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Abstract

Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark
maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the
maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather
slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth
(unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of
Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been
tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau
(24u139170N 109u529140W), in the southern Gulf of California (minimum distance between tag and recapture sites =
approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth
rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously
thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the
fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark
captured during our study was 464 cm TL but individuals .450 cm TL were extremely rare (0.005% of sharks captured). We
conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions,
and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates.
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Introduction

Tiger sharks (Galeocerdo cuvier) are wide-ranging [1–4] apex

predators that consume a diverse array of vertebrate and

invertebrate prey [5],[6], while utilizing a broad variety of coastal

and oceanic habitats [1–4]. They reproduce on a triennial cycle

with average litter sizes of 30 to 50 pups ranging in size from 80 to

90 cm Total Length (TL) at birth [7]. Tiger sharks grow to a large

size, with 13 studies published between 1975 and 2012 reporting

maximum TL ranging from 381 to 550 cm (Table 1), however, an

earlier, unconfirmed report suggested that female tiger sharks can

reach 740 cm TL [8]. Previous studies indicate they grow

relatively fast (K = 0.11– 0.46 year21; [9–12]) compared to some

other carcharhinid sharks (e.g. K = 0.10 – 0.12 year21 for Hawaii

sandbar sharks, Carcharhinus plumbeus; [14]). There is, however,

considerable regional variation in reported tiger shark growth

rates. For example, juvenile tiger sharks grow almost twice as fast

in the Gulf of Mexico as in the Northwest Atlantic [9]. Some of

this variation may stem from the different methods used to

estimate growth (e.g. vertebral ring counts versus mark-recapture

experiments) [15], compounded by small sample sizes and lack of

validation in some studies [16]. The only study specifically

examining tiger shark growth in Hawaii, suggests that growth is

relatively slow (K = 0.16 year21, [16]) compared to several other

regions (e.g. K = 0.2 year21 in South Africa, [11]; K = 0.27–0.46 in

NW Atlantic, [13]). However, the veracity of the existing Hawaii

growth estimates are questionable given the lack of validation of

vertebral annual ring formation [17], overall small sample size

(N = 28), and limited data for small and large size classes.

Unlike vertebral ring counts where growth is inferred rather

than measured, mark-recapture methods empirically measure

growth of animals between two points in time [12],[18],[19].

However, obtaining sufficient mark-recapture data to generate

accurate growth curves for large marine predators is challenging

because a sample size of hundreds of tagged animals representive

of the species entire size range is generally required to yield a

sufficient number of recaptures (recapture rates for tiger sharks are

typically ,10%; [10]). Furthermore, long periods of time (months

or years) are needed for growth to outpace the potential influence

of measurement errors. Thus, a sustained effort over many years is

generally necessary to generate robust estimates of growth for

species such as tiger sharks. For twenty years, the University of
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Hawaii has conducted a research program aimed at elucidating

tiger shark biology, and throughout this period tiger sharks have

been tagged and periodically recaptured. Here we use these

empirical mark-recapture data to estimate growth rates and

maximum size for tiger sharks in Hawaii.

Materials and Methods

Ethics Statement
Vertebrate work carried out during this study was approved by

the University of Hawaii Institutional Animal Care and Use

Committee (protocol #05-053 et seq.). Field studies did not

involve endangered or protected species. Sharks were captured in

both Hawaii state waters, where no specific permissions were

required, and under permit in the Papahanaumokuakea Marine

National Monument (U.S. Fish and Wildlife Special Use Permit

#12521-06048, State of Hawaii Department of Land and Natural

Resources permits # DLNR.NWHI06R019, NOAA-

NWHIMNM- permit #2006-012, and Papahanaumokuakea

Marine National Monument permits # PMNM-2007-031,

#PMNM-2008-027 and # PMNM-2009-037).

Capture and tagging
From September 1993 to January 2013, we captured tiger

sharks at various locations throughout the Hawaiian Archipelago.

