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INTRODUCTION
Zircon is physically and chemically stable 

across a wide range of conditions. Its abundance 
in felsic and intermediate igneous rocks and re-
fractory nature in sedimentary rocks make it a 
key mineral to understand the evolution of the 
continental crust (Hawkesworth and Kemp, 
2006; Cawood et al., 2013). At the time of crys-
tallization, oxygen isotopes in zircon refl ect the 
δ18O values of the host magma and therefore 
the relative contributions of material from the 
mantle and continental crust, with δ18O values 
between 4.7‰ and 6.0‰ taken as indicative of 
the former (Valley et al., 1998; Page et al., 2007; 
Grimes et al., 2011). Excluding zircons dam-
aged by radiation or thermal dilation (e.g., Cher-
niak and Watson, 2001; Booth et al., 2005), any 
signifi cant increase from those mantle values is 
interpreted as incorporation of supracrustal ma-
terial (Valley et al., 2005) and results in melts 
with elevated zircon δ18O values (e.g., Valley et 
al., 1994; Roberts et al., 2013).

To investigate changes in the degree of crustal 
reworking in continental magmas through time, 
we compiled a global database of oxygen iso-
tope analyses of zircon (Table DR1 in the GSA 
Data Repository1). Previous such studies indi-
cate that Earth’s Archean crust was dominated 
by mantle-like oxygen isotopic values, whereas 

post-Archean zircons have a greater range in 
δ18O (Valley et al., 2005; Dhuime et al., 2012). 
It has remained unresolved whether the former 
signifi es minimal crustal reworking or a restrict-
ed range of δ18O (based on whole-rock analysis) 
in Archean sedimentary rocks, and whether the 
latter refl ects increased contribution from up-
per crustal melts and/or an increasingly evolved 
supracrustal reservoir available for reworking. 
Furthermore, it has variably been proposed that 
the envelope of maximum δ18O values in mag-
matic zircons increases from the Paleoprotero-
zoic to the present (Valley et al., 2005), or that 
δ18O in zircon increased until ca. 1.1 Ga and de-
creased until the present (Van Kranendonk and 
Kirkland, 2013).

We reevaluate the extent to which the δ18O 
values of sedimentary rocks have changed 
through time and compare the δ18O values of 
zircon with that of the sedimentary record. The 
zircon δ18O database presented in Table DR1 
highlights an increase in elevated δ18O material 
above an essentially constant Hadean–Archean 
background between ca. 2.5 and 2.15 Ga. This 
is attributed to the incorporation of low-tem-
perature fractionated supracrustal material dur-
ing the earliest Proterozoic that we interpret as 
linked to the onset of signifi cant crustal thicken-
ing and continental collisions (e.g., Ernst, 2009; 
Dhuime et al., 2012; Keller and Schoene, 2012).

METHODS
Our database combines ~6300 δ18O analyses 

of detrital and igneous zircon grains (Figs. 1A 
and 1B; Table DR1). We exclude data report-
ed from metamorphic grains or overgrowths 
(which tend to be extremely fractionated; e.g., 
Bowman et al., 2011) as well as from zircons 
with U-Pb ages >10% discordant. The U-Pb age 
distribution of the data compiled in this study 

is similar to that for the modern river zircon 
database (Campbell and Allen, 2008) and the 
database of Voice et al. (2011) of ~200,000 zir-
con U-Pb ages. This affi rms that our database 
broadly represents the exposed crustal record, 
although the extent to which tectonic processes 
may bias that record remains a subject of debate 
(Hawkesworth et al., 2010; Condie et al., 2011; 
Cawood et al., 2013).

Our database differs from that used previ-
ously by Valley et al. (2005) in that it incorpo-
rates nearly three times the number of analyses 
and demonstrates (1) a broader range (though 
statistically equivalent mean) of Archean δ18O 
values, +2.4‰ to +8.8‰ (average = 5.9‰ 
± 0.9‰, 1σ) versus +2.4‰ to +7.5‰ (average 
= 5.8‰ ± 0.7‰, 1σ); (2) unimodal distribution 
of Proterozoic δ18O values (Fig. 2; note the simi-
larity with Phanerozoic values) with low skew-
ness (σ = 1.0); and (3) 5% of analyses are above 
the composition-time envelope of δ18O values 
previously proposed (Valley et al., 2005). We 
parse and analyze the updated database using a 
bin-size optimization procedure (Shimazaki and 
Shinomoto, 2007) to avoid pitfalls associated 
with bin widths that are unjustifi ably small rela-
tive to analytical errors (as in Voice et al., 2011), 
or are so large as to limit interpretive resolution 
(as in Dhuime et al., 2012).

