with a magnetic field parallel to the y-axis and vary-

ing with x,

Bx ¼ 0; By ¼ Betanhðx=aÞ; (7)

where Be is the amplitude of the field and a is the initial half-

width of the current layer. We set the ratio of specific heats c
equal to 5/3. We set Be¼ 1 and a¼ 0.1, to define our normal-

ization. A static equilibrium is considered with force balance

provided by the plasma density variation in an isothermal

medium

T ¼ b=2; q xð Þ ¼
1þ b� B2

y xð Þ
b

; (8)

where T and q are the temperature and plasma density,

respectively. Note that the b parameter is the plasma-b taken

at the outer x-boundary, and represents an upstream b param-

eter in this work. To determine the effects of compressibility,

we consider b¼ 0.35 and b¼ 10.0.

In this work, a total of 400� 800 spatial grid points is

used in the spatial domain �Lx� x�Lx and �Ly� y� Ly, of

dimensions Lx¼ 1 and Ly¼ 2. The time is normalized with

respect to the Alfv�en transit time tA across the half-width

computational box. A nonuniform spacing with a grid accu-

mulation in the x direction is chosen in order to have suffi-

cient cells to resolve the central current layer. Typically, we

are able to achieve a minimum grid spacing of Dx¼ 1� 10�3

in the x direction, together with a uniform spacing of

Dy¼ 5� 10�3 in y direction.

We use the general finite-volume based Versatile

Advection Code (VAC),6 and select the explicit one-step

total variation diminishing (TVD) scheme with minmod lim-

iting.7,8 This is a second-order accurate shock-capturing

method making use of a Roe-type approximate Riemann

solver. To handle the solenoidal constraint on the magnetic

field (Eq. (6)), our VAC simulations apply a projection

scheme at every time step in order to remove any numeri-

cally generated divergence of the magnetic field up to a pre-

defined accuracy.9

The boundary conditions are imposed through the use of

two ghost cells located slightly outside the computational do-

main at each boundary. Following Refs. 10–12, we overspe-

cify boundary conditions at the inflow boundary x¼6Lx

(with respect to the required conditions). More precisely,

five conditions are imposed on five physical quantities to be

fixed in time and equal to their initial values, namely, the

mass density, two components of the flow velocity, the y
component of the magnetic field, and the total energy den-

sity. In this way, the system is free to choose its own recon-

nection solution without being driven by external forcing, as

expected for Petschek solutions.13 For more details, the

reader can refer to the discussion in Sec. III of Ref. 10 and

references therein. Additionally, free conditions are imposed

at the outflow boundaries y¼6Ly, by prescribing zero nor-

mal derivatives on the different physical quantities as

detailed in Refs. 11 and 12.

In order to obtain Petschek solutions numerically, we

follow a classical procedure by starting from the initial

Harris equilibrium (given by Eq. (7)), and apply the fol-

lowing Gaussian spatial variation for the resistivity

coefficient:

gðx; yÞ ¼ g0 exp½�ðx=lxÞ2 � ðy=lyÞ2�; (9)

where g0 is the resistivity at the centre of the domain, and lx
and ly are the characteristic length scales of the spatial resis-

tivity variation. This setup allows us to achieve Sweet-

Parker-like solutions when large values of ly (close to the do-

main dimension Ly) are employed,14 and Petschek solutions

for small ly values, ly � Ly.
10–12 Along the transverse direc-

tion, lx is fixed to lx¼ 0.05 and does not influence our results

as long as it is larger than the width of the central diffusion

region. The evolution of the system is thus followed for dif-

ferent runs corresponding to different resistivity ly values. In

most of the present study, unless specifically written, a fixed

value of g0 is taken, with g0¼ 5� 10�4.

The other resistivity profile that we will consider is the

non-Gaussian one proposed by Forbes et al.5

FIG. 1. Current density J (left panel) and magnetic field lines (right panel)

for the initial equilibrium state. Only the central part of the full simulation

domain is shown with x values in the range [�0.2: 0.2].
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gðx; yÞ ¼ g0 exp½�ðx=lxÞ2 � ðy=lyÞ4�; (10)

which has the same x-variation, but decreases more rapidly

for y> ly. They predict that this profile will not have a stable,

symmetric solution because it is too flat near the X-line.

However, they did not consider the possibility that there

might be asymmetric solutions.

