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Micro- and nanocantilevers are increasingly employed as mass sensors. Most studies consider the first
flexural mode and adsorbed masses that are either discretely attached or homogeneously distributed
along the entire length of the cantilever. We derive general expressions that allow for the determina-
tion of the total attached mass with any mass distribution along the cantilever length and all flexural
modes. The expressions are valid for all cantilevers whose flexural deflection can be described by
a one-dimensional function. This approach includes the most common types of microcantilevers,
namely, rectangular, picket, and V-shaped. The theoretical results are compared with experimental
data up to the fourth flexural mode obtained from thermal noise spectra of rectangular and V-shaped
cantilevers. © 2011 American Institute of Physics. [doi:10.1063/1.3563724]

I. INTRODUCTION

Micro- and nanocantilever sensors are attracting an in-
creasing amount of attention due to their wide availability
and outstanding sensing capabilities, e.g., see Refs. 1–4. One
area that is currently of significant interest is mass sensing,5

where one of the goals is to achieve highest mass sensitiv-
ity with micro- and nanomechanical devices.6 It has been
demonstrated that such devices are capable of detecting sin-
gle cells,7 bacteria,8 and even single biological molecules.9

In the context of mass sensing determination of masses that
are nonhomogenously distributed or that are only attached in
specific areas along the cantilever is of pivotal importance
since cantilevers can be modified accordingly.4 Mass sens-
ing based on the frequency changes of the flexural modes
that are due to one or two discretely attached masses10, 11 as
well as a homogeneous mass distribution along the full length
of the cantilever in connection with the first flexural mode
have been reported in the literature, e.g., see Ref. 12. How-
ever, there is no general description relating the frequency
changes of the higher flexural modes to an attached mass that
is homogeneously or nonhomogeneously distributed along
the cantilever. Even the discrete attachment of small spheres
to microcantilevers10, 11 does, strictly speaking, create a mass
distribution localized around the positions of the spheres. The
size and weight of the attached masses determine whether a
point mass model is still valid. In case of single objects which
cannot be described by a point mass13 or if the mass is dis-
tributed over a certain region of the plan view area of the
cantilever, a proper mass model has to be used to describe
the oscillation behavior and the resulting frequency change of
the cantilever correctly. Knowledge of the effective oscillating
cantilever mass related to the flexural modes is therefore cru-
cial for a quantification of the adsorbed mass. In the follow-
ing we derive general expressions for the effective oscillating

a)Electronic mail: gh23@st-andrews.ac.uk. Fax: +44 1334 463808.
Telephone: +44 1334 463889.

cantilever mass and of the frequency shifts that are caused
by an arbitrary distribution of a mass attached along a can-
tilever for all flexural modes. The cantilever can be of any
shape as long as its true flexural deflection can be approxi-
mated by a function that only depends on the coordinate along
the cantilever length. This is the case for the most common
types of microcantilevers, namely, rectangular, picket, and V-
shaped.14 The results are expressed in terms of the modal
shapes of the free cantilevers and their oscillating frequen-
cies. The formulas allow for the determination of the total
attached mass under any mass distribution. To test the theo-
retical findings we compare them with experimental data ob-
tained from thermal noise spectra of rectangular and V-shaped
cantilevers.

II. THEORETICAL BACKGROUND

If a small external mass is attached to a cantilever its
dynamic properties will change according to the additional
effective mass. In the following we assume that the total
external mass is small compared to the total mass of the can-
tilever and that the external mass per unit area is constant over
the dimension of the cantilever width. The external mass per
unit length �mext(x) is determined by the density of the ex-
ternal mass, ρm,ext(x), the width of the beam, w(x), and the
thickness of the layer, text(x): �mext(x) = ρm,ext(x)Sm,ext(x),
with Sm,ext(x) = w(x)text(x). This equation can be rewritten as
�mext(x) = �m̂extϕ(x)w(x), where �m̂ext is the maximum
value of the mass per unit area and ϕ(x) describes the vari-
ation of the mass along the cantilever length. The total exter-
nal mass acting on the cantilever is �Mext = ∫ L