Sharks were captured using demersal long-lines baited with large

tuna heads and fish scraps, and soaked for 2–12 h in depths of 10

to 100 m [21]. Captured sharks were brought alongside a 6 m

skiff, where they were tail-roped and inverted to initiate tonic

immobility. Three length measurements were recorded from each

shark; Pre-caudal Length (PCL- tip of the snout to the pre-caudal

pit), Fork Length (FL- tip of the snout to the caudal fork), and

Total Length (TL- tip of the snout to a point on the horizontal axis

intersecting a perpendicular line extending down from the tip of

the upper caudal lobe) (for illustrated details of shark measurement

protocols see [22]). Sex was determined by the presence, size and

degree of calcification of claspers. Sharks were tagged using either

NMFS ‘M’ capsule or HallprintTM ‘spaghetti’ shark tags inserted

into the dorsal musculature at the base of the first dorsal fin. The

NMFS ‘M’ tags consist of a stainless steel dart head, connected via

monofilament line to a Plexiglas capsule containing waterproof

paper printed with the tag number and return instructions (see also

[20]). The HallprintTM ‘spaghetti’ shark tags (Hallprint Pty. Ltd.,

Victor Harbor, South Australia) were of the ’wire through’ variety

(plastic sheath surrounding a stainless steel wire core connected to

the stainless steel dart head) with contact details and a unique ID

number printed along the plastic sheath. We switched from NMFS

capsule tags to Hallprint tags because several capsule-tagged

sharks were recaptured with the plastic data capsules missing.

Table 1. Empirically measured tiger shark maximum sizes from peer-reviewed literature.

Region Maximum size (cm TL) [sex] N Source of sample Reference [citation]

Australia (Queensland) 550 [Female] 4757 Shark control program, animals measured by
commercial contractors

Holmes et al. 2012 [41]

Australia (Queensland) 428 [Female] 835 Shark control program, animals measured by
commercial contractors

Simpfendorfer 1992 [40]

Australia (Northern Australia) 418 [Female] 299 Commercial gill-net fisheries and scientific
research cruises (long line, trawl),
animals measured by fisheries observers and
scientific personnel

Stevens and McLoughlin
1991 [39]

Australia (New South Wales) 382 [Male] 89 Sportfishing catches, some lengthsmeasured
by scientific personnel others derived from
weight using Length-Weight relationships
established by Stevens 1984

Stevens 1984 [48]

Australia (Western Australia) 445 [Not given] 449 Scientific study using single-hook drumlines Wirsing et al. 2006 [12]

Australia (Western Australia) 407 [Not given] 252 Scientific study using single-hook drumlines Heithaus 2001 [46]

Australia (Western Australia) 430 [Female] 225 Scientific study using single, or double-hook
setlines

Simpfendorfer et al. 2001 [6]

South Africa (KwaZulu-Natal) 410 [Female] 54 Shark control program and commercial fisheries,
measured by scientific personnel

Bass et al. 1975 [47]

South Africa (KwaZulu-Natal) 392 [Male] 101 Shark control program measured by scientific
personnel

Wintner and Dudley 2000 [11]

USA (Western North Atlantic) 417 [Female] 238 Research cruises, commercial and recreational
fishing vessels, sportfishing tournaments,
measured by scientific personnel

Kneebone et al. 2008 [13]

USA (Atlantic/Gulf of Mexico) 381 [Male and Female] 163 (1) Commercial and research longline catches,
recreational tournament catches,
measured by scientific personnel

Branstetter et al. 1987 [48]

USA (Gulf of Mexico) 410 [Female] 45 Longline and sportfishing catches
measured by scientific personnel

Branstetter 1981 [49]

USA (Hawaii) 447 [Female] 318 Shark control program, incidental and research
catches measured by scientific personnel

Whitney and Crow 2007 [7]

For ease of comparison, all measurements are Total Length in cm. Where necessary, original PCL of FL values have been converted to TL using length-length conversion
relationships given in Table 3.
doi:10.1371/journal.pone.0084799.t001
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Analyses of Size and Growth
We used a one-way ANOVA with least squares testing of means

to compare the average sizes of all captured male and female tiger

sharks. Linear regression analyses were used to generate length-to-

length conversion formulae (i.e. PCL to FL etc.) from our data set

(both sexes combined). A Chi-squared test was used to determine

whether tiger shark sex ratio was significantly different from 1:1.

