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Abstract 

Zero-point vibrationally averaged (rg
0
) structures were computed at the PBE0/SDD/6-

31G* level for the [Pt
35

Cln
37

Cl5-n(H2
18

O)]

 (n=0-5), cis-Pt

35
Cln

37
Cl(4-n)(H2

18
O)(H2

16
O) 

(n=0-4), fac-[Pt
35

Cln
37

Cl(3-n)(H2
18

O)(H2
16

O)2]

 (n=0-3), [Pt

35
Cln

37
Cl5-n(

16/18
OH)]

2
 

(n=0-5), cis-[Pt
35

Cln
37

Cl(4-n)(
16/18

OH)2]
2-

 (n=0-4),  fac-[Pt
35

Cln
37

Cl(3-n)(
16/18

OH)3]


 

(n=0-3), cis-[Pt
35

Cln
37

Cl2-n(
16/18

OH)4]
2

 (n=0-2) and [Pt
35

Cln
37

Cl1-n(
16/18

OH)5]
2

 (n=0-

1), [Rh
35

Cln
37

Cl5-n(H2O)]
2

 (n=0-5), cis-[Rh
35

Cln
37

Cl(4-n)(H2O)2]
-
 (n=0-4), and 

fac-Rh
35

Cln
37

Cl(3-n)(H2O)3 (n=0-3) isotopologues and isotopomers. Magnetic shielding 

constants, computed at the ZORA-SO/PW91/QZ4P/TZ2P level, were used to evaluate 

the corresponding 
35/37

Cl isotope shifts on the 
195

Pt and 
103

Rh NMR spectra, which are 

known experimentally. While the observed effects are reproduced reasonably well 

computationally in terms of qualitative trends and the overall order of magnitude (ca. 

1 ppm), quantitative agreement with experiment is not yet achieved. Only small 

changes in M-Cl and M-O bonds upon isotopic substitution, on the order of 

femtometers, are necessary to produce the observed isotope shifts. 
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1. Introduction 

High-resolution 
195

Pt NMR spectroscopy has proven to be an indispensable 

spectroscopic tool for the structure elucidation and characterization of numerous 

platinum containing compounds in the last four decades, the topic having been 

extensively reviewed.
1,2,3 

The 
195

Pt nucleus has been shown to be a useful NMR 

probe, with a range of values for chemical shifts that span 13 000 ppm and a change 

of 100 ppm or more is observed when varying ligand substituents
1c

. 

 

The isotope effects on chemical shifts of transition metal nuclei in diamagnetic 

complexes have been reported long before the age of high-resolution NMR 

experiments.
4,5,6,7

 These effects are very large compared to those for other nuclei, 

when comparing the ranges of chemical shifts encountered.
8
 

 

McFarlane et al.
4
 illustrated the remarkable sensitivity of δ(

183
W) towards 

13/12
C 

isotopic substitution using 
1
H-(

183
W), 

1
H-(

31
P), and 

l
H-(

l83
W,

31
P) nuclear magnetic 

double- and triple-resonance experiments when determining tungsten-183 chemical 

shifts and other parameters in tungsten(0) complexes with tertiaryphosphine, 

q-cyclopentadienyl ligands. Bendall et al.5 reported a study on 
1/2

H isotope shifts in 

59
Co NMR spectra. An isotope shift of -5 ppm per deuterium atom has been observed 

for the 
59

Co resonance of tris(ethylenediamine)cobalt(III) chloride ([Co(en)3]Cl3) and 

hexaamminecobalt(III) chloride([Co(NH3)6]Cl3) after exchange of hydrogen for 

deuterium. Naumann et al.
6
 reported similar isotope effects (

1
H, 

2
H) on the 

93
Nb 

shielding of [Et4N][CpNb(X)(CO)3] (X = H, D). An isotope shift of -6 ppm per 

deuterium was observed. The work on 
51

V NMR by Rehder7 revealed the effect of 

C
18

O, 
13

CO, C
18

O, 
1
H

-
 and 

2
H

-
 substitution on the 

51
V NMR chemical shift of 

[CpV(CO)3H]
-
 and CpV(CO)4. A sizable isotope effect of -4.7 ppm is observed on 

going from [CpV(CO)3
1
H]

-
 to [CpV(CO)3

2
H]

-
. The mean isotope shift per 

13
CO 

amounts to 0.46 ppm. For CpV(CO)4 the isotope shift per C
18

O substitution was 

found to be -0.10 ppm. In a study of water exchange rates in tetraaquaplatinum(II) and 

trans-di-chloridobis-aquaplatinum(II) using H2
18

O, Elding reported 
16

O/
18

O isotope 

effects induced in the 
195

Pt NMR of several Pt(II) complexes,
9
 as well as in 
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[PtCl(H2O)5]
3+

 ranging up to 1.0 ppm. Sadler et al.
10

 demonstrated that at relatively 

high magnetic fields, the 
195

Pt NMR resonance of the hexachloroplatinate(IV) anion 

could be resolved into a set of seven peaks ascribed to the [Pt
35/37

Cl6]
2−

 species as a 

result of the natural 
35

Cl/
37

Cl isotope distribution.  

 

More Recently, Murray et al. demonstrated that in a 14.7 Tesla magnetic field, the 

highly-resolved 128.8 MHz 
195

Pt NMR resonances of [PtCl5(H2O)]
−
 and 

cis-[PtCl4(H2O)2] show well resolved isotope effects, which serve as unique 

spectroscopic ‘fingerprints’ for the unambiguous identification of some of the aquated 

species derived from the hydrolysis of the [PtCl6]
2−

 anion in acidic solution, 

independent of the average chemical shift of these complexes.
11

 It was also shown 

that the 
195

Pt NMR peaks of [PtCl5(H2O)]
−
 and cis-[PtCl4(H2O)2] complexes under 

carefully controlled spectroscopic conditions are resolved not only according to the 

statistically expected isotopologues, but also in some cases due to the isotopomers 

possible for these species, depending on whether a 
35

Cl or 
37

Cl ion is trans to the 

coordinated water molecule for each isotopologue in a given complex. Isotopomers or 

isotopic isomers are isomers with isotopic atoms, having the same number of each 

isotope of each element but differing in their positions. Isotopologues are molecules 

that differ only in their isotopic composition. Simply, the isotopologue of a chemical 

species has at least one isotope of an atom different to the parent.  