0 �mext(x)dx ,
where L is the cantilever length. The external mass causes a
shift �(ω2

n) = ω2
n − ω̂2

n in the eigenfrequency of the nth flexu-
ral mode, with ω̂n being the resonant frequency with external
mass and ωn being the unperturbed resonant frequency with-
out additional mass. The relation between the unperturbed
resonant frequency, ωn, the total external mass, �Mext, and
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the resulting shift in the resonant frequency of the nth mode,
�(ωn

2), of the cantilever is

�(ω2
n) = −ω2

n

�Mext

Mcant
eff,n

, (1)

where Mcant
eff,n is the effective oscillating mass of the cantilever

in the nth mode. If the total external mass is small compared
to the cantilever mass such that it does not change the shape of
the eigenmodes, un(x), of the cantilever significantly, then the
total energy of the cantilever beam before and after adsorption
is

1

2
ω2

n

∫ L

0
ρ(x)S(x)u2

n(x)dx ≈ 1

2
ω̂2

n

∫ L

0
ρ(x)S(x)u2

n(x)dx

+ 1

2
ω̂2

n

∫ L

0
ρextSext(x)u2

n(x)dx, (2)

where ρ and S refer to the density and the cross section
of the cantilever, respectively. The eigenfunctions un(x) can
be normalized such that

∫ L
0 ρ(x)S(x)un(x)um(x)dx = δnm .15

Because of the normalization the relative frequency shifts
�(ω2

n)/ω2
n are

�(ω2
n)

ω2
n

= −
∫ L

0
ρextSext(x)u2

n(x)dx

= −�m̂ext

∫ L

0
ϕ(x)w(x)u2

n(x)dx . (3)

Of practical interest is the total external mass, �Mext

= �m̂ext
∫ L

0 ϕ(x)w(x)dx , which can be obtained in combina-
tion with Eq. (3)

�Mext = −�(ω2
n)

ω2
n

∫ L
0 ϕ(x)w(x)dx∫ L

0 ϕ(x)w(x)u2
n(x)dx

. (4)

The effective mass of the cantilever, Meff,n, in the nth flexural
mode is therefore

Mcant
eff,n =

∫ L
0 ϕ(x)w(x)dx∫ L

0 ϕ(x)w(x)u2
n(x)dx

. (5)

Note that the effective mass of the cantilever can be lower
as well as higher than the actual mass of the cantilever M
= ∫ L

0 ρ(x)S(x)dx , depending on the external mass distribu-
tion ϕ(x). Equations (4) and (5) are applicable to all kinds of
cantilevers and any external mass distribution. The eigenfre-
quencies, ωn, the frequency shifts, �(ω2

n), and the cantilever
width, w(x), can be determined experimentally. The eigen-
modes, un, of rectangular cantilevers can be obtained from
the literature.16 The modal shapes un of nonrectangular can-
tilevers can be determined by using the Ritz method.14–16 The
mass distribution ϕ(x) along the cantilever is also often deter-
mined by the experimental conditions.

III. EXPERIMENTAL SECTION

To test the theoretical results a commercially available
rectangular silicon cantilever (350 μm long, 0.03 N/m
nominal spring constant, R-E, Mikromasch) and a V-shaped
silicon nitride cantilever (196 μm long, 0.06 N/m nominal

FIG. 1. Thermal noise power spectral densities of the first four flexural
modes obtained with the rectangular cantilever. While the Q-factor increases
with the mode number, the signal-to-noise ratio decreases.

spring constant, V-D, Veeco) were exposed to relative humid-
ity values in the range of ∼ 2% to ∼25% at 22 ◦C, similar
to the experiments described in Ref. 17. Cantilevers were
used as received. They can homogeneously adsorb small
amounts of water at those humidity values. Experiments
were performed with an AFM Explorer system (Thermo-
Microscopes, Sunnyvale, CA, USA). Power spectral densities
of thermal noise spectra were recorded with an external
interface (National Instruments, USB-6251) as a function of
humidity. Figures 1 and 2 display the experimentally obtained

FIG. 2. Thermal noise power spectral densities of the first four flexural
modes obtained with the V-shaped cantilever.
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power spectral densities of the resonance peaks of the first
four flexural modes for both the rectangular and V-shaped
cantilevers together with their resonance frequency values at
low humidity and the Q-factors. Resonant frequency values,
Q-factors, and peak areas for each mode were determined
during measurement with a homewritten LABVIEWTM

routine from Lorentzian fits to the resonance peaks, similar
to the procedure described in Ref. 18.

