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INTRODUCTION

The study of the effects of ocean variability on mar-
ine ecosystem structure and functioning requires
clear indicators of the changing physical habitat.
Spatial and temporal variations in oceanographic
conditions have significant influences on ecological
processes and how biological resources are dis -
tributed (Lutjeharms et al. 1985, Pollard et al. 2002).
Thus, for example, variation in temperature and sa li -
nity, as well as structural features such as currents,
all can correlate well with primary production (Pol-
lard et al. 2002), and even higher trophic levels might

be influenced to a varying extent by the physical
properties of the water column (Charrassin & Bost
2001). Nonetheless, clear relationships are not ne -
cessarily apparent; for example, because of dilution
effects and temporal and/or spatial lags in ecological
response (e.g. Guinet et al. 2001, Bradshaw et al.
2004, Todd et al. 2008).

Linking oceanographic conditions to changes in
the marine ecosystem is challenging, because tradi-
tionally these are described at different scales, both
in space and time (Brown et al. 2011). Oceanographic
in situ data typically derive from line transects or
mooring observations, both of which are temporally
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anomalies and a reduction of the degrees of freedom (df) to make the hypothesis testing more
 conservative. Here, we assess the comparability of 3 gridded sea surface temperature (SST)
datasets — ERSST V3b, HadISST, and OISST V2 — to in situ measurements. The 1° gridded
HadISST and OISST V2 showed the highest similarity, while the weaker correlations with ERSST
V3b probably are attributable to its coarser 2° grid. We investigated the performance of 2 com-
monly applied statistical methods to resolving autocorrelation, and proceeded to correlation
analyses between the SST datasets and 2 contemporaneous 15 yr time-series of the somatic
growth condition of annual cohorts of Atlantic salmon Salmo salar, which migrate to the Norwe-
gian Sea. For these latter analyses, reducing df could not fully resolve the problem of high positive
autocorrelation. The 3 oceanographic datasets do not provide the same correlative outcomes and
levels of significance with the salmon time-series. When analysing time-series that pre-date the
availability of satellite data, the choice of dataset is restricted to either ERSST V3b or HadISST; but
for recent studies (1982 onwards) OISST V2 also is available, and it will be important to assess the
relative merits of the 3 SST data sources when interpreting contrasting correlative outcomes.
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and spatially very restricted. Such data are therefore
seldom used by biological oceanographers, except
when biological data (e.g. from acoustic surveys,
towed nets, bottle samples) are collected simultane-
ously (e.g. Ward et al. 2002). To overcome these limi-
tations, data from the Argo global array of profiling
floats can be used. These drifting floats deliver verti-
cal temperature and salinity profiles to depths up to
2000 m and are distributed throughout the World
Ocean at an average 3° spacing (Gould et al. 2004).
These devices now are equipped with fluorescence
or dissolved oxygen sensors which provide informa-
tion about conditions relevant to the base of the food
web (Xing et al. 2012). The Argo monitoring system
is, however, of limited coverage at high latitude,
because the floats require ice-free waters to surface
and transmit their data. Despite this constraint, and
whilst the spatial and temporal resolution of the Argo
array remains coarse compared to the typical ‘patch-
iness’ of marine ecosystems, it does continue to
 provide tractable, broad-scale data of value both to
 phy sical and biological oceanographers. 

More recently, the ability to track movements and
behaviour of individual top predators, whilst simulta-
neously gathering linked ocean observations, has
been possible with animal-borne instruments
(Boehme et al. 2009). Because both datasets are
recorded on the same scale, these devices enable the
assessment of linkages between behavioural chan -
ges and the immediate physical environment of the
instrument-carrying animal (Bailleul et al. 2007,
Biuw et al. 2007). It must, however, be acknowledged
that one limitation is the size of these instruments
and the consequential restriction of their deployment
only on large, high trophic level consumers.

Sea surface temperature (SST) has been measured
by satellites for several decades, with a standard
deviation of 0.1 to 0.5°C and a spatial resolution
between 1 and 50 km (McClain et al. 1985, Reynolds
et al. 2005), but data acquisition often is hampered by
cloud cover.

These examples illustrate that commonly there
either are mismatches in scale between datasets de -
scribing the physical marine environment and eco-
system, or that derived information may be restricted
in relevance either to the lowest (indirect) or highest
(direct) trophic levels. To obtain long time-series with
high temporal and spatial resolution of directly meas-
ured ocean properties, especially for geographically
remote or inaccessible locations, behavioural studies
generally have relied on optimal interpolated grid-
ded fields of remotely-sensed satellite data of, for
example, SST and sea level anomaly (Bradshaw et al.

2004, Todd et al. 2008, Jensen et al. 2011). One major
advantage of these data sources lies in their allowing
a synoptic overview of changing features over large
areas. Some of these fields are based on a combina-
tion of satellite and in situ observations and provide
improved spatial coverage in comparison to the lim-
ited sets of long in situ time-series. Although the tem-
poral resolution of remotely acquired data can be
very high (e.g. daily), the spatial resolution can be
compromised by interpolation in the processing of
sparse data (see also Reynolds & Chelton 2010).
 Routinely available SST fields generally are produced
with a view to representing long-term trends and
variability on spatial scales ranging from the ocean
basin to global, and with the aim of improving
long-term climate records (Reynolds et al. 2002). In
a comparative assessment of different empirical data
sources, Hughes et al. (2009) analysed gridded SST
data together with associated time-series of in situ
measurements and noted that different SST fields
can diverge by up to 1°C. Moreover, they showed
that the timing of extreme events can differ from that
indicated by in situ measurements. Notwithstanding
those contrasts, a further impediment of these data -
sets—which may be critical to biological oceano-
graphic studies—is that these SST fields describe
only ocean surface conditions, which might not rep-
resent the correct habitat (Sims et al. 2001, 2004).