III. ANALYTICAL TREATMENT

Earlier work by Vasyliunas,15 Titov,16 and Somov,17

forms the basis for the recent analysis by Forbes et al.5

These authors reduce the two-dimensional reconnection

problem to a one-dimensional one by first expanding the

equations in terms of the inflow Alfv�en Mach number, MA,

and then averaging over the current layer that consists of the

diffusion region and slow-mode shocks (cf. Fig. 2). The sim-

plified equations that result are similar to the one-

dimensional MHD nozzle equations that are often used to

describe the flow of magnetized plasma in astrophysical

jets.18–20 A similar approach has also been used by

Malyshkin et al. and by Kulsrud.21,22

Since a detailed derivation of the averaged one-

dimensional equations has already been published,17,23 we

start with these equations and then show how to find stable,

asymmetrical, solutions. Using the same notation and nor-

malization as Eqs. (1)–(6), the averaged equations are as

follows:

@ðahqihvyiÞ=@y ¼ �qavxa; (11)

@ðhqihvyi2aÞ=@y ¼ �a@hpi=@yþ ByahBxi; (12)

hpi ¼ B2
ya=2þ pa; (13)

Ea ¼ MAi ¼ �Byavxa ¼ hvyihBxi þ gBya=a; (14)

@f½hqihvyi2=2þ chpi=ðc� 1Þ�ahvyig=@y

¼ �½cpa=ðc� 1Þ þ B2
ya�vxa; (15)

Bxa ¼ hBxi þ Bya@a=@y: (16)

Here, E is the electric field and MAi is the Alfv�en Mach num-

ber of the inflowing plasma at x¼ a, y¼ ysp, immediately

upstream of the current layer at the location of the stagnation

point as shown in Fig. 2. The a subscripts indicate quantities

evaluated at x¼ a, while the brackets hi indicate averages of

the form

hvyi ¼ ð1=aÞ
ða

0

vyðx; yÞdx: (17)

Several key assumptions are made in obtaining Eqs.

(11)–(16). First, the Alfv�en Mach number, MAi, is assumed

to be much less than one. This assumption means that a, vx,

and Bx are small (of order MAi). Second, vya, the external

flow parallel to the current layer is assumed to be negligible

(of order M2
Ai or smaller). This particular assumption is valid

for Petschek reconnection, but not for other types of recon-

nection such as flux pile up.24 Third, q, vy, and Bx are

assumed to be nearly uniform in x within the current layer,

so that averages of a product like hqvi, can be approximated

by the product of its averages, hqihvi. Finally, By within the

current layer is assumed to be of order M1
Ai or smaller, so

that hByi is negligible. This last assumption is reasonable for

the slow-shock region, but it is somewhat questionable for

the diffusion region where By is expected to be of order M0
Ai

near the X-point. Forbes et al. estimate that neglecting hByi
introduces an error of less than 10% in the calculation of the

reconnection rate.5

The quantities qa, pa, and Bya that appear in Eqs.

(11)–(16) are determined by the external density, pressure,

and field outside the current layer. For undriven reconnection

qa and pa are uniform to order M1
Ai, so they can be treated as

constants in a first-order analysis.24 The variation of Bya,

however, depends on the specific assumptions made about

the external field configuration. In the original treatment by

Petschek4 and the subsequent treatment by Vasyliunas,15 Bya

is assumed to be uniform to lowest order (M0
Ai). However, in

the treatments by Titov,16 Somov,17 and Malyshkin and

Kulsrud,25 Bya is assumed to vary as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

y � y2
q

to lowest

order, where Ly is the global scale length. This variation cor-

responds to the solutions of Green26 and Syrovatskii27 for

the field near an infinitely thin current sheet.

As discussed in Forbes et al.,5 the nonuniformity of Bya

plays nearly the same role as the nonuniformity of g in deter-

mining the reconnection rate. If g is uniform, then the length

of the diffusion region is roughly the same as Ly, and the

reconnection is of Sweet-Parker type. On the other hand, if g

FIG. 2. Diagram showing the orientation of the current layer relative to the

coordinate system. The gray shaded region corresponds to the region of high

current density. Solid curves denote magnetic field lines, while white arrows

indicate the flows into and out of the stagnation point at ysp. In the inflow

region the Alfv�en Mach number increases from MAe (external value) to MAi

(internal value) as the plasma flows towards the stagnation point. When the

solution is asymmetric, the x-line at ynp (np for neutral point) is not necessar-

ily co-located with the stagnation point at ysp. The curve labeled a(y) is the

half thickness of the current layer, which includes both the diffusion region

and the slow-mode shocks. The dashed curve indicates the region of locally

enhanced resistivity.
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is nonuniform and varies over a scale ly � Ly, then the

reconnection is of Petschek type. Since all of the solutions

we consider satisfy this latter condition reasonably well

(ly/Ly¼ 0.15), we will, for simplicity, ignore the variation of

Bya and set Bya¼ 1. One consequence of this assumption,

which follows from Eqs. (12) and (13), is that the stagnation

point, ysp, and neutral point, ynp, are approximately co-

located when @Bya/@y¼ 0.

With our normalization qa¼ 1 and pa¼ b/2 where b is

the plasma beta upstream of the current layer, and Eqs.

