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Trimlines separating glacially abraded lower slopes from blockfield-covered summits on Irish mountains have
traditionally been interpreted as representing the upper limit of the last ice sheet during the Last Glacial Maximum
(LGM). Cosmogenic '"Be exposure ages obtained for samples from glacially deposited perched boulders resting
on blockfield debris on the summit area of Slievenamon (721 m a.s.l.) in southern Ireland demonstrate emplace-
ment by the last Irish Ice Sheet (IIS), implying preservation of the blockfield under cold-based ice during the
LGM, and supporting the view that trimlines throughout the British Isles represent former englacial thermal
regime boundaries between a lower zone of warm-based sliding ice and an upper zone of cold-based ice. The
youngest exposure age (22.6+1.1 or 21.0+0.9 ka, depending on the ’Be production rate employed) is statistically
indistinguishable from the mean age (23.4+1.2 or 21.8+0.9 ka) obtained for two samples from ice-abraded bedrock
at high ground on Blackstairs Mountain, 51 km to the east, and with published cosmogenic **Cl ages. Collectively,
these ages imply (i) early (24-21 ka) thinning of the last IIS and emergence of high ground in SE Ireland; (ii)
relatively brief (1-3 ka) glacial occupation of southernmost Ireland during the LGM; (iii) decoupling of the Irish
Sea Ice Stream and ice from the Irish midlands within a similar time frame; and (iv) that the southern fringe of
Ireland was deglaciated before western and northern Ireland.
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During the global Last Glacial Maximum (LGM; c.
26.5-19.0 ka; Clark ez al. 2009) the last Irish Ice Sheet
(IIS) formed a major component of the Ilast
British—Irish Ice Sheet (BIIS). Research based primar-
ily on offshore bathymetry, seismostratigraphy and off-
shore sediment cores, together with both onshore and
offshore dating evidence, provides compelling evidence
that during the LGM the IIS reached the Atlantic shelf
edge in the west and northwest, extended southwards
across the Celtic Sea shelf and was confluent with ice
nourished in Scotland, NW England and Wales to form
a major ice stream in the Irish Sea Basin (Sejrup et al.
2005; Scourse et al. 2009; Ballantyne 2010a; Dunlop
et al. 2010; C.D. Clark et al. 2012; O Cofaigh et al.
2012a, b; Fig. 1). Constraining the vertical LGM
dimensions of the last IIS has proved more problem-
atic, however. Inverse models based on inferred ice-
sheet extent or glacio-isostatic adjustment have
produced widely different altitudinal outcomes (e.g.
Boulton ef al. 1991; Lambeck 1993, 1995; Brooks et al.
2008). Thermo-mechanically coupled (TMC) numeri-
cal models driven by proxy climatic parameters suggest
a low-profile ice sheet with cold-based ice overlying
mountain summits, periodically down-drawn by high-
velocity ice streams (Boulton & Hagdorn 2006;
Hubbard et al. 2009).

Critical to constraining the maximum altitude of the
last IIS is the interpretation of trimlines that mark the
upper altitudinal limit of glacially eroded terrain and
the lower limit of autochthonous blockfields on moun-
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tain summits and plateaux. Such blockfields comprise a
shallow (usually 0.4-1.0 m deep) mantle of coarse,
bouldery regolith, sometimes interrupted by tors or
angular shattered bedrock outcrops. Recent studies of
blockfields on mountains in Scotland and Scandinavia
have concluded that they formed through prolonged
frost-wedging of jointed bedrock combined with granu-
lar disaggregation of clasts under severe periglacial
conditions, with limited evidence of chemical alteration
(Ballantyne 1998, 2010b; Goodfellow et al. 2009, 2014;
Hopkinson & Ballantyne 2014). Most Irish blockfields
and adjacent high-level rock outcrops exhibit no evi-
dence of glacial erosion, although rare erratic boulders
occur on or embedded within some blockfields, for
example on the Mourne Mountains of NE Ireland
(Vernon 1965) and on the quartzite mountains of
northern Donegal (Ballantyne et al. 2007).