Numerous marine ecosystem studies, ranging from
plankton to top predators, have utilised SST fields as
measures of upper ocean conditions (e.g. Bradshaw
et al. 2004, Jensen et al. 2011). Recent studies have
linked primary production to both seasonal and inter-
annual ocean variability (Gomes et al. 2000, Chavez
et al. 2011), and time-series variation of the repro-
duction and abundance of high trophic level con-
sumers in response to ocean climate variation (Mills
et al. 2013, Genner et al. 2004, 2010). Yet others
relate individual animal behaviour (e.g. migration,
foraging) and population growth success to the dy -
namics of mesoscale oceanographic features (e.g.
Guinet et al. 2001, Bradshaw et al. 2004, Todd et al.
2008, Jensen et al. 2011). Such time-series studies
can be informative in providing a more detailed
understanding of organismal responses to variation
in their physical environment. However, time-series
data commonly show spatial and/or temporal auto-
correlation which has to be accounted for prior to, or
as an integral part of, the definitive analysis. Two
approaches are commonly used to address this prob-
lem. The first is to remove autocorrelation from each
time-series (‘pre-whitening’) by, for example, fitting
models to de-trend the data and to then use the
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resulting residuals, whilst the alternative involves a
reduction of the de grees of freedom (df) applied in
correlation analyses (Pyper & Peterman 1998).

Here, we investigate 2 statistical methods to assess
the linkage be tween SST and the mean somatic
growth condition of annual cohorts of adult At -
lantic salmon Salmo salar (hereafter salmon). Salmon
are op por tunistic, generalist predators of macro-
 zooplankton and nekton and their foraging probably
is predominantly confined to the top 10 m of the
water column (Jacobsen & Hansen 2000, Rikardsen &
Dempson 2011). SST anomalies (de rived from the
OISST V2 satellite dataset) in the salmon foraging
area of the Norwegian Sea exert indirect effects on
cohort growth success by influencing the quality and
quantity of available prey (Todd et al. 2008). A weak-
ness of the analysis was their utilization only of the
OISST V2 dataset; here we assess the comparability
of the 3 publicly available gridded SST data sources.
We investigate how well these fields compare to in
situ measurements by focusing on temperature
anomalies both on seasonal and shorter time scales.
We then investigate how the changes in SST fields
correlate with 2 independent but contemporaneous
time-series of changes in salmon population condi-
tion factor by applying the 2 distinct statistical meth-
ods in resolving the problem of autocorrelation.

MATERIALS AND METHODS

Gridded sea surface temperature datasets

In recent years a number of extended historical
observed temperature analyses have been produced
for use in climate studies. Here, we focus on 3 glob-
ally gridded SST datasets (Table 1, Fig. 1) and con-
fine the analysis to the period 1950 to 2010, when
behavioural studies and biological time-series be -
came more common.

The NOAA Extended Reconstructed Sea Sur -
face Temperature (ERSST V3b) dataset is derived
from the International Comprehensive Ocean-
Atmosphere Data Set (ICOADS)
(Smith et al. 2008, Woodruff et al.
2011). This source comprises in
situ observations from many dif-
ferent measurement technologies,
and is statistically processed to
allow for sparse data in creating
the gridded field (Smith et al.
2008). Satellite SST data also were
integrated in a previous version,

but this introduced a small residual bias to wards
colder temperatures and their inclusion was discon-
tinued. Surface sea ice concentrations (i.e. percent
cover) be tween 60 and 90% are used to force the
analysed SST linearly towards the freezing point of
seawater (−1.8°C), with all grid cells of >90% ice
cover set to that freezing point; this can be important
locally in the marginal-ice zones (Smith et al. 2008).

The Hadley Centre Sea Ice and Sea Surface Tem-
perature (HadISST) fields are based on in situ ob -
servations and satellite-derived estimates from 1870
to present. In situ data from the Met Office Marine
Data Bank (MDB) — including observations compiled
since 1982 through the Global Telecommunication
System (GTS) and monthly satellite SST data from
January 1982 on wards — have been analysed using
a Reduced Space Optimal Interpolation technique
(Rayner et al. 2003). At times, and in areas, with
sparse data coverage, monthly median SST data for
1871 to 1995 from ICOADS also were used in cases of
a lack of available MDB data. SST near sea ice is esti-
mated using statistical relationships be tween SST
and sea ice concentration. Rayner et al. (2003) state
that ‘SSTs near sea ice can be several degrees higher
than freezing when there is high insolation and light
winds’. They therefore chose to apply a quadratic
relationship between sea ice concentration and SST
in preference to a linear fit. These quadratic relation-
ships were de termined by inspection of scatterplots
for each grid cell and based on 3 mo, centred on the
target month.

NOAA’s Optimum Interpolation (OI) Sea Surface
Temperature (SST) data set (OISST V2) is based on
in situ data received through the GTS and satellite-
derived SST (Reynolds 1988), and comprises weekly
fields dating back to December 1981 (Fig. 1, Table 1).
As for HadISST, SST near sea ice is estimated using a
quadratic relationship, which in turn is calculated
separately for each longitudinal sector in each hemi-
sphere and calendar month (Reynolds et al. 2002).
Monthly fields are derived by a linear interpolation of
the weekly fields to daily fields and then by averag-
ing the daily values over 1 mo.

9

Name Start date Resolution Data sources
Space Time

NOAA ERSST V3b 01/1854 2°×2° monthly in situ
Hadley Centre HadISST 01/1870 1°×1° monthly in situ, satellite 
NOAA OISST V2 12/1981 1°×1° monthly in situ, satellite 

Table 1. Key features of gridded sea surface temperature (SST) datasets used in 
this study
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Fig. 1. Gridded sea surface temperature (SST) fields used to estimate the mean monthly eastern North Atlantic SST and SST
anomaly for ERSST V3b, HadISST and OISST V2 datasets (example month shown, July 2008). The position of OWS Mike
(66° N, 2° E) is indicated by a black dot. The ranges for the 2 kernels (σ = 250 and 500 km) are indicated by green circles. 