Sex-specific and combined-sex mark-recapture data were fitted

to the von Bertalanffy growth equation using two different

methods. The first utilized the Gulland and Holt [23] method

which uses linear regression to fit a line through a plot of average

size versus annual growth rates with -K equaling the slope of the

line and L‘ equaling the x-intercept. The second method was an

adaptation of the Francis [18] maximum likelihood model

(GROTAG) for the Microsoft Excel solver function [19]. This

method is a re-parameterization of the Fabens’ (1965) growth

model, where the usual von Bertalanffy parameters, K and L‘, are

replaced by two alternative parameters, ga and gb, which represent

mean annual growth increments (mm/yr) of chosen reference

lengths a and b [18]. These parameters have better statistical

properties than K and L‘, particularly when the entire size range of

the species is not represented in the data [15], [18]. Additional

parameters, such as growth variability (v), the mean (m) and

standard deviation (s) of measurement error, seasonality (u, w), and

outlier contamination (p) were added to the model in a step-wise

fitting procedure. Likelihood ratio tests (LRT) were used to

determine the final model, where for a significant (P,0.05)

improvement in fit, the likelihood value must increase by at least

1.92 with the introduction of one parameter and 3.0 with the

introduction of two parameters [18]. Ninety-five percent confi-

dence intervals (CIs) were estimated using a bootstrapping method

as implemented in GROTAG [19]. Significant differences

between data sets were identified by comparing CIs and the

extent of bootstrap overlap [24].

Only data from sharks at liberty for more than 25 days and with

positive growth rates were used to generate growth estimates.

Tiger shark reference lengths, a (104 cm) and b (240 cm) were

chosen so that the majority of individuals in each data set were

between these two values [18]. To facilitate comparisons of

Hawaiian tiger shark growth parameters with those from previous

studies [9], [10], [12] we used PCL measurements as the basis for

our growth rate estimates and the GROTAG model outputs were

converted to the von Bertalanffy growth parameters K and L‘

following Francis [18]. The best fit von Bertalanffy growth

parameters K and L‘ derived from the GROTAG model were

used to generate a growth curve for Hawaii tiger sharks (both sexes

combined) assuming a birth size of 85 cm TL [7].

Results

Four hundred and twenty tiger sharks ranging in size from 88 to

464 cm TL (57 to 365 cm PCL) were captured from 1993 to 2013

(Fig. 1). The sex ratio of our sample was significantly skewed

toward females (male:female ratio = 0.65, x2 = 21.7, df = 1,

p,0.001), and females were significantly larger on average than

males (Table 2). The largest male tiger shark in our sample was

406 cm TL (327 cm PCL), whereas the largest female was 464 cm

TL (365 cm PCL), and 14% of females captured were larger than

the biggest male captured (Fig. 1). Overall, tiger sharks of at least

400 cm TL (,306 cm PCL) were relatively common, accounting

for 10% of our sample, but individuals larger than 450 cm TL

(,347 cm PCL) were very rare, accounting for only 2 of 420

(0.005%) sharks captured (Fig. 1). Length-length regression

analyses yielded conversion relationships with R2 values .0.98

(Table 3).

Of the 420 tiger sharks tagged and released, 50 (11.9%) were

recaptured, each on 1–3 occasions. For recaptured sharks, size at

release ranged from 96 to 373 cm TL (63 to 282 cm PCL), size at

recapture ranged from 174 to 384 cm TL (127 to 290 cm PCL)

and time at liberty ranged from 15 to 2,421 days (median = 197

days). All recaptures were from within the Hawaiian Archipelago

except a single shark recaptured by Mexican fishermen off Isla

Jacques Cousteau (formerly Isla Cerralvo, 24u139170N

109u529140W), in the southern Gulf of California (minimum

distance between tag and recapture sites = approximately

Figure 1. Size distribution of male and female tiger sharks
captured in Hawaii 1993–2013.
doi:10.1371/journal.pone.0084799.g001

Table 2. Average size of male and female tiger sharks
captured by research fishing in Hawaii 1993–2013.

Male Female F df p

Total length 248.5 (84)[163] 296.8 (84)[251] 33.0 1, 412 p,0.001

Fork length 201.5 (73)[164] 243.1 (73)[249] 32.3 1, 411 p,0.001

Precaudal
length

183.2 (68)[164] 220.9 (68)[253] 30.7 1, 415 p,0.001

Numbers in parentheses are standard deviations, numbers in square brackets
are sample sizes. Anova test statistics (F) for the comparison of mean male and
female sizes are given along with degrees of freedom (df) and probability
values (p).
doi:10.1371/journal.pone.0084799.t002

Table 3. Length to length relationships for tiger sharks (male
and female combined) captured in Hawaii 1993–2013.

