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2-Arylacetic Anhydrides As Ammonium Enolate 

Precursors 

Louis C. Morrill, Lyndsay A. Ledingham, Jean-Philippe Couturier, Jasmine Bickel, 

Andrew D. Harper, Charlene Fallan and Andrew D. Smith*  

Readily prepared 2-arylacetic anhydrides act as convenient ammonium enolate precursors in isothiourea 

(HBTM-2.1)-mediated catalytic asymmetric intermolecular Michael addition-lactonisation processes, 

giving diverse synthetic building blocks in good yield with high diastereo- and enantiocontrol (up to 95:5 

dr and >99% ee). 

 

 

 

 

Introduction 

Within the arena of Lewis base catalysis,
1
 the generation and 

application of ammonium enolates2 toward generating 

stereodefined molecules with high levels of stereocontrol is of 

widespread interest in asymmetric catalysis.3 Most commonly 

formed from the interaction of a nucleophilic tertiary amine 

with either a preformed or in situ generated ketene,4 C1-

ammonium enolates present an attractive alternative to existing 

organocatalytic strategies for the generation of enolates or their 

equivalents such as the use of enamines,
5
 N-heterocyclic 

carbenes (NHCs),6 and cinchona alkaloid derivatives.7  

 Building upon the pioneering intramolecular nucleophile 

catalysed aldol-lactonisation (NCAL) strategy developed by 

Romo,
8
 we have recently shown that isothioureas,

9
 initially 

employed by Birman and Okamoto as efficient O-acyl transfer 

reagents,
10

 can generate ammonium enolates from carboxylic 

acids through in situ formation of a mixed anhydride and 

subsequently undergo a range of intra- and intermolecular 

Michael addition-cyclisation processes.
11

 While this powerful 

synthetic strategy allows access to a range of stereodefined 

products in high enantioselectivity, noteworthy drawbacks 

include the use of excess sacrificial base (up to 4 equivalents of 

i-Pr2NEt) and the production of unwanted by-products derived 

from the acid “activating agent” (such as pivalic anhydride 

derived from pivaloyl chloride) that can be difficult to separate 

from the desired products (Figure 1). 

 As part of our on-going interest in Lewis base catalysis
12

 we 

wished to investigate alternative bench stable precursors to 

ammonium enolates at the carboxylic acid oxidation level. 

Following our recent report on the generation of ,-

unsaturated acyl ammonium species from homoanhydrides,
13

 

and inspired by Connon’s functionalisation of enolisable 

anhydrides using bifunctional squaramides,
14

 in addition to 

Chi’s use of p-nitrophenyl esters as azolium enolate 

precursors,
15

 we envisaged readily available 2-arylacetic 

anhydrides as C1-ammonium enolate precursors (Figure 2). 

 
Figure 1. Previous access to isothiourea-derived C1-ammonium enolates from 

carboxylic acids 

Using this strategy, the only by-product from such a process 

would be an equivalent of the parent acid that would be easily 

removed via basic aqueous work-up. While one equivalent of 

the parent arylacetic acid would be discarded in this process, 

their commercial availability and relatively cheap cost would 

mitigate their use in the asymmetric formation of diverse value-

added chemical building blocks. We showcase herein our 

results concerning the asymmetric Michael addition-

lactonisation of isothiourea derived ammonium enolates from 

readily prepared 2-arylacetic anhydrides and a range of Michael 

acceptors, giving stereodefined products with high diastereo- 

and enantiocontrol (up to 95:5 dr and >99% ee).16 
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This work: preformed arylacetic anhydrides as precursors
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Figure 2. Proposed direct access to C1-ammonium enolates from arylacetic 

anhydrides. 

 

 

Results and discussion  

Optimisation Studies: 

Initial proof of concept studies used 2-phenylacetic anhydride 1 

as an ammonium enolate precursor and trifluoromethylenone 2 

as a Michael acceptor, with laboratory grade solvents employed 

as standard. 2-Phenylacetic anhydride (and all 2-arylacetic 

anhydrides used throughout this manuscript) is simply prepared 

by reaction of the parent arylacetic acid with DCC and is bench 

stable for approximately one week.
17

 Using achiral DHPB (10 

mol%) as a catalyst only ~80% conversion of trifluoromethyl 

ketone 2 was observed when 1 equivalent of both 2-

phenylacetic anhydride and i-Pr2NEt were used. Using a slight 

excess of anhydride 1 (1.25 eq) and i-Pr2NEt (1.25 eq) was 

necessary for complete consumption of 2, presumably due to 

Claisen-type self condensation of the anhydride, giving 4 after 

in situ ring opening with MeOH in 71% yield and 90:10 dr at rt. 

Screening of a small number of chiral isothioureas in this 

process showed that HBTM-2.1 3 offered higher 

enantioselectivity then either tetramisole or benzotetramisole at 

rt (entries 2-4, Scheme 1). Lowering the reaction temperature to 

-78 °C gave optimal diastereo- and enantiocontrol using 

HBTM-2.1 3 (entry 5), giving trifluoromethyl ketone 4 directly 

from anhydride 1 in 78% yield, 90:10 dr and 99% ee. 

Alternatively, Michael addition-lactonisation gave lactone 5 

that was isolated in 81% yield and with excellent diastereo- and 

enantioselectivity (94:6 dr, 98% ee). In all cases, highly pure 

material could be obtained after a simple acid/base work-up, 

with chromatographic purification used to obtain analytical 

samples. 

 
 

 
Entry Isothiourea Prod T/˚C dra Yield Eed 

1 DHPB 4 rt 90:10 71b  

2 tetramisole 4 rt 87:13 52b 83 

3 benzotetramisole 4 rt 84:16 58b 71 

4 HBTM-2.1 3 4 rt 80:20 67b 88 

5 HBTM-2.1 3 4 -78 90:10 78b 99 

6 HBTM-2.1 3 5 -78 94:6 81c 98 

Table 1. Optimisation studies: [a] Determined by 1H NMR spectroscopic analysis 

of the crude reaction mixture; [b] Isolated yield of 4 (≥95:5 dr); [c] Isolated yield 

of 5 (90:10 dr); [d] Determined by chiral HPLC analysis.  

 

 

 

Generality: Anhydrides as ammonium enolate precursors 

for asymmetric Michael addition-lactonisation with 

trifluoromethylenones 

 

With an optimised process developed, the generality of this 

asymmetric Michael addition-lactonisation process using 2-

arylacetic anhydrides was investigated. Sequential variation of 

the anhydride component was first investigated using 

trifluoromethylenone 2 (Table 2), with all product racemates 

prepared using DHPB. Using 5 mol% of 3 as standard, under 

optimised conditions this process readily tolerates 3- or 4-aryl 

substitution within the anhydride, including electron-

withdrawing and -donating substituents (products 6-11) as well 

as extended aromatic systems (product 12).
 
Interestingly, 2-aryl 

substitution within the anhyride is not tolerated in this system. 

For example the use of 2-(2-methylphenyl)acetyl 2-(2-

methylphenyl)acetate gave <5% conversion to the desired 

product. Furthermore the use of 2-(thiophen-3-yl)acetic 

anhydride leads to reduced product diastereoselectivity (product 

13), although still gives the major diastereoisomer in high ee 

(>99% ee).  
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Table 2. Variation of arylacetic anhydride component; [a] Determined by 1H 

NMR spectroscopic analysis of the crude reaction mixture; [b] Isolated yield 

(≥95:5 dr); [c] Determined by chiral HPLC analysis; [d] Isolated yield at stated dr. 

 

Subsequent studies showed the versatility of this process by 

focusing upon functionalisation of 2-phenylacetic anhydride 

with a range of trifluoromethylenones as well as variation of the 

nucleophilic ring-opening reaction component (Table 3). For 

example, in addition to in situ ring opening with methanol, 

alternative nucleophiles such as ethanol and allyl alcohol can 

also be used (products 14 and 15). Within the Michael acceptor, 

both electron-withdrawing (4-Cl) and electron-donating (4-

OMe) substituents in the aryl unit are readily incorporated, 

providing the corresponding products in high ee. Heteroaryl 

substituents (2-furyl), as well as extended aromatic substituents 

(2-Np) can also be incorporated with good dr (up to 88:12) and 

ee (up to 99% ee). 

 

  
Table 3. Variation of trifluoromethylenone and nucleophilic component; [a] 

Determined by 1H NMR spectroscopic analysis of the crude reaction mixture; [b] 

Isolated yield at stated dr. [c] Determined by chiral HPLC analysis; [d] Isolated 

yield (≥95:5 dr). 

 

Anhydrides as ammonium enolate precursors for Michael 

addition-lactonisations with -keto-,-unsaturated esters 

and N-aryl-N-aroyldiazenes 

 

 Having developed an efficient protocol for the isothiourea 

catalysed Michael addition-lactonisation of anhydrides and 4-

aryl-trifluoromethylenones, this process was extended to other 

classes of suitably electron deficient Michael acceptors such as 

-keto-,-unsaturated esters and N-aryl-N-aroyldiazenes. 

While DHPB can be used to prepare product racemates for 

analysis, (±)-HBTM-2.1 was used with these reaction classes 

(and is recommended from a practical standpoint) as it typically 

leads to a cleaner reaction profile and higher product yields. In 

the asymmetric series, -keto-,-unsaturated esters proved 

suitable partners within this process (Table 4). Once more, 

electron-donating and electron-withdrawing substituents, as 

well as heteroaryl substitution within both anhydride and -

keto-,-unsaturated ester reaction components was tolerated, 

affording a range of anti-dihydropyranones in high yields (78-

86%) and with high diastereo- and enantioselectivity (up to 

98:2 dr, exclusively >99% ee).  
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Table 4. Michael addition-lactonization using -keto-,-unsaturated esters; [a] 

Determined by 1H NMR spectroscopic analysis of the crude reaction mixture; [b] 

Isolated yield (≥98:2 dr); [c] Determined by chiral HPLC analysis; [d] Isolated 

yield (93:7 dr). 

 

 As a final demonstration of the utility of this methodology, 

functionalisation of 2-arylacetic anhydrides with N-aryl-N-

aroyldiazenes using a tandem Michael addition-lactonisation 

ring-opening protocol with MeOH was achieved (Table 5). 

Using simple reaction conditions, a range of anhydrides bearing 

electron-donating and electron-withdrawing aryl substituents, 

as well as heteroaryl substitution were tolerated, alongside 

variation of the acyl unit within the N-aryl-N-aroyldiazenes. In 

all cases, a variety of stereodefined hydrazides were isolated in 

high yields (61-85%) and excellent enantioselectivity (up to 

>99% ee) following in situ methanolysis. 

 

 
 

Table 5. Michael addition-lactonization using N-aryl-N-aroyldiazenes; [a] 

Isolated yield; [b] Determined by chiral HPLC analysis. 

 

For all of these transformations we postulate a catalytic cycle 

that proceeds via initial N-acylation of HBTM-2.1 with the 

arylacetic anhydride to form the corresponding acyl ammonium 

ion. Deprotonation generates the corresponding (Z)-enolate, 

which undergoes stereoselective Michael addition, followed by 

intramolecular cyclisation, to generate the corresponding 

heterocyclic species (Figure 3). The sense of stereoinduction in 

these transformations is consistent with our previous 

rationale.11a,c 
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Figure 3. Proposed mechanism of asymmetric heterocycle formation.  