The trimlines that mark the lower limit of blockfields
on Irish mountains were initially interpreted as indicat-
ing the maximum level of glacier ice, with blockfield-
covered summits remaining above the last ice sheet as
palaconunataks (e.g. Wright 1927; Farrington 1947,
Coudé 1977; Warren 1979; Rae er al. 2004). More
recent studies have argued that they could equally rep-
resent a former englacial transition from erosive warm-
based ice moving over low ground to cold-based ice
that occupied former summits and plateaux
(Ballantyne ez al. 2006, 2007, 2008). In the latter case, it
is assumed that cold-based ice was frozen to the under-
lying substrate and that the adhesive strength of the
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Fig. 1. Location of Slievenamon and Blackstairs Mountain and other locations mentioned in the text. The inset shows the lateral extent of the

last Irish Ice Sheet as inferred by Sejrup et al. (2005).

rock—substrate interface exceeded basal shear stress
(Kleman & Glasser 2007), permitting the survival of
blockfields and frost-shattered bedrock outcrops
throughout the last glacial cycle. This interpretation
implies that trimlines define the minimum rather than
maximum altitude of former ice cover during the LGM.

Bedrock outcrops above trimlines in Ireland have
consistently yielded minimum cosmogenic '“Be expo-

sure ages (41.5+2.2 to 118.0+6.6 ka) that greatly exceed
the age of the LGM (Ballantyne et al. 2006, 2008,
2011). These ages do not, however, discriminate
between the two trimline interpretations outlined
above, as pre-LGM apparent exposure ages may reflect
either continuous exposure on former nunataks or pro-
longed exposure prior to burial by passive cold-based
ice during the LGM (e.g. Fabel et al. 2002; Briner et al.
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2003; Marquette et al. 2004; Staiger et al. 2005). Mod-
elling of the former ice-surface profile based on the
minimum LGM extent of glacier ice fed from the
mountains of SW Ireland, however, implies that the
LGM ice surface reached an altitude of at least 1200 m
a.s.l. in this area, well above the maximum altitude
(~700 m a.s.l.) of local trimlines and implying that
summit blockfields were preserved under at least 200 m
of cold-based glacier ice (Ballantyne efal. 2011).
Moreover, post-LGM '"Be exposure ages of 14.9+0.9 to
17.6x1.1 ka obtained by Fabel ez al. (2012) for nine
erratics resting on blockfields in NW Scotland demon-
strate that the last ice sheet must have overtopped all
summits in this area but preserved intact summit
blockfields; five other blockfield erratics that they
sampled yielded (minimum) pre-LGM '“Be exposure
ages of >25.0+1.5 to 2176.7£11.6 ka, which were attrib-
uted to nuclide inheritance from a previous period of
exposure. Fabel et al. (2012) suggested that their find-
ings could be extended to all high-level trimlines and
blockfields in the British Isles, including those on the
mountains of Ireland.

Here we test the generality of this interpretation by
reporting "Be exposure ages for glacially emplaced
‘perched’ boulders resting on sandstone blockfield
debris on Slievenamon in southern Ireland, and com-
paring the results with exposure ages obtained for high-
altitude ice-moulded bedrock on Blackstairs Mountain
in SE Ireland.

Sampling sites

Slievenamon (longitude 52°26'N, latitude 7°34’W; Irish
Grid Reference S 299308; altitude 721 m a.s.l.) is an
isolated dome-shaped sandstone mountain located
34km N of the south coast of Ireland (Fig. 1).
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Blackstairs Mountain (52°33’N, 6°48'W; Irish Grid Ref-
erence S 811448; 735 m a.s.l.), 51 km farther east, is the
highest summit on an elongated ridge of granite. Thereis
general consensus that the last ice movement across this
area was to the S or SSE from the Irish midlands (e.g.
Warren 1991, 1992; McCabe 1998, 2008; Smith &
Knight 2011). Although earlier work attributed this ice
movement to a ‘Munsterian’ glaciation that was tenta-
tively assigned to Marine Isotope Stages (MIS) 8-6
(~302-132 ka; Bowen et al. 1986; McCabe 1987; Knight
et al. 2004) or to extensive ice cover during MIS 3
(~58-31 ka; Bowen eral. 2002), stratigraphical and
dating evidence from exposures on the south coast of
Ireland has conclusively demonstrated southwards
movement of inland ice across the present coastline
during the LGM (O Cofaigh et al. 2012b), implying that
the last ice sheet to occupy the Slievenamon-—Blackstairs
Mountain area was of LGM age.