x y b0 b1 r2

PCL TL 26?15 (1?78) 1?22 (0?008) 0?98

TL PCL 217?38 (1?57) 0?81 (0?005) 0?98

FL TL 19?62 (1?68) 1?14 (0?007) 0?99

TL FL 213?57 (1.56) 0?87 (0?005) 0?99

PCL FL 6?07 (0?68) 1?07 (0?003) 0?99

FL PCL 24?95 (0?64) 0?93 (0?003) 0?99

Linear regression coefficients are for the model yi = b0+b1xi. S.E. of the means are
in parenthesis.
PCL, Pre-caudal Length (cm); FL, Fork Length (cm); TL, Total Length (cm).
doi:10.1371/journal.pone.0084799.t003
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5,000 km), after 366 days at liberty (DAL). Recaptured sharks with

damaged or unreadable tags (N = 7), those not measured by

scientific personnel (N = 2) or with negative growth (N = 4), were

removed from the data set. The remaining 26 females, 10 males,

and an additional unsexed individual were used in the sex-specific

and sexes combined growth analyses (Table 4).

Gulland and Holt (1959) method
Linear regression analyses of average PCL versus annual growth

rates yielded negative slopes (i.e. declining growth with increasing

length) for males, females and both sexes combined. Female K was

0.40 and PCL‘ was 283.2 cm (TL‘ = ,372 cm), male K was 0.48

and PCL‘ was 272.1 cm (TL‘ = ,358 cm), and overall K was

0.41 and PCL‘ was 282.5 cm (TL‘ = ,371 cm).

Francis (1988a) method
The models containing ga, gb, growth variability, and standard

deviation of measurement error resulted in the best fit to the von

Bertalanffy growth model for all data sets (Table 5). Model fit was

not significantly improved by the inclusion of additional param-

eters, as evident in the likelihood ratio tests. However, with the

exception of model 1 for male and model 4 for female tiger sharks,

Table 4. Details of recaptured sharks used to estimate growth models.

Sex Tag Date Recapture Date Days at Liberty PCL-1 (cm) PCL-2 (cm)
Growth overall
PCL (cm)

Annual growth rate
PCL (cm/y)

F 10/26/11 11/21/12 392 108 131 23 21.4

F 1/30/09 3/16/09 45 117 127 10 81.1

F 3/9/09 6/3/09 86 128 150 22 93.4

F 6/29/01 11/18/02 507 131 182 51 36.7

F 1/12/05 3/3/09 1511 136 256 120 29.0

F 10/12/95 2/27/96 138 138 161 23 60.8

F 6/11/11 12/6/11 178 140 170 30 61.5

F 6/8/08 6/15/09 372 150 188 38 37.3

F 2/23/01 8/24/01 182 151 176 25 50.1

F 6/20/08 11/17/09 515 159 222 63 44.7

F 11/16/95 10/16/00 1796 160 277 117 23.8

F 10/24/95 1/30/96 98 164 179 15 55.9

F 3/7/02 11/18/02 256 164 193 29 41.3

F 4/16/09 4/10/12 1090 170 245 75 25.1

F 8/24/01 3/7/02 195 178 193 15 28.1

F 3/7/02 5/22/02 76 179 185 6 28.8

F 3/7/02 9/4/02 181 181 204 23 46.4

F 8/24/01 11/18/02 451 202 255 53 42.9

F 9/10/96 8/12/97 336 208 219 11 11.9

F 8/3/08 5/26/09 296 210 221 11 13.6

F 3/16/09 4/16/09 31 212 215 3 35.3

F 2/19/08 7/21/11 1248 214 249 35 10.2

F 1/10/95 5/19/95 129 224 235 11 31.1

F 8/9/96 11/6/96 89 233 235 2 8.2

F 12/7/94 5/10/95 154 249 251 2 4.7

F 8/24/08 7/21/09 331 280 290 10 11.0

M 12/11/10 8/25/11 257 63 138 75 106.5

M 6/29/01 2/14/08 2421 136 257 121 18.2

M 5/10/94 11/16/95 555 162 218 56 36.8

M 10/1/96 10/29/96 28 164 168 4 52.1

M 8/24/01 11/18/02 451 177 191 14 11.3

M 10/26/08 12/2/09 402 221 241 20 18.2

M 10/12/94 10/24/95 377 224 245 21 20.3

M 8/10/95 2/2/96 176 229 237 8 16.6

M 1/20/95 5/10/95 110 240 248 8 26.5

M 5/19/95 12/5/95 200 269 278 9 16.4

U 10/8/10 9/26/11 353 263 280 17 17.6

PCL = Precaudal Length.
doi:10.1371/journal.pone.0084799.t004
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estimates of all parameters were very similar among all models and

all data sets. Similarity between parameter estimates and the low

value of the standard deviation of measurement error suggests the

model was unable to accurately estimate measurement error,

probably due to low sample size and lack of individuals at liberty

for short amounts of time (,30 days) in the final data set. No

individuals had absolute standardized residuals greater than 3.0;

therefore, exclusion of the outlier contamination parameter from

the final model was warranted as also evident by the lack of

improvement of fit with its inclusion.