 

Conclusions 

In conclusion, 2-arylacetic anhydrides are convenient and 

readily prepared precursors for the formation of ammonium 

enolates in isothiourea-mediated Michael addition-

lactonisation processes. N-aryl-N-aroyldiazenes, 4-aryl-

trifluoromethylenones and -keto-,-unsaturated esters are 

reactive Michael accceptors in this process, with HBTM-2.1 

(5 mol%) readily promoting heterocycle formation with high 

diastereo- and enantiocontrol (up to 95:5 dr, up to >99% ee). 

This protocol offers a useful and practical alternative to the in 

situ carboxylic acid activation method, in which by-product 

formation and the amount of sacrificial base used is 

minimised. Current research from this laboratory is directed 

toward developing alternative applications of isothioureas in 

asymmetric catalysis and expanding the synthetic utility of 

anhydrides as ammonium enolate precursors. 

 

Experimental 

General Information  
Reactions involving moisture sensitive reagents were carried 

out under an argon atmosphere using standard vacuum line 

techniques in addition to freshly distilled solvents. All 

glassware used was flame dried and cooled under vacuum. 

Solvents (THF, CH2Cl2, toluene, hexane and Et2O) were 

obtained anhydrous and purified by an alumina column 

(Mbraun SPS-800). Petrol is defined as petroleum ether 40-60 

°C. All other solvents and commercial reagents were used as 

supplied without further purification unless stated otherwise. 

Room temperature (rt) refers to 20-25 °C. Temperatures of 0 

°C and -78 °C were obtained using ice/water and 

CO2(s)/acetone baths respectively. Temperatures of 0 °C to -

50 °C for overnight reactions were obtained using an 

immersion cooler (HAAKE EK 90). Reflux conditions were 

obtained using an oil bath equipped with a contact 

thermometer. In vacuo refers to the use of a Büchi Rotavapor 

R-2000 rotary evaporator with a Vacubrand CVC2 vacuum 

controller or a Heidolph Laborota 4001 rotary evaporator with 

a vacuum controller.  

Analytical thin layer chromatography was performed on pre-

coated aluminium plates (Kieselgel 60 F254 silica). TLC 

visualisation was carried out with ultraviolet light (254 nm), 

followed by staining with a 1% aqueous KMnO4 solution. 

Flash column chromatography was performed on Kieselgel 

60 silica in the solvent system stated. 
1
H and 

13
C nuclear magnetic resonance (NMR) spectra were 

acquired on either a Bruker Avance 300 (300 MHz, 
1
H, 75 

MHz 
13

C), Bruker Avance II 400 (400 MHz, 
1
H, 100 MHz 

13
C) or a Bruker Avance II 400 (500 MHz, 

1
H, 125 MHz 

13
C) 

spectrometer at ambient temperature in the deuterated solvent 

stated. All chemical shifts are quoted in parts per million 

(ppm) relative to the residual solvent as the internal standard. 

All coupling constants, J, are quoted in Hz. Multiplicities are 

indicated by: s (singlet), d (doublet), t (triplet), q (quartet), 

ABq (AB quartet), sept (septet), oct (octet), m (multiplet), dd 

(doublet of doublets), ddd (doublet of doublet of doublets, dt 

(doublet of triplets) and td (triplet of doublets). The 

abbreviation Ar is used to denote aromatic, br to denote broad 

and app. to denote apparent. 

Infrared spectra (max) were recorded on a Perkin-Elmer 

Spectrum GX FT-IR spectrometer using either thin films on 

NaCl plates or KBr discs. Only the characteristic peaks are 

quoted. Melting points were recorded on an Electrothermal 

apparatus and are uncorrected.  

HPLC analyses were obtained on two separate machines; a 

Gilson HPLC consisting of a Gilson 305 pump, Gilson 306 

pump, Gilson 811C dynamic mixer, Gilson 805 manometric 

module, Gilson 401C dilutor, Gilson 213XL sample injector 

and sample detection was performed with a Gilson 118 

UV/vis detector while the temperature was assumed to be 20 

°C; a Shimadzu HPLC consisting of a DGU-20A5 degasser, 

LC-20AT liquid chromatograph, SIL-20AHT autosampler, 

CMB-20A communications bus module, SPD-M20A diode 

array detector and a CTO-20A column oven which allowed 

the temperature to be set from 25-40 °C. Separation was 

achieved using Chiralcel OD-H and OJ-H columns or 

Chiralpak AD-H, AS-H, IA, IB, IC and ID columns. 
Mass spectrometry (m/z) data were acquired by electrospray 

ionisation (ES), electron impact (EI) or nanospray ionisation 

(NSI) either at the University of St Andrews or the EPSRC 

National Mass Spectrometry Service Centre, Swansea. At the 

University of St Andrews, low and high resolution ESI MS 

were carried out on a Micromass LCT spectrometer. At the 

EPSRC National Mass Spectrometry Service Centre, low 

resolution NSI MS was carried out on a Micromass Quattro II 

spectrometer and high resolution NSI MS on a Thermofisher 

LTQ Orbitrap XL spectrometer. 

Optical rotations were measured on a Perkin Elmer 

Precisely/Model-341 polarimeter operating at the sodium D 

line with a 100 mm path cell. 
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General procedure A: Formation of anhydrides. 

To a solution of carboxylic acid (1 equiv.) in toluene was 

added DCC (0.50-0.55 eq) and the solution was allowed to 

stir at rt for 15 minutes. The reaction mixture was filtered and 

the filtrate was concentrated in vacuo to give the crude 

reaction mixture. 

 

General procedure B: Michael-lactonisations. 

To a solution of anhydride (1.25 equiv.) in CH2Cl2 (~2 mL 

per 0.2 mmol of anhydride) was added either (±)-HBTM-2.1 

or (2S,3R)-HBTM-2.1 (5 mol%) followed by Michael 

acceptor (1 equiv.) and DIPEA (1.25 equiv.) at -78 °C. The 

reaction mixture was stirred at -78 °C until complete by TLC 

and was subsequently quenched by addition of 1M HCl. Once 

warmed to rt, the reaction mixture was poured into water and 

extracted twice with CH2Cl2. The combined organics were 

washed with sat. aq. NaHCO3, dried (MgSO4), filtered and 

concentrated in vacuo to give the crude reaction mixture. 

 

General Procedure C: Tandem Michael-lactonisation ring-

opening (HBTM-2.1) 

To a solution of anhydride (1.25 equiv.) in CH2Cl2 (~2 mL 

per 0.2 mmol of anhydride) was added either (±)-HBTM-2.1 

or (2S,3R)-HBTM-2.1 (5 mol%) followed by Michael 

acceptor (1 equiv.) and DIPEA (1.25 equiv.) at -78 °C. The 

reaction mixture was stirred at the required temperature until 

complete by TLC then excess alcohol was added. This was 

stirred overnight at rt. The reaction mixture was quenched by 

addition of 1M HCl. Once warmed to rt, the reaction mixture 

was poured into water and extracted twice with CH2Cl2. The 

combined organics were washed with sat. aq. NaHCO3, dried 

(MgSO4), filtered and concentrated in vacuo to give the crude 

reaction mixture. 
 

Starting Materials Used 

Isothiourea Catalysts 

3,4-dihydro-2H-pyrimido[2,1-b]benzothiazole (DHPB) 35, 

HBTM-2.1 (±) 3 and HBTM-2.1 (2S,3R) 3 were made 

according to literature procedures.
11e 

 

Trifluoromethyl Enones 

(E)-1,1,1-trifluoro-4-phenylbut-3-en-2-one 2, (E)-4-(4-

chlorophenyl)-1,1,1-trifluorobut-3-en-2-one  36, (E)-1,1,1-

trifluoro-4-(naphthalen-2-yl)but-3-en-2-one 37, (E)-4-(4-

methylphenyl)-1,1,1-trifluorobut-3-en-2-one  38, (E)-4-(4-

bromophenyl)-1,1,1-trifluorobut-3-en-2-one  39, (E)-4-(4-

methoxyphenyl)-1,1,1-trifluorobut-3-en-2-one  40 and (E)-

1,1,1-trifluoro-4-(furan-2-yl)but-3-en-2-one 41 were made 

according to literature procedures.
11e 



-keto--unsaturated esters used 

methyl (3E)-2-oxo-4-phenylbut-3-enoate 42, methyl (3E)-4-

(4-nitrophenyl)-2-oxobut-3-enoate 43, methyl (3E)-4-(4-

methoxyphenyl)-2-oxobut-3-enoate 44 and methyl (3E)-4-

(furan-2-yl)-2-oxobut-3-enoate  45 were made according to 

literature procedures.
11a 

 

N-aryl-N-aroyldiazenes used 

(E)-N-(phenylimino)benzamide 46, (E)-4-chloro-N-

(phenylimino)benzamide 47, (E)-4-nitro-N-

(phenylimino)benzamide 48, (E)-4-methyl-N-

(phenylimino)benzamide 49 and (E)-4-methoxy-N-

(phenylimino)benzamide 50 were made according to 

literature procedures.
11c 

 

Preparation of anhydrides 

2-phenylacetic anhydride 1. Following general procedure A, 

phenylacetic acid (1.00 g, 7.34 mmol), DCC (0.83 g, 4.04 

mmol) and toluene (20 mL) gave anhydride 1 as a white solid 

(1.68 g, 90%); mp 68-70 °C; {lit.
18

 mp 72-72.5 °C}; δH (400 

MHz, CDCl3) 3.76 (4H, s, 2 CH2), 7.23-7.25 (4H, m, ArH), 

7.32-7.38 (6H, m, ArH). Spectroscopic data are in accordance 

with the literature.
19

 

 

2-(p-tolyl)acetic anhydride 51. Following general procedure 

A, p-tolylacetic acid (1.00 g, 6.66 mmol), DCC (0.70 g, 3.40 

mmol) and toluene (20 mL) gave anhydride 51 as a white 

solid (1.00 g, 53%); mp 47-49 °C; {lit.
19

 mp 56-57 °C}; δH 

(300 MHz, CDCl3) 2.39 (6H, s, CH3), 3.72 (4H, s, CH2), 

7.12-7.19 (8H, m, ArH). Spectroscopic data are in accordance 

with the literature.
20

 

 

2-(4-fluorophenyl)acetic anhydride 52. Following general 

procedure A, 4-fluorophenylacetic acid (1.00 g, 6.49 mmol), 

DCC (0.74 g, 3.57 mmol) and toluene (20 mL) gave 

anhydride 52 as a white solid (1.48 g, 79%); mp 36-38 °C; 

max (KBr) 3073, 2919 (C-H), 1821, 1750 (C=O), 1612, 1511; 

δH (400 MHz, CDCl3) 3.70 (4H, s, 2CH2), 6.99-7.04 (4H, m, 

2Ar(3,5)H), 7.16-7.19 (4H, m, 2Ar(2,6)H); δC (100 MHz, 

CDCl3) 41.3 (2CH2), 115.8 (d, J 21.4, 2ArC(3,5)), 127.7 (d, J 

3.1, 2ArC(1)), 131.1 (d, J 8.1, 2ArC(2,6)), 162.4 (d, J 245, 

2ArC(4)), 166.8 (2C=O); F (376 MHz, CDCl3) -115.1 (ArF); 

m/z (ES
+
) 313 ([M+Na]

+
, 100%); HRMS (ES

+
) 

C16H12F2NaO3
+
 ([M+Na]

+
) requires 313.0652; found 

313.0655 (+1.0 ppm). 

