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Abstract

What shapes variation in genetic structure within a community of co-distributed species is a central but
difficult question for the field of population genetics. With a focus on the isolated coral reef ecosystem
of the Hawaiian Archipelago, we assessed how life history traits influence population genetic structure
for 35 reef animals. Despite the archipelago’s stepping stone configuration, isolation by distance was the
least common type of genetic structure, and regional structuring (i.e., division of sites into genetically
and spatially distinct regions) was most common, detected in 20 of surveyed species, and nearly all
endemics and habitat specialists. IBD only occurred in four shallow, non-endemic invertebrates. Seven
species displayed chaotic (spatially unordered) structuring, and all were non-endemic generalist species.
Chaotic structure also associated with relatively high global Fsr. Pelagic larval duration (PLD) was not a
strong predictor of variation in population structure (R*= 0.22), but accounting for higher Fsr values of
chaotic and invertebrate species, compared to regional structuring and fish species, doubled the power
of PLD to explain variation in global Fs; (adjusted R?=0.50). Multivariate correlation of eight species traits
to six genetic traits highlighted dispersal ability and habitat specialization as strongest influences on
genetics, but otherwise left much variation in genetic traits unexplained. Considering that the study
design controlled for many sampling and geographical factors, the extreme interspecific variation in
spatial genetic patterns observed for Hawai'i marine species may be generated by demographic
variability due to species-specific abundance and migration patterns and/or seascape and historical
factors.

KEYWORDS: Community genetics, stepping stone dispersal, chaotic genetic heterogeneity, Hawai'i,
pelagic larval duration, marine connectivity



INTRODUCTION

The structuring of species into genetically distinct populations has many impacts on a species’
demography and evolution (Kokko & Lépez-Sepulcre 2007). In turn, ecological and environmental
factors influence population genetic structuring (Avise 2000; Storfer et al. 2007). Understanding linkages
between ecological, genetic and environmental patterns is central to many current challenges in
organismal biology and conservation (Taberlet et al. 2012). Uncovering generalities about these linkages
requires comparison across multiple species, habitats and scales. Meta-analyses can test for meaningful
relationships between genetic structuring and ecological traits across many species, but are hindered by
the large number of possible confounding variables. In fact, an early finding of the rapidly expanding
field of landscape genetics is that genetic structuring is highly species specific, influenced by the
individual’s interaction with landscape features according to life history and demographic factors, such
that generalities may be few (Manel et al. 2003). Marine systems are known for harboring diverse and
often surprising spatial population genetic patterns (Selkoe et al. 2008). Here we characterize the
variation in population genetic structure across species within a single marine community, which share a
basic habitat array, environmental gradients and key study sampling design elements. Further, we
examine whether life history traits associate with genetic patterns, perhaps pointing to mechanisms
maintaining the diversity in genetic patterns across species.

There is great interest in determining what drives spatial patterns of population genetics for marine
species, and the extent to which life history traits associate with particular types of structuring. Theory
suggests that the scale and pattern of genetic structure reflects long-term rates of gene flow driven
primarily by migration, drift and selection. A longstanding focus of the field of population genetics is the
relationship of dispersal potential to gene flow, because dispersal is a difficult trait to study directly but
central to many basic and applied questions in ecology. Across studies of marine species, dispersal traits
show significant correlation to genetic structuring, albeit often only weakly (Bradbury et al. 2008;
Weersing & Toonen 2009; Riginos et al. 2011; Selkoe & Toonen 2011; Faurby & Barber 2012), leaving
open the question of whether the remaining variation in genetic differentiation between populations
may be explainable by factors such as taxonomy, life history, sampling design or historical effects.
Despite hundreds of single-species marine population genetics studies across the globe, it is still unclear
whether stronger or more coherent links between genetic and life history traits might emerge if
variables such as history, habitat array or taxonomy could be constrained.

Two basic categories of population genetic structure are historically recognized, the island model
(discrete structuring in which individuals exist in genetically homogeneous “islands” with limited gene
flow between them) and the stepping stone model (continuously increasing differentiation along spatial
gradients) (Wright 1943). A third possibility is extensive dispersal and low genetic drift, whereby genetic
differentiation is statistically insignificant and the entire geographic domain is genetically homogeneous.
This is particularly likely in the ocean, where populations can be very large and migration is favored by
the high-dispersal medium (e.g. Theisen et al. 2008). A fourth model has emerged out of empirical
marine genetics, “chaotic” population structuring (Johnson & Black 1982; Hedgecock & Pudovkin 2011)
in which the level of genetic structuring has been found to be highly variable with no obvious spatial
patterning, possibly indicating non-equilibrium conditions, sweepstakes recruitment (Hedgecock 1994,
Arnoud-Haond et al. 2008), drift-dominated structuring (Johnson & Black 1982; Puritz & Toonen 2011;
Broquet & Yearsley 2012; Yearsley et al. 2013), unaccounted for seascape drivers or selection (Baums et
al. 2006; White et al. 2010; Galindo et al. 2010; Selkoe et al. 2010; Foster et al. 2012), or some
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combination of all these factors (Toonen & Grosberg 2011). The relative frequencies of these four types
of genetic structuring and their main drivers are unknown for marine ecosystems.

The present study leverages recent genetic studies of Hawaiian coral reef species to examine the range
of population genetic patterns across reef animals within a single community and investigate whether
species traits co-vary with metrics and models of genetic structure. The geography of the Hawaiian
Archipelago provides an especially tractable system in which to study marine population structure,
because it is the remotest archipelago in the world, composed of a nearly linear 2,400 km long array of
discrete habitat patches of islands, atolls and seamounts. Insofar as possible in a natural system, these
factors constrain the patterns of population structure, connectivity across patches, and genetic history
of populations (Fig. 1). We began by categorizing datasets for 37 diverse coral reef species sampled with
standard genetic markers at >5 islands. Based on habitat array, we hypothesized that a stepping stone
pattern of dispersal producing an isolation by distance pattern of spatial genetic structure would be
prevalent. There are no obvious known physical barriers or strong oceanographic discontinuities that
might lead to hierarchical genetic structuring. However, a precursor to this study found that locations of
significant pairwise Fsr were highly variable across 27 species in Hawai'i, but occurred most commonly in
the main Hawaiian Islands where islands are more closely spaced (Toonen et al. 2011).

Riginos et al. (2011) outlined two approaches to studying life history effects on population structure:
planned multispecies comparisons using a common sampling regime and geography, and post-hoc
compilation of published studies. This study represents a hybrid, in which compilation of raw genetic
datasets for co-distributed species within a single discrete study region allowed a large degree of
standardization. One would expect that by controlling for basic habitat array, environmental gradients
and many shared historical influences, much of the noise in this relationship might be eliminated. In this
way, more nuanced multivariate influences on gene flow could emerge, enhancing our understanding of
the feedbacks between life history, ecology and genetics.