(11)–(15) combine to give the following ordinary differential

equation for hvyi:

hvyi þ ðy� yspÞ@hvyi=@y ¼ 1=hvyi
�5aðgðyÞ=gcÞhqi=ðy� yspÞ;

(18)

where

hqi ¼ 5ð1þ bÞ=ð5bþ 4� 2hvyi2Þ; (19)

a ¼ gc=M2
Ai; gc ¼ gð0Þ, and c¼ 5/3. In the incompressible

Sweet-Parker theory, the parameter a corresponds to the

length of the diffusion region.3 In our compressible analysis,

jyj < a is roughly the location where the diffusive electric

field, gBya/a, dominates over the advective electric field,

hvyihBxi, in (14). In the limit of b ! 1, (18) reduces to the

incompressible equation obtained by Vasyliunas.15 Equation

(18) is the same as the compressible equation obtained by

Somov and by Titov when jyj � Ly.16,17 In addition to (18)

and (19), we have the auxiliary equations

a ¼ MAiðy� yspÞ=hqihvyi; (20)

hBxi ¼ ðMAi � g=aÞ=hvyi; (21)

for the thickness, a, and averaged transverse field, Bx, of the

current layer. As y!1, vy! 1 (i.e., the Alfv�en speed), and

the density predicted by (19) reduces to that predicted by the

standard jump conditions for a switch-off slow-mode shock.

Also in this limit the averaged transverse field hBxi given by

(21) is equal to MAi, just as it is in Petschek’s theory.4

A principal finding of the previous analysis by Forbes

et al. is that most solutions of (18) are structurally unstable

due to an essential singularity at the stagnation point, ysp.5

Although hvyi is zero at this point, its higher-order deriva-

tives are not well behaved there. In the time-dependent sys-

tem of equations considered by Forbes et al., the singular

solutions rapidly decay at the Alfv�en time-scale when

approximated by a smoothed, nonsingular function.5

Not all solutions of (18) are necessarily singular. When

either g or Bya is nonuniform, one or more nonsingular solu-

tions may exist, and these nonsingular solutions are stable.

In fact they act as fixed-point attractors in the time-

dependent system.5 A key property that distinguishes the

nonsingular solutions from the singular ones is that the non-

singular solutions are analytic at ysp, while the singular

ones are not. In real analysis, a function that is analytic at a

particular point is exactly equal to its Taylor expansion

around that point within a nonzero domain. Therefore, we

can determine the conditions needed for a structurally sta-

ble solution by expanding hvyðyÞi and g(y) around ysp as

follows:

hvyi ¼ V1ðy� yspÞ þ V2ðy� yspÞ2 þ V3ðy� yspÞ3 þ � � �;
(22)

gðyÞ ¼ g0 þ g1ðy� yspÞ þ g2ðy� yspÞ2 þ g3ðy� yspÞ3 þ � � �;
(23)

where the coefficients Vi and gi are functions of both a and

ysp. A sufficient condition for the convergence of the series

for hvyi at ysp is that

lim
n!1

Vn ¼ 0: (24)

Accurate approximations of the values of a and ysp that sat-

isfy (24) can be determined by using the high-order coeffi-

cients in the expansion. To show how this works, we

substitute the power series (22) and (23) into (18) and obtain

V1 ¼
4þ 5b

5a 1þ bð Þ
gc

g0

; (25)

V2 ¼ �
4þ 5bð Þgcg1

5a 1þ bð Þg2
0

; (26)

V3 ¼
4þ 5bð Þgc

25a3 1þ bð Þ2g3
0

½�2 4þ 5bð Þg2
c

þ 5a2 1þ bð Þ g2
1 � g0g2

� �
�; (27)

V4 ¼
4þ 5bð Þgc

125a3 1þ bð Þ3g4
0

½25a2 1þ bð Þ2 �g3
1þ 2g0g1g2� g2

0g3

� �
þ 4þ 5bð Þ 34þ 35bð Þg2

cg1�; (28)

for the first four coefficients of the series. Setting V3¼ 0 and

V4¼ 0 give two equations that approximately determine the

values of a and ysp of the nonsingular solutions provided that

the series converges. These two equations are

5a2ð1þ bÞðg2
1 � g0g2Þ ¼ 2ð4þ 5bÞg2

c ; (29)

and

25a2ð1þ bÞ2ð�g3
1 þ 2g0g1g2 � g2

0g3Þ

¼ �ð4þ 5bÞð34þ 35bÞg1g
2
c : (30)

Let us first consider the specific case of the Gaussian

profile g ¼ gce�y2=l2y . The first four coefficients of its series

expansion are then

g0 ¼ gce�y2
sp=l2y ;

g1 ¼ �2ðysp=l2yÞgce�y2
sp=l2y ;

g2 ¼ ð1=l4
yÞð2y2

sp � l2
yÞgce�y2

sp=l2y ;

g3 ¼ 2ðysp=l6
yÞðl2y � 2y2

sp=3Þgce�y2
sp=l2y :

Substitution of these coefficients into (29) and (30)

yields
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ysp ¼ 0; (31)

a � ½2ð4þ 5bÞ=5ð1þ bÞ�1=2ly; (32)

MAi ¼
ffiffiffiffiffiffiffiffiffi
gc=a

p
; (33)

with

MAi �
ffiffiffiffiffiffiffiffiffiffi
gc=ly

q
½5ð1þ bÞ=2ð4þ 5bÞ�1=4: (34)

Equation (34) is the lowest order approximation for the

reconnection rate MAi, but only if the series for hvyi con-

verges. In Sec. IV, we discuss a more complex example

where (34) has a reasonable looking solution, but the series

fails to converge because its higher-order coefficients are not

well behaved.