 

2-(m-tolyl)acetic anhydride 53. Following general procedure 

A, m-tolylacetic acid (1.00 g, 6.62 mmol), DCC (0.72 g, 3.50 

mmol) and toluene (20 mL) gave anhydride 53 as a yellow oil 

(0.75 g, 80%); δH (300 MHz, CDCl3) 2.27 (6H, s, CH3), 3.54 

(4H, s, 2CH2), 6.99-7.02 (3H, m, ArH), 7.12-7.18 (5H, m, 

ArH). Spectroscopic data are in accordance with the 

literature.
20

 

 

2-(4-bromophenyl)acetic anhydride 54. Following general 

procedure A, 4-bromophenylacetic acid (1.00 g, 4.65 mmol), 

DCC (0.51 g, 2.46 mmol) and toluene (20 mL) gave 

anhydride 54 as a white solid (0.95 g, 98%); mp 76-78 °C;
21

 

δH (300 MHz, CDCl3) 3.61 (4H, s, 2CH2), 6.98-7.02 (4H, m, 

2Ar(3,5)H), 7.36-7.41 (4H, m, 2Ar(2,6)H). Spectroscopic 

data are in accordance with the literature.
22
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2-(4-chlorophenyl)acetic anhydride 55. Following general 

procedure A, 4-chlorophenylacetic acid (1.00 g, 5.90 mmol), 

DCC (0.60 g, 2.90 mmol) and toluene (50 mL) gave 

anhydride 55 as a light yellow solid (0.96 g, quant.); mp 62-

64 °C; max (KBr) 3482, 3038, 2908 (C-H), 1801 (C=O), 1753 

(C=O), 1598, 1491, 1402, 1338, 1213, 752 (C-Cl); δH (500 

MHz, CDCl3) 3.70 (4H, s, 2CH2), 7.13 (4H, d, J 8.5, 

2Ar(3,5)H), 7.28-7.31 (4H, m, 2Ar(2,6)H); δC (100 MHz, 

CDCl3) 41.5 (2CH2), 129.1 (2ArC), 130.4 (2ArC(1)), 130.8 

(2ArC), 133.9 (2ArC(4)), 166.5 (2C=O); m/z (ES
+
) 345 

([M+Na]
+
,
 
100%); HRMS (ES

+
) C16H12Cl2NaO3 ([M+Na]

+
) 

requires 345.0061; found 345.0055 (-1.8 ppm). 

 

2-(4-methoxyphenyl)acetic anhydride 56. Following 

general procedure A, 4-methoxyphenylacetic acid (1.00 g, 

6.00 mmol), DCC (0.62 g, 3.00 mmol) and toluene (25 mL) 

gave anhydride 56 as a white solid (0.95 g, quant.); mp 60-62 

°C; max (KBr) 2837 (C-H), 1798 (C=O), 1736 (C=O), 1611, 

1510, 1300, 1242 (C-O); δH (300 MHz, CDCl3) 3.66 (4H, s, 

2CH2), 3.80 (6H, s, 2CH3), 6.83-6.86 (4H, m, 2Ar(3,5)H), 

7.10-7.13 (4H, m, 2Ar(2,6)H); δC (75 MHz, CDCl3) 41.4 

(2CH2), 55.4 (2CH3), 114.3 (2ArC(3,5)), 124.1 (2ArC(1)), 

130.6 (2ArC(2,6)), 159.2 (2ArC(4)), 167.5 (2C=O); m/z (ES
+
) 

337 ([M+Na]
+
,
 
100%); HRMS (ES

+
) C18H18NaO5 ([M+Na]

+
) 

requires 337.1061; found 337.1052 (+2.8 ppm).
 

 

2-(naphthalen-2-yl)acetic anhydride 57. Following general 

procedure A, 2-naphthylacetic acid (1.00 g, 5.40 mmol), DCC 

(0.56 g, 2.70 mmol) and toluene (25 mL) gave anhydride 57 

as a white solid (0.59 g, 61%); mp 104-108 °C; max (KBr) 

3055, 2928 (C-H), 2116, 1809 (C=O), 1748 (C=O), 1601, 

1508, 1325; δH (300 MHz, CDCl3) 3.88 (4H, s, 2CH2), 7.27 

(2H, d, J 7.4, ArH), 7.47-7.51 (4H, m, ArH), 7.63 (2H, s, 

2Ar(1)H), 7.70-7.73 (4H, m, ArH), 7.80-7.83 (2H, m, ArH); 

δC (75 MHz, CDCl3) 42.4 (2CH2), 126.2 (2ArC), 126.5 

(2ArC), 127.1 (2ArC), 127.8 (2ArC), 127.8 (2ArC), 128.5 

(2ArC), 128.6 (2ArC), 129.5 (4ry 2ArC), 132.7 (4ry 2ArC), 

133.4 (4ry 2ArC), 167.0 (2C=O); m/z (CI
+
) 372 ([M+NH4]

+
,
 

100%); HRMS (CI
+
) C24H22NO3

+
 ([M+NH4]

+
) requires 

372.1594; found 372.1599 (+1.3 ppm). 

 

2-(thiophen-3-yl)acetic anhydride 58. Following general 

procedure A, 3-thiophene acetic acid (1.00 g, 7.00 mmol), 

DCC (0.73 g, 3.50 mmol) and toluene (25 mL) gave 

anhydride 58 as a yellow solid (0.96 g, quant.); mp 40-42 °C; 

max (KBr) 3098, 2930 (C-H), 1811 (C=O), 1740 (C=O), 

1539, 1412, 1330; δH (400 MHz, CDCl3) 3.79 (4H, s, 2CH2), 

6.99 (2H, dd, J 5.0, 1.2, 2Ar(4)H), 7.15 (2H, dd, J 2.0, 1.0, 

2Ar(2)H), 7.31 (2H, dd, J 5.0, 3.0, 2Ar(5)H); δC (75 MHz, 

CDCl3) 36.7 (2CH2), 123.9 (2ArC), 126.4 (2ArC), 128.4 

(2ArC), 131.5 (2ArC(3)), 166.6 (2C=O); m/z (ES
+
) 289 

([M+Na]
+
,
 

50%); HRMS (ES
+
) C12H10NaO3S2 ([M+Na]

+
) 

requires 288.9969; found 288.9976 (+2.5 ppm). 

 

Preparation of products (Table 2) 

(3R,4R)-3,4-diphenyl-6-(trifluoromethyl)-3,4-dihydro-2H-

pyran-2-one 5. Following general procedure B, anhydride 1 

(63.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), HBTM-2.1 (2S,3R)-

3 (3.09 mg, 0.01 mmol, 5 mol%), enone 2 (40.0 mg, 0.20 

mmol) and DIPEA (43.5 L, 0.25 mmol) for 16 h at -78 °C 

gave crude lactone (3R,4R)-5 (94:6 dr). Chromatographic 

purification (eluent Et2O:petrol 3.5:96.5) gave lactone 

(3R,4R)-5 (>99:1 dr) as a white solid (51.8 mg, 81%) with 

identical spectroscopic data as previously reported;
11e

 [α]D
20

 -

219.2 (c 0.2, CH2Cl2); {lit.
11e

 [α]D
20

 -227.2 (c 0.25, CH2Cl2) 

for 99% ee}; Chiral HPLC Chiralpak AD-H (5% IPA:hexane, 

flow rate 1 mL min
-1

, 211 nm, 20 °C) tR(3R,4R): 10.9 min, 

tR(3S,4S): 12.2 min, 98% ee. 

 

(3R,4R)-4-phenyl-3-(p-tolyl)-6-(trifluoromethyl)-3,4-

dihydro-2H-pyran-2-one 6. Following general procedure B, 

anhydride 51 (70.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), 

HBTM-2.1 (2S,3R)-3 (3.09 mg, 0.01 mmol, 5 mol%), enone 2 

(40.0 mg, 0.20 mmol) and DIPEA (43.5 L, 0.25 mmol) for 

16 h at -78 °C gave crude lactone (3R,4R)-6 (95:5 dr). 

Chromatographic purification (eluent Et2O:petrol 3:97) gave 

lactone (3R,4R)-6 (>99:1 dr) as a white solid (51.8 mg, 81%) 

with identical spectroscopic data as previously reported;
11e

 

Chiral HPLC Chiralpak AD-H (2% IPA:hexane, flow rate 1 

mL min
-1

, 211 nm, 20 °C) tR(3S,4S): 14.0 min, tR(3R,4R): 

16.4 min, 99% ee. 

 

(3R,4R)-3-(4-fluorophenyl)-4-phenyl-6-(trifluoromethyl)-

3,4-dihydro-2H-pyran-2-one 7. Following general procedure 

B, anhydride 52 (72.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), 

HBTM-2.1 (2S,3R)-3 (3.09 mg, 0.01 mmol, 5 mol%), enone 2 

(40.0 mg, 0.20 mmol) and DIPEA (43.5 L, 0.25 mmol) for 

16 h at -78 °C gave crude lactone (3R,4R)-7 (87:13 dr). 

Chromatographic purification (eluent Et2O:petrol 5:95) gave 

lactone (3R,4R)-7 (>99:1 dr) as a white solid (54.0 mg, 80%) 

with identical spectroscopic data as previously reported;
11e

 

Chiral HPLC Chiralcel OD-H (10% IPA:hexane, flow rate 1 

mL min
-1

, 211 nm, 20 °C) tR(3R,4R): 19.2 min, tR(3S,4S): 

39.4 min, >99% ee. 

 

(2R,3R)-methyl 2-(4-chlorophenyl)-6,6,6-trifluoro-5-oxo-3-

phenylhexanoate 8. Following general procedure C, 

anhydride 55 (80.8 mg, 0.25 mmol), enone 2 (40.0 mg, 0.20 

mmol), HBTM-2.1 (2S,3R)-3 (3.08 mg, 0.01 mmol, 5 mol%), 

DIPEA (43.5 µL, 0.25 mmol) in CH2Cl2 (2 mL) for 16 h at -

78 °C followed by methanol (2 mL) gave (2R,3R)-8 (90:10 

dr). Chromatographic purification (5% Et2O:petrol eluent) 

gave pure product (2R,3R)-8 (90:10 dr) as a white solid (50.7 

mg, 66%); mp 68-70 °C; [α]D
20

 -102.2 (c 0.5, CH2Cl2); Chiral 

HPLC Chiralpak IA (10% IPA:Hexane, flow rate 0.5 mL min
-

1
, 211nm, 30 °C) tR(2S,3S): 8.8 min, tR(2R,3R): 9.5 min, 95% 

ee; νmax (KBr) 2955 (C-H), 1761 (C=O), 1730 (C=O), 1493, 

1155, 1140 (C-F); Data for major diastereoisomer: δH 

(300MHz, CDCl3) 3.13 (1H, dd, J 18.2, 3.7, C(4)HH), 3.32 

(1H, dd, J 18.3, 9.1, C(4)HH), 3.69 (3H, s, CH3) 3.85 (1H, d, 

J 10.8, C(2)H), 3.93 (1H, td, J 9.8, 4.1, C(3)H), 6.98-7.17 
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(9H, m, ArH); δC (100MHz, CDCl3) 41.1 (C(4)), 43.4 (C(3)), 

52.6 (CH3) 56.5 (C(2)), 115.4 (q, J 290, CF3) 127.4 (ArC), 

128.1 (ArC), 128.7 (ArC), 128.7 (ArC), 129.9 (ArC), 133.6 

(4ry ArC), 134.8 (4ry ArC), 139.2 (C(3)ArC(1)), 172.9 

(C(1)=O), 189.1 (q, J 35.5, C(5)=O);F (470 MHz, CDCl3) -

79.5 (CF3); Selected data for minor diastereoisomer: δH 

(300MHz, CDCl3) 2.70 (1H, dd, J 18.2, 3.4, C(4)HH), 2.92-

3.02 (1H, m, C(4)HH); δC (100MHz, CDCl3) 40.3 (C(4)), 

43.3 (C(3)), 52.2 (CH3), 56.9 (C(2)), 127.8 (ArC), 128.0 

(ArC), 128.9 (ArC), 129.5 (ArC), 130.0 (ArC), 133.4 (4ry 

ArC), 134.5 (4ry ArC), 139.9 (C(3)ArC(1)), 172.0 (C(1)=O); 

F (470 MHz, CDCl3) -79.7 (CF3); m/z (NSI
+
) 385 ([M+H]

+
,
 

82%); HRMS (NSI
+
) C19H17ClF3O3

+
 ([M+H]

+
) requires 

385.0813; found 385.0818 (+1.3 ppm). 