By comparing life history and genetic data across a broad taxonomic range of species, we hope to gain
insights into the mechanisms that drive geographic population structuring in marine systems. We
characterize variation in population structure across species in two ways. First, we constrain the
question by theory, evaluating how the established models of genetic structuring are represented by the
39 species. Second, we use unconstrained ordination to determine natural divisions among the datasets
based on a suite of genetic metrics of spatial structure. These two approaches are complimentary in that
the first is using significance testing of how spatial distributions of genetic diversity fit with models,
whereas the second is based on combinations of the metrics themselves, perhaps revealing additional
divisions in the database which may not map well to the theory-based categories (i.e., if the values of
the genetic metrics in each category show different ranges or variances).

Next we test whether taxonomy, life history or sampling effects contribute to the observed variation in
genetic structure. Using canonical analysis we estimate how much variation in genetic metrics across
species can be explained by available life history and taxonomic traits. This broad-brush assessment is
followed by alternative model testing of relationships between particular genetic and life history traits,
to get insight into mechanisms driving structuring in this system. Previous empirical studies comparing
large numbers of marine genetic datasets have reported that pelagic larval duration (PLD) shows
positive correlation with genetic differentiation (Weersing & Toonen 2009; Selkoe & Toonen 2011) and
that body size and depth preference show negative correlations with genetic differentiation (Bradbury



et al. 2008; Kelly & Palumbi 2010; Riginos et al. 2011). We test each of these relationships here, and
separately examine species with strong vs. weak genetic structuring, and Hawaiian endemics vs.
widespread species, as endemism occurs at a high rate in Hawaii and could be associated with distinct
genetic characteristics.

Methods

1. Dataset preparation format

Data sets were assembled primarily from collections made on NOAA expeditions throughout the
Hawaiian archipelago from 2005 to 2012, and subsequent publications of mtDNA and nuclear DNA
(usually microsatellite) data sets. Genetic datasets were contributed in ARLEQUIN format ( vers. 3.5.1.2,
Excoffier & Lischer 2010), or an Excel format that allowed easy conversion to ARLEQUIN format. A
modified version of PGDSpider (vers. 2.0.5.1, Lischer & Excoffier 2012) was used to convert between file
formats for genetic analyses. For coral species only, GENETIX ( vers. 4.05.2, Belkhir et al. 2002) was used
to estimate and filter out clonal replicates within sites. ARLEQUIN files were modified to give all sites
standardized four letter name codes and standardized ordering from SE to NW along the island chain.
Because we have data at the scale of the island/atoll, we focus hypotheses at this spatial resolution. In
most cases, allele/haplotype frequencies at adjacent islands are statically indistinguishable, indicating
that island/atoll is an appropriate spatial scale for our study.

Any distinct sub-island or sub-atoll samples were kept separate, with distinct names, except when Fsr
was statistically indistinguishable from zero, in which case sub-localities were lumped. Several species
showed samples collected in the vicinity of Kona to be distinct from those near Hilo on Hawai'i Island,
and Acanthaster planci showed two distinct populations at Pearl & Hermes Atoll.

2. Sampling filters

For inclusion in the analyses, a dataset required at least 5 sites sampled with at least 10 individuals per
site. For datasets that meet these criteria, sites with fewer than 10 individuals were also excluded. We
also analyzed results for a sample size minimum of because Fsr can be inflated at small sample size, and
allele frequency estimates are less reliable for low frequency alleles at highly polymorphic loci. Using a
minimum sample size of 20 individuals per site excluded 90 of 533 samples in the dataset using 10 or
more samples per site (17% of samples). We comment below on how the two sampling filters affect
results.

3. Summary statistics

Nuclear loci with significant deviation from Hardy-Weinberg equilibrium were excluded before analysis.
GENODIVE (vers. 2.0b23, Meirmans & van Tienderen 2004) was used to calculate estimates of global and
pairwise Fsr based on Weir and Cockerham’s (1984) 6, with AMOVA using 9999 permutations. ARLEQUIN
was used to calculate AMOVA based on sy, using AIC criteria from jModelTest (vers. 2.1.4, Darriba et al.
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2012) to choose the most appropriate mutational model in ARLEQUIN. SMOGD online calculator
(Crawford 2010) was used to calculate Desr and effective alleles. GENODIVE’s K-means clustering was run
for number of clusters (K) from 1 to N-2 using AMOVA based simulated annealing with 50,000 steps and
20 repeats. Cluster membership was examined to determine whether adjacent sampling sites clustered
together, highlighting where genetic boundaries (i.e., genetic discontinuities) between regions might
exist. Genetic boundaries were considered where AMOVA estimation of Fcr across the boundary was
statistically significant. The largest number of clusters of spatially discrete samples that returned
significant Fcr results with AMOVA was recorded. In most cases, this was K=2 or 3. In some cases, K-
means clustering showed slightly spatially-mixed clustering. For example if Midway, a Northwestern
Hawaiian Islands (NWHI) site, grouped with the Main Hawaiian Islands (MHI) but otherwise MHI and
NWHI sites were in two distinct clusters, a “spatially strict” versions of the clusters (e.g., Midway was
placed in the NWHI cluster) were tested with AMOVA to confirm that F¢r values were significant after
the regrouping. This procedure was only used when 1-2 samples were geographically incongruent in the
clustering results. Clusters made up of spatially mixed samples were considered evidence that genetic
structuring was not regionally organized. Pairwise geographic distance between sites based on
coordinates were generated using GENODIVE. Isolation by distance analyses were generated using
linearized Fsr [Fsr/(1-Fs7)] vs. Euclidean distance. Significance testing was based on Mantel tests with 999
replicates performed in GENODIVE.

Nine species were represented by 2 datasets, one using a mtDNA marker and a second using one or
more nuclear markers (e.g., microsatellite panels or nuclear intron sequence). Genetic summary
statistics were calculated for each marker class independently and then compared to gauge congruence.
The mtDNA dataset was preferentially chosen to represent the species in subsequent ordination
analyses (which required one dataset per species to avoid double counting), except where sampling
power of the nuclear dataset was superior, see results for details.

4. Categories of spatial genetic structure

Based on the above summary statistics, datasets were placed into the following categories of spatial
genetic structuring, summarized in Table 1:

(1) Panmixia -- defined as a lack of spatial genetic structuring, indicated here when global Fs7, @srand
Dest p>0.05, spatial groupings based on K-means clustering show F¢r p>0.05, and IBD testing shows
Mantel r p>0.05.

(2) Chaotic genetic heterogeneity -- defined as genetic differentiation of samples with no apparent
spatial organization, indicated here when global Fs7, @sr and/or Desy p<0.05, but neither IBD nor any
spatial clustering are statistically significant.

(3) IBD -- a significant IBD Mantel correlation (p<0.05) without significant spatial clustering, or within
clusters, indicates auto-correlated spatial variation, regardless of the global tests of differentiation.

(4) Regional genetic structure -- when K-means clustering identified groupings of adjacent populations
with F¢r p<0.05, regardless of IBD, and global differentiation.



It is possible that a species could conform to more than one category in different regions of the
archipelago. Most datasets could not be properly evaluated for this possibility due to limited sampling in
remote portions of the archipelago. However, for every case of regional structure, we tested for the
joint presence of IBD and regional groups. As illustrated by Meirmans (2012), IBD and hierarchical
structure can be confounded. Hierarchical structure can mimic IBD when differentiation with regions is
low and distant pairs are cross-regional comparisons, whereas IBD spatial autocorrelation can mimic
hierarchical population structure if sampling is sparse and uneven. These scenarios were distinguished
(albeit with low power in our case) using stratified Mantel tests in GENODIVE to permute the locations of
populations within the clusters.