Land-mass grid cells are in white
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In addition to the monthly SST fields, monthly cli-
matologies and monthly anomalies also are available.
A climatology represents the mean value for a grid
cell over an extended time period (usually 30 yr),
whereas an anomaly is the deviation from that mean.
However, these climatological datasets are not based
on the same time period. NOAA provides a monthly,
long-term (1971−2000) mean climatology for ERSST
V3b, and 2 datasets of monthly anomalies are avail-
able for OISST V2. The latter are based on climato -
logies using both in situ observations and OISST V2
data for the periods 1961 to 1990 and 1971 to 2000

(Reynolds & Smith 1995, Xue et al.
2003). The Hadley Centre provides
neither a climatology nor monthly
anomalies for the HadISST data set.
For present purposes we therefore
 calculated a monthly climatology for
each grid cell based on the 1971 to
2000 HadISST data. Thus, we have
contemporaneous climatologies and
these were used to calculate monthly
SST anomalies for each SST field
(Figs. 1 & 2).

In situ SST data

Ocean Weather Ship Station (OWS)
Mike (66° N, 2° E) is operated by the
Norwegian Meteorological Institute
and has provided the longest homoge-
neous time-series from the deep ocean
(2200 m) in the eastern margin of the
Norwegian Sea deep basin (Gammel-
srod et al. 1992). Temperature and
salinity profiles have been collected
daily to 1000 m, and weekly to 2200 m,
since 1 October 1948 (www. eurosites.
info/stationm.php). Here, we focus on
the nearly uninterrupted ocean tem-
perature time-series for the upper
10 m. To obtain a temporally continu-
ous surface time-series, we used the
surface measurements wherever pos-
sible. If they were not available we
took the next available measurement
down to a maximum depth of 10 m.
If more than one measurement was
available per day, we took the mean
value. As a rule, this provides SST
estimates on alternate days. For every
month with >10 daily measurements,

a mean was taken. The monthly  variability (SD) was
on average ±0.5°C, but on occasion exceeded ±1°C.
Monthly values from January 1971 to December 2000
inclusive were used to calculate a monthly climato -
logy, which in turn was used to calculate monthly
SST anomalies for the whole time-series (Fig. 2).

Salmon condition factor 

Data for return migrant adult 1 sea-winter (1SW)
salmon were sampled repeatedly throughout each

Fig. 2. Monthly sea surface temperature (SST) anomalies (grey dots) for the
annotated grid point, derived from a 1971−2000 climatology, for 3 gridded
datasets and OWS Mike. The fitted trend line (black) is a weighted running
mean with a Gaussian window of σ = 1 yr. Residuals between the trend line 

and anomalies are shown in red
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summer netting season (June–August) at Strathy
Point (SP), North Scotland (58° 36’ N, 4° 00’ W) and in
the River North Esk (RNE) estuary, East Scotland
(56° 46’ N, 2° 26’ W) (Todd et al. 2008). SP comprises
‘mixed stock’ data for fish originating from multiple
(unknown) river populations, whilst RNE data per-
tain to that specific river stock. For the present study,
we used data collected between 1993 and 2007 inclu-
sive, which includes an additional final year of data
(up to closure of the SP fishery in 2007) compared to
those presented by Todd et al. (2008). Annual sample
totals at SP ranged from 115 (1999) to 689 (1996) fish,
with a median of 384. Catch data from RNE are com-
mercial-in-confidence, but sample sizes were large
and typically exceeded those from SP, with the ex -
ception of 1995 (434 fish). Todd et al. (2008) computed
condition factor as the predicted weight (PWt) of fish
at a standard length (60 cm, SP; 58 cm, RNE). Here,
we express condition factor as the annual mean Rel-
ative Mass Index (Wr; Blackwell et al. 2000; see Todd
et al. 2008 for details). PWt and mean Wr are highly
correlated (SP: r = 0.998, n = 14, p <0.001; RNE: r =
0.997, n = 14, p <0.001) and the time-series for PWt
(Todd et al. 2008) and Wr (Fig. 4) for either sets of
salmon data showed an identical pattern of residuals.

Previously, Todd et al. (2008) analysed spatial ker-
nels of SST variation centred at 67.5° N, 4.5° E, which
was the assumed centre of distribution of Scottish
salmon exploiting the Norwegian Sea. Because of the
constraint of the fixed position of OWS Mike (at
66° N, 2° E) the kernels utilised in the present com-
parative study are further south and east of those of
the previous study. This had no effect on the de -
tection of significant results for SP salmon and the
comparable analyses of residuals for OISST V2.

Autocorrelation

All the present time-series show progressive
change, with a high degree of positive autocorrela-
tion. This presents a major statistical and analytical
challenge in not conforming to the assumption of
serial independence of the data. One approach to
resolving this problem is to remove autocorrelation
by predicting a sample based on information from
each of the time-series. The difference between the
predicted value and the sample value (residual) for a
given time-series will be less related to the remain-
der of the sample values (‘pre-whitening’). In the
case of the SST fields, the first step is to apply the cli-
matology for each dataset to generate monthly SST
anomaly fields (Fig. 1). This ensures a de-seasoned,

monthly anomaly time-series for each grid point. The
data then are de-trended by applying a high-pass
 filter using a Gaussian-weighted running mean (σ =
1 yr). Finally the residuals between the smoothed
time-series and the SST anomalies are calculated
(Fig. 2). This is undertaken for each grid point of the
3 SST fields, but more regional estimates were calcu-
lated here by using a spatially weighted analysis;
spatial kernel widths of σ = 250 and 500 km (centred
on 66° N, 2° E for each gridded data set) were gen -
erated monthly with data weightings, which were
defined using Gaussian kernels, assigned to each
SST anomaly grid point according to its distance from
the central reference grid point (Fig. 1). These 2 ker-
nel sizes provided time-series that are independent
of the resolution and grid cell centres of the different
gridded fields and thereby permitted assessment of
spatial scale on the correlations. As before, these
time-series then were de-trended by application of a
Gaussian-weighted running mean (σ = 1 yr) and the
residuals calculated.