Above ~650 m a.s.l. the summit of Slievenamon is
occupied by a bouldery blockfield, in places comprising
openwork clasts and elsewhere clasts embedded in a
matrix of sandy fines, with a localized superficial cover
of patchy peat (Fig. 2). Thicker peat obscures lower
slopes, but occasional erratic conglomerate boulders,
probably derived from an outcrop NW of the summit
dome, occur up to at least 510 m a.s.l. in altitude. A
striking feature of the blockfield above 650 m a.s.l. is
the presence of large, perched boulders, some of which
rest on other boulders (Fig. 3A, B), some of which are
upturned (Fig. 3C) and some of which, at the summit,
appear to rest on intact bedrock (Fig. 3D). These boul-
ders are generally larger than the adjacent blockfield
debris and their ‘perched’ attitudes demonstrate depo-
sition from glacier ice rather than upheaving of boul-
ders by frost action, and they cannot be of rockfall
origin as cliffs are absent. The summit plateau of
Blackstairs Mountain (680-735 m a.s.l.) is also occu-
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Fig. 2. Location of the sampling sites on Slievenamon and Blackstairs Mountain, showing the extent of summit blockfields and the location
of tors, shattered bedrock outcrops and ice-moulded bedrock outcrops on Blackstairs Mountain.
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Fig. 3. Sampled sandstone perched boulders on Slievenamon. A. Boulder from which sample IRE-SE-18 was obtained. B. Boulder from which
sample IRE-SE-19 was obtained. C. Upturned boulder from which sample IRE-SE-20 was obtained. D. Boulder from which sample
IRE-SE-20 was obtained. The spade is 0.9 m long; the walking pole is 1.2 m long. This figure is available in colour at http://www.boreas.dk.

pied by a blockfield, although conspicuous perched
boulders are absent (Fig.2). Moreover, boulders
derived from schist outcrops at 585-690 m a.s.I. SW of
the summit occur only a short distance down-slope
from their parent outcrops, suggesting no or limited
glacial entrainment of debris from the summit area.
Subdued granite outcrops at 535-560 m a.s.l. are
inferred to represent glacially modified ‘tor plinths’,
similar to those described by Hall & Phillips (2006) in
the Cairngorm Mountains of Scotland, and below
460 m a.s.l. ice-moulded granite slabs supporting
perched boulders are present.

To establish whether or not the perched boulders on
Slievenamon were emplaced by the last ice sheet (imply-
ing preservation of pre-existing blockfield debris under
cold-based ice during the LGM) or an earlier ice sheet
(suggesting that the summit of Slievenamon was a
palaeconunatak during the LGM), we chiselled samples
for cosmogenic '"Be exposure dating from the near-
horizontal upper surfaces of the four boulders illus-

trated in Fig. 3. Lack of suitable bedrock exposures on
Slievenamon precluded sampling of bedrock surfaces
to establish the timing of ice-sheet downwastage at this
site, so we obtained two bedrock samples of vein quartz
from Blackstairs Mountain to provide an indication of
the timing of summit emergence in the area: one from a
‘tor plinth” at 556 m a.s.l. and one from the plucked lee
side of an ice-moulded outcrop at 460 m a.s.l. Sample
locations and altitude were recorded using GPS and
checked on 1:50000 contoured maps, and corrections
for topographical shielding were calculated from the
dip of sample surfaces (in all cases <15°) and skyline
surveys (Table 1).