5. Clustering datasets by genetic summary statistics

The above categorizations are based on labeling datasets according to their fit with existing models of
genetic structure derived from genetic theory. The designations are based on the statistical significance
at alpha=0.05 of a small number of genetic metrics. This approach ignores possibly useful information
contained in the continuous range of values of the metrics themselves. It is also sensitive to sample size,
which influences statistical significance. As an unconstrained alternative, we conducted a principle
components analysis (PCA) with JMP ver. 10 (SAS). These included all genetic summary statistics (Fsr, @sr,
Dest, Fer, IBD r, and the number of genetic regions; Table S1) to find natural divisions in the datasets
which are unconstrained by any pre-existing labels or theory. Genetic metrics were linearized and log
transformed to homogenize scales prior to all analyses. Negative values of Fsr, @sr and Dgst were set to
zero to avoid a confounding influence on ordinations. PCA allowed us to visualize the main trends in
summary statistics, ascertain redundancy in summary statistics and visualize natural breaks or clusters
of datasets by genetic traits.

6. Life History data

Published literature and FishBase were searched for each species to gather basic life history data (Table
2). Any life history traits available for a great majority of species were included, producing nine variables
in the initial analyses. Estimates of mean PLD were available in the literature for 32 of the 37 species. To
fill in missing values, a mean based on congenerics (n=16) was used for the two Chaetodon spp. lacking
PLD data and a mean based on confamilials (n=7) was used for the two groupers (family Serranidae).
There is little information on tropical subtidal hermit crab PLD. As they typically go through 4-6 larval
stages lasting a few days at least (Lang and Young 1977), we estimated the mean PLD to be 50. The log
transformation minimizes the effects of imprecise large values, and this one point has little leverage on
the linear fit. Depth range (in m), maximum total length (body or colony size in cm) and estimates of
generation time (in years) were available for all species and used on both a continuous scale and logj
transformed. Species were divided into habitat specialists and generalists. Generalists utilize sand,
rubble or reef whereas specialists are restricted to, or limited by, specific habitat features which may
have small total area and distinct spatial arrays of habitat that differ greatly from the array of shallow
habitat across the archipelago (e.g., damselfish requiring nesting sites, hermit crabs sheltering in certain
corals, limpets limited to basalt which is patchy or absent at islands , corallivores requiring live coral).
Five basic trophic categories were designated: corallivore, detritivore/sediment, invertivore, piscivore,
algivore and planktivore, but analyses collapsed these into a binary categorization (algivore and
planktivore vs. others) given the sample size of the dataset. Other binary categorizations were
examined: predator (invertivore and piscivore vs. others), and benthic feeders (corallivores,



detritivore/sediments, invertivores and algivores vs. piscivores and planktivores) but provided no further
insights to the analyses. Remaining life history categorizations were endemic to Hawai'i vs. non-
endemic, and free-floating eggs vs. attached to body or substrate. Higher taxonomic affiliation was also
used as a categorical variable (fish vs. invertebrate and dolphin) representing fundamental but
unspecified generalities that may tend to be shared across these highly diverse species, such as adult
mobility, mutation rates or mating systems. A PCA using the 4 continuous variables and the 5 binary
variables allowed us to assess the variation in the life history traits across species and visualize
colinearities between life history traits, which were then confirmed with univariate linear regression or
t-tests.

7. Redundancy analysis

Canonical analysis was used to assess how much the suite of life history traits explains the variation in
genetic traits as a whole, and to visualize which traits most closely associate (Legendre & Legendre
2012). Redundancy analysis (RDA) is an ordination with regression; we used the package VEGAN in R for
calculations. The genetic metrics (Y) are first transformed to Y’ by fitting the values to a linear regression
of each life history trait (X). A PCA is then carried out on the Y’ values. Colinearity of life history traits
was examined before proceeding, leading to the elimination of generation time, which was correlated to
maximum length but generally measured with much less precision (OLS r=0.71). The genetic summary
statistics used were the same as described above for PCA (Table S1). Fs; was used in place of @sr for the
4 nuclear marker datasets as missing data is not allowed in the analysis. Fsr and @sr were correlated (OLS
r=0.71) but both were included in the analysis to reveal differences in their responses to species traits,
as was our primary goal for the RDA instead of statistical hypothesis testing. All other genetic traits
showed low colinearity. Two datasets with outlier Fsr values (Fs7>0.2) were removed (Cellana exerata
and Chaetodon lunulatus) because outliers have disproportional influence on ordinations. We examined
sampling factors as covariates in the analysis by performing a partial RDA with all factors (alleles, marker
type, number of sites sampled, recent arrival species), but no effects were found. Adjusted R? was
calculated following the Ezekiel method (Legendre & Legendre 2012). The RDA triplot provided guidance
on where to concentrate tests of particular associations of life history and genetic traits (i.e., it showed
which traits have the strongest associations) to avoid large ratio of alternative models to sample size
(Burnham & Anderson 2002).

8. Linear models of genetic differentiation

Based on the RDA results, correlations of several genetic and species traits were examined. Univariate
correlations of continuous variables were made using Ordinary Least Squares (OLS) regression, and t-
tests were used for assessing significant association of genetic traits with categorical variables.
Multivariate explanatory models combining categorical and continuous variables were made with
generalized linear models (GLM) using normal distribution and identity link function in the software
program JMP. Akaike’s information criterion (AIC.) was used to select the most parsimonious models.
The same two datasets were removed (C. exerata and C. lunulatus) because they were extreme outliers
(i.e., their Fsr values were more than twice the value of the next highest values).



RESULTS

1. Genetic Categorizations

Datasets were divided into all four possible categories of genetic structuring: regional, IBD, chaotic and
panmictic (Fig. 2, Table S1). Among species sampled with two marker types, five of the nine showed
congruent categorization of both datasets. The remaining four species all had one dataset with a low
number of alleles that showed panmixia, and the other dataset had a high number of alleles that
showed structuring. The association of low polymorphism with panmixia was the most prominent
sampling factor associated with placement of a dataset into one of the four categories (Table S2). To
avoid double counting in analyses requiring one dataset per species, we selected the dataset with the
more polymorphic marker(s) because of its greater statistical power. For the congruent pairs, the
mtDNA datasets were preferentially selected to increase consistency in marker type across datasets.

Regional grouping was the most common type of spatial genetic structure, observed in 20 of the 37
species. Eight species showed support for two spatial regions, eight for three regions, three for four
regions and one for five regions (Table S1). In some cases, “regions” comprised only one sample
separated from others by a significant genetic break. In all but three of these species, hierarchical
AMOVA showed no evidence of significant finer scale structuring within regions (i.e., significant Fsc
values; exceptions were Stenella longirostris and Montipora capitata). Although ten of the 20 regionally
structured species showed significant overall IBD results (uncorrected p<0.05), none showed a
significant stratified Mantel test, which would indicate IBD within regions. Thus, these IBD signals are
likely an artifact of the regional structuring (the increased mean pairwise Fsr across regions compared to
within regions), although for a minority, the stratified Mantel test may have lacked power to detect a
true within-region IBD signal. Interestingly, twelve of the 20 regionally structured species showed global
Fsr values not significantly different from zero. Add assessment of sampling gaps contributing to
significance of IBD results.