The first step is omitted for the annual salmon con-
dition factor time-series, which was de-trended using
only a Gaussian-weighted running mean (σ = 1 yr).
The resulting time-series are essentially free of auto-
correlation and classical hypothesis testing is appro-
priate. However, as a consequence of the extensive
preliminary filtering of data, statistical power of the
final correlation analyses might be expected to be
redu ced using this technique.

The second approach is to not filter the data, but
rather to increase the stringency of the hypothesis
testing procedure by applying fewer df for correla-
tion analyses. Here, we follow Pyper & Peterman
(1998) and utilize their Eqs. 1, 6 & 7 according to their
recommendations for short time-series (hereafter the
Pyper & Peterman method, PP). The ‘effective’ (= ad -
justed) degrees of freedom (df*) then are given as:

(1)

The autocorrelation rXX of the time-series X is esti-
mated over the first df/5 lags (j = 1 to df/5) using the
Modified Chelton method, as described by Pyper &
Peterman (1998), and the estimator recommended by
Box et al. (2008):

(2)

This technique depends on being able to identify
the autocorrelation functions, which can be only
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poorly estimated for short time-series: in such cases,
statistical power might be reduced and Type 2 errors
thereby increase. For short time-series the resulting
df* can be greater than df and in such cases we con-
strained df* to be no greater than df (Pyper & Peter-
man 1998).

RESULTS

Comparison of time-series at OWS Mike 

In order to draw comparisons amongst the 3 grid-
ded SST datasets, and to assess them against in situ
measurements, data from the single grid point closest
to the OWS Mike position at 66° N, 2° E were extrac -
ted from each dataset (Fig. 2). All time-series show
the same trend pattern, and extreme events (e.g. the
cold event in 1989) were captured by the residuals in
all data sets.

ERSST V3b shows a dampened curve when com-
pared to the other time-series. The residuals also are
generally smaller, SD ±0.26. This is expected be -
cause of the 2° grid, which averages in situ data over
a greater spatial extent than do the other data sets.
HadISST shows more features and SD ±0.42 for the
converse reason. Nonetheless, the timing of extreme
points in the curves was very similar, with better con-
formation since the mid-1980s, when more detailed

in situ oceanographic data became available. Prior to
that time, the curves show some differences because
the gridded field relies more on its interpolation
scheme than on the limited assimilated data. The
short OISST V2 time-series shows high variability
both for SST anomaly and also for the residuals
(±0.44 SD). HadISST and OISST V2 (Fig. 2) show
similar trends because the OISST V2 data (when
available) are incorporated into the HadISST fields.
The in situ data from OWS Mike show the highest
variability for the residuals (SD ± 0.46) and, as ex -
pected, the occurrences of warm or cold events typi-
cally were of briefer duration than for the gridded
time-series. Again, this is attributable to OWS Mike
data not being spatially averaged, and extreme events
move past the fixed position more quickly than through
a 1° or 2° grid cell.

Fig. 3 shows the autocorrelation sequences for
the SST anomalies and residuals, normalized so
that the values at zero lag are identical (r = 1).
These data include all 3 time-series, and are based
on their  common 29 yr period (1982−2010) and
pertain to the same grid cells illustrated in Fig. 2.
ERSST V3b showed the highest autocorrelation,
which again is attributable to its coarser spatial
scale. As before, HadISST and OISST V2 provide
very similar results, largely because both datasets
include the satellite measurements over this time
period.

13

Fig. 3. Normalized autocorrelation sequences for (a) sea surface temperature (SST) anomalies and (b) residuals taken from the
3 time-series in Fig. 2. The shaded boxes show intervals of r ± 0.11 (grey) and ± 0.22 (blue). The dashed lines in the top panel
show the critical values (α = 0.05) based on Pyper & Peterman (1998) for the ERSST V3b (black), HadISST (red) and OISST V2 

(blue) time-series
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The standard critical value of r (2-tailed) at a signif-
icance level of α = 0.05 and n = 348 observations was
~0.11. The 3 SST anomaly time-series do retain sig-
nificant autocorrelation: however, such a long de-
correlation scale reflects that although the climato-
logical mean values were removed, a systematic
change in the mean values remains observable and
the time-series were not stationary. It is necessary,
therefore, to increase the stringency of the test be -
cause some of the consecutive observations still re -
main strongly correlated. One possibility is to re duce
the α-value to account for the number of comparisons
(N) being performed. The simplest and most conser-
vative approach is the Bonferroni correction (Miller
1981), which sets the α-value for each comparison to
αb = α /N, resulting in αb = 0.000144 and a critical
value for r of ~0.22. Even so, the results show signifi-
cant outcomes for lags up to 2 yr for HadISST and
OISST V2, and >4 yr for ERSST V3b. Accordingly,
this simple analytical approach remains highly af fec -
ted by the long-term trends seen in Fig. 2. Moreover,
all results show some evidence of a sinusoidal sea-
sonal cycle (Fig. 3b).

