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1. Summary
Freshwater habitats are under increasing threat due to invasions of
exotic fish. These invasions typically begin with the introduction
of small numbers of individuals unfamiliar with the new habitat.
One way in which the invaders might overcome this disadvantage
is by associating with native taxa occupying a similar ecological
niche. Here we used guppies (Poecilia reticulata) from a feral
population in Mexico to test the prediction that exotic shoaling
fish can associate with heterospecifics, and that they improve
their foraging efficiency by doing so. Guppies have invaded
the Mexican High Plateau and are implicated in the declines
of many native topminnow (Goodeinae) species. We show that
heterospecific associations between guppies and topminnows can
deliver the same foraging benefits as conspecific shoals, and that
variation in foraging gains is linked to differences in association
tendency. These results uncover a mechanism enabling founding
individuals to survive during the most vulnerable phase of an
invasion and help explain why guppies have established viable
populations in many parts of Mexico as well in every continent
except Antarctica.

2. Introduction
Invasive species, a major agent of global change [1,2], modify
the environment at multiple ecological levels, lead to community
disassembly and alter species interactions across a range of spatial
and temporal scales [2–4]. These changes result in biodiversity loss
and wildlife homogenization [5] and are considered some of the
greatest threats to ecosystem services [6,7].

Although many species are translocated from their native
range, most do not establish viable populations [1,2]. Invasions
typically begin with the introduction of just a few individuals
[1], and behaviour may play a crucial role in enabling such

2014 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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Poecilia reticulata

Skiffia bilineata

Zoogoneticus tequila

Xenotoca eiseni

Girardinichthys viviparus

Figure 1. Species used in these experiments, all individuals are adult females (photo composition by the authors).

individuals to compensate for Allee effects—the disadvantages linked to membership of a small
population [8,9]—and to survive until they can reproduce [10,11].

In fish, as in other taxa, social behaviour can enhance survival [12]. Apart from for mating, fish
associate with other individuals in contexts such as hibernation, sleeping and foraging [13], thus gaining
benefits including protection from predators [14], increased foraging efficiency [15] and reductions in
the energetic costs of movement [12]. However, animal associations are not limited to single species
groups. Mixed-species (heterospecific) aggregations, i.e. two or more species associating in time and
space [16], occur regularly in nature; examples include fish [17,18], birds [19] and even members of very
distant taxa (e.g. monkeys and birds [20]). Heterospecific aggregations occur when they are beneficial
to the participants [21]. For example, fathead minnows (Pimephales promelas) can learn to recognize
heterospecific alarm cues, and this decreases their probability of being attacked and captured during
predator encounters [22].

Freshwater ecosystems are among the most altered and invaded in the world [23]. Like islands, they
are vulnerable due to their geographical isolation and high rates of endemicity [24]. Common routes of
fish invasion include introductions of biological control agents [25], releases designed to provide food
and sport or discards of aquarium fish and bait buckets [26]. Although in some cases freshwater fish
invasions may have a positive outcome for the local fish communities and on human economy [27], in
others their effects are catastrophic [28]. Freshwater invaders are responsible for effects that range from
local extinctions to alterations in nutrient and energy fluxes [29].

The guppy (Poecilia reticulata) is native to Trinidad, Guyana, Venezuela and Surinam [30,31]. It
is a remarkably opportunistic species with reproductive adaptations that enable a few individuals
or even a single pregnant female to found a viable population [31]. Guppies possess many of the
physiological, behavioural and life-history characters that are associated with extreme adaptability
[31]—traits associated with increased invasion success [32]. During the past century, guppies have been
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released into environments outside their native range to control mosquitoes and reduce malaria, and also
accidentally as a consequence of escapes from home aquaria. There are now established populations in
at least 72 different countries across the globe [33]. This includes Mexico [34], where they are found
in many localities including the Lerma-Santiago River system, the main basin of the Mexican High
Plateau and a watershed noted for its high levels of endemicity. Endemics include Goodeinae, a clade
consisting of ca 45 species of small livebearing fish [35], 17 of which are included in the IUCN Red List of
Threatened Species [36] (see also [37,38]). The Goodeinae are mostly omnivorous freshwater topminnows
that inhabit shallow ponds, lakes and rivers. They are the focus of this study because many species are
morphologically similar to guppies, feed on the same resources and occupy the same habitat. In some
cases, population declines have been directly attributed to guppy invasions [39].