Only four species were categorized as IBD, because they showed significant IBD without any regional
structuring. One of these, Acanthurus nigrofuscus, had a very weak signal (p=0.05) and most pairwise Fsr
<0. The other three species classified as IBD datasets were invertebrates: a sea star (Acanthaster planci),
a coral (Porites lobata) and a brittlestar (Ophiocoma pica).

Seven species categorized as chaotic showed highly significant global differentiation among sample sites
and many significant pairwise Fsr values, but with no obvious spatial organization. However, one of
these species, the brittlestar Ophiocoma erinaceus, showed a nearly significant IBD test (r=0.42, p=0.07)
and nearly significant test for 2 regions (Fc7=0.049, p=0.15) that might have gained significance with
more specimens. Two of the chaotic datasets yielded Fs;r with p>0.05, but Dgsr and/or @sr were highly
significant.

The remaining six species were panmictic, with nonsignificant and very low global Fsr, ¢sr and Dest
values. Three of these had low allele counts such that their results may be considered inconclusive
(Acanthurus olivaceus, Heterocentrotus mammilatus and Chaetodon multicinctus).



Changing minimum sample size from 10 or more individuals per location to 20 or more affected the
categorization of only 1 dataset (Chaetodon miliaris lost four sites and switched from panmictic to
regionally structured). Several other species lost enough sites to be excluded from analysis.

2. Ordinations of genetic traits and life history traits

The six genetic summary statistics (Fsr, @s1, Dest, Fer, number of significant regions, IBD fit) showed only
moderate to low colinearity. The most correlated values were @srand Fsr (OLS r=0.71). Dgst was
uncorrelated with @srand Fsr. A PCA using these six genetic summary statistics showed two datasets
(limpet C. exerata and butterflyfish C. lunulatus) to be outliers to the rest because their values of @sr, Fsr
Dest and Fer were much larger than the others (e.g., Fs7>0.2 vs. <0.09, Table S1). These two datasets were
removed from all further analyses and the PCA was repeated to lessen the influence of skew on the
analysis. The first 4 PCs showed eigenvalues>1 (Fig. 3a). The first PC, which showed high loadings for
both ¢srand Fsr, separated out six datasets for which differentiation among sites is largest (e.g.,
Fsr>0.02; red markers in Fig. 3a). PC2 separated most of the datasets with 1 region and high F¢r values
(purple in Fig. 3a) from those with multiple regions and low F¢r values (blue in Fig. 3a). PC3 was
correlated with IBD r and PC4 with Desr. To show how the four categories of genetic structuring map to
the PCA results, the biplot is recolored in Fig. 3b; it indicates that chaotic and IBD spatial organization
are not clustered into a small range of values of Fsr or @sr.

A PCA of the life-history traits show that species have diverse combinations of traits instead of a few
clusters of associated types (see Fig. S1 for biplot and more detail). Pairwise linear regressions testing
revealed two notable apparent correlations among life history traits. As previously known, Generation
Time and Maximum Length positively associate (OLS R*=0.52, p<0.0001). We excluded Generation Time
from the RDA analysis due to colinearity. Also, fishes showed significantly broader depth ranges than
invertebrates (R?=0.30, p<0.0001) but both were retained in the RDA as correlation was weak. The biplot
shows that the genetic types contain a mixture of life history traits, but some tend to be absent from
certain quadrants: for PC1 v PC2, chaotic datasets tend to be in the upper left (all were non-endemic
and habitat generalists), panmictic datasets in the upper half (broad and deep depth ranges and mostly
fish), and IBD datasets in the lower half (shallow and invertebrate), whereas regional species are widely
distributed over the plot.

4. Redundancy analysis of life history and genetic traits

The multivariate linear relationship between eight life history and six genetic traits was significant but
not strong (R2:0.35, adj. R%=0.11, p=0.037). When ¢sr is excluded to reduce redundancy with Fsr, R%is
unchanged but p=0.055. In both cases, all eigenvectors were <1 indicating lack of principle component
interpretability. The triplot is nonetheless useful for visualizing which life history traits associate with
genetic traits (Fig. 4). Three traits (PLD, Fish, Habitat) are located near the edges indicating strongest
explanatory power. A reduced model with only these 3 traits raises the adjusted R* (R?=0.22, ad].
R’=0.15, p=0.001). Three genetic traits (Regions, Dest and F¢7) sit close to the center of the ordination
indicating that they are poorly explained by the life history traits. Fsr aligns strongly with the PLD vector,
Dest weakly with the PLD vector, and ¢sris more influenced by Fish and Endemic than are Fsr and Desr.
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The vector for IBD is opposite the trajectory of Fish, Endemic and Depth range, indicating negative
relationships of these traits to stepping stone dispersal. As in Fig. 3a, the plot separates the species with
strong differentiation on the right side, away from the majority of other datasets. These species are a
shark, a dolphin, a sea cucumber, a coral, a sea star and a brittlestar, a group encompassing all 3 types of
spatial genetic structuring.

5. Linear modeling of genetic traits

The RDA indicates that Fish, Endemic and Depth have strong negative impacts on IBD r. A comparison of
multivariate GLM models for these three traits and their interactions showed the most parsimonious
model of IBD r includes Endemic and Depth only (adj. R?=0.22, p=0.006); shallow, non-endemic
invertebrates show stronger IBD patterns. Maximum depth, not minimum depth drives the correlation
with depth range.

A linear fit of PLD vs. Fsr was highly significant (OLS R?=0.45, p<0.0001, Fig. 5), but when the two species
(shark and dolphin) that lack larval development are excluded, the fit drops (R’=0.19, p=0.012). The fit
strengthens slightly (R?=0.22) without the 6 panmictic datasets, for which Fsr is less informative because
it is measured with larger error and is likely an artefact of low marker polymorphism for many of the
datasets (Table S2)..

For this subset of 27 non-panmictic species with PLD>0, a comparison of multivariate GLM models based
on AIC, showed that a model with Fish and PLD is more parsimonious than a model of PLD alone (adj.
R?=0.31, p=0.044, AAIC.=2.5, Table 4). Adding Fish improved the fit because invertebrates have a higher
intercept than fishes due to their generally higher Fg; values. Adding in the other 8 species traits as
additional factors does not improve the model (only individual additions were tested to minimize
number of models compared). However, adding an indicator of whether the dataset shows spatially
organized structure (regional or IBD) or disorganized structure (chaotic) as a covariate improves the
model significantly (adj. R>=0.50, p<0.0001, AAIC.=6.8, Table 4). The model improvement occurs because
chaotic datasets have a higher Fsr values on average and thus a higher intercept for PLD vs. Fsr.
Categorization of datasets as regional or chaotic was made based on the p value of F¢rin a hierarchical
AMOVA, which shows no correlation with Fsr (R?=0, p=1.0). With the two direct developers (PLD=0)
included, the fit of this model is boosted (adj. R*=0.65). Interactions were not significant and thus
excluded from the best fit model.