The de-trended residuals (Fig. 3b) show no indica-
tion of significant autocorrelation be yond a lag of 3
mo, which conforms to the mesoscale time scales
expected. Longer time lags do not satisfy Bonferroni
correction and are not significant, so the pre-whiten-
ing method delivers plausible results. Of interest,
however, are the maxima both for the anomalies and
residuals detectable at approx. 6 yr. This positive
autocorrelation could be the result of a set of har-
monic and sub-harmonic temperature cycles intro-
duced by the Earth’s nutation of 18.6 yr. For example,
a similar temperature cycle of 18.6/3 = 6.2 yr has
been demonstrated in the Barents Sea (Yndestad
1999), and this effect has an impact on water-mass
variations (e.g. Osafune & Yasuda 2012).

The alternative approach in accounting for auto-
correlation (the PP method and adjustment of df)
requires recalculation of the significance levels
applicable to each time-series (Fig. 3a). ERSST V3b
showed the highest autocorrelation and accordingly
the adjusted df were reduced to df*E = 10, with the
critical value for r raised to 0.58. The df for OISST V2
were adjusted downwards to df*O = 27 (critical value
of 0.37), whereas HadISST showed the lowest auto-
correlation and the adjustment was only reduced to
df*H = 32 (critical value 0.34). Using these time series-
specific significance levels, only observations within
ca. 15 mo of one another showed significant correla-
tion (Fig. 3a). This is significantly longer compared to
that for the residual method.

Both methods can be used to investigate long SST
time-series, and can resolve the problem of high pos-
itive autocorrelation within the time-series. Pre-
whitening does, however, result in loss of information
because of its conservatism by the removal of the low
frequency variability and in being based on a fixed
significance level, whilst the PP method is focused on
the individual anomaly time-series and estimates a
longer (and perhaps more meaningful) de-correla-
tion scale. Accordingly, we then proceeded to further
assess these 2 methods by comparing amongst the
3 time-series. We used the time-series based on spa-
tially-averaged 250 and 500 km Gaussian kernels

14

Kernel HadISST OISST V2 OWS

250 km
ERSST V3b r 0.814 0.822 0.711

rcrit 0.480 0.532 0.399
N 15 12 23

HadISST r 0.931 0.865
rcrit 0.411 0.327
N 21 34

OISST V2 r 0.884
rcrit 0.360
N 28

500 km
ERSST V3b r 0.814 0.833 0.703

rcrit 0.542 0.613 0.426
N 11 9 20

HadISST r 0.941 0.834
rcrit 0.461 0.335
N 17 33

OISST V2 r 0.851
rcrit 0.380
N 25

Table 2. Pearson correlation coefficients (r) between differ-
ent SST anomalies in the North Atlantic (Fig. 1). Coefficients
are based on 2 Gaussian kernels with 250 and 500 km radius 

and the in situ time-series at OWS Mike

Kernel HadISST OISST V2 OWS 

250 km
ERSST V3b 0.668 0.603 0.548
HadISST 0.872 0.789
OISST V2 0.828

500 km
ERSST V3b 0.661 0.582 0.522
HadISST 0.893 0.735
OISST V2 0.769

Table 3. Pearson correlation coefficients (r) between residu-
als of SST anomalies in Table 2
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centred on the OWS Mike position (66° N, 25° E).
These time-series were cross-correlated and we
assessed the significance patterns in the residuals
(pre-whitening) versus the anomalies based on the
PP method.

As expected, all the time-series were highly cross-
correlated and all results were significant, because
they represent the same SST both in time and space.
HadISST and OISST V2 showed the highest correla-
tions both for anomalies (Table 2) and residuals
(Table 3), owing to their shared satellite data. The
weaker correlations for ERSST V3b are attributable
to its coarser grid and consequential inability to
resolve mesoscale oceanographic features. These
differing data sources will not necessarily show
closely comparable results when correlated against
biological or ecological time-series data. Choice of
SST database can therefore have important qualita-
tive and quantitative consequences for the outcomes
of targeted biological analyses (see also Reynolds &
Chelton 2010).

Effect of SST on salmon condition 

In light of the contrasting results in Tables 2 & 3, we
here extend the previous analysis of Todd et al. (2008)
for the 2 salmon time-series to include comparisons
with ERSST V3b and HadISST, and apply also the PP
method. Fig. 4 shows the close conformity between
the 2 independent salmon time-series, and the gen-
eral decline in condition factor as SST anomalies
rose. The correlation coefficients between the raw
values of salmon condition and OISST V2 anomalies
were consistently negative, with the strongest corre-
lations at a time lag of −2 yr (Table 4); that is, 1 yr
before the salmon cohorts migrated to sea. Analyses
between de-trended residuals of sal mon condition
factor and SST anomalies show similarity of pattern,
and OISST V2 and HadISST (which share satellite
data during the period analysed) delivered closely
similar results (Figs. 5 & 6); but, importantly, there
are some clear differences to ERSST V3b, especially
for the SP sal mon time-series (Fig. 6).

River North Esk (RNE) salmon 
time-series

The results herein for the 15 lagged
months’ correlations between the re -
siduals of RNE salmon condition factor
and SST anomaly for OISST V2 (Fig. 5)
are almost identical to those presented
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Fig. 4. Raw values (dots) and smoothed time-series (solid lines) of annual mean condition factor for adult 1 sea-winter Atlantic
salmon Salmo salar captured at the River North Esk (black) and Strathy Point (blue), Scotland. Weighted running means (σ =
1 yr) were used to de-trend these data and to generate residuals (red) for lagged correlation analysis. For visual comparison with
the salmon time-series, the mean smoothed monthly sea surface temperature (SST) anomalies from OISST V2 are shown in grey

Time lag of July SST (yr)
0 −1 −2 −3 −4 −5 −6

River North Esk −0.464 −0.697 −0.718 −0.595 −0.356 −0.085 0.058
Strathy Point −0.402 −0.550 −0.754 −0.550 −0.326 −0.267 0.034

Table 4. Pearson correlation coefficients between raw condition factor for
Atlantic salmon Salmo salar from Scotland (1993−2007), and raw monthly 

OISST anomalies
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by Todd et al. (2008). Minor differences are attributa-
ble to the additional year of data included in the pres-
ent analysis, and the different location of the kernels
utilised. The inclusion of the year 2007 provides not
only an extra empirical annual value, but also influ-
ences the fitted smooth curve (and hence the residu-
als) in the final years of the time-series. The analysis

assessed monthly lags from −2 mo (May of the year of
capture) to −15 mo (April of the previous year, when
the juvenile smolt cohorts will have commenced emi-
gration to sea). As a comparison with the gridded data -
sets, the correlations with OWS Mike are shown also.