 

These remarkable isotope effects demonstrate the high sensitivity of 
195

Pt shielding to 

very small differences in the average 
195

Pt–
35

Cl compared to 
195

Pt–
37

Cl bond 

displacements in the various isotopologues and/or isotopomers possible for specific 

platinum complexes of a particular geometric structure. Recently, these isotope effects 

have been resolved for the hydroxido-chlorido complexes of Pt(IV)
12

. A key feature 

of hydroxido-chlorido complexes is the absence of isotopomers in the experimental 

spectra and will be addressed in this study. 

 

Interpretation of the origin of these isotope effects in the 
195

Pt NMR signals is 

achieved in the context of the elegant work of Jameson et al.
13,14,15

 whose calculation 

of the mean M–X bond displacements for octahedral MX6 molecules including 

[PtCl6]
2−

 and [PtBr6]
2−

 using L-tensor and Bartell methods with anharmonic force 

fields showed that the expected nuclear shielding changes in M (and where 

http://en.wikipedia.org/wiki/Isomers
http://en.wikipedia.org/wiki/Isotope
http://en.wikipedia.org/wiki/Isotope
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appropriate X) as a result of isotope replacement (and/or temperature effects) should 

be directly correlated to the mean M–L bond displacement. Consequently a direct 

proportionality between the isotope induced shielding of, in this case, 
195

Pt and the 

mass factor (m′-m)/m′ may be expected on 
37

Cl for 
35

Cl substitution. In general, as a 

heavier 
37

Cl
−
 replaces a 

35
Cl

−
 ion in the coordination sphere, increased shielding of the 

195
Pt is observed for a given isotopologue of a given species, as a result of some slight 

Pt–Cl bond contraction; the extent of this effect measured by Δδ
195

Pt depends on the 

overall number of coordinated Cl
−
 ions and the structure of the complex, but there 

appears to be no obvious/simple correlation between the magnitude of the Δδ
195

Pt 

value and n in [PtCln(H2O)6−n]
4−n

 (n = 2–5). It is noteworthy that the average chemical 

shift difference per 
37

Cl i.e. between the individually resolved isotopologue 

resonances is only Δδ
195

Pt = 0.22 ppm (ca. 28 Hz on a 128.8 MHz spectrometer). 

 

More recently, it has been observed that when 
18

O-enriched water is used as solvent, 

additional signals appear, which are ascribed to H2
16/18

O isotopologues and 

isotopomers.
16

  

 

Quantum-chemical computation of transition-metal chemical shifts is a stronghold of 

density-functional theory (DFT),
17

 and the advent of relativistic methods such as the 

zero-order regular approximation (ZORA) have made 
195

Pt NMR parameters 

amenable to computational study. 
18,19,20

 

 

Most of these calculations employ static equilibrium structures, which are 

independent of atomic masses. Using zero-point vibrationally averaged structures, 

isotope effects on 
59

Co chemical shifts have been reproduced and rationalized 

computationally.
21,22

 In a cobaloxime
21

 and the hexamine cobalt(III) complex,
22

 the 

observed 
1
H/

2
H shifts on the order of ca. 50 ppm - 100 ppm could be traced back to 

small changes in the Co-N bonds, on the order of 0.001 Å- 0.006 Å, upon isotopic 

substitution. Because of their much smaller magnitude, typically 1 ppm or less,
23

 the 

abovementioned isotope effects on 
195

Pt shifts pose a much bigger challenge to 

theory.  

   

In our previous paper
24

 we have calculated such zero-point corrections to the gas-

phase geometries of [Pt
35

Cl6]
2

 and [Pt
37

Cl6]
2

, for the [Pt
35

Cln
37

Cl5-n(H2
16

O)]

 (1, 
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n=0-5), cis-Pt
35

Cln
37

Cl(4-n)(H2
16

O)2 (2, n=0-4), and fac-[Pt
35

Cln
37

Cl(3-n)(H2
16

O)3]

 (3, 

n=0-3) isotopologues and isotopomers. The 
35/37

Cl isotope shifts on δ
195

Pt evaluated 

for these zero-point corrected (effective) geometries were found to qualitatively 

reproduce the observed trends and were found to be useful for the interpretation of the 

latter. 

 

This computational protocol is now extended to [Pt
35

Cln
37

Cl5-n(H2
18

O)]

 (n=0-5), 

cis-Pt
35

Cln
37

Cl(4-n)(H2
18

O)(H2
16

O) (n=0-4), fac-[Pt
35

Cln
37

Cl(3-n)(H2
18

O)(H2
16

O)2]

 (n=0-

3), [Pt
35

Cln
37

Cl5-n(OH)]
2

 (n=0-5), cis-[Pt
35

Cln
37

Cl(4-n)(OH)2]
2-

 (n=0-4),  

fac-[Pt
35

Cln
37

Cl(3-n)(OH)3]


 (n=0-3), cis-[Pt
35

Cln
37

Cl2-n(OH)4]
2

 (n=0-2) and 

[Pt
35

Cln
37

Cl1-n(OH)5]
2

 (n=0-1), as well as their 
16/18

OH isotopologues. For the aquo 

complexes, large solvation effects were apparent, but were found difficult to include 

at present.
24

 It is known that immersion in a polar solvent can reinforce metal-water 

bonds, probably due to cooperative polarization effects.
25

 In the gas phase, DFT tends 

to underestimate metal-ligand bond strengths, in particular in dative bonds involving 

water.
26

 The consequences on the computed isotope shifts are yet unknown.  