We have used the natural subdivisions of zir-
con age frequency within the compiled data 
set (Fig. 1A) as the basis for evaluating tem-
poral isotopic shifts and to divide the δ18O 
data set into the following time intervals: 
pre–3100 Ma, 3100–2450 Ma, 2450–2000 Ma, 
2000–1600 Ma, 1600–1300 Ma, 1300–900 Ma, 
and 900–400 Ma (Fig. 2A). We note that val-
ues of δ18O from zircons with ages younger 
than 400 Ma are lower than those immediately 
preceding them (Fig. 1B). This is likely due to 
the disproportionate sampling of atypical com-
positions and/or petrotectonic associations for 
the post–400 Ma data, e.g., the extremely low 
δ18O magmas from the Isle of Skye (Gilliam and 
Valley, 1997; Monani and Valley, 2001) and Yel-
lowstone (Bindeman and Valley, 2001; Binde-
man, 2008). Given these uncertainties and the 
smaller data set within this timeframe, we do not 
consider it further in this study.

Zircons from different time periods exhibit 
different distributions of δ18O (Fig. 2B) that 
can be grouped into two categories (Fig. 2B): 
type 1, characterized by a narrow peak between 
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tingham NG12 5GG, UK; E-mail: spenchristoph@
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1GSA Data Repository item 2014158, Table DR1 
(δ18O values in zircon), and Table DR2 (sedimentary 
proportions model and average δ18O compositions 
of the sedimentary rock types), is available online at 
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from editing@geosociety.org or Documents Secre-
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ABSTRACT
A global U-Pb and δ18O zircon database shows temporal changes in the magmatic record 

related to changes in the degree of crustal reworking. The δ18O composition of bulk sedi-
ment remains relatively constant through geologic time, with a mean value of 14.9‰. In 
contrast, the δ18O values in magmatic zircons vary from relatively low values averaging 
~6‰ in the Archean to increasingly higher and scattered values defi ning a series of peaks 
and troughs in post-Archean data. The degree of crustal reworking increases at times of 
supercontinent assembly. Therefore we attribute the pattern of post-Archean δ18O values 
recorded by magmatic zircons to a signifi cant increase in the incorporation of high δ18O 
sediment in response to enhanced crustal thickening and reworking associated with the 
onset of collisional tectonics, especially during formation of supercontinents.
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5.5‰ and 6.5‰ with low variance and skewed 
toward enriched isotopic values (time intervals 
3100–2450, 2450–2000, and 1600–1300 Ma); 
and type 2, marked by a broad peak between 
6.5‰ and 8.0‰ with high variance and near-
normal distribution (time intervals 2000–1600, 
1300–900, and 900–400 Ma).

The secular change in δ18O of zircons from 
relatively low and constant during the Archean 
to a systematic increase through the Proterozo-
ic Era and Phanerozoic Eon was explained by 
Valley et al. (2005) to refl ect a shift in the δ18O 
composition of shale through time (see also 
Land and Lynch, 1996) in addition to an en-
hanced rate of subduction at the end of the Ar-
chean. However, pelitic rocks form only ~40% 
of the bulk sediment budget post–3.5 Ga. We 
have therefore used the relative abundance 
of different sedimentary rock types and their 
representative whole-rock δ18O compositions 
(see Eiler, 2001; Valley et al., 2005; Bindeman, 
2008) to assess the δ18O composition of global 
bulk sediment through time. We adopt the pro-
portions of sedimentary rocks determined by 

Ronov (1964), using a smoothed estimate of 
present-day distributions preserved within con-
tinental interiors (Fig. 3; see also Table DR2). 
The total preserved mass of sedimentary rock 
prior to 3 Ga is small, which hinders estimat-
ing their proportions; nonetheless, the Ronov 
(1964) treatment is considered appropriate for 
broad-scale hypothesis testing. We contrast the 
proportions proposed by Ronov (1964) with 
those proposed by K. Condie  (2014, personal 
commun.; see Fig. 3).

Shales, cherts, and carbonate rocks appear to 
have shifted toward higher δ18O values from the 
Archean to the present by 3‰–5‰ (Land and 
Lynch, 1996; Shields and Veizer, 2002; Perry 
and Lefticariu, 2003; Knauth, 2005), whereas 
sandstones and submarine volcanogenic rocks 
have remained nearly constant (Kolodny and 
Epstein, 1976; Anderson and Arthur, 1983; Ei-
ler, 2001). Assuming that the relative propor-
tions of these lithologies are representative of 
global sedimentary rock volumes through time, 
their integrated isotopic composition can be es-
timated. Although Figure 3 does not illustrate 

the preservation bias of large sedimentary pack-
ages (Bradley, 2008), it highlights overall tem-
poral trends (Veizer and Mackenzie, 2003) and 
reveals a relatively constant average of 14.9‰ 
± 1.0‰ (2σ) δ18O for bulk continental sedi-
ment from the Archean through Phanerozoic. 
This implies that the extent of fractionation of 
18O within the sedimentary environment has not 
changed signifi cantly since the Archean.

We evaluate temporal changes in supracrustal 
input at a resolution that divides the data set into 
25 m.y. bins (bin width optimization parameters 
of Shimazaki and Shinomoto, 2007, suggest 
23.1 m.y.). We then use the average δ18O bulk 
sediment (14.9‰, discussed herein) and mantle 
(whole rock) values (5.5‰; Bindeman, 2008) as 
end members of a mixing trend to parameterize 
what is termed the “reworking index” (Fig. 4). 
Our results show a subdued moving average 
with relatively minor variation in crustal rework-
ing from ca. 4.0 to 2.5 Ga, but a marked increase 
in reworking after 2.5 Ga accompanied by a 
pulsed pattern of sequential increases bounded 
by abrupt decreases at 1800 Ma, 850 Ma, and 
350 Ma (Fig. 4).