 

(2R,3R)-methyl 2-(4-bromophenyl)-6,6,6-trifluoro-5-oxo-

3-phenylhexanoate 9. Following general procedure C, 

anhydride 54 (103 mg, 0.25 mmol), enone 2 (40.0 mg, 0.20 

mmol), HBTM-2.1 (2S,3R)-3 (3.08 mg, 0.01 mmol, 5 mol%), 

DIPEA (43.5 µL, 0.25 mmol) in CH2Cl2 (2 mL) for 16 h at -

78 °C followed by methanol (2 mL) gave (2R,3R)-9 (90:10 

dr). Chromatographic purification (10% EtOAc:petrol eluent) 

gave pure product (2R,3R)-9 (90:10 dr) as a white solid (52 

mg, 71%); mp 62-64 °C; [α]D
20

 -118.5 (c 0.15, CH2Cl2); 

Chiral HPLC chiralpak AD-H (5% IPA:hexane, flow rate 1 

ml min
-1

, 211 nm) tR(2S,3S) 5.6 min, tR(2R,3R) 6.8 min, 96% 

ee; νmax(KBr) 3065, 3030, 2956 (C-H), 1762 (C=O), 1734 

(C=O), 1639, 1618 (C=C); Data for major diastereoisomer: δH 

(300 MHz, CDCl3) 3.09-3.16 (1H, m, C(4)HH), 3.31 (1H, 

ddd, J 18.3, 9.2, 0.5, C(4)HH), 3.69 (3H, s, CH3), 3.83 (1H, d, 

J 10.8, C(2)H), 3.92 (1H, td, J 10.4, 3.9, C(3)H), 6.96-7.00 

(4H, m, ArH), 7.07-7.18 (3H, m, ArH), 7.26-7.29 (2H, m, 

ArH); δC (100 MHz, CDCl3) 41.1 (C(4)), 43.4 (C(3)), 52.6 

(CH3), 56.5 (C(2)), 115.4 (q, J 290, CF3), 121.7 (C(2)ArC(4)), 

127.4 (C(3)ArC(4)), 128.0 (ArC), 128.7 (ArC), 130.2 (ArC), 

131.7 (ArC), 135.3 (C(2)ArC(1)), 139.2 (C(3)ArC(1)), 172.8 

(C(1)=O), 189.0 (q, J 35.5, C(5)=O); F (282 MHz, CDCl3) -

80.0 (CF3); Selected data for minor diastereoisomer: δH (300 

MHz, CDCl3) 2.66-2.73 (1H, m, C(4)HH), 2.97 (1H, ddd, J 

18.2, 10.0, 0.5, C(4)HH); δC (100 MHz, CDCl3) 40.6 (C(4)), 

43.2 (C(3)), 52.3 (CH3), 56.9 (C(2)), 121.3 (C(2)ArC(4)), 

128.8 (ArC), 130.4 (ArC), 131.1 (ArC), 131.8 (ArC), 132.4 

(ArC), 135.0 (C(2)ArC(1)), 139.9 (C(2)ArC(1)), 172.0 

(C(1)=O); F (282 MHz, CDCl3) -80.2 (CF3); m/z (NSI
+
) 429 

([M+H]
+
,
 
20%); HRMS (NSI

+
) C19H17

79
BrF3O3

+
 ([M+H]

+
) 

requires 429.0308; found 429.0311 (+0.8 ppm). 

 

(2R,3R)-methyl 6,6,6-trifluoro-2-(4-methoxyphenyl)-5-

oxo-3-phenylhexanoate 10. Following general procedure C, 

anhydride 56 (78.5 mg, 0.25 mmol), enone 2 (40.0 mg, 0.20 

mmol), HBTM-2.1 (2S,3R)-3 (3.08 mg, 0.01 mmol, 5 mol%), 

DIPEA (43.5 µL, 0.25 mmol) in CH2Cl2 (2 mL) for 16 h at -

78 °C followed by methanol (2 mL) gave (2R,3R)-10 (97:3 

dr). Chromatographic purification (5% Et2O:petrol eluent) 

gave pure product (2R,3R)-10 (97:3 dr) as a white solid (44.5 

mg, 59%); mp 86-90 °C; [α]D
20

 -125.2 (c 0.5, CH2Cl2); Chiral 

HPLC Chiralpak IA (5% IPA:Hexane, flow rate 1 mL min
-1

, 

211nm, 30 °C) tR(2S,3S): 5.7 min, tR(2R,3R): 6.5 min, 99% 

ee; νmax (KBr) 2949 (C-H), 1761 (C=O), 1730 (C=O), 1514, 

1433, 1254, 1161, 1136 (C-F); Data for major 

diastereoisomer: δH (300 MHz, CDCl3) 3.13 (1H, dd, J 18.2, 

3.8, C(4)HH), 3.33 (1H, dd, J 18.2, 9.4, C(4)HH), 3.68 (3H, s, 

CH3), 3.71 (3H, s, CH3) 3.80-3.95 (2H, m, C(2)H and C(3)H), 

6.67-6.70 (2H, m, C(2)Ar(3,5)H), 6.99-7.04 (4H, m, ArH), 

7.08-7.17 (3H, m, ArH); δC (75 MHz, CDCl3) 40.9 (C(4)), 

43.6 (C(3)), 52.4 (CH3) 55.4 (CH3), 56.3 (C(2)), 114.0 

(C(2)ArC(3,5)), 127.2 (C(3)ArC(4)), 128.1 (ArC), 128.3 

(C(2)ArC(1)), 128.5 (ArC), 129.6 (ArC), 139.7 (C(3)ArC(1)), 

159.0 (C(2)ArC(4)), 173.5 (C(1)=O), 189.3 (q, J 35.5, 

C(5)=O); F (470 MHz, CDCl3) -79.5 (CF3); Selected data for 

minor diastereoisomer: δH (300 MHz, CDCl3) 2.72 (1H, dd, J 

18.2, 3.5, C(4)HH), 2.95 (1H, dd, J 18.1, 10.1, C(4)HH); δC 

(75MHz, CDCl3) 40.6 (C(4)), 43.3 (C(3)), 52.0 (CH3), 55.5 

(CH3), 56.8 (C(2)), 114.7 (C(2)ArC(3,5)), 128.1 (ArC), 128.8 

(ArC), 129.7 (ArC); F (470 MHz, CDCl3) -79.7 (CF3); m/z 

(NSI
+
) 381 ([M+H]

+
,
 

75%); HRMS (NSI
+
) C20H20F3O4

+
 

([M+H]
+
) requires 381.1308; found 381.1312 (+1.0 ppm).

 

 

(2R,3R)-methyl 6,6,6-trifluoro-5-oxo-3-phenyl-2-(m-

tolyl)hexanoate 11. Following general procedure C, 

anhydride 53 (71.0 mg, 0.25 mmol), enone 2 (40.0 mg, 0.20 

mmol), HBTM-2.1 (2S,3R)-3 (3.80 mg, 0.01 mmol, 5 mol%), 

DIPEA (43.5 µL, 0.25 mmol) in CH2Cl2 (2 mL) for 16 h at -

78 °C followed by methanol (2 mL) gave (2R,3R)-11 (93:7 

dr). Chromatographic purification (5% Et2O:petrol eluent) 

gave pure product (2R,3R)-11 (93:7 dr) as a white solid (51.7 

mg, 71%) with identical spectroscopic data as previously 

reported;
11e

 Chiral HPLC chiralpak AD-H (5% IPA:hexane, 

flow rate 1 ml min
-1

, 211 nm) tR(2S,3S) 4.4 min, tR(2R,3R) 5.1 

min, 98% ee.
 

 

(2R,3R)-methyl 6,6,6-trifluoro-2-(naphthalen-2-yl)-5-oxo-

3-phenylhexanoate 12. Following general procedure C, 

anhydride 57 (88.5 mg, 0.25 mmol), enone 2 (40.0 mg, 0.20 

mmol), HBTM-2.1 (2S,3R)-3 (3.08 mg, 0.01 mmol, 5 mol%), 

DIPEA (43.5 µL, 0.25 mmol) in CH2Cl2 (2 mL) for 16 h at -

78 °C followed by methanol (2 mL) gave crude product 

(2R,3R)-12 (94:6 dr). Chromatographic purification (5% 

Et2O:petrol eluent) gave (2R,3R)-12 (94:6 dr) as a white solid 

(57.1 mg, 71%); mp 112-114 °C; [α]D
20

 -183.7 (c 0.3, 

CH2Cl2); Chiral HPLC Chiralpak AS-H (1% IPA:Hexane, 

flow rate 1 mL min
-1

, 220nm, 30 °C) tR(2S,3S): 7.3 min, 

tR(2R,3R): 9.2 min, >99% ee; νmax(KBr) 2953, 1759 (C=O), 

1730 (C=O), 1433, 1283, 1151, 1136 (C-F); Data for major 

diastereoisomer: δH (300MHz, CDCl3) 3.17-3.24 (1H, m, 

C(4)HH), 3.36-3.45 (1H, m, C(4)HH), 3.69 (3H, s, CH3), 

4.04-4.14 (2H, m, C(2)H and C(3)H), 7.01-7.12 (5H, m, 

ArH), 7.26 (1H, dd, J 8.5, 1.9, ArH), 7.40-7.45 (2H, m, ArH), 

7.58 (1H, d, J 1.7, ArH), 7.65-7.74 (3H, m, ArH); δC 

(100MHz, CDCl3) 41.0 (C(4)), 43.4 (C(3)), 52.5 (CH3), 57.1 

(C(2)), 115.3 (q, J 290, CF3), 126.2 (ArC), 126.2 (ArC), 126.3 

(ArC), 127.2 (ArC), 127.7 (ArC), 127.8 (ArC), 127.9 (ArC), 
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128.1 (ArC), 128.3 (ArC), 128.6 (ArC), 132.7 (4ry ArC), 

133.3 (4ry ArC), 133.7 (4ry ArC), 139.4 (C(3)ArC(1)), 173.2 

(C(1)=O), 189.3 (q, J 35.4, C(5)=O); F (282 MHz, CDCl3) -

80.0 (CF3); Selected data for minor diastereoisomer: δH 

(300MHz, CDCl3) 2.68-2.75 (1H, m, C(4)HH). 2.97-3.06 

(1H, m, C(4)HH); δC (100MHz, CDCl3) 40.6 (C(4)), 43.2 

(C(3)), 52.4 (CH3), 57.7 (C(2)), 172.3 (C(1)=O); F (282 

MHz, CDCl3) -80.2 (CF3); m/z (NSI
+
) 418 ([M+NH4]

+
,
 
65%); 

HRMS (NSI
+
) C23H23F3NO3

+
 ([M+NH4]

+
) requires 418.1625; 

found 418.1626 (+0.3 ppm).
 