To assess final model fits, residuals were plotted against length-

at-release and predicted growth (Figure 2). Residuals declined with

increasing length-at-release because mean growth declined with

length [25], whereas residuals versus predicted growth showed the

opposite trend, as would be expected. Standardized residuals

(residuals divided by si, which, in the selected models, equals s)

showed no pattern, indicating that the model assumption that

growth variability is dependent on mean growth was not violated

[15]. Overall, suitability of final models from tiger shark mark-

recapture data was indicated by residual plots.

The best fit models for the sex-specific and both sexes combined

data sets resulted in very similar growth-at-size estimates (ga, gb)

and the converted K and L‘ (Table 5). The estimated K was 0.31

for all data sets and PCL‘ ranged from 308.9 cm (TL‘ =

,403.0 cm) to 311.5 cm (TL‘ = ,405.8 cm). The estimated

growth variability ranged from 0.34 to 0.38 between data sets.

Ninety-five percent confidence intervals were greater for males

relative to females and both sexes combined, likely due to the

lower sample size of males.

The growth curve generated from Von Bertalanffy parameters

produced by the best fit GROTAG model (Figure 3) illustrates the

early rapid growth of tiger sharks in Hawaii. On average, tiger

sharks in Hawaii reach 340 cm TL by age 5, and attain a

maximum size of 403 cm TL. Our model further indicates that the

fastest growing individuals attain 400 cm TL by age 5, and the

largest reach a maximum size of 444 cm TL.

Discussion

Although our sample size was relatively small (37 useable

recaptures), it was within the recapture sample size range used to

generate tiger shark growth curves in other previously-published

studies (e.g. N = 19, [12], N = 42, [10]). Our sample also consisted

of validated measurements of growth over a wide range of tiger

shark sizes, and yielded robust estimates of growth using the

Francis [15] method. This method has been used previously to

estimate growth of several shark species including dusky shark

(Carcharhinus obscurus) [19], [26], shortfin mako shark (Isurus

oxyrhincus) [27], tiger shark [13], porbeagle shark (Lamna nasus)

[28], blue shark (Prionace glauca) [29], school shark (Galeorhinus

Figure 2. Francis growth model residual plots. Plots of Francis growth model residuals (observed minus predicted) versus predicted growth
(PCL (cm/yr)) for tiger shark a) male, b) female, and c) sexes combined and length-at-release (PCL (cm)) for d) male, e) female, and f) sexes combined.
doi:10.1371/journal.pone.0084799.g002
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galeus) [30], and whiskery shark (Furgaleus macki) [31]. In studies

where both the Francis [15] and Gulland and Holt [23] methods

were employed they either produced similar growth estimates [29],

[30] or the Francis [15] method produced more biologically

realistic growth estimates [13], [29], [32]. An important caveat of

all growth models is that reliability can be compromised when

recapture size range is not representative of population size ranges.

The Gulland and Holt [23] method is particularly vulnerable to

such shortcomings. This is apparent in the present study with the

lack of recaptured very large (i.e. slowest growing) individuals

resulting in the Gulland and Holt [23] model producing a smaller

L‘. Although it is not possible to statistically compare the two

methods, the Francis [15] method is preferred over the Gulland

and Holt [23] method for Hawaii tiger shark tag/recapture data

for two reasons: 1) residual plots indicate a satisfactory fit to the

data, and 2) the best fit model included parameters for individual

variability in growth (v) and measurement error (s), thus

warranting the use of a model that can capture these potential

sources of bias.

Failing to explicitly account for individual variability in growth

(i.e., assuming all individuals in a population grow according to

fixed parameters) and measurement error can result in biased

mean growth estimates [32–34]. Estimates of Hawaii tiger shark

individual variability in growth are similar to those produced by

the Francis [18] method for western north Atlantic tiger sharks

[13]. This suggests that individual variability in growth is typical

for tiger sharks across their geographic range, as is also the case in

other carcharhinids (e.g. Blacknose sharks, Carcharhinus acronotus;

[35]). Although small, the best fit model also included s indicating

that it was substantial enough to influence growth estimates. The

inclusion of s but not m is common in many growth studies that use

the Francis method [19].