Sample preparation and exposure
age calibration

Sample thicknesses were measured and samples
crushed and sieved. Pure quartz was obtained from
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Table 1. Sample location and °Be analytical data. '°Be concentrations are normalized to a '°Be/’Be value of 2.851x107'? for the ICN 01-5-4
standard, as specified by Nishiizumi et a/. (2007). This is equivalent to the 07KNSTD normalization of the CRONUS calculator (Balco et al.
2008). AMS '“Be analyses were conducted at the Lawrence Livermore Center for Accelerator Mass Spectrometry (LLNL-CAMS). Errors
(+1o) include laboratory procedural uncertainties and individual AMS measurement errors, but do not include additional contributions for

laboratory standard reproducibility or interlaboratory comparison errors.

Sample Irish Grid Latitude Longitude Altitude Thickness Density Shielding 1"Be
Reference (°N) (°W) (ma.s.l.) (mm) (gem™) correction (10° atoms g™")

Slievenamon perched boulder samples

IRE-SE-18 S 296304 52.425 7.566 673 30 2.65 0.999 1.665+0.032

IRE-SE-19 S 296304 52.425 7.566 675 25 2.65 0.999 2.1860.049

IRE-SE-20 S 297304 52.425 7.564 683 27 2.65 1.000 2.264+0.044

IRE-SE-21 S 299308 52.428 7.561 720 35 2.65 1.000 2.85440.054

Blackstairs Mountains bedrock samples

IRE-SE-38 S 808445 54.456 6.809 556 34 2.65 0.999 1.544+0.061

IRE-SE-39 S 799436 54.588 6.822 452 39 2.65 0.947 1.336+0.032

samples by floatation in dense liquids and selective dis-
solution of other minerals with dilute HF (Kohl &
Nishiizumi 1992). Beryllium-10 was separated from
samples weighing 10-20 g in the presence of ~250 ug
Be carrier, using conventional methods (Ditchburn &
Whitehead 1994; see also Stone 2005). Details of the
isotopic analyses are given in Table 2. Blank correc-
tions amounted to <1% in all cases.

Exposure ages were calculated using the Lm scaling
of the CRONUS-Earth online calculator (Balco et al.
2008); other scaling schemes produce ages up to 1.9%
older. In the calculation of '°Be exposure ages we
employed two local production rates (LPRs) derived
from sites in Scotland, the LL LPR and NWHI11.6
LPR, with reference '°Be production rates (Lm scaling)
of 3.9240.18 and 4.20+0.14 atoms g™' a™', respectively
(Ballantyne & Stone 2012; Fabel et al. 2012). These two
LPRs effectively bracket the range of possible '“Be

exposure ages; the NWH11.6 LPR produces '°Be expo-
sure ages ~6.6% lower than the LL LPR. We assumed a
surface erosion rate (€) of 1 mm ka™' for all exposure-
age samples (Ballantyne 2010a); assumption of € = 0
reduces reported '’Be ages by 1.8-3.0% and assumption
of ¢ = 2mm ka™' increases '"Be ages by a similar
amount. Cited uncertainties (+*1c) associated with
cosmogenic isotope exposure dates are total (external)
uncertainties. Below we report individual '’Be ages cal-
culated using LL LPR first, followed by ages calculated
using NWH11.6 LPR in parentheses.

Results

Blackstairs Mountain

The two Blackstairs Mountain bedrock samples yielded
very similar exposure ages (Table2) with an

Table 2. '"Be exposure ages. Scaling from CRONUS online calculator (Balco et al. 2008): wrapper script version 2.2; main calculator version
2.1; constants version 2.2.1; muons version 1.1. Internal uncertainties (+10) reflect analytical uncertainties on '"Be measurements only.
External uncertainties (£16) incorporate in addition uncertainties in the calibration and scaling procedure.