If the series does converge, then more accurate, but

more complicated expressions can be obtained by setting

progressively higher coefficients of the expansion of hvyi to

zero. To determine and manipulate these more complicated

expressions, we use the software Mathematica. The higher

order coefficients generate multiple roots, and it is the

smallest, positive root that corresponds to the stable solu-

tion. Table I shows the approximate values of MAi obtained

in this way for the Gaussian profile. This table assumes

g¼ 5� 10�4 and ly¼ 0.3, the same values as used in our

simulations.

From the table, we see that the approximate values of

MAi rapidly converge as increasing higher-order coefficients

are used. By V11¼ 0, the value of MAi corresponding to a sta-

ble solution has been determined to six significant figures.

This level of accuracy does not mean that we have calculated

the actual reconnection rate to a similar level. The one-

dimensional averaged equations that we use are highly ideal-

ized, and we do not expect them to be any more accurate

than the one-dimensional nozzle equations that they resem-

ble. The one-dimensional nozzle equations typically have

errors on the order of 10%–20% due to the fact that they

ignore (as we do here) variations in the fluid variables across

the width of the nozzle.28 Table I also shows that the depend-

ence of the reconnection rate on the plasma b is weak. Even

when one compares the extreme cases of b¼ 0 (strong mag-

netic field limit) and b ! 1 (incompressible limit), MAi

only changes by about 6%.

Let us now consider the non-Gaussian profile

g ¼ gce�y4=l4y . One of the predictions of the previous analysis

is that no stable, symmetric solution exists for this g profile.

The first four coefficients of its expansion are

g0 ¼ gce�y4
sp=l4y ;

g1 ¼ �4ðy3
sp=l4

yÞgce�y4
sp=l4y ;

g2 ¼ ð2y2
sp=l8

yÞð4y4
sp � 3l4

yÞgce�y4
sp=l4y ;

g3 ¼ 4ðysp=l12
y Þð�l8y þ 6y4

sply4� 8y8
sp=3Þgce�y4

sp=l4y :

We see right away that if ysp¼ 0, as it must for a sym-

metric solution, then the three coefficients g1, g2, and g3 are

all zero, and, consequently, there is no real solution to

Eq. (24) that has ysp¼ 0. Any solutions that do exist must,

therefore, be asymmetric. Substitution of the non-Gaussian g
coefficients into (29) and (30) does actually yield two such

solutions, namely,

ysp �6ly

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�216� 225bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
68736þ 142080bþ 73425b2

p
8 92þ 95bð Þ

4

s
;

(35)

a �
l4
y

ysp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 5b

5 1þ bð Þ 3l4y þ 4y4
sp

� �
s

ey4
sp=l4y : (36)

Substitution of (36) into (33) gives the corresponding recon-

nection rate

MAi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gcysp

l4
y

e�y4
sp=l4y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 1þ bð Þ 3l4

y þ 4y4
sp

� �
4þ 5bð Þ :

svuut
(37)

The two solutions have stagnation points located on op-

posite sides of the origin, but both have the same rate of

reconnection. Only one of these solutions can occur at any

given time. Since the resistivity profile is still symmetric, the

theory predicts that the symmetry of the system will be spon-

taneously broken. As we will see in Sec. IV, the MHD simu-

lations do, in fact, exhibit this behavior.

For g¼ 5� 10�4, ly¼ 0.3, and b¼ 0.35, Eqs. (35) and

(37) give ysp¼60.14978 and MAi¼ 0.039078. Equations

(35) and (37) constitute the lowest-order approximations for

the location of the stagnation point ysp and the reconnection

rate MAi. As before, more accurate approximations are

obtained by setting progressively higher coefficients of the

expansion of hvyi to zero as shown in Table II. Again, values

in the table are for the simulation values of g¼ 5� 10�4 and

ly¼ 0.3.

We will compare the highest-order approximations

obtained using V11¼ 0 and V12¼ 0 to the simulation results

in Sec. IV.

TABLE I. Reconnection rate at different levels of approximation for the

Gaussian profile.

Approximation level MAi, b¼ 0.35 MAi, b¼ 10

V3¼ 0 0.035734 0.034487

V5¼ 0 0.036980 0.035997

V7¼ 0 0.037033 0.036090

V9¼ 0 0.037034 0.036094

V11¼ 0 0.037034 0.036094

TABLE II. Reconnection rate and stagnation point location at different lev-

els of approximation for the non-Gaussian profile, for b¼ 0.35.

