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Summary

1. We highlight an emerging statistical method, integrated nested Laplace approximation (INLA), which is ide-

ally suited for fitting complexmodels tomany of the rich spatial data sets that ecologists wish to analyse.

2. INLA is an approximation method that nevertheless provides very exact estimates. In this article, we describe

the INLAmethodology highlighting where it offers opportunities for drawing inference from (spatial) ecological

data that would previously have been too complex tomake practical model fitting feasible.

3. We use INLA to fit a complex joint model to the spatial pattern formed by a plant species, Thymus carnosus,

as well as to the health status of each individual.

4. The key ecological result revealed by our spatial analysis of these data, relates to the distance-to-water covari-

ate.We find thatT. carnosus plants are generally healthier when they are further away from the water.

5. We suggest that this may be the result of a combination of (1) plants having alternative rooting strategies

depending on how close to water they grow and (2) the rooting strategy determining how well the plants were

able to tolerate an unusually dry summer.

6. We anticipate INLAbecoming widely used within spatial ecological analysis over the next decade and suggest

that both ecologists and statisticians will benefit greatly from working collaboratively to further develop and

apply these emerging statistical methods.
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Introduction

Ecological processes take place in space, and many ecological

data sets are collected in space. As a result, there is a growing

interest in spatial statistical methods and spatial statistical

modelling (Beale et al. 2010). In general, the aim of a spatial

analysis is to either (a) account for spatial autocorrelation or to

(b) explicitly models of type (a) spatial patterning. To be more

specific, models of type a are models of some response variable

in which spatial autocorrelation structures form part of the

explanatory part of the model (Diggle & Ribeiro 2007). Exam-

ples exist of such spatial models both for data collected in con-

tinuous space or on a spatial lattice. On the contrary, when

models of type (b) are considered, the interest is in analysing

the spatial patterns formed by individuals as these can be used

to characterize population dynamics and to determine the

nature of the underlying processes leading to those dynamics

(Law et al. 2009). In these models, the pattern itself, or rather

its structure, is the response variable. These are typically trea-

ted within the context of spatial point process theory (Diggle

2003; Wiegand & Moloney 2004; Wiegand et al. 2007; Illian

et al. 2012).

These two types of model reflect different aspects of ecologi-

cal systems, so in many cases one would ideally want to

consider both to obtain a better and more nuanced under-

standing of a system. For example, the data set discussed in this

article provides information on both short-term survival (as

reflected in the health status of the individuals of the species

Thymus carnosus) and long-term survival (as reflected in the

spatial pattern formed by these individuals). Rather thanmod-

elling these two non-independent aspects of the system in sepa-

rate models, we illustrate how both can be treated within a

single joint (or integrated) model. This combines the informa-

tion contained in the data that would be used for the two sepa-

rate models and reduces variability by assuming a shared

spatial structure informed by more data (Brooks, King &

Morgan 2004; King et al. 2009; Reynolds et al. 2009). An inte-

grated analysis such as the joint model discussed here is often

used to increase the precision of parameter estimates as infor-

mation may be ‘borrowed’ across different data sets. Within

statistical ecology, these joint models are becoming increas-

ingly common (King et al. 2009).

Unfortunately, spatial models are computationally chal-

lenging, in particular in the context of realistically complex

data sets as incorporating spatial correlation structure dramat-

ically increases the complexity of a model. A joint model

adds complexity and provides an even greater computational*Correspondence author. E-mail: janine@mcs.st-and.ac.uk
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challenge; existing software such as spatstat (Baddeley &

Turner 2005), which is used for fitting simple point process

models cannot handle these models. Thus, in this article our

aimwas twofold; in addition to discussing the spatial statistical

methodology that allows us to consider such a joint model, we

also explain how this model can be fitted in a computationally

feasible way. In particular, we introduce the ecological com-

munity to recent statistical developments based on integrated

nested Laplace approximation (INLA; Rue, Martino &

Chopin 2009) that substantially reduce the computational cost

of fitting spatial models.

In this contribution, we introduce INLA and explain how it

can be used in the analysis of a complex spatial model.We also

highlight the potential for INLA and joint spatial modelling to

be used in conjunction to analyse a wide range of spatial data.

We provide the code for readers to work through the case

study example themselves within the R package R-INLA.

Finally, we make some suggestions for how this approach can

be used to analyse further data sets, highlight some existing

limitations in the statistical methods and argue that this is a

field where there is substantial mutual benefit for ecologists

and statisticians to work in close collaboration.

ANALYSING A COMPLEX SPATIAL DATA SET

This article has been motivated by a data set that details the

exact locations of T. carnosus plants in a dune system in South

West Spain along with the health status of each of these plants

as well as environmental covariates that may potentially

impact on the conservation of the plants. The exact details for

this data set are discussed in the Application section. The data

were collected with the aim of revealing which factors deter-

mine the short-term health status of plants and the longer term

spatial distribution of individuals. The health status of a plant

reflects the degree to which local environmental conditions

facilitated survival following a recent drought. Spatial hetero-

geneity in long-term fitness, on the other hand, is reflected in

plant density in space.

Technically, whenmodelling the locations of theT. carnosus

plants, we are modelling a spatial point pattern. Spatial point

pattern analysis using summary characteristics such asRipley’s

K-function has become increasingly used in ecology (Wiegand

& Moloney 2004; Wiegand et al. 2007; Perry et al. 2008;

Schiffers et al. 2008; Law et al. 2009; Mart�ınez et al. 2010;

Wang et al. 2010; Zhang et al. 2010; Brown et al. 2011).