Our results suggest tiger sharks in Hawaii grow twice as fast as

previously believed (K = 0.31, this study, versus K = 0.16 [16]),

and thus exhibit growth rates consistent with those seen in several

other regions (e.g. K = 0.27–0.46 in NW Atlantic [13]). Overall,

tiger sharks are fast growing compared to other shark species in

Hawaii (e.g. K = 0.10–0.12 for Hawaii sandbar sharks, Carcharhinus

plumbeus [14]). This is especially true of juvenile tiger sharks which

were found to grow over 100 cm year21 in Hawaii, a rate

comparable to that recently reported for juvenile tiger sharks in

the South Atlantic (118 cm year21 [36]). This rapid growth may

be a strategy for reducing juvenile predation risk as has also been

suggested for the rapidly-growing smalltooth sawfish, Pristis

pectinata, which is another elasmobranch that reaches a large adult

size [37]. In order to fuel their rapid growth, tiger sharks

presumably eat more prey than slower-growing sharks, and may

achieve this by targeting slow-moving, armored and toxic species

that are infrequently exploited by other predators (e.g. [5], [6]).

Another consequence of this rapid growth is that tiger sharks in

Hawaii probably reach maturity at a relatively young age. Using

the minimum size of maturity estimates provided by Whitney and

Crow [7] (Fig. 3), our new growth rate estimate suggests that on

average female tiger sharks reach maturity by age 5 and males by

age 4, with the fastest growing individuals of both sexes reaching

maturity in as little as 3 years, comparable to recent estimates of

minimum age of maturity for tiger sharks in the South Atlantic off

Brazil (approximately 3.5 years, [36]).

Other demographic characteristics of the Hawaii tiger shark

population were also consistent with those in several other regions.

For example, the sex ratio among Hawaii tiger sharks was

significantly skewed toward females, as has also been reported

from Australia [12],[38–40], the Southeastern United States [41]

and South Africa [11]. This female-biased ratio may indicate

sexual segregation (e.g., females occupy coastal areas where most

fishing effort occurred, whereas males occupy offshore habitats

[42]) as in utero sex ratios in Hawaii are close to 1:1 [7]. Sexual

segregation is widespread in the animal kingdom [43], is seen in

other carcharhinid species in Hawaii (e.g. sandbar sharks, [1],

[44]) and may be driven by sex-specific environmental preferences

[42].

Hawaii female tiger sharks were significantly larger on average

than males, a phenomenon also evident in other locations (e.g.,

Queensland, Australia [38]) but not ubiquitously (e.g., males were

found to be significantly larger than females in Shark Bay, Western

Australia [12], [45]). The maximum observed size of tiger sharks

in Hawaii (464 cm TL) is generally consistent with those reported

from other regions where sharks have been empirically measured

as part of scientific studies (Table 1). Tiger sharks of 400 cm TL or

larger are relatively common in Hawaii, accounting for 10% of

our sample, whereas those larger than 450 cm TL were very rare,

(0.005% of sharks captured). One empirical study conducted in

Australia reported a maximum size (550 cm TL) [40], consider-

ably larger than any scientifically-measured tiger shark in any

other location (Table 1). This Australian study had a very large

sample size (4,757 sharks) compared to most others, hence had a

higher probability of picking up the rare, very largest individuals in

the population, than studies with sample sizes of an order of

magnitude lower. One concern associated with estimating

maximum size of large sharks is that the very largest individuals

in the population may simply be escaping capture by straightening

hooks or breaking net meshes. We do not believe this to be the

case in the present study because our fishing gear was similar to

that used during the Australian study which captured tiger sharks

of up to 550 cm TL. Thus we conclude that tiger sharks larger

than 450 cm TL are very uncommon, and only an extremely small

number of individuals reach or exceed 550 cm TL. The veracity of

the report of a 740 cm TL (3,110 kg) female caught off Indo-

China in 1957 [8] is unclear, as it is based on an unverified,

annotated photograph rather than an empirical measurement.

Figure 3. Von Bertalanffy growth curves for Hawaii tiger sharks
(both sexes combined). Growth curves are derived from parameters
generated by the best fit GROTAG model (Solid line = average growth.
Dashed line = upper and lower 95% growth estimates) and analysis of
vertebral rings (De Crosta et al. [16], dotted grey line) Arrows indicate
estimates of minimum age at maturity for male (blue) and female (red)
tiger sharks based on size at maturity estimates (horizontal lines)
provided by Whitney and Crow (2007) [7].
doi:10.1371/journal.pone.0084799.g003
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