The 10 endemics show no relationship between PLD and Fsr, although all endemic PLD values are fairly
large (PLD>23 days). No species traits significantly explain Fsr for the endemics. Excluding endemics from
the non-panmictic, PLD>0 group, results in the same best fit model, but with higher explanatory power
(adj. R>=0.58, Table 4).

We examined how GLM models explain variation in ¢s; for the mtDNA datasets compared to those for
Fsr. Fish and structure type (i.e., spatially organized vs. disorganized) without PLD best explained ¢sr for
the PLD>0 non-panmictic set of species (adj. R*=0.55, p<0.002). @sr also shows no relationship to PLD for
endemics, but shows a highly significant positive relationship to both maximum length and herbivory for
endemics (adj. R?*=0.66, p=0.009). Dest, Fer and regions showed no significant linear relationships to the
species traits collected for all species combined, as indicated by the RDA.
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Discussion

It is well known that marine species exhibit extensive variation in their genetic patterns that is poorly
predicted by ecological or species traits. By focusing on a single isolated region with a simplistic habitat
array and calculating genetic metrics in a standardized way from raw data of many species, we
investigated the extent to which variation in genetic patterns is constrained across species using two
complimentary approaches. The dual approaches help illuminate the extent to which our assessment is
sensitive to the chosen metrics, categories, and statistical framework. First, the PCA analysis focused on
the strength of genetic differentiation and the spatial scale of structuring (i.e., number of regions), and
revealed 3 clusters within the species set: single region/low differentiation, multi-regional/moderate
differentiation and a small number of high differentiation species with a mix of single and multiple
regions. Second, the categorization of the datasets into four a priori types focused primarily on the
spatial organization of the structuring and not the strength of differentiation (i.e., regional, IBD, chaotic
and panmictic). Comparison of these two approaches revealed that species with strongest structuring
show diverse spatial organization of structuring and likely a diversity of causes for that high structuring.
Life history analyses revealed that chaotic species were all non-endemic and habitat generalists, IBD
occurred for four shallow invertebrate habitat generalists, regionally structured species showed a
variety of life history associations, and panmixia was mostly limited to fishes with broad and deep depth
ranges or associated with low allelic diversity indicating low statistical power. Polymorphism creates
precision much the way increasing the number of samples would (Kalinowski 2002).

Regional Boundaries across the Archipelago

The finding that regional structuring was most common, and IBD least common, was surprising given the
stepping stone habitat array. Although every inter-island channel along the chain was a possible
boundary for at least 1 dataset in the study, the most frequent site of a regional boundary, shared by 13
of the 20 regionally structured species, occurred at the center of the archipelago, in the vicinity of
French Frigate Shoals. This trend could lend insight into the factors enabling regional structuring for a
diversity of taxa in this system. First, it might be possible to produce such a boundary in a stepping stone
dispersal system with finite ends, because this would concentrate genetic differences on either end,
especially when gene flow is relatively high, elevating the importance of the increased drift at the edges
(Rousset 1994). However, the stratified Mantel test results indicate that this scenario is unlikely,
because IBD within regions is rare. Second, there may be an oceanographic divergence zone at the
center of the chain. Larval dispersal might be biased away from the center due to the eastern flowing
Subtropical Countercurrent splitting as it encounters the archipelago, combined with the westerly North
Hawai'i Ridge Current which may drive larvae westward (Fig. 1; Qiu et al. 1997; Kobayashi 2006).
However, complex eddying indicated by meso-scale circulation modeling and simulated larval dispersal
results suggest this scenario may also be overly simplistic and unlikely (Kobayashi 2006; Rivera et al.
2011). Finally, heterogeneity in demographic processes might drive departure from an IBD pattern,
perhaps due to differences in habitat area or effective population size (N.) among locations. The
sampling gaps in the datasets are a key consideration in this context. Despite a bias toward selecting
study species that are abundant and easy to sample, many of the sampling gaps were caused by absence
or very low density of organisms at sites. Thus, uneven abundance or density distributions across islands
may lead to hierarchical structuring despite stepping stone dispersal for some species. Almost all
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endemics and all habitat specialists were regionally structured (except a few cases of panmixia). Both
groups are more likely to have variable abundance across the chain due to spatially varying micro-
habitats, supporting this cause for regional structuring. This phenomenon begs for marine population
genetic studies to carefully consider sampling design and run simulations to test effects of sampling
factors on results. Additional factors and analysis approaches might add insight to the current results.
For example, if ocean currents are important drivers of gene flow, the seasonal timing of larval dispersal,
and other larval traits for which we were unable to find data, may help generate variation in genetic
structuring across these species. We will explore the relative roles of history, oceanography, sampling
and habitat factors in generating the observed variation in genetic patterns across species in future
studies.

Statistical considerations of characterizing spatial genetic structure

Our dataset proved to be a good example of the ‘trouble with isolation by distance,” described recently
by Meirmans (2012). Nine datasets showed significant test results for IBD that on closer examination
were driven only by regional structuring, evident both by examining site membership of data points on
the IBD plot and by a stratified Mantel test. Our algorithm for categorizing a dataset by its spatial genetic
structuring was inspired by this study, and at least in the case of marine species, it appears that
understanding whether the dataset is spatially auto-correlated, regionally structured or chaotically
structured is an important first step to interpreting population genetic analyses. Meirmans (2012) found
that 70% of a sample of studies testing for IBD found it. These were mostly terrestrial or aquatic studies.
It is already known that marine species show much lower rates of IBD, and in this study, despite an
uncommonly clear-cut stepping stone habitat array, only 10% of species showed IBD. It is unlikely
sampling gaps biased the categorization of datasets as IBD vs. regionally structured, as the average
number of samples, number of sites in the MHI, NWHI and whole chain, and the size of the largest
sampling gap were nearly identical for the two groups (Table S2). However, IBD datasets tended to have
slightly larger effective number of alleles than regional datasets (4.1 vs. 3.6; Table S2). Similarly, chaotic
and panmictic datasets

Many species showed global estimates of Fsy and @sr near zero despite strong regional structuring.
Despite the fact that island-scale differentiation (global Fs7) correlated with PLD, many species in the
highest PLD category showed 2 or 3 genetically distinct regions, perhaps indicating that regional
boundaries are not caused by dispersal related processes and instead may be a product of historical
events (Marko 2004) and/or local adaptation. The K-means clustering approach to guide hierarchical
AMOVA has not been widely used, but is more sensitive than a priori designation of groups. While it has
the potential to uncover large-scale structure that is missed by other approaches (e.g., Kelly & Eernisse
2007; Diaz-Ferguson et al. 2010), it is also possible that the approach has inflated type 1 error.