 

While the hydroxido-complexes are expected to interact more strongly with the 

solvent than the aquo species due to their higher charge (-2), the fact that hydroxido 

and chlorido ligands have the same charge could mean that solvation affects the bonds 

rather more uniformly in the hydroxido than in the aquo complexes. Thus, the 

protocol for the gas-phase calculations presented previously
24

, could still be a good 

approximation to the situation in solution, if effective error cancelation occurs, a 

possibility that will be explored in the present paper. 

 

Recent developments show that at high magnetic fields with carefully controlled 

solution temperatures, the 19.11 MHz 
103

Rh NMR
27

 signals of the series of 

[RhCln(H2O)6−n]
3−n

 (n = 3–6) complexes in equilibrated hydrochloric acid solutions, 

are also well-resolved into a distinctive fine-structure due to 
35

Cl/
37

Cl isotopologue 

and isotopomer effects, resulting in a unique NMR finger-print.
28
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We now extend our computational protocol to [Rh
35

Cln
37

Cl5-n(H2O)]
2

 (n=0-5), 

cis-[Rh
35

Cln
37

Cl(4-n)(H2O)2]
-
 (n=0-4), and fac-Rh

35
Cln

37
Cl(3-n)(H2O)3 (n=0-3) 

isotopologues and isotopomers.  

 

The mono-aquo Rh(III) complex has a higher charge (-2) than the Pt(IV) aquo-

complexes (up to ±1), which might lead to increased interactions with the solvent. 

With the same kind of trans influence operative in both Pt(IV) and Rh(III) series, the 

importance of the overall charge on the computed isotope shifts can now be assessed. 

Investigating these species in comparison to Pt(IV) aquo complexes is expected to 

inform on the reason why isotopomers are resolved in some cases, but not always.  

 

2. Computational Details 

The same protocol as in our previous study
24

 was applied. Geometries were fully 

optimised using at the PBE0/ECP1 level, i.e. employing the hybrid variant of the PBE 

functional,
29,30 

the Stuttgart-Dresden relativistic effective core potential (SDD ECP) 

along with its [6s5p3d] valence basis on Pt and Rh, 
31

and 6-31G* basis
32,33,34

 

elsewhere. This combination of functional and basis sets has performed very well for 

the description of bond distances between third-row transition metals and their 

ligands.
35

 Unless otherwise noted, tight optimization criteria and a fine integration 

grid were employed (opt=tight, grid=finegrid options in Gaussian). 

Effective geometries, rg
0
 at 0 K, were constructed in a perturbational approach from 

the equilibrium geometries re, the (mass-dependent) harmonic frequencies ωe, and the 

cubic force field V
(3)

 (for details see references 36,37,38,39,40)
41,42

. 

 

  
m e,m

)(

e,jmm

e,j

e,jjg,jejg
ω

V

ω
=rr  r r

3

2

0

,

0

,
4

1
     …(1) 

These calculations were performed using the Gaussian09 suite of programs.
43

 

 

For re and rg
0
 geometries of each isotopic substitution, 

195
Pt  and 

103
Rh shielding 

tensors were computed at the relativistic spin-orbit ZORA level, using the GGA 

PW91
44,45 

functional, together with an all-electron quadruple-ζ plus polarization 

function (QZ4P) basis set on Pt and Rh and polarized valence triple-ζ basis sets (TZP) 
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on Cl and H2O. The integration precision parameter was set to 10.0. These 

calculations employed the ADF2010.02 program.
46 

 

Selected complexes were reoptimized with the CPCM method,
47,48 

the equivalent of 

the conductor-like screening model (COSMO), as implemented in Gaussian 09, 

together with the parameters of water. Magnetic shieldings of these complexes were 

computed using the COSMO method
49

 as implemented in ADF2010.02. 

 

This level of theory performed well for the calculation of chemical shifts for various 

heavy metal complexes. For example, Autschbach et al.
18,19,20

 reported 
195

Pt and 
205

Tl 

NMR chemical shifts of the complexes [(NC)5Pt Tl(CN)n]
n− 

n=0–3, and of the 

related system [(NC)5Pt Tl Pt(CN)5]
3−

  calculated at this level. Koch et al.
50

 

reported reasonably accurate 
195

Pt chemical shifts of a series of octahedral 

[PtX6−nYn]
2−

 complexes for X = Cl, Br, F, I . Although δ(
103

Rh) can be calculated at a 

non-relativistic level
17,51

, for consistency with the 
195

Pt chemical shift calculations, 

ZORA-SO is also applied, which has been shown to work well also for 
103

Rh
52

. 

 

3. Results and Discussion 

3.1 
35/37

Cl Isotope Effects in [PtCln(OH)6-n]
2-

 (n=1-5) 

complexes 
DFT geometry optimizations were performed to calculate the ground-state 

equilibrium and zero-point averaged structures in the gas-phase of all the relevant 

complexes. These structures were then used in the theoretical determination of the 

195
Pt shielding tensors. Figure 1 shows the optimized geometries of [PtCl5(OH)]

2
 (4) 

cis-[PtCl4(OH)2]
2-
(5)

-
, fac-[PtCl3(OH)3]

2- 
 (6), cis-[PtCl2(OH)4]

2- 
 (7), and 

[PtCl(OH)5]
2-

 (8). 

 

In all minima, the OH bonds are essentially eclipsing other Pt-O or Pt-Cl bonds, 

arguably due to intramolecular OH
...

X interactions driven by electrostatics (for proper 

hydrogen bonds, the bond angles would be too small). No extensive conformational 

searches were undertaken, except for cis-[PtCl4(OH)2]
2-

, as discussed below.  
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Figure 1: Optimized structures of (4) [PtCl5(OH)]

2
(5) cis-[PtCl4(OH)2]

2- 
, 

(6) fac-[PtCl3(OH)3]
2-  

, (7) cis-[PtCl2(OH)4]
2-

, (8) [PtCl(OH)5]
2-

 and (5b) 

trans-[PtCl4(OH)2]
2-

. 