DISCUSSION
The patterns of peaks and troughs in zircon 

δ18O values (Fig. 4) broadly coincide with zir-
con age distribution profi les, excluding the 
ca. 2.7 Ga U-Pb age peak, which has subdued 
δ18O values (Fig. 1A). Pre–2.5 Ga zircons de-
fi ne type 1 δ18O distributions (Fig. 2B), with 
means near to mantle values and limited crustal 
reworking. Type 2 distributions (Fig. 2B), in 
contrast, have means at higher δ18O values and 
indicate that the post–2.5 Ga peaks in zircon 
age frequency are correlative to greater crustal 
reworking and harbingers of supercontinent 
tectonics. This is likely an outcome of continen-
tal collision and times of increased preservation 
of continental crust. After the initial formation 
of substantial crustal blocks, the geodynamics 
of plate convergence through time increasingly 
involved continental collisions accompanied by 
signifi cant crustal reworking, leading to isotope 
ratios that deviate from depleted mantle compo-
sitions (see also Hawkesworth et al., 2010; Ca-
wood et al., 2013). These fi ndings cast doubt on 
the hypothesis that zircon age frequency is asso-
ciated with increased juvenile crustal generation 
during mantle overturn or plume events (Stein 
and Hofmann, 1994; Rino et al., 2004; Stein and 
Ben-Avraham, 2007; Arndt and Davaille, 2013).

The onset of modern plate tectonics is 
thought to have begun by the Neoarchean (Ca-
wood et al., 2006; Ernst, 2009; Condie and 
Kröner, 2013; Dhuime et al., 2012). The ear-
liest subduction zones were likely dominated 
by the formation and accretion of oceanic 
arcs accompanied by minimal crustal rework-
ing and signifi cant recycling into the mantle 
(Condie and Kröner, 2013). Over time con-
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tinued subduction processes led to increased 
volume and thickness of preserved continental 
crust and sedimentary differentiation (Ernst, 
2009). These developments in Earth’s thermo-
mechanical attributes were accompanied by 
continental collisions, crustal thickening, and 
an increase in the degree of crustal reworking 
post–2.5 Ga. The link between increases in the 
crustal reworking index and the development 
of supercontinents highlights the role of con-
tinental collision in the preferential preserva-
tion of peaks of U-Pb crystallization ages in the 
continental crust (Fig. 1). These conclusions 
are consistent with other isotopic proxies (Zn 
in banded iron formation, Pons et al., 2013; Sr 
in seawater, Shields and Veizer, 2002) that are 
linked to the appearance of large, subaerially 
exposed continental masses near the Archean-
Proterozoic boundary.

The great oxygenation event would have pro-
moted enhanced infl ux of highly fractionated 
δ18O sedimentary material to basins, material 
that, when reworked via tectonomagmatic pro-
cesses, could have contributed to the dramatic 
increase in zircon δ18O between 2.5 and 2.15 Ga 
(Campbell and Allen, 2008). Interpretations of 
secular evolutions within this critical age win-
dow will benefi t especially from future coupled 
U-Pb and δ18O analyses in situ in zircons.
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Figure 3. Upper panel: Volume percent of 
different sedimentary rock types as func-
tion of age (from Ronov, 1964). Sedimentary 
proportions during Archean proposed by K. 
Condie (2014, personal commun.) are also 
displayed. Shaded areas are lithologies and 
time intervals wherein δ18O compositions 
are constrained (Table DR1; see the Data 
Repository [see footnote 1] for details and 
references). SV—submarine volcanogen-
ics, CE—continental extrusives, GW—gray-
wacke, A—arkose; QS—quartz sands, S—
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scribed in text superimposed over envelope 
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piled database. Average mantle δ18O: 5.5‰–
5.9‰ (Bindeman, 2008). Open diamond is 
average Archean bulk sediment composition 
using sedimentary proportions proposed by 
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Figure 2. A: Distributions of δ18O analyses of zircons normalized to total analyses within 
specifi c temporal subdivisions (see text) superimposed on mantle values of Valley et al. 
(1998). To test sensitivity of our chosen bin widths, boundaries were adjusted ±50 m.y.; this 
had negligible effect on δ18O distributions due to small number of analyses near window 
margins relative to thickness of our chosen windows. Calculation of δ18O composition of 
bulk sediment based on sedimentary models of Ronov (1964) and K. Condie (2014, personal 
commun.) is discussed in text. B: Schematic diagram of δ18O distributions of subduction- 
and collision-dominated temporal subdivisions.

Figure 4. Reworking index plotted through time, calculated by plotting average 
δ18O composition of zircons (in 25 m.y. bins) along univariant mixing line be-
tween δ18O composition of mantle (5.5‰) and calculated average bulk sediment 
δ18O composition (14.9‰ ± 1.0‰, 2σ). Note that zircons with low δ18O values 
(<5.0‰) are probably due to hydrothermal alteration (Valley et al., 2003).
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