We tested the hypothesis that small shoals of invading guppies gain foraging benefits by associating
with topminnows. We quantified foraging benefits associated with an increase in conspecific shoal size.
We expected that fish would locate food faster and increase the time spent foraging when associating
with others [40]. We predicted that foraging advantages would also apply when the additional shoal
members were heterospecific rather than conspecific fish. To assess whether these effects can be
generalized across species we repeated the experiments with four topminnow species (Skiffia bilineata,
Zoogoneticus tequila, Xenotoca eiseni and Girardinichthys viviparous; figure 1) that are morphologically
similar to guppies [41]. In addition, we asked whether the differences in the foraging advantages that
accrue when individuals belong to a larger shoal could be linked to the guppy’s tendency to associate
with a given species.

3. Material and methods
Experiments were carried out at the main campus of the National Autonomous University of México
(UNAM) in México City from July to September 2013. Guppy (P. reticulata) individuals were collected
from a population established in the wild in Ahuisculco, Jalisco, where no other species used in this
experiment occur. In the case of the topminnows, Z. tequila were originally from Teuchitlán in Jalisco;
G. viviparus originated in Texcoco, México; S. bilineata were originally from Álvaro Obregón in Michoacán
and X. eiseni from San Sebastián in Jalisco. All fish were collected from either the wild or outdoor
ponds within a two-week period, and carefully transported in plastic bags half filled with water and
half filled with air to the laboratory, where they remained for roughly the same amount of time (ca 12
days) before trials. Stock tanks (45 l) contained 15–20 fish each and were set up with aged tap water,
which was treated with Stress Coat. Each tank contained a filter, water pump and plants. Photoperiod
was 12 L : 12 D from 7.00 to 19.00 h. Water daily temperature ranged between 19◦C and 22◦C. Tanks were
visually isolated from one another with an opaque sheet. We used only female fish in the experiment
as they devote more time to shoaling and foraging than males [42]. Individuals in a given trial were
kept separate for several weeks prior to observations to avoid familiarity effects [43]. Fish were fed with
commercial flake food (SeraVipan) daily at the end of each day. After the experiment was completed
(70 days), all fish remained in stock tanks in the laboratory. In the wild, species used in this study have
similar foraging patterns and forage from similar sources: plants, detritus and smaller animals [35].
Nevertheless, Z. tequila is, among the species used in these experiments, the most likely to feed at the
bottom [44].

Our study was divided into two parts: in the first we measured foraging behaviour in the presence
of mixed or single species shoals (foraging benefits test). We then evaluated whether guppies would shoal
with topminnows (heterospecific association test). In the two parts, we selected a guppy prior to the start of
each observation (focal) and recorded its behaviour; they were easily distinguished from the rest of the
fish due to minor individual differences, such as eye size or fin scars. Focals were used only once and
returned to stock tanks after each trial. Fish used to form the shoals were haphazardly selected from three
tanks holding approximately 15 fish of one species each to avoid pseudoreplication [45]. Observations
were made between 10.00 and 16.00 h using two identical glass tanks (45 × 25 × 30 cm) each with a
gravel bottom.

In the foraging trials, pelleted fish food (Pleco Sticks) was placed at the bottom of a randomly selected
corner of the tank at the beginning of the day. Shoals were assembled with a female guppy from the focal
tanks and haphazardly selected individuals from the shoal tanks to produce the desired composition for
a given trial, then gently introduced to the observation tank. Shoals typically consisted of three guppy
females and three females of one Goodeinae species. We also included two conspecific shoal sizes (of
three or six guppies) to assess whether a change in food finding linked to an increase in a single species
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group size is matched when 50% of the conspecific individuals are replaced by heterospecifics. The shoal
was observed for 10 min to determine both the time (seconds) and species of the first fish to locate the
food. We recorded the time (seconds) it took the first fish to locate the food and also the time (seconds)
it took the focal guppy to do it. We then recorded the time spent foraging by the focal guppy female
during the rest of the trial. As some individuals had more time left than others, data for this variable
were analysed using the proportion of time spent foraging from the available time (time spent foraging
divided by the remaining time after the food was located). Each of the six treatments was replicated 22
times. Replicates for all treatments were performed in a random order.

For the heterospecific association trials, all shoals consisted of six fish (in one treatment these were all
guppies, in the others the shoal consisted of three guppies and three Goodeinae of the same species).
Shoals were assembled as before and then gently placed in a bottomless bottle inside the observation
tank to acclimatize for 10 min; the bottle was then carefully lifted and removed. The focal female was then
followed for 8 min. Every 15 s we recorded the species and distance (spot sampling), in body lengths, to
the closest heterospecific and conspecific fish. Each of the five treatments was replicated 15 times in a
random order.