 

The Pt-Cl bonds trans to a hydroxido group are longer than those in a cis position, in 

agreement with observations from X-ray crystallography for 4
53

 and 5b
54

 (compare ra 

vs rb in Table S1 in the Supporting information, SI). This is mainly due to the larger 

trans influence of OH
-
 relative to that of Cl

-
.
55

 For the aquo complexes, the trans 

influence of Cl
-
 was larger than that of H2O, leading to a shorter Pt-Cl bond trans to a 

coordinated H2O. 

 

The Pt-
35

Cl bonds are longer relative to Pt-
37

Cl bonds as expected from the effect of 

anharmonicity as seen in Table S2 in the SI. A similar trend was found for the Pt-O 

bonds in Table S3 in the SI, where the Pt-
16

O bonds extend further in space than the 

corresponding Pt-
18

O bond. Note that the zero-point corrections to the eqilibrium Pt-

Cl distances are of the same order of magnitude as for the aquo complexes,
24

 ca. 0.5 

pm (Table S1). The same is found for the difference between the Pt-
35

Cl and Pt-
37

Cl 

bonds, up to ca. 40 fm (Table S2). 
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Figure 2: Isotopomers of (4) [PtCl5(OH)]
2
(5) cis-[PtCl4(OH)2]

2- 
, 

(6) fac-[PtCl3(OH)3]
2-  

, (7) cis-[PtCl2(OH)4]
2-

, (8) [PtCl(OH)5]
2-

, together with the 

labelling scheme adopted in the following figures; color code: 
35

Cl green, 
37

Cl purple. 
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Although it is the trans isomer of [PtCl4(OH)2]
2-

 that is found to crystallize with 

particular counter-ions,
54

 cis-[PtCl4(OH)2]
2-

 is calculated to be more stable by 0.3 

kcal/mol. For the purpose of this study, only (5) cis-[PtCl4(OH)2]
2-

 was included in 

the isotope shift calculations. 

 

All possible 
35/37

Cl isotopomers were calculated in the gas phase for complexes 4 – 8. 

The resulting vibrationally averaged structures were used as inputs for relativistic 

calculations of isotropic magnetic shielding constants at the 

ZORA-SO/PW91/QZ4P/TZ2P level.  To compare with experiment, isotope shifts  

were calculated relative to the corresponding all-
35

Cl isotopologue set to  = 0. The 

resulting isotopomers are displayed in Figure 2. 

 

Many of the static isotopomer structures can be interconverted through simple OH 

rotation about the Pt-O bonds, processes that are expected to occur very rapidly on the 

NMR time scale as discussed below. Thus, it is reasonable to assume that those 

isotopomers that are grouped together in the legends will only show a single NMR 

signal, and their computed shielding constants were averaged accordingly. 

 

In complex (5), there is one OH
...

O and one OH
...

Cl contact. Two OH
...

Cl contacts can 

be enforced by imposing C2 symmetry. This stationary point is not a minimum, but 

rather a transition state (with one imaginary frequency) connecting two degenerate 

rotamers of the C1-symmetric minimum, as shown in the energy profile below. 
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Figure 3: Energy profile of cis-[PtCl4(OH)2]
2- 

. The minima obtained interconvert via 

the transition state shown at the maximum.  

 

The energy barrier for this interconversion shown in Figure 3, is 1.2 kcal.mol
-1

, which 

is readily overcome on the timescale of the NMR experiments under standard 

conditions in solution (typical barriers that can be "frozen out" in variable-

temperature NMR are on the order of ~10 kcal.mol
-1

, the precise value depending on 

the shift difference and the actual rate constant
56

). Thus, it is indeed likely that the OH 

groups rotate spontaneously and rapidly about the Pt-O bonds on the NMR time-

scale.
56

  

 

For complex 4, the resulting shielding constants and the corresponding experimental 

isotope shifts are collected (Table S4 in the SI) and after conversion of the computed 

shieldings into relative shifts, plotted against each other in Figure 4. The sign of the 

experimental isotope shifts has been reversed, so that they appear in the same 

sequence as in a conventional NMR spectrum. 
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Figure 4 Calculated shielding differences vs. negative experimental 
35/37

Cl isotope 

shifts of the isotopomers of Figure 2, including the ideal line with unity slope. (a) 

[PtCl5(OH)]
2
4(b) cis-[PtCl4(OH)2]

2- 
5and (c) cis-[PtCl2(OH)4]

2- 
7. 

 

The overall observed trends as well as the overall order of magnitude of the isotope 

shifts are reasonably well reproduced by our computational protocol. As found for the 

aquo complexes in the previous paper, however,
24

 there are quantitative discrepancies, 

apparent in a noticeable scatter of the data and a typically overestimated slope of the 

calc vs. exp data. It is unclear at present whether these discrepancies are due to 
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residual numerical errors in the computations, deficiencies of the overall model (e.g. 

the neglect of thermal effects beyond the zero-point corrections), or missing solvation. 

 

Overall, however, this result is consistent with what has been found for the aquo 

complexes
24

, further validating our model. The divergence of the calculated shielding 

of the isotopomers of 4, labelled in Fig. 4 as (B,C), (D,E,F), (G,H,I), and (J,K) and 5 

labelled as (B, C), (D, E, F) and (H,G) will be discussed in 3.5.  