Sample LL LPR

NWHI11.6 LPR

Exposure age  Internal

External

Exposure age  Internal External

(ka) uncertainty (ka)  uncertainty (ka)  (ka) uncertainty (ka)  uncertainty (ka)
Slievenamon perched boulder samples
IRE-SE-18 22.58 0.44 1.14 21.10 0.41 0.85
IRE-SE-19 29.67 0.68 1.55 27.72 0.64 1.18
IRE-SE-20 30.56 0.62 1.56 28.54 0.57 1.17
IRE-SE-21 37.79 0.75 1.93 35.28 0.70 1.45
Blackstairs Mountains bedrock samples
IRE-SE-38 23.29 0.95 1.44 21.77 0.89 1.17
IRE-SE-39 23.40 0.58 1.23 21.87 0.54 0.95
Uncertainty-weighted mean  23.37 0.50 1.19 21.84 0.46 0.90
Wicklow Mountains bedrock samples (recalibrated from data in Ballantyne ez al. 2006)
Djouce summit (725 m 21.97 0.49 1.13 20.53 0.45 0.86
a.s.l.)
Scarr summit (600 m a.s.l.)  21.21 0.54 19.82 0.51 0.86
Kanturk summit (523 m 20.96 0.57 19.59 0.54 0.88
a.s.l.)
Uncertainty-weighted mean  21.44 0.31 1.04 20.04 0.29 0.76
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uncertainty-weighted mean age of 23.4#1.2ka
(21.84£0.9 ka). This deglaciation age is consistent with
radiocarbon and OSL dates constraining the timing of
advance of ice from the Irish midlands across the south
coast of Ireland after ~24 ka (Hughes ez al. 2011; O
Cofaigh et al. 2012b) and the reconstruction of BIIS
retreat chronology by C. D. Clark et al. (2012), which
depicts deglaciation of most of southern Ireland prior
to ~19 ka. It is also broadly in accord with Bayesian
modelling that incorporates all published radiocarbon,
OSL and cosmogenic isotope ages relating to the
advance and retreat of the Irish Sea Ice Stream
(Chiverrell et al. 2013). This model suggests that the
last BIIS reached its maximum southern extent on the
Celtic Shelf south of Ireland and impinged on the Scilly
Isles (McCarroll et al. 2010) sometime between 24.3
and 23.1 ka, then retreated rapidly, with the ice margin
reaching a position in the Irish Sea Basin east of
Blackstairs Mountain at 23.4-22.4 ka. The overlap
between the Blackstairs Mountain exposure ages
reported here and the retrodictions of the Bayesian
model suggests that the former are reasonably repre-
sentative of the timing of ice thinning to expose high
ground at this site. Assuming that the retreating margin
of the ‘inland’ ice was aligned roughly parallel to the
present south coast of Ireland, as implied by the retreat
pattern depicted in C. D. Clark et al. (2012), it is likely
that the higher parts of Slievenamon had also emerged
above the thinning ice sheet by 23-22 ka.

We note, however, that bedrock samples from three
high-altitude sites in the Wicklow Mountains, ~70 km
NNE of Blackstairs Mountain, produced recalibrated
1'Be exposure ages ~2 ka younger than those obtained
for the latter (Table 2). This may indicate that the
Blackstairs ages are compromised by nuclide inherit-
ance owing to insufficient rock removal by glacial
erosion. However, whereas Blackstairs Mountain was
over-run by extraneous ice from the N or NW, during
the LGM the Wicklows nourished an independent ice
dome that fed into the ‘inland’ ice to the west and the
Irish Sea Ice Stream to the east (Warren 1993,
Ballantyne ef al. 2006; Smith & Knight 2011). It is
therefore possible that the younger ages obtained for
the Wicklow summits (Table 2) reflect persistence of a
residual icecap on the higher parts of these mountains
long after Blackstairs Mountain emerged from the
downwasting IIS.