The resonant frequency values are based on the average
of 50 individual spectra. The Q-factors showed fluctuations
below 3% for all resonant peaks with no clear trend toward
lower or higher values with increasing humidity. Q-factors
can therefore be considered as constant and independent of
humidity in our experiments.

The mass sensitivity or minimum detectable mass
δM of the system is given by δM = −(δ(ω2

n)/ω2
n)Mcant

eff,n
≈ −2(Mcant

eff,n/ωn)δωn ,19 where δωn is the minimum measur-
able frequency shift of mode n. Note that the mass sensitiv-
ity depends on the effective oscillating mass of the cantilever
and hence the mass distribution of the accreted mass. In gen-
eral, the mass sensitivity increases with increasing Q-factor.
Thermal fluctuations, fluctuations in humidity as well as the
signal-to-noise ratio, which decreases with increasing mode
number in our experiment, all have an influence on the re-
sulting sensitivity.19 In order to determine the sensitivity in
our experiments with thermally driven cantilevers we have
taken the standard deviation, δfn, of the measured resonant
frequency values, fn, at constant humidity as the minimum
detectable frequency shift for each mode. The standard de-
viation values were determined from the fluctuations of 15
recordings of the resonant frequency values of the four modes
at a fixed humidity. The values obtained were 4.3, 7.4, 7.5, and
8.7 Hz for modes 1–4 of the rectangular cantilever, respec-
tively. The corresponding values for the V-shaped cantilever
were 3.9, 7.6, 10.7, and 37.2 Hz. Error bars of the relative
frequency shifts �(ω2

n)/ω2
n and hence sensitivities in our ex-

periment are based on these standard deviations, δfn, and are
given by δ(�(ω2

n)
/
ω2

n) ≈ 2
√

2(δ fn
/

fn).

IV. RESULTS AND DISCUSSION

If a single point mass is attached to a cantilever at posi-
tion x = L Mext , then ϕ(x) = δ(x − L Mext ) and the relative fre-
quency shift �(ω2

n)/ω2
n is proportional to u2

n(L Mext ), which is
the same as the result reported in Ref. 20. This finding can
be easily extended to the case of several discretely attached
masses11 with Eq. (4).

If an area between x = L1 and x = L2 along a cantilever
is modified such that a certain analyte can only adsorb in this
region, then ϕ(x) = 1 for L1 ≤ x ≤ L2 and ϕ(x) = 0 elsewhere
(see Fig. 3).

Equation (4) is particularly simple for rectangular can-
tilevers where w is constant. The total adsorbed mass can then
be obtained from �Mext = −�(ω2

n)/ω2
n�L/

∫ L2

L1
u2

n(x)dx ,
with �L = L2 − L1. If the entire length of the plan view area
can adsorb mass, i.e., �L = L, then Mcant

eff,n corresponds to the
total mass of the cantilever for all modes, and Eq. (1) can
be used to determine the adsorbed mass simply based on the
measured frequency shift and the total mass of the cantilever.

FIG. 3. Schematic top view of (a) rectangular and (b) V-shaped cantilevers.
The shaded areas indicate external mass adsorption in these areas only, i.e.,
ϕ(x) = 1 for all x-coordinates corresponding to the shaded area and ϕ(x) = 0
elsewhere.

If �L does not correspond to the full length, then the Mcant
eff,n

values will, in general, be different from the total cantilever
mass and also different for different modes. Figure 4 summa-
rizes the results for the relative frequency shifts, �(ω2

n)/ω2
n , of

the first four flexural modes of the rectangular and V-shaped
cantilevers (see Fig. 3) that are widely available and for dif-
ferent adsorbed mass distributions. For V-shaped cantilevers
the modal shapes un were obtained as described in Ref. 14.
The resulting relative shifts were normalized to the �(ω2

1)/ω2
1

value for full-length adsorption (encircled in Fig. 4). Note that
the results for the rectangular and V-shaped cantilevers are
independent from their specific dimensions if the entire can-
tilever can adsorb mass.