 

3.2 
16/18

O Isotope Effects in [PtCln(H2O)]
4-n

 (n=3-5) and 

[PtCln(OH)6-n]
2-

 (n=1-5) complexes 
 

So far only 
35/37

Cl isotopic substitutions have been considered, which arise from the 

natural distribution of these two isotopes. Recently it has been observed that when 

18
O-enriched water is used as solvent, the characteristic 

195
Pt fingerprints from the 

357/37
Cl substitution patterns are split into two more sets of signals, which are ascribed 

to 
16/18

O isotopologues and isotopomers.
16

 We have now also computed these 
16/18

O 

isotope effects. We begin our discussion with the aquo complexes 1 -3 (Figure 5). We 

note in passing that as with 5, cis/trans isomerism could be possible for the bis(aquo) 

complex 2. However, trans-PtCl4(H2O)2 is computed 6.1 kcal/mol higher in energy 

than the cis isomer (PBE0 level), in line with the observation of the latter in the 

solid.
57

 (cf. Table S6 in the SI). Also, the observation of separate isotopomers for the 

singly and triply substituted species (e.g. B and C in Figure 5 and 6 middle) would 

make the trans-form an unlikely candidate for the experimentally observed spectrum. 

Thus, only the cis-form has been considered in the computations. 

 

The 
35/37

Cl isotope effects for the H2
16

O isotopologues had been reported previously;
24

 

The computed 
35/37

Cl isotope shifts for the corresponding 
18

O isotopomers are plotted 

against experiment in Figure 6. The same patterns as for the parent 
16

O complexes 

were expected (as found experimentally),
16

 however, noticeably different results were 

obtained. For instance for complex 1 the overall computed range, i.e. the difference 

between isotopologues A and K (or J), increases from ca. 1.3 ppm with H2
16

O 
24

 to ca. 

1.8 ppm with H2
18

O (Figure 6a), compared to ca. 0.8 ppm observed for both. 

Experimentally, substitution of 
16

O for 
18

O in each isotopomer of 1 affords a rather 

constant upfield shift of (
195

Pt) ≈ 0.7±0.05 ppm. The variation in the computed  
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values is much larger and rather unsystematic, ranging from  ≈ +0.8 ppm to ≈ -0.5 

ppm (see Figure S1 in the SI). It appears that the sensitivity of the Pt-O bond length 

toward isotopic substitution is not very well captured by the present approach. 
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Figure 5: Top: optimized structures of [PtCl5(H2O)]

 (1), cis-PtCl4(H2O)2 (2) and fac-

[PtCl3(H2O)3]

 (3); bottom: isotopomers  with the labelling scheme adopted in the 

following figures; color code: 
35

Cl green, 
37

Cl purple. 
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Figure 6: Calculated shielding differences vs. negative experimental 
35/37

Cl isotope 

shifts of the isotopomers of Figure 6, including the ideal line with unity slope. a) 

[PtCl5(H2
18

O)]

; b) cis-PtCl4(H2

16
O)(H2

18
O); c) fac-[PtCl3(H2

18
O)(H2

16
O)2]

+
. 

 

The origin of this large discrepancy is not fully clear at present, but there are reasons 

to assume that solvation effects, so far neglected in our approach, can be decisive. In 

many computational studies of transition-metal aquo complexes it has been found that 

the M-OH2 distances can decrease appreciably on going from the gas phase into an 



16 

 

 

 

aqueous solution.
25

 Apparently the trans influence, which is prevalent among Pt(IV) 

and Pt(II) complexes 
55

(see optimized and measured Pt-Cl and Pt-O distances in 

Tables S6-S7), is somewhat attenuated in solution, and the water ligands are bound 

too weakly in the gas phase. In fact, remarkably large vibrational corrections rg
0
 ≈ 

0.01 Å are obtained for the Pt-O bonds in the gas phase (Table S7), indicative of 

rather anharmonic, shallow stretching potentials. As expected, the Pt-
16

O bonds are 

longer than the Pt-
18

O bonds (Table S7), but it appears difficult to model the 

sensitivity of the Pt-O bond length toward isotopic substitution quantitatively. 

 

The same is apparent for the hydroxido-complexes discussed above: e.g. 

experimentally for [Pt
35/37

Cl5(OH)]
2

(4), substitution of 
16

O for 
18

O in each 

isotopomer affords a rather constant upfield shift of (
195

Pt) ≈ 0.7±0.05 ppm
16

. The 

variation in the computed  values is much larger and the isotopomers are not 

grouped together, ranging from  ≈ +0.8 ppm to ≈ -0.04 ppm (see Figure S2 in the 

SI) similar to the aquo complexes (See Fig. S1 in the SI). Upon moving from the 
16

O 

to the 
18

O species, the deviations from experiment descrease slightly, in particular for 

complexes 5 and 7 (compare Figures 4 and 7). E.g., for 5, there is somewhat less 

scatter and deviation from the ideal line. The isotope shifts of isotopomers B and C 

are also closer together, consistent with what has been found experimentally.  

 

Overall, however, the agreement with experiment is less pronounced for the 

hydroxido species (4 - 8) than for the aquo complexes (1 - 3), as can be seen by the 

overestimation of the slope of the calculated shielding differences vs. experimental 

35/37
Cl isotope shifts plots (compare, for instance, Figures 6 and 7).   
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Figure 7: Calculated shielding differences vs. negative experimental 
35/37

Cl isotope 

shifts of the isotopomers of Figure 2, including the ideal line with unity slope. (a) 