There were strong negative correlations at −2 mo
(May) and −5 mo (February), and positive results

16

Fig. 5. Left panels: Correlation analyses between residuals for the Atlantic salmon Salmo salar condition factor time-series
(1993−2007) for the River North Esk, Scotland, and sea surface temperature (SST) residuals from mean monthly SST anomalies
(lag in months on x-axis) extracted from the 3 gridded datasets and the in situ time-series at OWS Mike. Significant correla-
tions (α = 0.05) are denoted by a circle, and results satisfying Bonferroni correction are denoted by a square. Right panels:
Analyses between salmon condition factor time-series and monthly SST raw anomalies. Significant outcomes for df* according
to the Pyper & Peterman (1998) method are denoted by a circle (but note that the one significant result did not pass Bonferroni
correction for multiple tests). The analyses included grid point data (blue) and weighted Gaussian kernels of 250 km 

(green) and 500 km (red) for the calculation of monthly mean SST anomalies
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at −9 mo (October) and −10 mo (September). For
HadISST, the correlations at the shorter time lags
were weaker. Whilst some results satisfied the
 standard significance level, none passed Bonferroni
correction (αb = 0.0036). ERSST V3b conformed to
OISST V2 and HadSST in showing  positive correla-
tions, but differed in indicating these at shorter time
lags. The only correlation satisfying Bonferroni cor-
rection was the positive ERSST V3b result for Octo-
ber. Results for the in situ OWS Mike time-series fol-
lowed the same general pattern as HadISST and
OISST V2, but none were significant.

The patterns of correlation between RNE salmon
condition factor and the SST anomaly time-series

were negative for all time lags, and with only minor
differences apparent for the 3 gridded data sources.
Only 1 correlation at −11 mo for OWS Mike was
 significant following correction for autocorrelation
using the PP method, but that result did not pass Bon-
ferroni correction for multiple tests.

Strathy Point (SP) salmon time-series

As for RNE, a persistent pattern of negative corre-
lations was apparent for the SST anomalies at all time
lags, with only minor differences between the vari-
ous data sources (Fig. 6). The negative correlation at

17

Fig. 6. Same as Fig. 5, but for Strathy Point
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−6 mo (January) for OISST V2 anomalies was signifi-
cant, but did not satisfy Bonferroni correction. By
contrast, ERSST V3b anomalies showed no sig ni -
ficant winter results, but a negative correlation at
−13 mo (June of the year of river emigration). No
 significant results were detected for OWS Mike.

The results of the 15 correlations between the re -
siduals of SP salmon condition factor and OISST V2
residuals (Fig. 6) are almost identical to the results
presented by Todd et al. (2008) for 1993 to 2006.
Strong negative correlations at short time lags
(<−8 mo) are apparent for OISST V2, HadISST and
OWS Mike, but the only result to satisfy Bonferroni
correction (αb = 0.0036) was that for OISST V2 at
−6 mo (January), as reported by Todd et al. (2008) —
albeit for a kernel focus of 67.5° N, 4.5° E. The 2
HadISST kernels showed a qualitatively similar pat-
tern, but no results passed Bonferroni correction
(αb = 0.0036), and OWS Mike showed no significant
results. The particularly striking outcome for SP is
that whilst OISST V2 and HadISST did provide some
significant outcomes, ERSST V3b showed no signifi-
cant results.

With respect to the application of the PP method as
an approach to resolving the analytical problem of
autocorrelation, we did, in some instances (<2%),
find the estimate of the effective degrees of freedom
(df*) to exceed the number of observations. This can
arise from variability in the estimates of autocorrela-
tion amongst the separate lag calculations and, as
recommended by Pyper & Peterman (1998), in these
cases we constrained df* to a maximum of N. This
occurred only for correlations between the salmon
and OISST V2 and HadISST time-series at a lag
of –10 mo, indicating a high degree of variability in
the autocorrelation estimates from these 2 SST ano -
maly time-series describing the month of September.

DISCUSSION

SST datasets

Our primary focus was to explore the comparability
of the 3 freely available and widely used gridded SST
data sets as an environmental proxy when studying
ecological variation in marine ecosystems. Whilst the
ocean area of interest here was determined by the
foraging area exploited by the salmon populations
sampled, it is fortuitous that this region hosts a high-
resolution fixed station time-series of SST observa-
tions, and for which comparisons could be drawn.
Differences in monthly SST values between gridded