Regional, taxonomic and life history variation in the correlation of PLD and FST

We found that accounting for whether a dataset is spatially organized improves insight into the
relationship between genetic structure and species traits. It is interesting that the chaotic datasets
showed a significant correlation of Fsrand PLD, but with higher mean Fsr values than species with
spatially organized structure. The pattern suggests that these datasets are not chaotic simply because
they are out of drift-migration equilibrium, but rather that they have an additional factor inflating
differentiation. Consistent with this idea, recent simulation studies indicate that chaotic genetic
patchiness can arise via small local effective population size and mildly-aggregated dispersal of kin
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(Broquet & Yearsley 2012), which may occur even in species with extremely long pelagic developmental
periods (lacchei et al. 2013).

The correlation of PLD and Fs; (R>=0.22 for species with pelagic larvae) was lower than the value for a
global sample of studies (R*~0.30) derived from a variety of spatial scales, habitat configurations, regions
and environmental settings (Selkoe & Toonen 2011). Furthermore, our sample of ¢sr showed no
significant relationship to PLD, instead correlating just with taxon, consistent with ¢sr having higher
sensitivity to demographic history and mutation than Fg;(Bird et al. 2009, 2011; Meirmans & Hedrick
2011). For any isolated marine habitat, retention strategies are crucial to persistence, but PLD may be
less indicative of realized dispersal distance in this extremely isolated ecosystem compared to other
places (but see Schultz & Cowen 1994; Robertson 2001). This possibility is supported by two additional
insights. First, endemics, which may be more dependent on larval retention for persistence than
widespread species, showed no relationship of Fs; to PLD. However, all endemics in the study have
PLD>20 days, after which the linear relationship saturates. Thus, retention of larvae may not be highly
related to the mean PLD in this setting. Second, comparison of the correlation strength for Hawai'i to
that found in other regions shows that the PLD v. Fs; correlation is relatively weak in Hawai'i (Fig. 7).

Aside from poor correlation of PLD and dispersal distance, there are many other factors that can
decouple PLD and FST values. One recent focus has been the influence of coalescent time on FST, such
that holding coalescent time constant should improve PLD vs. FST correlation (Dawson et al. 2014). An
anlysis using hierarchical approximate Bayesian computation (Hickerson & Meyer 2008; Beaumont
2010) of our dataset indicate nearly uniform timing and rate of expansion following the last glacial
maximum (Chan et al. in prep). Therefore, we conclude that different coalescent histories are likely not
driving variation in genetic patterns of these species. Contrary to claims that comparisons among
synchronously diverging co-distributed (SDC) species “consistently evince higher gene flow in species
with higher dispersal potential” (Dawson 2014), results from SDC taxa in Hawai'i (and previous global
analyses; Selkoe and Toonen 2011) mandate a more nuanced treatment of the many forces impacting
the population genetics of marine species.

We found that fishes show less structure and less organized structure than invertebrates. This point has
not been previously highlighted, but the pattern is evident in other marine datasets (Carpenter et al.
2011; Toonen et al. 2011; Selkoe & Toonen 2011). Compared to invertebrates, fishes generally are more
capable of behaviors that promote dispersal, and adult and juvenile migration is possible (Eble et al.
2011; Poortvliet et al. 2013). In addition, we found that species with deeper depth ranges tend to show
less structuring than shallow species ( also see Etter et al. 2005; Kelly & Palumbi 2010; Gaither et al.
2012; Andrews et al. 2014), perhaps because shallow habitat is smaller in total area, harder for larvae to
intercept, and subject to more frequent disturbance, contributing to higher rates of genetic drift. The
reason that only shallow invertebrates showed IBD may be due to the double constraint of limited
dispersal ability and smaller habitat patch sizes.

In our analyses, egg type, body size, and trophic group showed little influence on genetic traits.
However, egg type and body size correlated with Fsrin other synthesis studies of marine species
(Bradbury et al. 2008; Riginos et al. 2011). The great variation in findings for ecological correlates with
Fsrand @sr indicates that such syntheses are sensitive to the species composition and/or genetic
markers in the dataset, as well as the statistical approach. A shift of focus away from linear modeling of
global Fs;, which is a relatively uninformative metric, toward a deeper understanding of what drives
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variation in spatial patterns of genetic differentiation will bring new insights to this line of inquiry (Lowe
& Allendorf 2010; Marko & Hart 2011a; b).

Multivariate estimates of the covariation of species and genetic traits

Canonical analysis of how 8 species traits associated with genetic traits revealed that PLD, taxonomy
(fish vs. invertebrate) and habitat specialization had the strongest influences on Fsr, @srand IBD fit, but
overall explanatory power was low. Our use of RDA to uncover associations of life history and genetic
traits followed a similar study of 27 co-distributed high-alpine plants of the European Alps (Meirmans et
al. 2011). That study used AFLP data to generate 8 genetic summary statistics describing spatial genetic
diversity, paired with 6 species traits related to dispersal and habitat preference. The 6 species traits
together explained a very similar fraction of variation in genetic traits relative to our finding (R?=0.30,
adj. R?*=0.17). Considering the diversity of ecological, organismal, and historical factors that can impact
the distribution of genetic diversity, the authors interpreted this as a large fraction. Our dataset included
a wider diversity of species in terms of life history and taxonomy. Interestingly, Meirmans et al. (2011)
analysis showed the same qualitative main results we report here. First, Fs; was the most strongly
predicted trait, and was driven by dispersal factors. Plants with multiple dispersal modes showed higher
gene flow, similar to our finding that fishes, which can disperse both as adults and larvae, show higher
gene flow than invertebrates. Second, Mantel r was the only other strongly predicted genetic metric
aside from Fsrin both studies, and rather than associating with dispersal factors as would be expected, it
was best predicted by habitat factors (soil type for plants, depth range for coral reef species). Historical
factors (i.e., size and distribution of refugia) may drive both the depth and soil type effects, and
retrospective analyses using coalescent models are needed to distinguish ancient connectedness from
contemporary gene flow. A final similarity to Miermans et al. (2011) is that Jost’s Dest showed no
correlation with life history or other genetic traits, thus providing little insight in either context.

Despite the study design to limit sources of natural variance, the species included in this study showed
great variation in genetic structure, and species traits were not highly predictive of that variation. Two of
the species showed extremely high spatial structuring relative to all others, one regionally structured
and one chaotically structured. Their exclusion from the analysis serves only to weaken the link between
genetic variation and species traits. In sum, the question of what maintains the extreme diversity in
spatial genetic patterns across marine species remains largely unanswered by this study, but is

narrowed by the finding that it persists despite controlling for sampling design, marker type, habitat
array, major environmental and oceanographic gradients and recent history to a greater extent than
possible in meta-analyses of published works. Even within a single reef community, life history of marine
species is extremely diverse and likely drives high diversity of demographic and genetic patterns.

Genetic diversity is a crucial foundation for biodiversity, with demonstrated influence on fitness,
persistence, species diversity, and ecosystem functioning (reviewed in Hughes et al. 2008; Taberlet et al.
2012). There is great interest in integrating population genetics into community ecology to understand
the forces controlling community assembly and species interactions (Avise 2000; Wares 2002; Cavender-
Bares et al. 2009). Continuing to characterize the forces controlling spatial genetic structure in more
marine and terrestrial communities and regions is an important first step.
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Table 1. Summary of the criteria used to categorize datasets by type of spatial genetic structuring.
Significance tests used p<0.05 without correction for multiple tests.