Approximation level MAi ysp

V3¼ 0, V4¼ 0 0.039078 60.14978

V5¼ 0, V6¼ 0 0.040340 60.15069

V7¼ 0, V8¼ 0 0.040349 60.15208

V9¼ 0, V10¼ 0 0.040352 60.15228

V11¼ 0, V12¼ 0 0.040352 60.15228
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IV. RESULTS OF COMPUTATIONAL EXPERIMENTS

A. Petschek solutions for Gaussian resistivity profiles

The appearance of a typical Petschek solution may be

described as follows for ly¼ 0.3. After a transient phase (see

Fig. 3, and described in detail elsewhere10,29), a steady-state

reconnection solution develops as seen in Fig. 4. This final

steady-state has all the features of a Petschek solution, with a

small central diffusion region surrounded by four standing

shocks (slow mode MHD waves). The details have been al-

ready reported and characterized several times in analytical

and numerical studies.29–31

Fig. 5 compares the steady-state outflow velocity from the

numerical simulation shown in Fig. 4 with the prediction of the

analytical theory. Since the theory only predicts an averaged

velocity, the simulations results have been averaged across the

thickness of the outflow layer. The numerical averaging uses

the half-maximum of vy to locate the edge of the outflow layer.

As shown in the first line of Table III, the difference between

the numerical and analytical reconnection rates is about 5%.

The simulation and theory curves are nearly identical within

the diffusion region, but they show a slight divergence from

one another in the region jyj > 0:7. This divergence is most

likely due to the fact that the simplified version of the theory

that we use here ignores the variation of the exterior tangential

field, By(a, y), with y. This field component decreases with y,

which causes a slight decrease in the outflow speed because of

the decrease in the exterior Alfv�en speed with distance.17

The second line of Table III shows that varying the

plasma b has a relatively small effect on the reconnection rate.

In the simulation, the reconnection increases by about 10%,

while the theory predicts it should decrease by about 2%. A

possible explanation for this discrepancy is that the theory’s

assumption that q and vy have little variation in x within the

flow layer becomes increasingly problematical as the plasma

b decreases. This difficulty is illustrated in Fig. 6, which com-

pares the density for two different simulation runs with

b¼ 0.5 and b¼ 2.0 after a steady state has been achieved.

Fig. 6 shows that there is a thin, low-density layer that is

embedded within the thicker outflow region. The density

reduction is most pronounced within the diffusion region.

The high b case has less variation in density because it

becomes more difficult to compress or expand the fluid as

the magnetic field weakens relative to the gas pressure.

Similar reduced density layers can also be seen in other sim-

ulations (see Fig. 7 in Yokoyama and Shibata, for

FIG. 3. Current density J (left panel) and magnetic field lines (right panel)

corresponding to a transient state (at t¼ 13) for a simulation using ly¼ 0.3

and a Gaussian resistivity profile.

FIG. 4. Same as in Fig. 3 for the final steady state obtained at t¼ 40.

FIG. 5. Comparison of the averaged outflow velocity, hvyi from the numeri-

cal simulation using a Gaussian resistivity profile (solid curve) with the cor-

responding flow predicted by the analytical theory (dashed curve). The

simulation curve is for the time shown in Fig. 4, and the flows are normal-

ized to the Alfv�en speed. The good agreement between the two curves is re-

markable considering that there are no free parameters in the theory that can

be arbitrarily adjusted.

TABLE III. Comparison of numerical and analytical reconnection rates

(MAi).

g profile b Simulation Theory Difference (%)

Gaussian 0.35 0.0353 0.037 þ4.9

Gaussian 10 0.039 0.0361 �7.5

Non-Gauss. 0.35 0.0355 0.0403 þ13.7

Non-Gauss. 10 0.039 0.0392 þ0.5
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example).32 The low density in the thin, internal layer leads

to a more rapid acceleration of the plasma, so that both the

density and the flow speed vy have considerable variation

within the layer as well as along it. Consequently, the

theory’s assumption that hqvyi can be replaced by hqihvyi
becomes increasingly less valid as the plasma b decreases.

The principal reason for the existence of a low-density layer

within the diffusion region is the nonuniform distribution of

current density across it. The current density concentrates

towards the center of the diffusion region as the slow shocks

approach one another (cf. Fig. 4), and this concentration

leads to enhanced Ohmic heating and higher-temperature in

the center. Since the total pressure is uniform, the mass den-

sity is necessarily lower within the high temperature region.

Advection extends the high temperature and low density into

the downstream region.

B. Petschek solutions for flat non-Gaussian resistivity
profiles

We follow the same procedure as in Subsection IV A,

using again ly¼ 0.3 and g0¼ 5� 10�4. First, at an early tran-

sient time (t¼ 13), a behavior that is clearly distinct from that

obtained for the Gaussian profile can be clearly seen in Fig. 7.