Standard length of the fish used in these experiments ranged from 17.2 to 35.1 mm. However, the
shoals and focals were size assorted trying to minimize differences in size that could influence behaviour.
Average (±s.d.) difference between the standard length (SL) of the focal and the average SL of the shoal
fish (i.e. relative size of the focal fish) was −0.6 ± 1.5 mm (ranging from −4.1 to 3.2 mm) and was not
significantly different across treatments of shoal composition (ANOVA, F5,126 = 0.72, p = 0.61). However,
all analyses were performed including difference in size as a covariate. Since neither difference in size
(F < 0.783, p > 0.39) nor the interaction between difference in size and treatment (F < 0.465, p > 0.5) had
a significant effect, we concluded that size did not play a role in foraging or association patterns in
this experiment. Therefore, for the benefit of clarity, the Results section only presents the analyses with
treatment as the main factor.

In the Foraging benefits section, in order to evaluate the foraging benefits obtained by guppies in
shoals of different compositions we first asked (using χ2-tests) whether one species in the two species
trials consistently found the food first. Next we examined the time taken by the focal female to begin
foraging. These data were log transformed to approximate normality. An ANOVA, followed by Tukey
HSD post-hoc tests was then used to assess the differences among treatments.

In the Heterospecific association section, we examined association patterns using ANOVA. In the
first test, we asked whether the number of occasions in a trial (out of a maximum of 32) on which the
focal female was shoaling with a conspecific, defined as the focal female being within one body length of
another guppy, varied between treatments. In the second test, we asked whether the extent to which focal
females shoaled with heterospecifics, defined using the one body length criterion as before, depended
on the species of topminnow involved. Post-hoc Tukey tests were used when treatment effects were
significant. All analyses were performed using R statistical software [46].

4. Results
4.1. Foraging benefits
The time taken for the focal fish to find food varied across treatments (F5,75 = 20.39, p < 0.001; figure 2).
Post-hoc tests revealed that when guppies were in a single species shoal of six, the focal female found
food more quickly than when there were three guppies in the tank. This advantage also occurred in
three out of the four cases when the shoal was composed of both guppies and topminnows (i.e. in the
presence of S. bilineata, Z. tequila or X. eiseni but not when the additional fish were G. viviparus). Focal
individuals also increased the proportion of time they spent foraging when the shoal increased from
three to six in all treatments, except—again—in the case of G. viviparus, where the focal female behaviour
was indistinguishable from that exhibited in a shoal of three guppies (F5,75 = 26.65, p < 0.001; figure 3).
With the exception of the trials with G. viviparus, the heterospecific shoal members located the hidden
food more quickly, or as quickly as shoal with only guppies did (table 1).

4.2. Heterospecific association
The number of times the closest guppy was found within one body length of the focal female was not
significantly different in all treatments (F4,75 = 2.25, p = 0.071). However, the extent to which the focal
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Figure 2. Time (maximum= 600 s, in a log scale) the guppy focal fish took to find the food for each shoal composition. Horizontal lines
in the bars represent themedian, boxes indicate interquartile ranges and vertical lines show the range excluding outliers (circles). Letters
represent the results of a Tukey HSD post-hoc test.
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Figure 3. Percentage of the time after finding food that the focal spent eating for each shoal composition. Horizontal lines in the bars
represent the median, boxes indicate interquartile ranges and vertical lines show the range excluding outliers (circles). Letters represent
the results of a Tukey HSD post-hoc test.

Table 1. Species of the first fish to locate the food in the 22 replicates of the trials to evaluate foraging benefits; p-values fromχ 2-tests.
All treatments included three individuals of each species.

treatment guppies first heterospecific first p-value

P. reticulata 6 16 0.033

S. bilineata
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P. reticulata 1 21 <0.001

Z. tequila
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P. reticulata 9 13 0.393

X. eiseni
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P. reticulata 17 5 0.010

G. viviparus
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 4. Times (maximum= 32) focal fish were found within one body length or less from the (a) closest conspecific and (b)
heterospecific. Horizontal lines in the bars represent the median, boxes indicate interquartile ranges and vertical lines show the range
excluding outliers (circles).

females shoaled with heterospecifics varied between treatments (F3,60 = 23.49, p < 0.001; figure 4). Post-
hoc tests revealed that guppies were less likely to associate with G. viviparous than with any of the
other three species of Goodeinae, but equally likely to associate with the latter three species as with
conspecifics.

5. Discussion
Our data demonstrate that guppies—regarded as one of the world’s most invasive freshwater fish—gain
the same benefits, in terms of finding hidden food sources, when shoaling with native heterospecifics
as they would by belonging to a conspecific shoal of the same size. Being part of a large shoal of
conspecifics enhances foraging success of the individuals that constitute it [40]. Guppies are among the
species in which it has been shown that social interactions can result in foraging benefits [15,47,48].
Individuals lacking information about the local environment can, if joining a group, learn from other
more knowledgeable conspecifics [49]. Indeed, foraging information may be transmitted by processes as
simple as the tendency to follow other fish [47]. Here we have shown that these benefits extend across,
as well as within, species.