1. Panmixia
2. Chaotic
4.1BD

5. Regional groups

Global Fsr, @sror Dest
test significant?
no

yes
yes or no

yes or no

Spatial clustering
(Fc7) significant?

no
no
no

yes

22

IBD test
significant?
no

no

yes

yes or no
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Table 2. Taxonomic and life history traits of 37 species used in the study. » indicates recent arrivals to
Hawai’i (<60yrs); taxon indicates vernacular group; PLD = estimates of mean pelagic larval duration in
days; End = endemic to Hawai'i, IP = Indo-Pacific wide, Pac = Pacific wide (including eastern Indian
Ocean); depth given in m; maximum length refers to body or colony size in cm; Gen. Time = generation
time or minimum doubling time in years; att = eggs attached to substrate or body, free = eggs spawned
into the water column, int = direct development; Habitat = habitat association, S = specialist and G =

generalist categories.

Genus species Taxon PLD Range @ Depth = Max. Gen. Eggs Habitat Trophic
Range Length @ Time Group
1. Abudefduf abdominalis Damselfish 24 End 49 30 2.5 att S: rubble planktivore
2. Abudefduf vaigiensis™ Damselfish 20 P 49 20 1 att G: reef planktivore
3. Acanthurus nigrofuscus Surgeonfish | 31 P 25 20 2.5 free G: reef herbivore
4. Acanthurus nigroris Surgeonfish = 58 End 89 25 1 free G: reef herbivore
5. Acanthurus olivaceus Surgeonfish = 60 Pac 43 35 2.5 free G: reef herbivore
6. Acanthaster planci Sea Star 14 Pac 3 30 2 free G: reef corallivore
7. Calcinus hazletti Crab 50 Pac 15 1 4 att S: coral detritivore
8. Cellana exarata Limpet 6 End 2 7 3 free S:intertidal = herbivore
9. Cephalopholis argus Grouper 28 1P 39 60 2.5 free S: high Irg. predator
relief
10. Chaetodon fremblii Butterflyfish 40 End 61 13 1 free S: coral invertivore
11. Chaetodon lunulatus Butterflyfish 40 Pac 17 14 2.5 free S: coral corallivore
12. Chaetodon miliaris Butterflyfish 60 End 250 13 1 free G: reef omnivore
13. Chaetodon multicinctus Butterflyfish 40 End 109 12 1 free G: coral & corallivore
rubble
14. Ctenochaetus strigosus Surgeonfish = 58 End 112 14 1 free G: coral & herbivore
rubble
15. Hyporthodus quernus Grouper 40 End 360 122 15 free S: high Irg. predator
relief
16. Etelis coruscans Snapper 40 P 157 120 8 free G: deep Irg. predator
reef
17. Etelis marshi Snapper 40 IP 128 127 8 free G: deep Irg. predator
reef
18. Halichoeres Wrasse 40 End 11 18 2.5 free S: coral invertivore
ornatissimus
19. Heterocentrotus Urchin 8 P 49 8 1 free G: reef herbivore
mammillatus
20. Holothuria atra Cucumber 15 P 30 60 1 free G: sand sediments
21. Holothuria whitmaei Cucumber 15 P 20 30 1 free G: sand sediments
22. Lutjanus kasmira® Snapper 31 IP 262 40 2.5 free G: reef Irg. predator
23. Monitpora capitata Coral 3 Pac 17 200 10 free G: reef planktivore
24. Mulloidichthys Goatfish 60 1P 75 43 2.5 free G:sand & invertivore
flavolineatus reef
25. Mulloidichthys Goatfish 36 P 112 38 2.5 free G:sand & invertivore
vanicolensis reef
26. Myripristis berndti Squirrelfish 55 P 12 30 1 free G: high planktivore
relief
27. Ophiocoma erinaceus Brittle star 50 P 27 20 1 free G:sand & sediments
reef
28. Ophiocoma pica Brittle star 50 1P 27 10 1 free G:sand & sediments
reef
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29. Panulirus marginatus

30. Panulirus penicillatus

31. Parupeneus
multifasciatus
32. Porites lobata

33. Pristipomoides
filamentosus
34. Stegastes fasciolatus

35. Stenella longirostris

36. Triaenodon obesus

37. Zebrasoma flavescens

Lobster
Lobster
Goatfish

Coral

Snapper
Damsel

Dolphin
Shark
Tang

365

270

44

45

30

54

158

23
360

29

250
32
43

40

40

35

200
100

16

200
200
20

att S: high invertivore
relief

att S:reef & invertivore
rock

free G: sand invertivore

free G: reef planktivore

free G: deep Irg. predator
reef

att S:reef & herbivore
rock

int S:all Irg. predator

int S:all Irg. predator

free S: reef herbivore

Table 4. Upper: Alternative model comparison for linear modeling of Fsr using 35 species (left side; 2
outliers excluded) and 25 non-endemic species (right side). Lower: Detailed results of final GLM model.
AAIC, = delta AIC,, the difference in AIC. value between the model and the top model.

All species Endemics omitted

Parameter Pvalue R’ adj. R? AAIC, | Pvalue R adj. R AAIC,
Fish+PLD+Structure | 0.004 0.555 0.497 0.0 0.000 0.645 0.578 0.0
PLD+Structure 0.009 0.398 0.348 5.1 0.009 0.451 0.387 5.1
Fish+PLD 0.044 0.359 0.305 6.8 0.082 0.391 0.319 7.1
Fish 0.010 0.238 0.207 8.7 0.019 0.269 0.228 7.6
PLD 0.013 0.216 0.185 9.5 0.024 0.251 0.210 8.1
Structure 0.025 0.185 0.152 10.5 | 0.072 0.169 0.122 10.2
Term Coefficient Std. xz P

estimate Error value
Intercept 0.030376  0.005377  <.0001
Fish -0.00778 = 0.002516  0.0042
PLD -0.00863  0.003273  0.0128
Structure -0.00974 0.002817  0.0017
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Figure 1. Map of the Hawaiian archipelago. The number of species sampled per island or atoll is
indicated next to each. Major currents are represented by arrows. 1000m and 2000m isobaths
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Figure 2. Venn diagram showing the categorization of 37 species into four models of population genetic
structuring. Size of circles correspond to number of species, shaded wedges correspond to proportion of
invertebrates, and shaded sliver in largest circle indicates the dolphin dataset. Overlapping edges of
circles indicate grey areas where categorization of one or more datasets was borderline between the
two models; each overlap is lettered and explained on right side.
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from chaos to regions
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(FCT=0.05, p=0.13).
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C. multicinctus might
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to regions with more
samples (FCT=0.02,
p=0.18).
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. A. nigrofuscus shows
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p=0.054).
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mimics an IBD pattern.
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Silver= Dolphin
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38

Figure 3. PCA biplot for six genetic summary statistics (Fsr, @sr, Dest, Fcr, number of regions, IBD fit). A:
Datasets are color coded to show inherent clustering of datasets by genetic trait values (red = large Fsr
values, purple = single region, blue = multiple regions. B. Datasets are color coded by genetic structure
categorizations as in Fig. 2 (purple=panmixia, green = IBD, orange = chaos, blue = regions).
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\Figure )4 RDA triplot showing the associations of life history traits (blue font) with genetic traits (red
font). Labels for Regions and F¢r are obscured because they overlap at coordinates (0.0, 0.9). Label for
Herbivore is also obscured because it falls within the cloud of species names in the upper left quadrant.