Perched boulders on Slievenamon

Like the blockfield erratics in NW Scotland exposure-
dated by Fabel et al. (2012), the four perched boulders
on the Slievenamon blockfield produced a wide range
of "Be exposure ages, from 22.6+1.1 ka (21.140.9 ka)
to 37.8£1.9 ka (35.3%1.5 ka). Although the four expo-
sure ages increase with the altitude of the sampling sites
(Tables 1, 2), we attach no significance to this in view of
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the limited altitudinal range of the sampled boulders
(673-720 m a.s.l.) and the fact that two samples (IRE-
SE-18 and IRE-SE-19) produced very different expo-
sure ages but differ in altitude by only 2 m. Tested using
the two-sample difference of means test based on inter-
nal uncertainties, all of these four ages differ from each
other at p<0.0001, except for the middle two, which are
statistically indistinguishable (Table 2). All are signifi-
cantly older (p<0.0001) than the ages obtained for
deglaciation of Blackstairs Mountain, except for
sample IRE-SE-18, which produced an exposure age of
22.6x1.1 ka (21.1£0.9 ka) that is statistically indistin-
guishable from both the Blackstairs Mountain ages,
lending support to the assumption that Slievenamon
emerged from the downwasting ice sheet at roughly the
same time as Blackstairs Mountain. It is also notable
that all four of the exposure ages obtained from the
high-altitude perched boulders on Slievenamon are sig-
nificantly younger (at p<0.01) than all but one of 10
apparent exposure ages obtained from above-trimline
bedrock outcrops on various Irish mountains (Fig. 4).

Discussion

Although the exposure ages obtained for all four
perched boulders on Slievenamon either straddle or
exceed the timing of the global LGM (Fig. 4) and three
exceed the timing (24.3-23.1 ka) of the maximum
southern extension of the BIIS suggested by Bayesian
modelling (Chiverrell et al. 2013), consideration of the
wider evidence for the chronology of the build-up of the
ice sheet implies that at least three of the boulders and
probably all four must have been emplaced by the last
IIS and not by an earlier thicker ice sheet. Flowline
evidence based on subglacial bedform alignment sug-
gests that initial expansion of the last IIS was associ-
ated with advance of ice from west-central Scotland
that extended up to 200 km into the Irish Midlands
(Greenwood & Clark 2009). As multiple radiocarbon
dates from sites in the Scottish lowlands indicate ice-
free conditions prior to ~32 ka (Bos et al. 2004; Brown
et al. 2007), this scenario implies very limited ice cover
in Ireland prior to that date. Similarly, organic-rich silts
sandwiched between two tills at Derryvree in County
Fermanagh (Fig. 1) produced a radiocarbon age of
30.5+1.2 C ka (36.9-31.7 cal. "*C ka; Colhoun et al.
1972) and organic detritus from lacustrine deposits
under till at Greenagho, also in County Fermanagh,
produced a radiocarbon age of 32.5£0.3 '“C ka (37.2—
35.7 cal. *C ka; Dardis et al. 1985). These ages indicate
ice-free conditions in north-central Ireland until at least
~34 ka, prior to the build-up and expansion of the IIS.
Additionally, a wide range of radiocarbon ages
(43.940.5 to 26.4+0.1 cal. "*C ka) obtained for reworked
marine shells at Glenulra, in western Ireland (McCabe
et al. 2007), imply open water and hence ice-free con-
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ditions in adjacent Donegal Bay (Fig. 1) during much
of the ~20 ka prior to the westwards expansion of the
last 1IS. Finally, radiocarbon ages on reworked marine
shells and OSL ages obtained for glacifluvial and
glaciolacustrine deposits under a till of ‘inland” prov-
enance demonstrate that southwards-moving ice from
the Irish midlands did not cross the south coast until
after ~24 ka (O Cofaigh et al. 2012b). Collectively, the
above dating evidence implies that the bulk of the last
IIS expanded from initially ice-free conditions at ~34
ka to reach the south coast after ~24 ka. The exposure
ages of two of the perched boulders on Slievenamon
(29.7£1.6 ka (27.7£1.2 ka) and 30.6£1.6 ka (28.5£1.2
ka)) fall within this long period of ice-sheet build-up
and expansion, implying that even though these ages
may be compromised by exposure prior to entrain-
ment, the boulders can only have been deposited by the
last IIS and not by an earlier ice sheet. This conclusion
is confirmed by the age of 22.6£1.1 ka (21.1£0.9 ka) for
sample IRE-SE-18, which not only post-dates the
inferred maximum southern extension of the last BIIS,
but also is statistically indistinguishable from the

(Apparent) exposure age (ka)

Blackstairs Mountain deglacial ages, suggesting that
the summit of Slievenamon emerged from the thinning
ice sheet at roughly 23-22 ka.