data sets inevitably will arise because of their differ-
ing empirical basis, the specific interpolation tech-
niques applied in processing their input data, and
differences in their climatology year range. Using a
high-pass filter to de-trend the gridded data to derive
the monthly residuals will also increase likely differ-
ences in these datasets. Although we studied here
only the one location within the eastern North
Atlantic, such differences are highly dependent on
location in the global ocean (Yasunaka & Hanawa
2011). Deviations between the in situ data incorpo-
rated into HadISST (1° grid) and ERSST V3b (2° grid)
are also to be expected because the presently calcu-
lated kernel time-series are based on those differing
grid cell sizes. As a consequence, mesoscale SST fea-
tures will be resolved differently within the respec-
tive datasets, resulting in different temperatures
yielded for the same kernel centre point. Such differ-
ences in SST will be more pronounced in oceano-
graphic areas with increased mesoscale activity, such
as along the North Atlantic Drift or within the South-
ern Ocean (Yasunaka & Hanawa 2011). Notwith-
standing this qualification, it was rather unexpected
that the monthly residuals between these different
data sets for the Norwegian Sea should remain so
highly correlated (Table 3). But high correlation
alone does not imply that all 3 datasets will provide
an equally applicable environmental proxy for bio-
logical analyses: small differences in monthly tem-
perature can result in differences in residuals, even
to the extent of these switching from positive to neg-
ative. For biological analyses focusing on the use of
residuals this could lead to markedly different correl-
ative outcomes. Choice of data set therefore has im -
portant consequences for marine ecological studies.

Strong autocorrelations were apparent for all SST
anomaly time-series (Fig. 3). For these particular
data, both pre-whitening (to derive residuals) and
the PP method of adjustment of df for correlation
analyses delivered very similar results. In total, 348
observations were compared and the PP method
adjusted df to values ranging between 9 and 34, indi-
cating the varying strength of the autocorrelation
that had to be taken into account (Pyper & Peterman
1998).

The comparison of the in situ OWS Mike data with
the gridded time-series provided similar results to
those reported by Hughes et al. (2009), and the order
of decreasing correlation with OWS Mike was OISST
V2>HadISST>ERSST V3b. However, it has to be
emphasized that we compared spatially interpolated
data with fixed point measurements (Table 2), and
this explains the decreasing correlation with increas-
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ing kernel size. On comparing amongst the gridded
time-series, we observed increasing correlations be -
tween the HadISST and ERSST V3b anomaly time-
series in relation to OISST V2: here, the correlations
were stronger when the kernel size was increased
from 250 to 500 km. By increasing the kernel size, the
observer will smooth data across a greater ocean
area and therefore ‘dampen’ any mesoscale features,
resulting in generally stronger correlations between
the smoothed time-series.

Whilst OISST V2 is likely to be the data set of
choice for studies of recent biological change in the
ocean surface environment, its applicability at very
high latitude in locations of dense sea ice cover may
be compromised. For biological oceanographic stud-
ies which pre-date 1982, or for analyses centred on
areas with limited observational data coverage (e.g.
the Southern Ocean), the essential choice is between
ERSST V3b and HadISST. The differing statistical
interpolation techniques used in these SST datasets
may introduce errors and deviations from one ano -
ther in representing the real ocean, and correlations
between them can even be negative for some parts of
the ocean (Yasunaka & Hanawa 2011).

Hughes et al. (2009) reported a greater variation in
time-series for gridded SST datasets compared to in
situ data, but such was not apparent in the present
analysis. The residuals calculated for OWS Mike
gave SD ± 0.46, whilst grid point time-series from
OISST V2 (±0.44), HadISST (±0.42) and ERSST
V3b (±0.26) all showed less variability (Fig. 2). This,
again, is the result of smoothing across small-scale
features when interpolating SST estimates because
gridded data still represent a large ocean area com-
pared to the fixed, in situ point data available from
OWS Mike. This further highlights the importance of
being aware of spatial patterns and spatial auto -
correlations within SST time-series.

Local knowledge is necessary to account for the
grid size and chosen spatial kernels, such that
oceanographic conditions are properly accounted for.
Thus, for example, large variability could be intro-
duced when averaging across oceanographic re -
gimes, because such regimes extend not only hori-
zontally, but also vertically. The present SST data
provide a representation only of the ocean’s surface.
However, given that the upper ocean layer is homog-
enized by turbulence and other mixing processes to
the so-called mixed layer depth, and that Atlantic
salmon are epipelagic and rarely dive deeper than
the mixed layer depth (Holm et al. 2006), SST as a
potential environmental driver of prey availability
and thence somatic condition factor is a valid

assumption. However, this might not hold true for
meso pelagic species and care has to be taken to
choose appropriate environmental proxies. For ex -
ample, sea bottom temperature can potentially be a
better choice (Sims et al. 2001, 2004) for particular
species.

Effect of SST on salmon condition 

As expected, the outcomes of the present correla-
tion analyses and those reported by Todd et al. (2008)
for OISST V2 (when using the same residual method
and almost identical time-series) show the same
results (top left panels in our Figs. 5 & 6; and Fig. 7 of
Todd et al. 2008). The overall pattern of the correla-
tion analyses also did not change when applying
HadISST or ERSST V3b in the present study. For
ERSST V3b, the results for RNE salmon (Fig. 5), but
especially for SP salmon (Fig. 4), become less inform-
ative owing to ERSST V3b not being able to properly
resolve small-scale anomalies (Fig. 3). However, the
positive correlations at approx. −9 mo (October), and
negative correlations at approx. −6 mo (January), can
be found in all graphs and support the conclusions
drawn by Todd et al. (2008) using only OISST V2.
The comparative results for OWS Mike are presented
here (Figs. 5 & 6) for illustrative purposes only. Be -
cause OWS Mike provides data only from a single
point it cannot be considered representative of the
potentially expansive ocean area exploited by sal -
mon in the Norwegian Sea.