[PtCl5(
18

OH)]
2
4(b) cis-[PtCl4(

18
OH)2]

2- 
5and (c) cis-[PtCl2(

18
OH)4]

2- 
7. 
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3.3 
35/37

Cl Isotope Effects in [RhCln(H2O)6-n]
3-n

 (n=3-5) 

complexes 
 

We have applied our protocol to the corresponding isotope effects on (
103

Rh) in 

[Rh
35

Cln
37

Cl5-n(H2O)]
2

 (9, n=0-5), cis-[Rh
35

Cln
37

Cl(4-n)(H2O)2]
-
 (10, n=0-4), and 

fac-Rh
35

Cln
37

Cl(3-n)(H2O)3 (11, n=0-3). The geometries for these complexes are 

similar to those of the Pt-aquo complexes 1 - 3 (top of Figure 5).
58

 The equilibrium 

bond-lengths are longer (by ~0.03 Å) for Rh complexes however. The zero-point 

corrections for the metal-ligand bond distances in the Rh (9 - 11) and Pt-aquo 

complexes (1 - 3) are very similar (compare Tables S6, S7, and S9 in the SI). Isotope 

shifts  were calculated assuming rapid H2O rotation about the Rh-O bonds and 

using the same labeling scheme as for the Pt congeners (Figure 5). The resulting 

shielding constants and the corresponding experimental isotope shifts are collected in 

Table S10 in the SI and, after conversion of the computed shieldings into relative 

shifts, plotted against each other in Figure S3. For complex 11, the resulting plot is 

reproduced in Figure 8. 

 

Figure 8: Calculated shielding differences vs. negative experimental
28

 (11) 

fac-Rh
35

Cln
37

Cl(3-n)(H2O)3. The labeling scheme is the same as in Figure 5. 

 

Compared to the Pt-aquo complexes, there is much more scatter, that may be due to 

the ‘softer’ nature of the Rh-L (L=H2O, Cl
-
) bonds, which enhance solvent 

interaction. The errors are more pronounced with complexes C, F, H and I for 9 
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(Figure S3 top) and F, G and H for 10 (Figure S3 middle). Interestingly, these are the 

isotopomers with a 
37

Cl trans to a H2O ligand.  

 

Overall it appears that the errors in the computations increase with (absolute) charge: 

neutral complexes are described the best (2, 11, cf. Figures 6b and 8), followed by 

singly charged species (1, 3, 10, cf. Figures 6a,c and S3 middle), with the largest 

deviations found for dianionics 4 - 9. This could point to missing solvation as the key 

factor. For 9, this is probably compounded by the softer nature of the M-OH2 bond, 

compared to the M-OH bond in dianionic 4 - 8. 

3.4 Shielding/bond-length derivatives 

It has been shown that the bond length changes due to zero-point vibrations are the 

dominant factors influencing the 
35/37

Cl isotope shifts in 1 - 3.
24

 To confirm the same 

for the hydroxido-complexes 4 - 8 we used representative shielding/bond-length 

derivatives ∂Pt/∂rPtX (X = O and Cl), together with the computed zero-point 

corrections for each bond length, i (rg
0
 in eq. 2) and the shieldings for the 

equilibrium geometry, σe in order to estimate effective shieldings at 0 K, σ
0

g,est 

according to eq. 2. 

g,est =  e +  rg,i

6

i = 1

∂Pt

∂rPtX,i

0 0g,est =  e +  rg,i

6

i = 1

∂Pt

∂rPtX,i

0 0

    …(2) 

 

These estimated shieldings can then be compared to the actual effective shieldings 

computed for the vibrationally averaged structure. Pt-Cl and Pt-O shielding/bond-

length derivatives have been evaluated for 4 - 8 by rigid scans of the different Pt-Cl 

and Pt-O bonds about their equilibrium values. The resulting ∂Pt/∂rPtCl and ∂Pt/∂rPtO 

values are listed in Table S11 in the SI. Figure 9 shows the resulting estimated 
37/35

Cl 

isotope effects on the 
195

Pt shieldings of 4 - 8, plotted vs. the actual computed values. 
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Figure 9: Shielding differences in 

35/37
Cl isotopomers of 4 - 8, estimated from eq. 2 

vs. actual computation from rg
0
 geometries, including the line with unity slope.  

 

Both span and sequence of the  values are described rather well by the increment 

method. This result further substantiates our underlying model, namely that the bond 

length changes due to zero-point vibrations is the dominant factor influencing the 

isotope shifts. 

 

Similarly, Rh-Cl and Rh-O shielding/bond-length derivatives have been evaluated for 

9 - 11 through rigid scans of the Rh-Cl and Rh-O bonds. The resulting ∂Rh/∂rRhCl and 

∂Rh/∂rRhO values are listed in Table S12 and the estimated 
37/35

Cl isotope effects on 

the 
103

Rh shieldings are plotted vs. the actual computed values in Figure S4. 

 

Compared to the Pt-aquo complexes 1 - 3 (see SI of reference 24), the shielding/bond-

length derivatives are consistently larger for the Rh congeners 9 - 11 (typically by a 

factor of 1.5). This finding is consistent with the observation that the total span of the 

35/37
Cl isotope effects in these systems is larger for (

103
Rh), ca. 1.2 ppm,

28
 than for 

(
195

Pt), ca. 0.7 ppm.
11,16

 This enhanced sensitivity of the metal shielding to the metal-

ligand distances in case of the Rh(III) complexes may contribute to the larger errors in 

the computed isotope shifts compared to the Pt(IV) species, although the order of 

magnitude of the calculated isotope shifts can still be traced back to that in zero-point 

corrections to the bond distances (Figure S4 in the SI). Larger discrepancies are found 

for complexes C, F, H and I for 9, as before these are the isotopomers with a 
37

Cl 
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trans to a H2O ligand. With -6500 ppm/Å, the Rh-O bond in this complex is also the 

largest shielding/bond-length derivative amongst all species 1 - 11. 

 

3.5 Solvation effects and Isotopomers 

As had been shown for complex 2, a simple polarizable continuum model (PCM) is 

inappropriate to evaluate solvent effects on the isotope shifts under scrutiny, because 

of apparent numerical instabilities during evaluation of the cubic force field V
(3)

 in eq. 