 

(2R,3R)-methyl 6,6,6-trifluoro-5-oxo-3-phenyl-2-(thiophen-

3-yl)-hexanoate 13. Following general procedure C, anhydride 

58 (66.5 mg, 0.25 mmol), enone 2 (40.0 mg, 0.20 mmol), 

HBTM-2.1 (2S,3R)-3 (3.08 mg, 0.01 mmol, 5 mol%), DIPEA 

(43.5 µL, 0.25 mmol) in CH2Cl2 (2 mL) for 16 h at -78 °C 

followed by methanol (2 mL) gave crude product (2R,3R)-13 

(78:22 dr). Chromatographic purification (5% Et2O:petrol 

eluent) gave (2R,3R)-13 (78:22 dr) as a white solid (57.5 mg, 

81%); mp 82-85 °C; [α]D
20 -54.0 (c 0.3, CH2Cl2); Chiral HPLC 

Chiralpak AD-H (5% IPA:Hexane, flow rate 1 mL min-1, 

211nm) tR(2S,3S): 5.2 min, tR(2R,3R): 5.9 min, >99% ee; 

νmax(KBr) 1761 (C=O), 1730 (C=O), 1595, 1433, 1287, 1246, 

1194 (C-F); Data for major diastereoisomer: δH (400MHz, 

CDCl3) 3.13 (1H, dd, J 18.4, 4.2, C(4)HH), 3.35 (1H, dd, J 

18.4, 9.5, C(4)HH), 3.70 (3H, s, CH3), 3.89 (1H, td, J 9.6, 4.2, 

C(3)H), 4.02-4.05 (1H, m, C(2)H), 6.86 (1H, dd, J 5.0, 1.2, 

ArH), 6.94 (1H, dd, J 2.9, 1.1, ArH), 7.03-7.05 (2H, m, ArH), 

7.13-7.21 (4H, m, ArH); δC (75MHz, CDCl3) 40.3 (C(4)), 43.6 

(C(3)), 52.4 (CH3), 52.6, (C(2)), 115.4 (q, J 290, CF3), 123.3 

(ArC), 125.8 (ArC), 127.4 (ArC), 127.4 (ArC), 127.9 (ArC), 

128.6 (ArC), 136.2 (C(2)ArC(1)), 139.7 (C(3)ArC(1)), 172.9 

(C(1)=O), 189.3 (q, J 35.3, C(5)=O); F (470 MHz, CDCl3) -

79.5 (CF3); Selected data for minor diastereoisomer: δH 

(400MHz, CDCl3) 2.83 (1H, dd, J 18.3, 3.8, C(4)HH), 2.99 

(1H, dd, J 18.4, 9.5, C(4)HH); δC (75MHz, CDCl3) 40.5 (C(4)), 

43.6 (C(3)), 52.1 (CH3), 53.0 (C(2)), 124.0 (ArC), 127.0 (ArC), 

127.2 (ArC), 127.7 (ArC), 128.0 (ArC), 128.8 (ArC), 136.4 

(C(2)ArC(1)), 140.2 (C(3)ArC(1)), 172.1 (C(1)=O); F (470 

MHz, CDCl3) -79.6 (CF3); m/z (APCI+) 374 ([M+NH4]
+, 73%); 

HRMS (APCI+) C17H19F3NO3S
+ ([M+NH4]

+) requires 

374.1032; found 374.1036 (+1.0 ppm). 

 

Preparation of products (Table 3) 
(2R,3R)-methyl 6,6,6-trifluoro-5-oxo-2,3-diphenylhexanoate 

4. Following general procedure C, anhydride 1 (63.5 mg, 0.25 

mmol), enone 2 (40.0 mg, 0.20 mmol), HBTM-2.1 (2S,3R)-3 

(3.09 mg, 0.01 mmol, 5 mol%) and DIPEA (43.5 µL, 0.25 

mmol) in CH2Cl2 (2 mL) for 16 h at -78 °C followed by 

methanol (2 mL) gave crude product (2R,3R)-5 (90:10 dr). 

Chromatographic purification (5% Et2O:petrol eluent) gave 

(2R,3R)-5 (90:10 dr) as a white solid (54.0 mg, 78%); mp 62-64 

°C; [α]D
20 -90.4 (c 0.45, CH2Cl2); Chiral HPLC Chiralpak AD-

H (5% IPA:hexane, flow rate 1 ml min-1, 211 nm, 20 °C) 

tR(2S,3S) 4.7 min, tR(2R,3R) 5.4 min, 99% ee; νmax (KBr) 3030, 

2956 (C-H), 1762 (C=O), 1734 (C=O), 1601 (C=C); Data for 

major diastereoisomer: δH (300 MHz, CDCl3), 3.16 (1H, ddd, J 

18.3, 3.8, 0.4, C(4)HH), 3.36 (1H, ddd, J 18.3, 9.4, 0.5, 

C(4)HH), 3.69 (3H, s, CH3), 3.87 (1H, d, J 10.5, C(2)H), 3.96 

(1H, td, J 10.1, 4.0, C(3)H), 6.99-7.03 (2H, m, ArH), 7.07-7.17 

(8H, m, ArH); δC (100 MHz, CDCl3) 40.9 (C(4)), 43.6 (C(3)), 

52.4 (CH3), 57.1 (C(2)), 115.4 (q, J 290, CF3), 127.2 (ArC), 

127.6 (ArC), 128.1 (ArC), 128.5 (ArC), 128.5 (ArC), 128.6 

(ArC), 136.2 (C(2)ArC(1)), 139.6 (C(3)ArC(1)), 173.2 

(C(1)=O), 189.3 (q, J 35.5 C(5)=O);F (470 MHz, CDCl3) -

79.5 (CF3); Selected data for minor diastereoisomer: δH (300 

MHz, CDCl3), 2.07 (1H, ddd, J 18.4, 3.6, 0.3, C(4)HH), 2.91-

3.01 (1H, m, C(4)HH); δC (100 MHz, CDCl3) 40.6 (C(4)), 43.6 

(C(3)), 52.1 (CH3), 57.6 (C(2)), 128.7 (ArC), 128.8 (ArC), 

129.3 (ArC), 136.1 (C(2)ArC(1)), 140.4 (C(3)ArC(1)), 172.4 

(C(1)=O);F (470 MHz, CDCl3) -79.7 (CF3); m/z (NSI+) 350 

([M+H]+, 100%); HRMS (NSI+) C19H18O3F3
+ ([M+H]+) 

requires 351.1203; found 351.1206 (+1.0 ppm). 

 

(2R,3R)-ethyl 6,6,6-trifluoro-5-oxo-2,3-diphenylhexanoate 

14. Following general procedure C, anhydride 1 (63.5 mg, 0.25 

mmol), enone 2 (40.0 mg, 0.20 mmol), HBTM-2.1 (2S,3R)-3 

(3.08 mg, 0.01 mmol, 5 mol%) and DIPEA (43.5 µL, 0.25 

mmol) in CH2Cl2 (2 mL) for 16 h at -78 °C followed by ethanol 

(2 mL) gave crude product (2R,3R)-14 (85:15 dr). 

Chromatographic purification (5% Et2O:petrol eluent) gave 

(2R,3R)-14 (85:15 dr) as a white solid (60.9 mg, 84%); mp 60-

62°C; [α]D
20 -77.2 (c 0.5, CH2Cl2); Chiral HPLC Chiralpak OJ-

H (1% IPA:Hexane, flow rate 1 mL min-1, 211nm) tR(2R,3R): 

6.9 min, tR(2S,3S): 10.2 min, 99% ee; νmax (KBr) 2943 (C-H), 

1761 (C=O), 1724 (C=O), 1454, 1136 (C-F); Data for major 

diastereoisomer: δH (400 MHz, CDCl3) 1.21 (3H, t, J 7.1, CH3), 

3.17 (1H, dd, J 18.3, 3.7, C(4)HH), 3.38 (1H, dd, J 18.1, 9.8, 

C(4)HH), 3.86 (1H, d, J 10.5, C(2)H), 3.96 (1H, td, J 10.2, 3.7, 

C(3)H), 4.08-4.23 (2H, m, CH2CH3), 7.02-7.04 (2H, m, ArH), 

7.06-7.18 (8H, m, ArH); δC (100 MHz, CDCl3) 14.1 (CH3), 

40.8 (C(4)), 43.6 (C(3)), 57.8 (C(2)), 61.4 (CH2CH3), 115.4 (q, 

J 290, CF3), 127.2 (ArC), 127.6 (ArC), 128.1 (ArC), 128.5 

(ArC), 128.5 (ArC), 128.5 (ArC), 136.4 (C(2)ArC(1)), 139.7 

(C(3)ArC(1)), 172.7 (C(1)=O), 189.3 (q, J 35.4, C(5)=O); F 

(470 MHz, CDCl3) -79.5 (CF3); Selected data for minor 

diastereoisomer: δH (400 MHz, CDCl3) 0.91 (3H, t, J 7.1, CH3), 

2.70 (1H, dd, J 18.3, 3.5, C(4)HH), 2.97 (1H, dd, J 18.2, 10.2, 

C(4)HH); δC (100 MHz, CDCl3) 13.9 (CH3), 40.7 (C(4)), 43.4 

(C(3)), 57.8 (C(2)), 60.9 (CH2CH3), 127.6 (ArC), 128.2 (ArC), 

128.7 (ArC), 128.7 (ArC), 129.2 (ArC), 136.2 (C(2)ArC(1)), 

140.4 (C(3)ArC(1)), 171.8 (C(1)=O); F (470 MHz, CDCl3) -

79.7 (CF3); m/z (NSI+) 365 ([M+H]+, 95%); HRMS (NSI+) 

C20H20F3O3
+ ([M+H]+) requires 365.1359; found 365.1364 

(+1.4 ppm). 

 

(2R,3R)-allyl 6,6,6-trifluoro-5-oxo-2,3-diphenylhexanoate 

15. Following general procedure C, anhydride 1 (63.5 mg, 0.25 

mmol), enone 2 (40.0 mg, 0.20 mmol), HBTM-2.1 (2S,3R)-3 

(3.08 mg, 0.01 mmol, 5 mol%) and DIPEA (43.5 µL, 0.25 

mmol) in CH2Cl2 (2 mL) for 16 h at -78 °C followed by allyl 

alcohol (2 mL) gave crude product (2R,3R)-15 (88:12 dr). 

Chromatographic purification (5% Et2O:petrol eluent) gave 

(2R,3R)-15 (88:12 dr) as a white solid (30.8 mg, 42%); mp 44-

46 °C; [α]D
20 -85.6 (c 0.5, CH2Cl2); Chiral HPLC Chiralpak 

AD-H (5% IPA:Hexane, flow rate 0.5 mL min-1, 211nm) 

tR(2S,3S): 10.1 min, tR(2R,3R): 11.0 min, 97% ee; νmax (KBr) 

3444, 3032, 2943 (C-H), 1767 (C=O), 1733 (C=O), 1456, 1152 

(C-F); Data for major diastereoisomer: δH (400MHz, CDCl3) 

3.16 (1H, dd, J 18.3, 3.5, C(4)HH), 3.33-3.40 (1H, m, C(4)HH), 

3.89 (1H, d, J 10.5, C(2)H), 3.93-3.97 (1H, m, C(3)H), 4.54-

4.65 (2H, m, allyl CHH and allyl CHH), 5.17-5.23 (2H, m, 

CH=CHH and CH=CHH), 5.79-5.88 (1H, m, CH=CH2), 7.01-

7.03 (2H, m, ArH), 7.06-7.18 (8H, m, ArH); δC (75MHz, 

CDCl3) 40.8 (C(4)), 43.6 (C(3)), 57.2 (C(2)), 65.9 (allyl CH2), 

118.9 (CH=CH2), 127.2 (ArC), 127.7 (ArC), 128.1 (ArC), 128.5 
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(ArC), 128.6 (ArC), 128.6 (ArC), 131.7 (CH=CH2), 136.2 

(C(2)ArC(1)), 139.6 (C(3)ArC(1)), 172.4 (C(1)=O), 189.2 (q, J 

35.3, C(5)=O); F (282 MHz, CDCl3) -80.0 (CF3); Selected data 

for minor diastereoisomer: δH (400MHz, CDCl3) 2.70 (1H, dd, 

J 18.2, 3.4, C(4)HH), 2.93-3.00 (1H, m, C(4)HH), 4.22-4.36 

(2H, m, allyl CHH and allyl CHH), 4.90-5.02 (2H, m, 

CH=CHH and CH=CHH), 5.52 (1H, ddt, J 17.2, 10.5, 5.6, 

CH=CH2); δC (75MHz, CDCl3) 40.6 (C(4)), 43.4 (C(3)), 57.8 

(C(2)), 65.5 (Allyl CH2), 118.1 (CH=CH2), 128.2 (ArC), 128.7 

(ArC), 128.8 (ArC), 129.3 (ArC), 140.3 (C(3)ArC(1)), 171.6 

(C(1)=O); F (282 MHz, CDCl3) -80.2 (CF3); m/z (NSI+) 377 

([M+H]+, 75%); HRMS (NSI+) C21H20F3O3
+ ([M+H]+) requires 

377.1359; found 377.1363 (+1.0 ppm). 