Indeed, the initial central point topology appears now to be

unstable, with the formation of an O-point situated at the cen-

ter of a small magnetic island (instead of an X-point). The

slow-mode shocks that form are still present and are attached

to the central island. The latter symmetric configuration is

itself strongly unstable since the magnetic island quickly

develops into a plasmoid, i.e., an island that is pushed and

expelled on the negative y side as seen in Fig. 8 (at t¼ 18).

Eventually, the system is able to evolve to a steady-state

Petschek-like solution, as shown in Figs. 9 and 10. This new

final state is clearly an asymmetric Petschek reconnection so-

lution, since the diffusion region (see zoom in Fig. 10) is

asymmetric along the y-direction with an X-point situated at

y¼ 0.18. The four standing shocks remain, however, attached

to the four tips of the diffusion layer as in a standard symmet-

ric solution. The time evolution of the system is illustrated in

Fig. 11, where the maximum current density Jmax (obtained

for a x¼ 0 cut) is plotted as a function of time. The result

obtained for the previous Gaussian profile is also plotted for

comparison. At early times, i.e., t< 10 time units, a symmetric

Petschek solution is developing for both profiles in a similar

way (Jmax is increasing). However, at t� 10, a magnetic island

appears at the center and grows in place until t� 15. During

this second stage, symmetric slow-mode shocks envelop the

island. At t� 15, the island begins to move and to be ejected

as a plasmoid in one of the two y directions (negative y direc-

tion in this case according to Fig. 8). The plasmoid stage is

characterized by two current density peaks embedding the

moving island and coinciding with the two X-points, the high-

est peak being at the front. Finally, when the plasmoid is fully

FIG. 6. A comparison of steady-state density distributions for low b (left)

and high b (right) simulations using the Gaussian profile.

FIG. 7. Current density J (left panel) and magnetic field lines (right panel)

for a transient state (at t¼ 13) for a simulation using ly¼ 0.3 and a non-

Gaussian resistivity profile corresponding to Eq. (10).

FIG. 8. Current density J (left panel) and magnetic field lines (right panel)

for a transient state (at t¼ 18) for a simulation using ly¼ 0.3 and a non-

Gaussian resistivity profile corresponding to Eq. (10).
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ejected at the external boundary, a steady state having an

asymmetric Petschek solution is set up (see Fig. 10). One can

note that the maximum current density is only very slightly

higher than the value obtained for the similar Gaussian profile,

reflecting a very similar reconnection rate.

An interesting question is what determines the half-plane

location (positive y versus negative y half-plane) of the final

X-point. We have run many simulations with different ly val-

ues, and we found that the answer depends on the direction of

the expelled plasmoid during the transient state. In fact, the

X-point is located on the opposite side of the diffusion region

from the plasmoid expulsion direction. Thus, when the plas-

moid is ejected towards the negative y-direction, the final

steady-state X-point forms on the positive y side (as shown

previously) and vice versa. Moreover, running many cases

leads to the conclusion that the direction is completely ran-

dom, with the same number of positive and negative

asymmetric X-point solutions. Moreover, we have checked

that it is possible to enforce a given direction by prescribing a

very small asymmetry in the resistivity profile with a magni-

tude that is slightly higher than the round-off errors.

The occurrence of two asymmetric solutions in a config-

uration that is otherwise symmetric is an example of sponta-

neous symmetry breaking. Such behavior is also predicted

by the analytical theory when the resistivity profile is too flat

to have a stable symmetric solution. For the non-Gaussian

profile there are two stable, asymmetric solutions whose

stagnation points are located about halfway between y¼ 0

and y¼ ly (see Table II) in Sec. III. Each solution is similar

to the numerical solution previously obtained by Baty et al.
for an asymmetric resistivity profile of the form g¼ gc for

y< 0 and g ¼ gc expð�y2=l2yÞ for y> 0.11 Thus, the non-

Gaussian profile g ¼ gc expð�y4=l4
yÞ acts much like two dis-

placed jumps with reverse orientations.

The asymmetric solutions are compared with the numeri-

cal solutions in Figure 12. The match between the numerical

FIG. 10. Zoom of the previous figure.

FIG. 11. Maximum current density Jmax measured along the y direction (at

x¼ 0) as a function of time, for the Gaussian resistivity case (plain line), and

non-Gaussian case (circles). The second maximum (second peak) for the

non-Gaussian case is also plotted (with squares).
FIG. 9. Current density (J) and magnetic field lines for the final steady-state

(at t¼ 40) of the simulation using ly¼ 0.3 and a non-Gaussian resistivity

profile corresponding to Eq. (10).

FIG. 12. Comparison of the averaged outflow velocity, hvyi from the numer-

ical simulation using a non-Gaussian resistivity profile (red and blue solid

curves) with the corresponding flow predicted by the analytical theory (red

and blue dashed curves). The blue simulation curve is for the run and time

shown in Figures 9 and 10. The red simulation curve is for a separate run

that uses the same initial conditions, except for small differences due to fi-

nite differencing and round-off errors.
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and analytical solutions is not as quite as good as in the

Gaussian case. There is still very good agreement within the

diffusion region, but the agreement outside the diffusion region

is not as good as before. Nevertheless, the percentage differ-

ence between the two is still less than the 20% error that often

occurs with use of the one-dimensional nozzle equations.