1.
24

 Microsolvation in a [PtCl5(H2O)]
.2H2O cluster was shown to have a noticeable 

impact on the computed isotope shifts, without improving quantitative accuracy.
24

 To 

probe the effect of the overall charge of the complex, we have now optimized the 

corresponding [RhCl5(H2O)]
2.2H2O cluster, placing the two extra water molecules 

such that they each accept an OH...OH2 hydrogen bond from the coordinated water 

ligand (Figure 10 top). 
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Figure 10: Calculated shielding differences vs. negative experimental 
35/37

Cl isotope 

shifts of the isotopomers of [RhCl5(H2O)]
2

2H2O, including the ideal line with unity 

slope. 
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On going from pristine 9 to [RhCl5(H2O)]
.2H2O, the equilibrium Rh-O bond distance 

decreases from 2.190 Å to 2.148 Å, similar to what is found in a continuum for (e.g. 

decrease from 2.1265 Å to 2.1052 Å for 11). At the same time, the zero-point 

correction for the Rh-O distance changes from rg
0
 = 0.015 Å (Table S9) to 0.013 Å 

upon microsolvation, consistent with a stronger, stiffer bond. 

 

Compared to pristine 9 (Figure S3 top), there is visible improvement in the computed 

35/37
Cl isotope shifts for the microsolvated complex (Figure 10), i.e. less scatter and 

values somewhat closer to experiment. The slope of the linear trend improves 

noticeably (from roughly 5 to 3), but is still much higher than unity. It is likely that 

the full solvation sphere would be needed for better accuracy, which is, however, 

prohibitively expensive at this point. 

 

To probe whether microsolvation could also improve the description of the dianionic 

Pt hydroxido-complexes, an explicit H2O was added to [PtCl5(OH)]
2

(4). As 

documented in Figure S7, however, no improvement was found over the results for 

the pristine complex shown in Figure 4a. Apparently, in our microsolvated complexes 

the distinction between cis and trans chloride ligands is overestimated to a large 

extent, consistent with the fact that only the former interact with the extra water 

molecules, not the latter. Many more water molecules would have to be added, 

eventually necessitating a dynamical description (CPMD or QM/MM) and exceeding 

the scope of this study.
59,60,61

 

 

The main difference seen in the experimental 
195

Pt NMR spectra between the aquo 

complexes 1 - 3 and the hydroxido-complexes 4 - 8 is the absence of isotopomers for 

the latter. For instance, while two distinct signals can be resolved for 

[Pt
35

Cl4
37

Cl(H2O)]
-
,
11

 which can be assigned to complexes B and C (cf. the labeling of 

the corresponding Rh complexes in Figure 5), only one signal is observed for the 

deprotonated analog [Pt
35

Cl4
37

Cl(OH)]
2-

,
12

 i.e. the signals for complexes B and C 

(Figure 2) are not resolved.  

 

The failure to resolve isotopomers could in principle be due to rapid (on the NMR 

time-scale) interconversion between them. This possibility (i.e. conformational non-
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rigidity) is highly unlikely, however, because it would be very difficult to explain why 

the hydroxido-complex should be fluxional whereas the corresponding aquo species 

would not be. An associate exchange mechanism involving more fluxional 7-

coordinate intermediates is also unlikely. Indeed, recent preliminary studies on 

[PtCl6]
2-

 in enriched Na
35

Cl solution suggest that Cl
-
 exchange is slow on the NMR 

time-scale.
62

  

 

It thus appears that the isotopomers of the hydroxido species have chemical shifts too 

close to be resolved. For complex 4, for example, the isotopomers of each 

isotopologue grouped together here as (B,C), (D,E,F), (G,H,I), and (J,K) should have 

essentially the same 
195

Pt shielding. This would imply that all the data points B,C 

should fall on the same point, the same with  D,E,F ; G,H,I, and J,K. However, this is 

not the case neither for the pristine complex in the gas-phase, where the computed 

spread within a group can exceed 0.5 ppm (e.g. D-F in Figure 4a), nor for the 

microsolvated complex, where in fact, the variations between isotopomers are even 

greater (e.g. to ca. 1.5 ppm for G-I in Figure S7). 

 

The computed bond-length changes upon isotopic substitution (rg
0
 in eq. 2) do not 

appear to be less pronounced for the hydroxido than for the aquo isotopomers. Could 

the variability in the shielding/bond-length derivatives be used to rationalize the 

different spread of the isotopomer shifts? For the prototypical complexes 2 and 5, the 

∂σPt/∂rPtX values are collected in Table 1. For the aquo complex 2, those for the 

equatorial and axial Pt-Cl bonds (i.e. cis and trans, respectively, to H2O) differ 

appreciably, by ca. 1800 ppm/Å. Thus, comparable bond-length changes upon 

isotopic substitution in these positions can translate into noticeable shift differences, 

and cis/trans isotopomers, i.e. (B,C), (D,E,F) etc., can be resolved. Conversely, one 

would expect more similar shielding/bond-length derivatives for the hydroxido-

complexes. However, in the gas phase the ∂σPt/∂rPtCl values for the pristine hydroxido 

species 5 are even more disparate, differing by more than 2000 ppm/Å for the Pt-Cl 

bonds cis and trans to OH (ra and rb values in Table 1). When the shielding/bond-

length derivatives are evaluated in the polarizable continuum, most ∂σPt/∂rPtX values 

do not change much from the gas-phase data (compare gas-phase and COSMO entries 

in Table 1), with the notable exception of ra in 5, for which this quantity decreases 
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significantly, by more than 1000 ppm/Å. As a consequence, the ∂σPt/∂rPtCl values for 

the two different Pt-Cl bond types are now more similar for 5, differing by little over 

1000 ppm/Å. In contrast, the much larger distinction between these bonds is preserved 

for 2 also in the continuum.
63

 

 

Table 1: Shielding/bond-length derivatives ∂Pt/∂rPtX evaluated at the ZORA-

SO/PW91 level. 