In our trials, topminnows were often the first to find the food, with guppies subsequently locating it.
We refer to Goodeinae fish as topminnows because they, as the guppies, regularly forage at the water
surface, yet they also forage at the bottom, and it has been reported that Zoogoneticus spp. are more likely
to forage from the substrate than other Goodeid genera [44]. Thus, it is possible that our protocol made
topminnows more likely to find the food pellets than the guppies. If so, the fact that female guppies were
better able to find and consume pellets at the bottom when shoaling with topminnows is evidence that
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their behaviour is flexible enough to allow them to benefit from shoaling with native species. It must be
noted, however, that guppy females are also likely to forage at the bottom under some circumstances
[31], which may explain why they were also able to locate food faster and spend more time foraging
when in larger shoals of conspecifics.

Being able to follow other individuals to find food more efficiently would annul one major
disadvantage that locally scarce invading fish have to face [8]. Yet there are advantages of belonging
to a larger group other than faster location of hidden food. A major benefit of these associations is the
increased vigilance associated with ‘many eyes’ [50]. It is believed that there is a positive relationship
between being a successful forager and avoiding predators [51]. Larger flocks or shoals are better at
detecting approaching predators and taking advantage of the dilution effect, but, crucially, the individual
members devote less time to scanning for potential threats [51,52]. This effect, which leaves more time for
feeding, occurs even in the absence of an evident predation risk and helps reduce the individual fitness
cost of predation [53].

In our investigation, the focal females not only found food faster in the larger shoals (whether the
additional shoal members were conspecifics or heterospecifics) but devoted more time to foraging.
Indeed, the link between the tendency to associate with a given topminnow species and the foraging
advantages that accrue when it is present, directly implies shoaling behaviour as a cause of the
foraging gains. In short, our results substantially extend earlier research on single species shoals by
showing that the foraging advantages of increased shoal size apply when the additional conspecifics are
replaced by heterospecifics. However, as our experimental design included only females, further research
should be carried on to explore whether these advantages remain when guppy and Goodeinae males are
part of the group. Indeed, it is known that guppy males interact with native Mexican topminnows and
even attempt to copulate with them [41].

While Poeciliids, including the guppy, possess many of the traits associated with successful invaders
[31,33,54,55] such as phenotypic plasticity [56,57], ovoviviparity [31] and a flexible life history [58] the
likelihood that founders will establish a viable population may depend on many local factors including
the traits of the species that already occur there. There is no consensus regarding which species or
community attributes promote invader success or explain spread dynamics [5,59]. Among freshwater
fish invasions, establishment success is the most studied phase and it seems to be multi-factorial and
dependent on the context. For example in the USA, 87 species of fish are known to have been introduced
to California, and among these the main predictors of establishment success are physiological tolerance,
smaller size of native range and—somewhat circularly—prior invasion success [59].

The natural habitat of most of the topminnow species used in this study has already been invaded
to a lesser or greater extent—and often intermittently—by guppies. It is therefore likely that invading
guppies in Mexico have already been able to exploit the foraging and other benefits of heterospecific
shoaling. Indeed, in the site were we collected guppies for this study (Ahuisculco, Jalisco) they were
in close association with other species, as inferred from the fact that we found more than one species
in our nets. However, a further important finding of our work is that not all native species that
might be encountered will deliver the same foraging gains. Indeed, in our study associations with
G. viviparus brought no foraging gains. This outcome highlights the context-dependent nature of
invasions [5].

The number of species that successfully establish themselves outside their native range is increasing,
as is the number of these that cause economic and ecological damage [10,60]. Our results suggest that
plastic social behaviour could help invading species to overcome initial numerical disadvantages and
become successful invaders. This, together with direct negative effects on local species (e.g. introduction
of novel parasites and sexual disruption), may facilitate the establishment of viable populations and the
eventual replacement of native species. This study reveals that sociability is one of the key predictors
of species establishment in novel localities. It highlights the need to pay attention to behavioural traits
when assessing the invasion risk associated with releases or escapes of exotic species.

Ethics statement. Topminnows (Goodeinae) were originally collected from the wild (using hand seine nets and traps)
under the permit SGPA/DGVS/09253 provided by the Mexican Ministry for the Environment (SEMARNAT) and
used to establish populations in outdoor ponds at UNAM.
Data accessibility. Data can be found in the electronic supplementary material.
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