 

(3R,4R)-4-(4-chlorophenyl)-3-phenyl-6-(trifluoromethyl)-

3,4-dihydro-2H-pyran-2-one 16. Following general procedure 

B, anhydride 1 (63.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), 

HBTM-2.1 (2S,3R)-3 (3.09 mg, 0.01 mmol, 5 mol%), enone 36 

(46.9 mg, 0.20 mmol) and DIPEA (43.5 L, 0.25 mmol) for 16 

h at -78 °C gave crude lactone (3R,4R)-16 (85:15 dr). 

Chromatographic purification (eluent Et2O:petrol 5:95) gave 

lactone (3R,4R)-16 (>99:1 dr) as a white solid (59.8 mg, 85%) 

with identical spectroscopic data as previously reported;11e 

Chiral HPLC Chiralpak AD-H (2% IPA:hexane, flow rate 2 mL 

min-1, 211 nm, 20 °C) tR(3R,4R): 10.2 min, tR(3S,4S): 30.3 min, 

>99% ee. 

 

(2R,3R)-methyl 6,6,6-trifluoro-3-(4-methoxyphenyl)-5-oxo-

2-phenylhexanoate 17. Following general procedure C, 

anhydride 1 (63.5 mg, 0.25 mmol), enone 40 (46.0 mg, 0.20 

mmol), HBTM-2.1 (2S,3R)-3 (3.08 mg, 0.01 mmol, 5 mol%) 

and DIPEA (43.5 µL, 0.25 mmol) for 16 h at -78 °C in CH2Cl2 

(2 mL), followed by methanol (2 mL) gave crude product 

(2R,3R)-17 (95:5 dr). Chromatographic purification (5% 

Et2O:petrol eluent) gave (2R,3R)-17 (95:5 dr) as a colourless oil 

(70.5 mg, 93%); [α]D
20 -38.7 (c 0.6, CH2Cl2); Chiral HPLC 

Chiralpak AD-H (1% IPA:Hexane, flow rate 1 mL min-1, 

211nm) tR(2S,3S): 12.0 min, tR(2R,3R): 16.4 min, 98% ee; νmax 

(KBr) 2955 (C-H), 1765 (C=O), 1730 (C=O), 1514, 1144 (C-

F), 829; Data for major diastereoisomer: δH (500MHz, CDCl3) 

3.12 (1H, dd, J 18.2, 3.7, C(4)HH), 3.32 (1H, dd, J 18.2, 9.8, 

C(4)HH), 3.68 (3H, s CH3), 3.69 (3H, s CH3), 3.84 (1H, d, J 

10.4, C(2)H), 3.92 (1H, td, J 10.1, 3.7, C(3)H), 6.65-6.67 (2H, 

m, C(3)Ar(3,5)H), 6.92-6.94 (2H, m, C(3)Ar(2,6)H), 7.11-7.19 

(5H, m, ArH); δC (125MHz, CDCl3) 41.0 (C(4)), 42.8 (C(3)), 

52.4 (CH3), 55.2 (CH3), 57.2 (C(2)), 113.8 (C(3)ArC(3,5)), 

115.4 (q, J 291, CF3), 127.6 (C(2)ArC(4)), 128.5 (ArC), 128.6 

(ArC), 129.1 (ArC), 131.5 (C(3)ArC(1)), 136.3 (C(2)ArC(1)), 

158.5 (C(3)ArC(4)), 173.3 (C(1)=O), 189.3 (q, J 35.1, C(5)=O); 

F (470 MHz, CDCl3) -79.5 (CF3); Selected data for minor 

diastereoisomer: δH (500MHz, CDCl3) 2.65-2.69 (1H, m, 

C(4)HH), 2.89-2.95 (1H, m, C(4)HH), 6.85 (2H, d, J 8.7, 

C(3)Ar(3,5)H); δC (125MHz, CDCl3) 40.7 (C(4)), 42.5 (C(3)), 

52.1 (CH3), 55.2 (CH3), 57.8 (C(2)), 128.6 (ArC), 129.3 (ArC), 

129.5 (ArC); F (470 MHz, CDCl3) -79.7 (CF3); m/z (NSI+) 381 

([M+H]+, 25%); HRMS (NSI+) C20H20F3O4
+ ([M+H]+) requires 

381.1308; found 381.1314 (+1.5 ppm). 

 

(2R,3R)-methyl 6,6,6-trifluoro-5-oxo-2-phenyl-3-(p-

tolyl)hexanoate 18. Following general procedure C, anhydride 

1 (63.5 mg, 0.25 mmol), enone 38 (43.0 mg, 0.20 mmol), 

HBTM-2.1 (2S,3R)-3 (3.80 mg, 0.01 mmol, 5 mol%), DIPEA 

(43.5 µL, 0.25 mmol) in CH2Cl2 (2 mL) for 16 h at -78 °C 

followed by methanol (2 mL) gave crude product (2R,3R)-18 

(93:7 dr). Chromatographic purification (10% EtOAc:petrol 

eluent) gave (2R,3R)-18 (93:7 dr) as a colourless oil (41.0 mg, 

56%); [α]D
20 -105.6 (c 0.10, CH2Cl2); Chiral HPLC chiralpak 

AD-H (5% IPA:hexane, flow rate 1 ml min-1, 211 nm) tR(2S,3S) 

4.9 min, tR(2R,3R) 5.3 min, 98% ee; νmax (KBr) 3030, 2952 (C-

H), 1760 (C=O), 1723 (C=O), 1616 (C=C); Data for major 

diastereoisomer: δH (300 MHz, CDCl3) 2.21 (3H, s, ArCH3), 

3.14 (1H, dd, J 18.3, 3.4, C(4)HH), 3.35 (1H, dd, J 18.2, 9.2, 

C(4)HH), 3.68 (3H, s, OCH3), 3.88 (1H, d, J 10.3, C(2)H), 3.94 

(1H, td, J 9.8, 3.8, C(3)H), 6.89-6.96 (4H, m, ArH), 7.11-7.20 

(5H, m, ArH); δC (100 MHz, CDCl3) 21.1 (ArCH3), 40.9 

(C(4)), 43.0 (C(3)), 52.4 (OCH3), 57.1 (C(2)), 115.4 (q, J 290, 

CF3), 127.6 (ArC), 127.9 (ArC), 128.5 (ArC), 128.6 (ArC), 

129.2 (ArC), 136.4 (4ry ArC), 136.5 (4ry ArC), 136.7 (4ry 

ArC), 173.3 (C(1)=O), 189.3 (q, J 35.2, C(5)=O); F (470 MHz, 

CDCl3) -79.5 (CF3); Selected data for minor diastereoisomer: 

δH (300 MHz, CDCl3) 2.32 (3H, s, ArCH3), 2.69 (1H, dd, J 

18.1, 3.5, C(4)HH), 2.90-2.99 (1H, m, C(4)HH); δC (100 MHz, 

CDCl3) 21.2 (ArCH3), 40.6 (C(4)), 42.8 (C(3)), 52.2 (OCH3), 

57.7 (C(2)), 128.6 (ArC), 129.3 (ArC), 129.4 (ArC), 129.5 

(ArC); F (470 MHz, CDCl3) -79.7 (CF3); m/z (NSI+) 365 

([M+H]+, 30%); HRMS (NSI+) C20H20F3O3
+ ([M+H]+) requires 

365.1359; found 365.1367 (+2.2 ppm). 

 

(3R,4R)-4-(naphthalen-2-yl)-3-phenyl-6-(trifluoromethyl)-

3,4-dihydro-2H-pyran-2-one 19. Following general procedure 

B, anhydride 1 (63.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), 

HBTM-2.1 (2S,3R)-3 (3.09 mg, 0.01 mmol, 5 mol%), enone 37 

(50.0 mg, 0.20 mmol) and DIPEA (43.5 L, 0.25 mmol) for 16 

h at -78 °C gave crude lactone (3R,4R)-19 (89:11 dr). 

Chromatographic purification (eluent Et2O:petrol 5:95) gave 

lactone (3R,4R)-19 (>99:1 dr) as a white solid (63.0 mg, 86%) 

with identical spectroscopic data as previously reported;11e 

Chiral HPLC Chiralpak AD-H (2% IPA:hexane, flow rate 2 mL 

min-1, 211 nm, 20 °C) tR(3R,4R): 11.1 min, tR(3S,4S): 26.8 min, 

99% ee. 

 

(2R,3R)-methyl 6,6,6-trifluoro-3-(furan-2-yl)-5-oxo-2-

phenylhexanoate 20. Following general procedure C, 

anhydride 1 (63.5 mg, 0.25 mmol), enone 41 (38.0 mg, 0.20 

mmol), HBTM-2.1 (2S,3R)-3 (3.08 mg, 0.01 mmol, 5 mol%) 

and DIPEA (43.5 µL, 0.25 mmol) in CH2Cl2 (2 mL) for 16 h at 

-78 °C followed by methanol (2 mL) gave crude product 

(2R,3R)-20 (88:12 dr). Chromatographic purification (5% 

Et2O:petrol eluent) gave (2R,3R)-20 (88:12 dr) as a white solid 

(55.8 mg, 81%); mp 48-50°C; [α]D
20 -89.8 (c 0.57, CH2Cl2); 

Chiral HPLC Chiralpak OJ-H (1% IPA:Hexane, flow rate 1 mL 

min-1, 211nm) tR(2R,3R): 7.6 min, tR(2S,3S): 9.8 min, >99% ee; 

νmax (KBr) 2957 (C-H), 1761 (C=O), 1728 (C=O), 1140 (C-F), 

1011; Data for major diastereoisomer: δH (300MHz, CDCl3) 

2.99-3.06 (1H, m, C(4)HH), 3.32-3.41 (1H, m, C(4)HH), 3.69 

(3H, s, CH3), 3.98-4.11 (2H, m, C(2)H and C(3)H), 5.79 (1H, 

dd, J 3.2, 0.3, ArH), 6.08 (1H, dd, J 3.2, 1.9, ArH), 7.11-7.14 

(2H, m, ArH), 7.20-7.24 (4H, m, ArH); δC (125 MHz, CDCl3) 

37.4 (C(3)), 38.5 (C(4)), 52.5 (CH3), 54.7 (C(2)), 108.1 (ArC), 

110.3 (ArC), 115.5 (q, J 290, CF3), 127.9 (ArC), 128.3 (ArC), 

128.7 (ArC), 136.1 (C(2)ArC(1)), 141.7 (C(3)ArC(5)), 152.1 

(C(3)ArC(2)), 172.8 (C(1)=O), 189.2 (q, J 35.4, C(5)=O); m/z 

(NSI+) 341 ([M+H]+, 100%); F (470 MHz, CDCl3) -79.4 

(CF3); HRMS (NSI+) C17H16F3O4
+ ([M+H]+) requires 

341.0995; found 341.1000 (+1.4 ppm). 