Compd. Bond
b
 ∂Pt/∂rPtX gas 

phase [ppm/Å] 

∂Pt/∂rPtX COSMO 

[ppm/Å] 

2 Pt-OH2 -3136 -3136 

 Pt-Clax -2099 -2370 

 Pt-Cleq
c
 -3885 -4069 

    

5 (rc)Pt-OH -2134 -1978 

 (ra)Pt-Cl -5188 -4019 

 (rb)Pt-Cl
c
 -2934 -2962 

b
See Figures 1 and 5 for definition. 

c
trans to hydroxido/water ligand. 

 

 

To probe whether the attenuated sensitivity of the 
195

Pt shieldings toward the Pt-Cl 

distances in the continuum would indeed translate into an improved description of the 

isotope shifts, we have used the COSMO shielding/bond-length derivatives from 

Table 1 together with the gas-phase zero-point corrections for the isotopologues and 

isotopomers of 5 to estimate the shieldings according to the increment method by eq. 

2. The result is plotted in Figure 11 along with the gas-phase shieldings calculated 

using DFT. Despite some scatter, the estimated shieldings are closer to the 

experimental observations.
12 

Moreover, the near-degenerate isotopomers D, E & F, 

are much closer together than in the pure gas-phase DFT calculations. From these 

results it seems that if the shielding/bond-length derivatives of the Pt-Cl bonds trans 

to the OH
-
 or H2O are sufficiently larger than for the other Pt-Cl bonds and the 

averaged bond-displacements of the isotopomers are sufficiently dissimilar, then 

isotopomers may be resolved.  
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Figure 11 Shielding differences in 
35/37

Cl isotopomers of 5, estimated from Eq. 2 

using ∂σPt/∂rPtX,I in a polarizable continuum and calculated shielding differences vs. 

negative experimental 
35/37

Cl isotope shifts of the isotopomers of 5, including the line 

with unity slope. 

 

 

Unfortunately, the same "mixed" increment method to estimate shieldings from the 

gas-phase bond displacements and shielding/bond-length derivatives determined in a 

polarized continuum does not improve the results in general, possibly because in 

some cases bond-length changes can be the decisive factor, rather than the 

shielding/bond-length derivatives.  

 

For the fac-[PtCl3(OH2)3]
+ 

species 3, for instance, immersion in a polar solvent by 

means of the PCM method, shortens the Pt-O bond by 0.034 Å, consistent with a 

stronger stiffer bond. This causes the Pt-Cl bond-length to increase by 0.013 Å 

(similar trends are found for the neutral Rh congener 11). The effect is less 

pronounced in the fac-[Pt
35/37

Cl3(OH)3]
2- 

species, where the Pt-O bond-length 

decreased by only 0.002 Å. Interestingly, the Pt-Cl bond-length also decreased, by 

0.029 Å. Thus, for both aquo and hydroxido complexes, there appear to be differential 

solvation effects on the strengths of the various bonds within a complex, which may 

be critical for the bond displacements in the isotopologues and isotopomers. Further 

theoretical work is necessary to describe these solvation effects properly and to 

compute and predict the isotope effects accurately. 

 

 



26 

 

 

 

Conclusions 

We have presented calculations of magnetic shieldings at appropriate DFT levels for 

the isotopologues and isotopomers of a series of Pt(IV) and Rh(III) complexes 

obtained from 
35/37

Cl or 
16/18

O substitution of chlorido, aquo and hydroxido ligands. In 

most cases, the 
195

Pt and 
103

Rh NMR nuclear shieldings computed for zero-point 

vibrationally averages structures of these species reproduce the order of magnitude of 

the observed isotope shifts reasonably well, up to ca. 1 ppm, although occasionally a 

significant overestimation of the effects is found. 

 

In most cases, general trends are also captured qualitatively, thus providing a 

theoretical basis for the origin of subtle isotope shifts in 
195

Pt and 
103

Rh NMR spectra. 

NMR was shown to be able to detect bond-length changes upon isotopic substitution 

on the femtometer scale. The computed isotope shifts can be traced back to bond-

length changes via an increment method. 

 

It has been shown that the hydroxido ligands can rotate spontaneous and rapidly (on 

the NMR time-scale) about the M-O bond by investigating the interconversion of two 

degenerate Pt(IV) rotamers, indicating that observed chemical shifts are essentially 

averaged between rotamers. 

 

Agreement with experiment tends to decrease with increasing charge on the complex, 

and from 
35/37

Cl to 
16/18

O isotope shifts. Neglect of solvation appears to be the critical 

factor. For the Rh complexes, the error inherent from the neglect of the solvent in the 

computational protocol, is inflated by the higher (relative to Pt(IV)) sensitivity 

towards isotopic substitution seen by the shielding/bond-length derivatives calculated 

for these complexes. 

 

A possible explanation is proposed to rationalize why 
35/37

Cl isotopomers are not 

detected experimentally in some cases, notably for the Pt hydroxido-complexes. 

Using continuum models to calculate solvent effects on shielding/bond-length 

derivatives it appears that in the aquo complexes, the sensitivity of the metal shielding 

toward elongation of a Pt-Cl bond strongly depends on the nature of the ligand trans 

to that bond (i.e. Cl or H2O). In this case, certain isotopomers can be resolved 

experimentally. For the hydroxido-complexes this sensivity of the metal shielding 
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toward the individual Pt-Cl bonds is much attenuated, to the point that the latter can 

become magnetically equivalent. Unfortunately, neither simple polarizable continuum 

models nor small, microsolvated complexes lead to generally improved isotope shifts 

for the series investigated.  

 

The relativistic treatment of heavy nuclei and the addition of zero-point corrections 

have enhanced the use of NMR, rendering it a powerful structural tool. Often 

candidates differing in constitution or conformation can be distinguished based on the 

accord between computed and experimental chemical shifts.
64

 Now, theoretical 

modeling of structural effects on NMR parameters extends to the smallest scale, 

distance changes of a few femtometers upon isotopic substitution. 
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