Wider implications

Interpretation of trimlines

The presence of boulders deposited by the last IIS on
blockfield debris on Slievenamon demonstrates that ice
must have overtopped the summit of that mountain
during the LGM, and hence had a surface altitude
>721 m a.s.l. at this locality. More importantly, our
findings provide the first independent evidence to
support the suggestion of Fabel et al. (2012) that all
blockfields in the British Isles inside the limits of the last
BIIS represent preservation of blockfield debris under
passive cold-based ice rather than palaconunataks that
remained above the last ice sheet, particularly as the
two studies were carried out at sites 600 km apart. If
this is the case, all associated trimlines represent a
former englacial transition within a thick ice sheet,
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from erosive warm-based ice at lower altitudes to
‘passive’ cold-based ice that formerly covered and pre-
served pre-existing blockfields on high ground.

This conclusion is consistent with evidence of glacial
modification of tors that surmount blockfields on the
high plateau of the Cairngorm Mountains in NE Scot-
land (Hall & Phillips 2006), post-LGM !°Be exposure
ages obtained on some tors in the same area (Phillips
et al. 2006), modelling of ice thickness over blockfield-
mantled mountains in SW Ireland (Ballantyne ez al.
2011) and retrodiction of former ice-sheet thickness by
TMC modelling (Hubbard ez al. 2009). More generally,
it accords with evidence for emergence of glacially
unmodified blockfields from under the retreating
margins of cold-based plateau icecaps (Rea et al. 1996)
and a substantial body of evidence demonstrating that
plateau blockfields in Scandinavia, Svalbard and North
America survived, apparently intact, under a ‘protec-
tive’ cover of cold-based glacier ice during the LGM
(e.g. Kleman & Stroeven 1997; Fabel et al. 2002;
Hattestrand & Stroeven 2002; Briner et al. 2003;
Marquette et al. 2004; Staiger et al. 2005; Fjellanger
et al. 2006; Phillips et al. 2006; Kleman & Glasser 2007,
Linge et al. 2007; Hormes et al. 2011). Indeed, although
trimlines certainly represent the former upper
altitudinal limit of LGM icefields or valley glaciers else-
where (Ballantyne 2013), the research reported here
contributes to a growing body of evidence that
trimlines representing the altitudinal transition between
‘erosive’ and ‘passive’ ice cover within a former thick
ice sheet are the norm rather than the exception.

Implications for blockfield evolution

Blockfields on mountains in the British Isles have tra-
ditionally been attributed to formation by frost weath-
ering under severe periglacial (permafrost) conditions
on nunataks that remained above the level of the last
ice sheet (e.g. Ballantyne & Harris 1994; Ballantyne
1998; Ballantyne et al. 1998). Preservation of plateau
and summit blockfields under cold-based ice within a
thick LGM ice sheet implies a much longer history of
blockfield evolution, with blockfields developing under
periglacial conditions prior to and after successive
periods of burial under cold-based ice within thick ice
sheets. However, rates of plateau and summit lowering
since the early Pleistocene implied by cosmogenic expo-
sure ages obtained on emergent tors in the Cairngorm
Mountains of Scotland (Phillips ef al. 2006) suggest
that the blockfield debris now present on mountains
may be no greater than late Pleistocene (<135 ka) in age
(Hopkinson & Ballantyne 2014).