 

Preparation of products (Table 4) 
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(3R,4R)-methyl 2-oxo-3,4-diphenyl-3,4-dihydro-2H-pyran-

6-carboxylate 21. Following general procedure B, anhydride 1 

(63.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), HBTM-2.1 (2S,3R)-3 

(3.09 mg, 0.01 mmol, 5 mol%), keto ester 42 (38.0 mg, 0.20 

mmol) and DIPEA (43.5 L, 0.25 mmol) for 16 h at -78 °C 

gave crude lactone (3R,4R)-21 (98:2 dr). Chromatographic 

purification (eluent Et2O:petrol 30:70) gave lactone (3R,4R)-21 

(>99:1 dr) as a white solid (47.8 mg, 78%) with identical 

spectroscopic data as previously reported;11a [α]D
20 -195.0 (c 

0.2, CH2Cl2); {lit.11a [α]D
20 -179.0 (c 0.5, CH2Cl2) for 91% ee}; 

Chiral HPLC Chiralpak AD-H (40% IPA:hexane, flow rate 1 

mL min-1, 211 nm, 30 °C) tR(3R,4R): 11.1 min, tR(3S,4S): 17.8 

min, >99% ee. 

 

(3R,4R)-methyl 3-(4-chlorophenyl)-2-oxo-4-phenyl-3,4-

dihydro-2H-pyran-6-carboxylate 22. Following general 

procedure B, anhydride 55 (80.8 mg, 0.25 mmol) in CH2Cl2 (2 

mL), HBTM-2.1 (2S,3R)-3 (3.09 mg, 0.01 mmol, 5 mol%), 

keto ester 42 (38.0 mg, 0.20 mmol) and DIPEA (43.5 L, 0.25 

mmol) for 16 h at -78 °C gave crude lactone (3R,4R)-22 (90:10 

dr). Chromatographic purification (eluent Et2O:petrol 30:70) 

gave lactone (3R,4R)-22 (>99:1 dr) as a white solid (53.3 mg, 

79%); mp 138-140 °C; [α]D
20 -193.0 (c 0.1, CH2Cl2); Chiral 

HPLC Chiralpak AD-H (40% IPA:hexane, flow rate 1 mL 

min-1, 211 nm, 30 °C) tR(3R,4R): 13.2 min, tR(3S,4S): 19.1 min, 

>99% ee; max (ATR) 3059, 3030, 2957 (C-H), 1778 (C=O), 

1746 (C=O), 1663; Data for major diastereoisomer: δH (300 

MHz, CDCl3) 3.78-3.82 (4H, m, C(3)H and CH3), 3.94 (1H, dd, 

J 10.1, 3.4, C(4)H), 6.60 (1H, d, J 3.5, C(5)H), 6.91-6.95 (4H, 

m, ArH), 7.15-7.21 (5H, m, ArH); δC (75 MHz, CDCl3) 45.4 

(C(4)), 52.0 (C(3)), 52.9 (CH3), 118.2 (C(5)), 127.6 (ArC), 

128.1 (ArC), 129.0 (ArC), 129.2 (ArC), 129.9 (ArC), 133.7 (4ry 

ArC), 133.9 (4ry ArC), 138.8 (4ry ArC), 142.0 (C(6)), 160.6 

(CO2CH3), 166.6 (C(2)); m/z (NSI+) 365 ([M+Na]+, 70%); 

HRMS (NSI+) C19H15
35ClO4

+ ([M+Na]+) requires 365.0551; 

found 365.0547 (-1.1 ppm). 

 

(3R,4R)-methyl 2-oxo-4-phenyl-3-(thiophen-3-yl)-3,4-

dihydro-2H-pyran-6-carboxylate 23. Following general 

procedure B, anhydride 58 (66.6 mg, 0.25 mmol) in CH2Cl2 (2 

mL), HBTM-2.1 (2S,3R)-3 (3.09 mg, 0.01 mmol, 5 mol%), 

keto ester 42 (38.0 mg, 0.20 mmol) and DIPEA (43.5 L, 0.25 

mmol) for 16 h at -78 °C gave crude lactone (3R,4R)-23 (93:7 

dr). Chromatographic purification (eluent Et2O:petrol 30:70) 

gave lactone (3R,4R)-23 (>99:1 dr) as a white solid (52.3 mg, 

83%); mp 128-130 °C; [α]D
20 -209.5 (c 0.2, CH2Cl2); Chiral 

HPLC Chiralpak AD-H (40% IPA:hexane, flow rate 1 mL 

min-1, 211 nm, 30 °C) tR(3R,4R): 11.1 min, tR(3S,4S): 19.4 min, 

>99% ee; max (ATR) 3105, 2951, 2924 (C-H), 1767 (C=O), 

1736 (C=O), 1661; Data for major diastereoisomer: δH (500 

MHz, CDCl3) 3.81 (3H, s, CH3), 3.97 (1H, dd, J 7.1, 4.5, 

C(4)H), 4.01 (1H, d, J 7.1, C(3)H), 6.62 (1H, d, J 4.4, C(5)H), 

6.90-6.91 (2H, m, ArH), 7.01 (2H, d, J 6.8, ArH), 7.19-7.25 

(4H, m, ArH); δC (75 MHz, CDCl3) 44.9 (C(4)), 48.0 (C(3)), 

52.9 (CH3), 117.2 (C(5)), 123.4 (ArC), 126.6 (ArC), 126.8 

(ArC), 127.4 (ArC), 128.1 (ArC), 129.2 (ArC), 135.1 (4ry ArC), 

139.0 (4ry ArC), 142.1 (C(6)), 160.7 (CO2CH3), 166.2 (C(2)); 

m/z (NSI+) 332 ([M+NH4]
+, 61%); HRMS (NSI+) C17H18NO4S

+ 

([M+NH4]
+) requires 332.0951; found 332.0955 (+1.2 ppm). 

 

(3R,4R)-methyl 4-(4-nitrophenyl)-2-oxo-3-phenyl-3,4-

dihydro-2H-pyran-6-carboxylate 24. Following general 

procedure B, anhydride 1 (63.5 mg, 0.25 mmol) in CH2Cl2 (2 

mL), HBTM-2.1 (2S,3R)-3 (3.09 mg, 0.01 mmol, 5 mol%), 

keto ester 43 (47.0 mg, 0.20 mmol) and DIPEA (43.5 L, 0.25 

mmol) for 16 h at -78 °C gave crude lactone (3R,4R)-24 (91:9 

dr). Chromatographic purification (eluent Et2O:petrol 40:60) 

gave lactone (3R,4R)-24 (93:7 dr) as an off-white solid (60.6 

mg, 86%) with identical spectroscopic data as previously 

reported;11a Chiral HPLC Chiralcel OD-H (50% IPA:hexane, 

flow rate 1 mL min-1, 254 nm, 30 °C) tR(3S,4S): 18.5 min, 

tR(3R,4R): 23.2 min, >99% ee. 

 

(3R,4R)-methyl 4-(4-methoxyphenyl)-2-oxo-3-phenyl-3,4-

dihydro-2H-pyran-6-carboxylate 25. Following general 

procedure B, anhydride 1 (63.5 mg, 0.25 mmol) in CH2Cl2 (2 

mL), HBTM-2.1 (2S,3R)-3 (3.09 mg, 0.01 mmol, 5 mol%), 

keto ester 44 (44.0 mg, 0.20 mmol) and DIPEA (43.5 L, 0.25 

mmol) for 16 h at -78 °C gave crude lactone (3R,4R)-25 (93:7 

dr). Chromatographic purification (eluent Et2O:petrol 30:70) 

gave lactone (3R,4R)-25 (>99:1 dr) as a white solid (57.9 mg, 

86%) with identical spectroscopic data as previously 

reported;11a Chiral HPLC Chiralpak AD-H (40% IPA:hexane, 

flow rate 1 mL min-1, 211 nm, 30 °C) tR(3R,4R): 14.9 min, 

tR(3S,4S): 35.5 min, >99% ee. 

 

(3R,4R)-methyl 4-(furan-2-yl)-2-oxo-3-phenyl-3,4-dihydro-

2H-pyran-6-carboxylate 26. Following general procedure B, 

anhydride 1 (63.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), HBTM-

2.1 (2S,3R)-3 (3.09 mg, 0.01 mmol, 5 mol%), keto ester 45 

(36.0 mg, 0.20 mmol) and DIPEA (43.5 L, 0.25 mmol) for 16 

h at -78 °C gave crude lactone (3R,4R)-26 (95:5 dr). 

Chromatographic purification (eluent Et2O:petrol 30:70) gave 

lactone (3R,4R)-26 (>99:1 dr) as a white solid (47.6 mg, 80%) 

with identical spectroscopic data as previously reported;11a 

Chiral HPLC Chiralcel OJ-H (20% IPA:hexane, flow rate 1 mL 

min-1, 211 nm, 30 °C) tR(3R,4R): 25.9 min, tR(3S,4S): 29.1 min, 

>99% ee. 

 

Preparation of products (Table 5) 
(R)-methyl 2-(2-benzoyl-1-phenylhydrazinyl)-2-

phenylacetate 27. Following general procedure C, anhydride 1 

(63.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), HBTM-2.1 (2S,3R)-3 

(3.09 mg, 0.01 mmol, 5 mol%), diazene 46 (42.0 mg, 0.20 

mmol) and DIPEA (43.5 L, 0.25 mmol) for 30 mins at -78 °C, 

followed by addition of MeOH (2 mL) and stirring for 1 h at rt 

gave, after chromatographic purification (eluent Et2O:petrol 

50:50) a rotameric mixture (ratio 90:10) of hydrazide (2R)-27 

as a pale yellow solid (43.9 mg, 61%) with identical 

spectroscopic data as previously reported;11c [α]D
20 -37.2 (c 0.5, 

CH2Cl2); {lit.11c [α]D
20 -37.6 (c 0.5, CH2Cl2) for 99% ee}; 

Chiral HPLC Chiralpak IB (10% IPA:hexane, flow rate 1 mL 

min-1, 220 nm, 30 °C) tR(2S): 10.5 min, tR(2R): 12.2 min, 98% 

ee. 