The reconnection rate predicted by the analytical theory

for the non-Gaussian profile is compared with the simulation

values in Table III for b¼ 0.35 and b¼ 10, respectively. A

difference of 13.7% occurs for the b¼ 0.35 case, but an error

of only 0.5% occurs in the b¼ 10 case. In both cases,

the predicted rate depends very weakly on the plasma b.

Table IV compares the predicted location of the two stagna-

tion points to the locations that occur in the simulations. The

percentage differences are all less than 4%. The fact that the

simulations values of þ0.152 and �0.154 for b¼ 10 are not

precisely anti-symmetric implies that there is a small numeri-

cal error of about 1.3% in this particular case. This error is

probably due to the fact that the high b simulations exhibit

small oscillations on the order of 1% in their final states.

Such oscillations are not seen in the b¼ 0.35 case, so this

case may provide more accurate steady-state values for both

MAi and ysp. From the perspective of the analytical theory,

the b¼ 10 case is likely to be more accurate because of a

reduced variation of q and vy across the thickness of the out-

flow layer (see Figure 6).

C. Effect of ly and resistivity on asymmetric Petschek
reconnection

We have investigated the influence of the ly parameter

on the scenario of the formation of the asymmetric steady-

state Petschek solution described above, when a flat non-

Gaussian resistivity profile is imposed. The results are illus-

trated in Fig. 13 using Jmax as a diagnostic tool. Three ly val-

ues are employed, namely, 0.3, 0.2, and 0.1. Very similar

behavior is then obtained for ly¼ 0.2 and ly¼ 0.3, with mag-

netic island formation in the center, followed by a plasmoid

stage, and a final ejection just before settling into a steady

state asymmetric configuration. This is, however, not the

case for ly¼ 0.1, where no plasmoid forms, despite again the

appearance of a final asymmetric reconnection solution.

Note also that the final steady-states exhibit higher current

density (and higher corresponding reconnection rates) when

ly is smaller.

In order to explore the dependence with resistivity, an

additional run employing a resistivity value that is twice the

previous one is made, g0¼ 10�3. The results are compared

with the previous case (see Fig. 14). The initial growth rate

of the magnetic island appears to be very similar to the case

with g0¼ 5� 10�4, but the plasmoid ejection is faster.

D. Petschek solutions for mixed Gaussian/
non-Gaussian resistivity profiles

It is instructive to study the effect of using a mixed

(Gaussian and non-Gaussian y-components) resistivity pro-

file, namely,

gðx; yÞ ¼ g0 exp½�ðx=lxÞ2 � ½ðy=l4Þ4 þ ðy=l2Þ2�=2�; (38)

with l2 and l4 defining the y Gaussian and non-Gaussian

length contributions, respectively, which can now vary from

case to case. We focus on a fixed maximum resistivity value

with g0¼ 5� 10�4.

Following the same procedure as previously described,

we find that symmetric Petschek solutions are stable as long

as l2 is lower than l4. The final steady-state is almost indistin-

guishable from a simulation with Gaussian profile with

ly¼ 0.3, the diffusion region characteristics and reconnection

rate being very similar. In the opposite case (l4< l2), the

symmetric solution is unstable (in the same way as described

TABLE IV. Comparison of numerical and analytical stagnation point loca-

tions ysp. (Simulation values are determined from center-line velocities at

x¼ 0.)

g profile b Simulation Theory Difference (%)

Non-Gauss. 0.35 þ0.157 þ0.152 �3.2

Non-Gauss. 0.35 �0.157 �0.152 �3.2

Non-Gauss. 10 þ0.152 þ0.151 �0.7

Non-Gauss. 10 �0.154 �0.151 �1.9

FIG. 13. Same as Fig. 11, for three runs using the non-Gaussian resistivity

profile with ly¼ 0.1 (plain line), ly¼ 0.2 (triangles), and ly¼ 0.3 (squares).

FIG. 14. Same as Fig. 11, for two runs using the non-Gaussian resistivity

profile with g0¼ 5� 10�4 (squares), and g0¼ 1� 10�3 (circles).
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in Subsection IV C) with the formation/ejection of a transient

plasmoid. The final steady state is also dominated by an

asymmetric Petschek solution.

This behavior is also predicted by the analytical theory.

For l2/l4< 1.19, the only stable solution is a symmetric one,

but for l2/l4> 1.19, the only stable solutions are the two

asymmetric solutions lying on opposite sides of the symme-

try axis. The transition of the symmetric solution from stable

to unstable is not evident in the lowest order approximation

based on setting V3 and V4 to zero (see Eqs. (29) and (30) in

Sec. III). For l2/l4> 1.19 these equations predict there are

three solutions, one symmetric and the other two asymmet-

ric. However, once l2/l4> 1.19, the series expansion around

vy¼ 0 no longer converges, and only the expansions for the

asymmetric solutions converge. Thus, the mere existence of

a solution to (29) and (30) is not sufficient to guarantee that

this solution is structurally stable. One also has to demon-

strate that the series expansion of this solution is convergent.