Figure 5 shows the experimentally obtained �(ω2
n)/ω2

n
values for a relative humidity of up to ∼25% and the first
four flexural modes of both the rectangular and V-shaped can-
tilevers.

All modes show the same trend of �(ω2
n)/ω2

n over the
humidity range studied for both the rectangular and V-shaped
cantilevers, confirming the theoretical results for cantilevers
that can adsorb mass over their full length. While the error
bar is quite large for the first mode it is significantly smaller
for the higher modes, indicating a relatively low mass sensi-
tivity for the first mode and higher sensitivities for the higher
modes. The minimum detectable mass values that are based

FIG. 4. (Color online) �(ω2
n)/ω2

n values for the first four flexural modes of
(a) rectangular and (b) V-shaped cantilevers and several mass distributions
ϕ(x). �(ω2

n)/ω2
n in each figure is normalized to the encircled �(ω2

1)/ω2
1 value.

Mass distributions on rectangular cantilevers are for L1 = 0, L2 = L (�), L1
= 0, L2 = L/2 (�), L1 = L/2, L2 = L (●), and L1 = L/4, L2 = 3L/4 (+). Mass
distributions on the V-shaped cantilevers (2θ = 51.2◦) are for adsorption over
the full length (�) and for adsorption on the triangular part only (see Fig. 3):
V-A (�) L = 115, d = 25; V-B (●) L = 196, d = 41; V-C (+) L = 115, d
= 17; V-D (*) L = 196, d = 23 (all dimensions are in micrometers).
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FIG. 5. (Color online) Experimentally determined �(ω2
n)/ω2

n values for (a) a
rectangular cantilever and (b) a V-shaped cantilever and the first four flexural
modes at different relative humidity values. The cantilevers can adsorb water
over their full length. Error bars are based on the experimentally determined
fluctuations in the resonant frequency values (standard deviation) at constant
humidity. Only one error bar for each mode is shown for clarity.

on the fluctuations in the resonant frequencies at constant hu-
midity can be converted to water film thickness, which is the
parameter of interest here. The resulting sensitivities in the
film thickness are 13.7, 3.2, 1.1, and 0.7 Å based on the first
four modes of the rectangular cantilever, respectively. The
corresponding values for the V-shaped cantilever are 8.6, 3.0,
1.5, and 2.8 Å. The decrease in the sensitivity of the fourth
mode in case of the V-shaped cantilever is due to the relatively
large fluctuations in that resonant frequency of the cantilever
used. The sensitivity values obtained underline that the ac-
creted mass and the thickness of the film adsorbed onto a can-
tilever surface can be determined with high accuracy when
using higher flexural modes. The reason is that the absolute
frequency shifts �(ω2

n) are higher for the higher modes grant-
ing them a higher accuracy for low masses in general. The
water film thickness itself can be obtained with Eq. (4) and
amounts to around 7 Å at ∼25% relative humidity. This result
is in good agreement with values reported in the literature.21

Note that stress induced by the adsorbed mass would be
reflected by different �(ω2

n)/ω2
n values for different modes

at constant humidity. The simultaneous measurement of
�(ω2

n)/ω2
n values for several flexural modes in combination

with Eq. (4) could therefore be exploited to separate fre-
quency changes that are due to mass from those that are due
to stress.

V. CONCLUSIONS

In summary, we derived expressions that allow for the
determination of the total attached mass on cantilever sensors

under any mass distribution and for all flexural modes. We
demonstrated the applicability of the equations for the first
four flexural modes in the case mass can adsorb over the
full length of a cantilever and for two different types of can-
tilevers. Small amounts of mass can be determined accu-
rately and precisely for thermally driven cantilevers, in par-
ticular when using higher flexural modes, since they show
a higher sensitivity toward an accreted mass than the first
flexural mode. The simultaneous measurement of �(ω2

n)/ω2
n

for several modes opens up interesting perspectives to de-
termine both the adsorbed mass and the stress caused by it
and therefore might also allow it to gain information about
the interactions inside thin films and between thin films and
substrates.
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