 

(R)-methyl 2-(2-benzoyl-1-phenylhydrazinyl)-2-(4-

methoxyphenyl)acetate 28. Following general procedure C, 

anhydride 56 (78.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), HBTM-

2.1 (2S,3R)-3 (3.09 mg, 0.01 mmol, 5 mol%), diazene 46 (42.0 

mg, 0.20 mmol) and DIPEA (43.5 L, 0.25 mmol) for 30 mins 

at -78 °C, followed by addition of MeOH (2 mL) and stirring 

for 1 h at rt gave, after chromatographic purification (eluent 

Et2O:petrol 40:60) a rotameric mixture (ratio 89:11) of 

hydrazide (2R)-28 as an off-white solid (65.4 mg, 84%) with 

identical spectroscopic data as previously reported;11c Chiral 

HPLC Chiralpak IB (10% IPA:hexane, flow rate 1 mL min-1, 

254 nm, 30 °C) tR(2S): 14.7 min, tR(2R): 19.6 min, 99% ee. 
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(R)-methyl 2-(2-benzoyl-1-phenylhydrazinyl)-2-(4-

chlorophenyl)acetate 29. Following general procedure C, 

anhydride 55 (80.8 mg, 0.25 mmol) in CH2Cl2 (2 mL), HBTM-

2.1 (2S,3R)-3 (3.09 mg, 0.01 mmol, 5 mol%), diazene 46 (42.0 

mg, 0.20 mmol) and DIPEA (43.5 L, 0.25 mmol) for 30 mins 

at -78 °C, followed by addition of MeOH (2 mL) and stirring 

for 1 h at rt gave, after chromatographic purification (eluent 

Et2O:petrol 40:60) a rotameric mixture (ratio 91:9) of hydrazide 

(2R)-29 as a yellow solid (59.0 mg, 75%); mp 135-137 °C; 

[α]D
20 -12.4 (c 0.5, CH2Cl2); Chiral HPLC Chiralpak IB (10% 

IPA:hexane, flow rate 1 mL min-1, 220 nm, 30 °C) tR(2S): 10.5 

min, tR(2R): 14.7 min, 97% ee; max (ATR) 3341 (N-H), 3065, 

3028 (C-H), 2949 (C-H), 1726 (C=O), 1686 (C=O); Data for 

major rotamer: δH (300 MHz, CDCl3) 3.72 (3H, s, CH3), 5.75 

(1H, s, C(2)H), 6.87-6.93 (3H, m, ArH), 7.17-7.25 (5H, m, 

ArH), 7.28-7.35 (4H, m, ArH), 7.48-7.51 (2H, m, ArH), 8.50 

(1H, s, NH); δC (75 MHz, CDCl3) 52.7 (OCH3), 66.1 (C(2)), 

114.9 (NArC(2,6)), 121.9 (NArC(4)), 127.0 (ArC), 128.7 (ArC), 

128.9 (ArC), 129.5 (ArC), 130.5 (ArC), 131.9 (4ry ArC), 132.0 

(ArC), 132.7 (4ry ArC), 134.9 (4ry ArC), 148.2 (4ry ArC), 

166.6 (NHC=O), 172.7 (MeOC=O); Selected data for minor 

rotamer: δH (300 MHz, CDCl3) 3.62 (3H, s, CH3), 5.46 (1H, s, 

C(2)H), 6.79 (2H, d, J 8.4, ArH), 7.88 (1H, s, NH); δC (75 

MHz, CDCl3) 52.2 (OCH3), 67.2 (C(2)), 115.3 (NArC(2,6)), 

122.5 (NArC(4)), 127.9 (ArC), 130.0 (ArC), 131.4 (ArC); m/z 

(NSI+) 395 ([M+H]+, 100%); HRMS (NSI+) C22H20
35ClN2O3

+ 

([M+H]+) requires 395.1157; found 395.1160 (+0.8 ppm). 

 

(R)-methyl 2-(2-benzoyl-1-phenylhydrazinyl)-2-(thiophen-3-

yl)acetate 30. Following general procedure C, anhydride 58 

(66.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), HBTM-2.1 (2S,3R)-3 

(3.09 mg, 0.01 mmol, 5 mol%), diazene 46 (42.0 mg, 0.20 

mmol) and DIPEA (43.5 L, 0.25 mmol) for 30 mins at -78 °C, 

followed by addition of MeOH (2 mL) and stirring for 1 h at rt 

gave, after chromatographic purification (eluent Et2O:petrol 

40:60) a rotameric mixture (ratio 93:7) of hydrazide (2R)-30 as 

a yellow solid (54.8 mg, 75%) with identical spectroscopic data 

as previously reported;11c Chiral HPLC Chiralpak IA (40% 

IPA:hexane, flow rate 1 mL min-1, 220 nm, 30 °C) tR(2S): 8.0 

min, tR(2R): 22.2 min, 95% ee. 

 

(R)-methyl 2-(2-(4-nitrobenzoyl)-1-phenylhydrazinyl)-2-

phenylacetate 31. Following general procedure C, anhydride 1 

(63.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), HBTM-2.1 (2S,3R)-3 

(3.09 mg, 0.01 mmol, 5 mol%), diazene 48 (51.0 mg, 0.20 

mmol) and DIPEA (43.5 L, 0.25 mmol) for 30 mins at -78 °C, 

followed by addition of MeOH (2 mL) and stirring for 1 h at rt 

gave, after chromatographic purification (eluent Et2O:petrol 

50:50) a rotameric mixture (ratio 72:28) of hydrazide (2R)-31 

as a pale yellow solid (63.5 mg, 78%) with identical 

spectroscopic data as previously reported;11c Chiral HPLC 

Chiralcel OJ-H (30% IPA:hexane, flow rate 1 mL min-1, 211 

nm, 40 °C) tR(2S): 18.5 min, tR(2R): 14.0 min, 99% ee. 

 

(R)-methyl 2-(2-(4-methoxybenzoyl)-1-phenylhydrazinyl)-2-

phenylacetate 32. Following general procedure C, anhydride 1 

(63.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), HBTM-2.1 (2S,3R)-3 

(3.09 mg, 0.01 mmol, 5 mol%), diazene 50 (48.0 mg, 0.20 

mmol) and DIPEA (43.5 L, 0.25 mmol) for 30 mins at -78 °C, 

followed by addition of MeOH (2 mL) and stirring for 1 h at rt 

gave, after chromatographic purification (eluent Et2O:petrol 

80:20) a rotameric mixture (ratio 91:9) of hydrazide (2R)-32 as 

a white solid (60.7 mg, 78%); mp 149-151 °C; [α]D
20 -21.6 (c 

0.5, CH2Cl2); Chiral HPLC Chiralpak IB (10% IPA:hexane, 

flow rate 1 mL min-1, 211 nm, 30 °C) tR(2S): 17.2 min, tR(2R): 

20.6 min, 99% ee; max (ATR) 3281 (N-H), 2951, 2932 (C-H), 

1732 (C=O), 1655 (C=O), 1605 (C-O); Data for major rotamer: 

δH (300 MHz, CDCl3) 3.74 (6H, s, 2 CH3), 5.81 (1H, s, C(2)H), 

6.76-6.79 (2H, m, C(O)Ar(3,5)H), 6.91-6.95 (3H, m, ArH), 

7.18-7.25 (5H, m, ArH), 7.37-7.40 (2H, m, ArH), 7.44-7.47 

(2H, m, C(O)Ar(2,6)H), 8.37 (1H, s, NH); δC (75 MHz, CDCl3) 

52.5 (OCH3), 55.4 (OCH3), 66.7 (C(2)), 113.8 (NArC(3,5)), 

114.8 (ArC), 121.6 (NArC(4)), 125.0 (4ry ArC), 128.6 (ArC), 

128.9 (ArC), 128.9 (ArC), 129.1 (ArC), 129.5 (ArC), 133.3 (4ry 

ArC), 148.5 (4ry ArC), 162.4 (4ry ArC), 166.1 (NHC=O), 173.1 

(MeOC=O); Selected data for minor rotamer: δH (300 MHz, 

CDCl3) 3.63 (3H, s, CH3), 3.67 (3H, s, CH3), 5.54 (1H, s, 

C(2)H), 6.48 (2H, d, J 8.9, ArH), 7.79 (1H, s, NH); δC (75 

MHz, CDCl3) 55.3 (OCH3), 115.3 (NArC); m/z (NSI+) 391 

([M+H]+, 100%); HRMS (NSI+) C23H23N2O4
+ ([M+H]+) 

requires 391.1652; found 391.1656 (+0.9 ppm). 

 

(R)-methyl 2-(2-(4-chlorobenzoyl)-1-phenylhydrazinyl)-2-

phenylacetate 33. Following general procedure C, anhydride 1 

(63.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), HBTM-2.1 (2S,3R)-3 

(3.09 mg, 0.01 mmol, 5 mol%), diazene 47 (48.9 mg, 0.20 

mmol) and DIPEA (43.5 L, 0.25 mmol) for 30 mins at -78 °C, 

followed by addition of MeOH (2 mL) and stirring for 1 h at rt 

gave, after chromatographic purification (eluent Et2O:petrol 

40:60) a rotameric mixture (ratio 83:17) of hydrazide (2R)-33 

as a white solid (58.1 mg, 74%); mp 63-66 °C; [α]D
20 -30.8 (c 

0.5, CH2Cl2); Chiral HPLC Chiralpak IB (10% IPA:hexane, 

flow rate 1 mL min-1, 220 nm, 30 °C) tR(2S): 10.9 min, tR(2R): 

12.2 min, 98% ee; max (ATR) 3280 (N-H), 3032, 2951 (C-H), 

1732 (C=O), 1663 (C=O), 1597 (C-O); Data for major rotamer: 

δH (500 MHz, CDCl3) 3.84 (3H, s, CH3), 5.91 (1H, s, C(2)H), 

7.01-7.05 (3H, m, ArH), 7.32- 7.37 (7H, m, ArH), 7.46-7.50 

(4H, m, ArH), 8.56 (1H, br s, NH); δC (75 MHz, CDCl3) 52.6 

(OCH3), 66.7 (C(2)), 114.8 (NArC(2,6)), 121.9 (NArC(4)), 

128.5 (ArC), 128.7 (ArC), 128.9 (ArC), 129.0 (ArC), 129.1 

(ArC), 129.5 (ArC), 131.2 (4ry ArC), 133.2 (4ry ArC), 138.1 

(4ry ArC), 148.3 (4ry ArC), 165.6 (NHC=O), 173.1 

(MeOC=O); Selected data for minor rotamer: δH (500 MHz, 

CDCl3) 3.72 (3H, s, CH3), 5.61 (1H, s, C(2)H), 6.90 (2H, d, J 

8.5, ArH), 7.13 (1H, t, J 7.3, ArH), 7.21 (2H, t, J 7.7, ArH), 

7.26 (2H, d, J 8.1, ArH), 8.05 (1H, br s, NH); δC (75 MHz, 

CDCl3) 52.5 (OCH3), 68.1 (C(2)), 115.5 (NArC(2,6)), 122.6 

(NArC(4)), 127.4 (ArC), 129.3 (ArC), 130.0 (ArC), 130.2 

(ArC); m/z (NSI+) 395 ([M+H]+, 100%); HRMS (NSI+) 

C22H20
35ClN2O3

+ ([M+H]+) requires 395.1157; found 395.1159 

(+0.5 ppm). 

 

(R)-methyl 2-(2-(4-methylbenzoyl)-1-phenylhydrazinyl)-2-

phenylacetate 34. Following general procedure C, anhydride 1 

(63.5 mg, 0.25 mmol) in CH2Cl2 (2 mL), HBTM-2.1 (2S,3R)-3 

(3.09 mg, 0.01 mmol, 5 mol%), diazene 49 (44.8 mg, 0.20 

mmol) and DIPEA (43.5 L, 0.25 mmol) for 30 mins at -78 °C, 

followed by addition of MeOH (2 mL) and stirring for 1 h at rt 

gave, after chromatographic purification (eluent Et2O:petrol 

50:50) a rotameric mixture (ratio 92:8) of hydrazide (2R)-34 as 

a white solid (63.2 mg, 85%) with identical spectroscopic data 

as previously reported;11c Chiral HPLC Chiralpak IB (10% 

IPA:hexane, flow rate 1 mL min-1, 220 nm, 30 °C) tR(2S): 11.7 

min, tR(2R): 13.5 min, 99% ee. 
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