Species names are coded as in Table 1.
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Figure 5. Plot of PLD vs. Fsr for all species. Line excludes two outliers at top edge (Cellana exerata,
Chaetodon lunulatus). Species are coded by their taxon (fish = squares, invertebrate = circles, dolphin =
triangle) and type of spatial structuring (purple=panmixia, green = IBD, orange = chaos, blue = regions).
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Figure 7. Log PLD vs. log Fsr correlation (OLS R?) for regional subsets of genetic studies sampled from the
literature, which calculated Fsr using at least 5 sites per study. Data for all regions except Hawai’i taken
from Selkoe & Toonen (2011). R? value for Hawai’i used an analogous calculation and sample filtering of
the present dataset (i.e., Fsr <0.001 excluded, PLD=0 included, and outliers Cellana exerata and
Chaetodon lunulatus included). Numbers of studies used to calculate the R? values of each region are
indicated above columns.
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Table S1. Basic genetic results for the subset of datasets used in the analyses (excludes duplicate
datasets; see Dataset S1). Marker codes: CB=cytochrome B, Cl= cytochrome oxidase I, CR=control

region, M#t=microsatellites, NS#=nuclear sequence data, 16S=ribosomal unit 16S. Regions = number of
spatially discrete K-means clusters; *=result considered inconclusive due to low allele count leading to

insufficient power.

Genus species Mar Fsr @st Degst Fer Regions IBDr Genetic
ker Structure

1. Abudefduf abdominalis CcB -0.005 0.005 -0.154 0.014*** 2 0.122 regional
2. Abudefduf vaigiensis NS2 0.026*** n/a 0.015* 0.004 1 0.022 chaos
3. Acanthurus nigrofuscus CB -0.007 -0.005 -0.043 0 1 0.519* IBD
4. Acanthurus nigroris CB 0.023* 0.009 -0.02 0.035** 3 -0.013 regional
5. Acanthurus olivaceus CB -0.007 -0.007 -0.026 0 1 0.082 panmixia®
6. Acanthaster planci CR 0.025*** 0.087*** 0.255* 0 1 0.543** IBD
7. Calcinus hazletti Cl 0.013 -0.003 -0.026 0.045%** 2 0.101 regional
8. Cellana exarata Cl 0.225*** 0.138%** 0.067* 0.282%** 3 0.187 regional
9. Cephalopholis argus CB -0.012 -0.009 -0.034 0.037%*** 3 0.029 regional
10. Chaetodon fremblii CB 0.003 0.000 -0.015 0 1 -0.023 panmixia
11. Chaetodon lunulatus CB 0.227*** 0.259%** 0.032* 0.316* 5 0.889** regional
12. Chaetodon miliaris CB -0.006 -0.004 -0.043 0 1 -0.084 panmixia
13. Chaetodon multicinctus CB -0.004 -0.007 -0.03 0.024 1 -0.023 panmixia®
14. Ctenochaetus strigosus CcB 0.005 0.004 -0.028 0.015** 3 0.103 regional
15. Hyporthodus quernus CR 0.009** 0.008* -0.017 0.016* 2 -0.146 regional
16. Etelis coruscans cB 0.003 0.01%* 0.009* 0 1 0.202 chaos
17. Etelis marshi CcB 0.001 0.002 -0.017 0 1 -0.083 panmixia”
18. Halichoeres CR 0 -0.009 0.064* 0.004*** 2 -0.122 regional
ornatissimus
19. Heterocentrotus Cl -0.003 0.013 -0.041 0 1 0.053 panmixia
mammillatus
20. Holothuria atra Cl 0.072*** 0.131%** 0.052* 0 1 0.135 chaos
21. Holothuria whitmaei Cl 0.009 -0.003 -0.006 0.025** 4 -0.260 regional
22. Lutjanus kasmira CR 0.001 0.003 0.018* 0.001 1 0.090 chaos
23. Monitpora capitata M6 0.063*** n/a 0.092 0.023** 3 0.233 regional
24. Mulloidichthys CB 0.039*** 0.019** -0.018 0 1 -0.100 chaos
flavolineatus
25. Mulloidichthys CB -0.002 0.002 -0.046 0.011%** 2 0.49* regional
vanicolensis
26. Myripristis berndti CcB -0.019 -0.015 -0.053 0.016* 2 0.604* regional
27. Ophiocoma erinaceus 16S = 0.023*** 0.171%** -0.046 0.049 2 0.424 chaos
28. Ophiocoma pica 402 0.012* 0.034* -0.037 0.002 1 0.225% IBD
29. Panulirus marginatus Cl 0.004** -0.001 -0.10 0.005* 3 0.287* regional
30. Panulirus penicillatus Cl 0.001 0.008 -0.03 0.01* 2 0.595** regional
31. Parupeneus CcB -0.003 -0.004 -0.027 0.008* 2 0.029 regional
multifasciatus
32. Porites lobata M9 0.017*** n/a 0.017 0 1 0.467*** IBD
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33. Pristipomoides
filamentosus
34. Stegastes fasciolatus

35. Stenella longirostris
36. Triaenodon obesus

37. Zebrasoma flavescens

cB

CR

CR

CR
M10

-0.003

-0.002
0.052***
0.093**
0.001**

-0.004

0.013**
0.087***
0.091**

n/a

33

-0.01

0.315*
-0.016
-0.041
0.004

0.008**

0.006**
0.035*
0
0.002%**

w

w A b

0.134

-0.036
0.425**
-0.320
0.212

regional

regional
regional
chaos

regional



Table S2.
Sampling
statistics by
category of
structure
for all
datasets.
Values are
means for
the number
of datasets
indicated
(several
species
have two
datasets
included);
standard
errors in
parentheses | dataset total effective | sample | MHI NWHI largest
S sites alleles alleles s sites sites gap
2.9
Panmixia | 10 11.6 (0.80) 1.5(0.14) | (0.55) 377 4.0 5.5 2.9
3.4
Chaos | 8 9.5(0.89) | 1.7(0.16) | (0.62) 391 43 6.6 2.7
3.6
Regional | 24 9.3(0.53) | 1.7(0.08) | (0.36) 363 3.9 5.3 3.1
10.75 4.1
IBD | 4 (1.28) 2.0(0.21) | (0.89) 357 4.5 5.5 3.0
74
75
76
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77

78 Figure S1. PCA biplot of life history traits for all species (n=37). Species are color coded by the genetic
79  structure category (purple=panmixia, green = IBD, orange = chaos, blue = regions).
4 ;
+Depth !
\ : _4Fish
2_.
)
-+
S +Length
o~
€ 07
=4}
c
o
o
o =] N ~ \ )
&) L ! “«-Habitat
24 L]
I-L’Eggs °
: =}
: o
-4 T T T T T T T
4 -2 0 2 4
80 Component 1 (29 %)
81
82

35