Whether to protect against both Type 1 and Type 2
error rates (by adjusting probabilities for multiple
correlation tests) remains an issue of some contro-
versy that has already been discussed for these spe-
cific salmon and SST data (Todd et al. 2008). Whilst
Bonferroni correction is a simple procedure, it does
result in a rapid loss of power with increasing num-
bers of tests. Indeed, only 2 of the present results
(River North Esk, ERSST V3b, lag −9 mo, Fig. 5;
Strathy Point, OISST V2, lag −6 mo, Fig. 6) passed
Bonferroni correction. Some rather less stringent or
punitive corrections have been proposed, though the
differences are relatively small (Wright 1992). At the
extreme, testing of whether a time-series is corre-
lated with each of 2 identical copies of another series
is really only the one test, so Bonferroni correction
could be considered unduly conservative. Because
SST changes quite slowly, due to the high heat ca -
pacity of water, time-series of anomalies and residu-
als for adjacent months are likely to be correlated
and comparisons involving them are therefore likely
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to produce similar results. For example, Fig. 7 illus-
trates that a residual for a given month (e.g. Septem-
ber) often is highly correlated to the preceding
months and neighbouring residuals are not necessar-
ily independent. As a consequence, the application of
Bonferroni correction may be unnecessarily conser-
vative if, for example, the one intense anomaly was
de tectable within a grid cell for 2 or 3 consecutive
months (e.g. July, August and September in each of
1988, 1989, 1990; see Fig. 7). The correlation be -
tween the monthly SST time-series data will contain
information relevant to determining the effective
number of independent tests being applied, and
hence the level of Bonferroni correction, but it is not
obvious how the observer might be able to  routinely
resolve this problem.

With the PP method, the outcomes of the raw anom-
aly correlations showed an almost invariant negative
correlation (−1 < rp < −0.5) with little tem poral struc-
ture, indicating that the time-series was too short
(NWr = 15) for the method to resolve monthly detail in
SST, and that strong autocorrelation (Table 4) was still
dominating. Again, whilst this supports the large-
scale, causal relationship between SST anomaly and
salmon condition factor (Fig. 4), the time-series proba-
bly is too short and/or the auto correlation too strong
for the PP method to provide information on  intra-
annual variation and specific calendar months. In
 addition, the PP method itself does not consider the
foregoing issues concerning multiple testing and re-
sults would still need to be adjusted by Bonferroni, or
similar methods such as adjustment for False Dis -
covery Rate (Todd et al. 2008), which would reduce
the number of significant results even further.

We chose to investigate SST anomalies based on
climatologies derived for the period 1971 to 2000 and
applied to the time period 1982 to 2010, when all SST
data sets are available for comparative purposes. For
ecologists with interests in responses to climate
change, and seeking to choose a particular SST data-
base, temporal and spatial patterns inherent to the
data should be considered and the physical and bio-
logical datasets should be on matching scales. Here,
the assumption that Norwegian Sea SST is an impor-
tant indirect driver of the growth condition of salmon
permitted comparisons amongst 4 different datasets
that describe the ocean temperature within the sur-
face mixed layer. Although each grid point for OISST
V2, HadISST and ERRST V3b represents an area of
ocean surface, the use of kernels can be recom-
mended if the effective ecological spatial scale mar -
kedly exceeds the grid size. If no gridded fields are
available, fixed point data (here, OWS Mike) can be
used as a representation of an area, but their associ-
ated limitations almost inevi ta bly will preclude valid
applications because oceano graphic scale also has to
be  considered when defining the spatial area of
interest. One possible way forward with gridded
fields would be a prior in ves tigation of the temporal
variability of SST residuals for spa tial correlation;
thus, for example, high variability would indicate
restricted spatial autocorrelation and that the grid
point perhaps is at the border of 2 distinct regimes.

Autocorrelation might easily be allowed for either
by de-trending the data or by adjusting df for
 correlation analyses (Brown et al. 2011). While
the latter approach retains more information, an
 adequate number of observations is needed to

account for autocorrelation and
this may constrain its ap pli ca tion
to short time-series that are
highly  autocorrelated. Here, the
PP method was not able to
deliver a meaningful result be -
cause the salmon time-series
were too short (NWr = 15). Resid-
ual analysis of de-seasoned and
de-trended SST time-series can
represent the other extreme, in
that much information can be
lost by the preparatory pro -
cessing. Residuals calculated for
either end of a time-series are
more error prone because they
are very sensitive to the smooth-
ing method used. Nonetheless,
in providing a very conservative
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Fig. 7. Residuals from mean monthly sea surface temperature (SST) anomalies (for
July, August and September) for the OISST V2 dataset at OWS Mike. In 1988, 1989
and 1990, these 3 months reflected essentially the one within-year SST anomaly. This
illustrates that, due to slow temporal changes in SST, consecutive anomalies and
residuals can be correlated, and comparisons involving them are likely to produce
similar results. This has implications for setting the number of tests in applying e.g. 

Bonferroni correction for multiple comparisons
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approach, any significant results arising from resid-
ual analysis can be considered well supported and
the method also is readily applicable to shorter time-
series. In the present case, the extension of the SP
salmon time-series by an additional year did slightly
alter the smoothing of the end of the time-series, but
had no influence on the primary significant correla-
tion detected by Todd et al. (2008) for January (lag
−6 mo; Fig. 6).

Recommendations

For studies similar to the present we endorse the
use of OISST V2 for time-series dating from 1982.
HadISST is recommended for time-series pre-dating
1982, whilst ERSST V3b could be used for spatial and
temporal scale correlations beyond the mesoscale,
but not on an anomaly level. Time-series should be a
de-seasoned and de-trended prior to the calculation
of residuals, and significance levels should also be
adjusted based on the df. Whilst the resulting time-
series may be free of autocorrelation, and classical
hypothesis testing thereby appropriate, statistical
power of the final correlation analyses might be
expected to be reduced using this technique. A final
recommendation to maximize stringency in the iden-
tification of significant outcomes might be to accept
only those correlations that satisfy Bonferroni correc-
tion for both the raw data and the residuals.
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