Implications for deglacial chronology

The two deglacial exposure ages obtained from
Blackstairs Mountain (mean age 23.7+1.2 ka (21.8+0.9
ka)) and the youngest exposure age obtained for perched
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boulders on Slievenamon (22.6£1.1 ka (21.1+0.9 ka))
imply ice-sheet thinning and emergence of high ground
at roughly 24-22 ka (LL LPR) or 23-21 ka (NWHI11.6
LPR). Within dating uncertainty, these ages are consist-
ent with a single **Cl deglacial exposure age of 23.612.8
ka reported for a site at Hatton Farm (245 m a.s.l.),
18 km NE from Blackstairs Mountain, and with a *°Cl
exposure age of 22.3£2.0 ka obtained on the Mottee
Stone, a large erratic boulder at 250 m a.s.l. on the SE
footslopes of the Wicklow Hills, 55km NW of
Blackstairs Mountain (Bowen et al. 2002), Collectively,
these dates suggest that emergence of high ground from
under the downwasting ice sheet was succeeded by
deglaciation of low ground in SE Ireland within a similar
time frame. Given that ice moving south from the Irish
Midlands crossed the south coast of Ireland after
~24 ka, as implied by radiocarbon and OSL ages
obtained from deposits underlying ‘inland’ till at coastal
locations (O Cofaigh eral. 2012b), the above ages
suggest that glacial occupation of the southern and
southeastern fringes of Ireland during the LGM was
comparatively brief, perhaps no longer than several
centuries and probably not longer than three millennia.
Asnoted earlier, Bayesian modelling of the retreat of the
Irish Sea Ice Stream suggests that the ice margin in the
Irish Sea Basin lay ecast of Blackstairs Mountain at
23.4-22.4 ka (Chiverrell et al. 2013). Although the wide
uncertainties in the exposure ages listed above preclude
definitive conclusions, the available dating evidence sug-
gests decoupling of the Irish Sea Ice Stream from
‘inland’ ice moving southwards or southeastwards from
the Irish Midlands at a very early stage in deglaciation,
only 1-3 ka after the BIIS reached its maximum south-
ernmost extent at 24.3-23.1 ka (Chiverrell ez al. 2013).
Finally, we note that the deglaciation ages listed above
are older than all radiocarbon and cosmogenic isotope
deglaciation ages reported for the western or northern
coastal fringes of Ireland (Bowen ez al. 2002; McCabe &
Clark 2003; McCabe et al. 2007; Ballantyne et al. 2007,
2008, 2013; J. Clark et al. 2009a, b, 2012), even when
reported '"Be ages are recalculated using the LPRs
employed here; this implies that southern and southeast-
ern Ireland were the first parts of the present Irish land
surface to experience deglaciation.

Conclusions

* Four glacially deposited perched boulders resting on a
blockfield on the summit area of Slievenamon (721 m
a.s.l.) in southern Ireland produced cosmogenic '*Be
exposure ages ranging from 37.8£1.9t0 22.6+1.1 ka or
35.3+1.5 to 21.140.9 ka, depending on the '“Be pro-
duction rate employed in the age calculation. The
exposure ages of three of these boulders demonstrate
that the summit of Slievenamon was over-ridden by
the last Irish Ice Sheet.
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* The above finding supports the suggestion of Fabel
et al. (2012) that all blockfields on mountains in the
British Isles within the limits of the last ice sheet were
preserved under passive cold-based ice during the
LGM, implying that trimlines separating blockfields
from glacially abraded rock on lower ground repre-
sent a former englacial boundary between warm-
based sliding ice on low ground and cold-based ice
occupying summits and plateaux.

* Preservation of blockfields under cold-based ice
within the last British—Irish Ice sheet implies that
they have evolved over much longer time scales than
previously believed, potentially spanning much of
the Pleistocene, although evidence for slow surface
lowering elsewhere suggests that the present
blockfield debris mantle may represent frost weath-
ering under severe periglacial conditions during the
later Pleistocene.

* Theexposure age of the youngest perched boulder on
Slievenamon (22.6%1.1 ka (21.1£0.9 ka) is consistent
with two almost identical deglacial ages with a mean
of 23.4+1.2 ka (21.840.9 ka) obtained for samples
from high-level bedrock sites on Blackstairs Moun-
tain, 51 km farther east, and with *Cl exposure ages
0f 23.612.8 and 22.3+2.0 ka reported by Bowen et al.
(2002). Collectively, these ages imply: (i) early
deglaciation of southernmost Ireland and emergence
of high ground through thinning and retreat of
‘inland’ ice from the Irish midlands within 1-3 ka
after the last British—Irish Ice Sheet reached its
southernmost extent, and (ii) decoupling of ‘inland’
ice from the Irish Sea Ice Stream in this area within a
similar time frame.
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