V. DISCUSSION AND CONCLUSION

In this paper, we have investigated the stability of

Petschek solutions for resistivity profiles that vary with dis-

tance along the length of the reconnection layer. We have also

quantitatively compared our results to the theoretical analysis

of Forbes et al.5 This analysis predicts the rate of reconnection

as measured by MAi, the Alfv�en Mach number immediately

upstream of the current layer at the location of the stagnation

point, ysp. For a Gaussian profile of the form expð�y=lyÞ2, we

find that the reconnection rate predicted by the theory agrees

with the simulation value to an accuracy of about 5% for a

plasma b of 0.35 and about 8% for a plasma b of 10. These

percentages are less than the 10%–20% error expected from

the assumptions made by the analytical theory.5,28

For a non-Gaussian profile of the form expð�y=lyÞ4, the

symmetric theory analysis predicts that there is no stable solu-

tion that is symmetric around y¼ 0. Here, we have extended

the previously symmetric analysis to allow for asymmetric

solutions. This asymmetric version of the theory predicts that

there should be a stable asymmetric solution with a neutral

point approximately located at either þ0.5ly or �0.5ly. Either

solution is equally likely, but only one solution can occur at a

time. In other words, the symmetry of the system is spontane-

ously broken. The numerical simulations confirm this behav-

ior. Which solution occurs in the numerical simulations

depends upon small, random fluctuations in the initial condi-

tions. In the asymmetric solutions, the discrepancy between

the theoretical and numerical reconnection rates is about 14%

for b¼ 0.35, but only 1% for b¼ 10. The predicted locations

of the stagnation points (approximately the same as the loca-

tion of the neutral points) is confirmed to an accuracy of about

3% and 2% for b¼ 0.35 and b¼ 10, respectively.

The effect of compressibility on the reconnection rate,

as measured by MAi, is relatively weak. The analytical theory

predicts that the reconnection rate should decrease by about

2% as b varies from 0.35 to 10, but the simulations actually

show an increase of about 10%. We attribute this discrep-

ancy between the simulation and theory values to the fact

that the theory ignores the variation in density across the

width of the current layer. This variation increases as the sys-

tem becomes more compressible with decreasing b.

For both the symmetric and asymmetric solutions, the

length of the diffusion region is roughly equal to ly, the

length scale over which the resistivity varies. Also for both

solutions, the reconnection rate, MAi, is roughly Luly
�1=2,

where Luly is the Lundquist number based on the scale length

ly. Although the neutral and stagnation points are not collo-

cated in general, the separation between them is very small

(of order M2
Ai). Thus, both the neutral point and the stagna-

tion point lie at nearly the same location. This location

depends strongly on the functional form of the resistivity

profile, and it typically occurs next to a region where the pro-

file has a steep gradient.

In most of our simulations, asymmetric solutions are

obtained by the formation and ejection of a plasmoid. Thus,

it is tempting to try to relate this process to the plasmoid

instability, which develops in a reconnecting Sweet-Parker

current layer when the local Lundquist number exceeds a

value on the order 104.39 However, the local Lundquist num-

ber just prior to plasmoid formation in our simulations is

estimated to be less than 103. Since the theory developed

here assumes a laminar flow, it does not incorporate the

physics of such instabilities. It could be interesting, there-

fore, in a future study to explore more deeply the dependence

with resistivity in order to understand better the criterion for

spontaneous symmetry breaking and to compare it with plas-

moid instability.

Our results may have relevance to reconnection in the

lower solar atmosphere. The resistivity of the plasma

changes dramatically at the thin interface (transition zone)

separating the chromosphere from the corona and also at the

interface separating the photosphere from the chromo-

sphere.33 Any current sheet intersecting these interface

regions might, therefore, be expected to undergo rapid recon-

nection. The reconnection rate would be determined by the

thickness of the interface. Such reconnection might be signif-

icant for coronal heating,34 photospheric flux cancellation,35

or spicule generation.36,37

There are several important questions that have yet to be

answered: What aspects of the behavior we find in the resis-

tive MHD equations carry over into the kinetic plasma

regimes? For example, does the ion-inertial length in Hall-

MHD play the same role as the scale, ly, of the resistivity

variation? What are the effects of boundary conditions, both

in the inflow and in the outflow regions? Petschek reconnec-

tion is undriven, so what happens if the inflow is driven, or

the outflow is blocked? Finally, our theoretical analysis

assumes the flow is laminar, but in many applications the

flow is expected to be turbulent. How much, if any, of the

behavior observed in the laminar regime carries over in the

turbulent regime?38
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