Empirical spatial point patterns may also be described by

theoretical statistical models, spatial point processes, through

the estimation and interpretation of model parameters based

on samples, i.e. spatial point patterns. However, these models

have been used much less often than summary characteristics

(Neeff et al. 2005; Cornulier & Bretagnolle 2006; Wiegand

et al. 2007; Lin et al. 2011). This is due to the fact that most

ecological data sets are more complex than can be readily dealt

with using classical statistical methods.

As we are also considering the health status (a ‘mark’) along

with the pattern, this yields what is referred to as a ‘marked

point pattern’. As it is likely that the health status is not inde-

pendent of the local spatial structure, a suitable statistical

model is a marked point process model, where the marks are

assumed to depend on the spatial pattern through a shared

spatial effect (for more information on marked point pro-

cesses, see the Appendix). In the past, models where the marks

depend on the pattern have rarely been considered, mainly due

to computational costs (Møller & Waagepetersen 2007). This

has severely constrained the analysis of many rich, spatial eco-

logical data sets (Illian et al. 2012; Illian, Sørbye & Rue 2012).

We here jointly model the marks and the pattern to account

for the dependence, using a specific type of spatial point pro-

cess models, a Cox process. While the health status marks are

categorical marks in the specific example, a very similar

approach could be used to model continuously valued marks

such as plant height or age (Illian, Sørbye&Rue 2012).

A CLASS OF SPATIAL POINT PROCESS MODELS – COX

PROCESSES

Within the spatial point process toolbox, Cox processes repre-

sent a very flexible class of spatial point processes designed to

model spatial point pattern data in the presence of observed

and unobserved environmental variation (Møller, Syversveen

& Waagepetersen 1998; Møller & Waagepetersen 2007). In

Cox process models, spatial variation and autocorrelation are

expressed through a random structure that is continuous in

space. It is based on an underlying (or latent) random fieldΛ(�)
that describes the intensity (=point density) of the point pat-

tern, assuming independence among the points given this field.

In other words, conditional on the random field, the point

pattern may be described by the statistical model for complete

spatial randomness, the Poisson process (Illian et al. 2008;

Law et al. 2009). Due to the random field, Cox process models

have a hierarchical structure making these processes particu-

larly flexible as the field can be modelled in many ways. We

exploit this here and focus on log-Gaussian Cox processes, as

considered inMøller, Syversveen &Waagepetersen (1998) and

Møller & Waagepetersen (2004, 2007). These belong to a spe-

cific subclass, whereΛ(s) has the form

KðsÞ ¼ expfZðsÞg:
Here, {Z(s)} is a Gaussian random field, sR2, i.e. for any loca-

tion s1, …, sl the vector Z(s1), …, Z(sl) follows a multivariate

normal distribution. The exponential avoids negative values

forΛ(s).
The practical fitting of Cox point process models to point

pattern data is difficult due to intractable likelihoods. Fitting

even simple Cox processes has typically usedMCMCmethod-

ology, and has been extremely computationally expensive

(Møller & Waagepetersen 2007) as well as largely inaccessible

to non-specialists. Within the statistical literature rather sim-

plistic models have been fitted that typically only consider a

spatial pattern without marks. However, Illian & Rue (2010)

and Illian, Sørbye & Rue (2012) have developed an approach

that facilitates the fitting of realistically complex Cox process

models based on INLA (Rue, Martino & Chopin 2009; see the

Appendix for technical details). They provide a toolbox that

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution
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enables non-specialists to develop and fit complex models to

data using coding routines within the familiar software

package R based on the library R-INLA. In particular, based

on this approach, we can model marked point pattern data

without an assumption of independence of the pattern and the

marks (Ho& Stoyan 2008;Myllym€aki & Penttinen 2009). This

is achieved through fitting a joint model to both the pattern

and the marks in which the dependence is accounted for by a

shared spatial effect that is contained both in the explanatory

part of the randomfieldΛ(�) and themodel for themarks.

INLA IN A NUTSHELL

Conveniently, a new computationally efficient method for

fitting a wide range of complex models has been developed.

This method, called INLA (Rue, Martino & Chopin 2009),

opens the possibility to analyse increasingly complex ecological

data such as those we consider here. In general, INLA may be

used to fit a large class of statistical models, the very flexible

class of latent Gaussian models (details in the Appendix), in a

Bayesian context. An underlying stochastic structure (called a

‘latent’ field) is contained in these models to account for tem-

poral or spatial autocorrelation; given the latent field, the

observations are assumed to be independent. Cox processes

are an example of this class ofmodels.

INLA is computationally efficient because it uses an approx-

imation approach based on clever Laplace approximations

rather than simulations (MCMC). It is designed to fit latent

Gaussian models in which spatial autocorrelation in the latent

field is reflected by a Gauss Markov random field (GMRF)

(Rue & Held 2005). This is a spatially discrete stochastic pro-

cess in which spatial dependence is restricted to suitably speci-

fied spatial neighbours, again increasing efficiency. INLA is

much faster than MCMC and at the same time flexible and

very accurate (Rue, Martino & Chopin 2009). We provide

technical details for INLA in theAppendix.

Here, by way of example, we use INLA to fit a joint model

to a spatial pattern and the marks derived from a study system

on a protected plant species using different likelihoods for the

pattern and the marks. INLA enables us to fit this model and,

because it is fast, we can also employ model comparison meth-

ods to identify the best model out of a set of models based on

the deviance information criterion (DIC) within reasonable

time such as a fewminutes.

Application

STUDY SYSTEM

As a case study, wemodel the spatial pattern of the endangered

plant species T. carnosus. The data set we use for this is rela-

tively complex because it is a marked point pattern consisting

of six replicates; two replicates of each of three different levels

of livestock pressure. Importantly, the data consist of the

health status of individual plants (a mark) as well as their x

and y co-ordinates. Themain purpose of this studywas to pres-

ent the methodology and this data set presents an excellent

example of how the methodology can be used since it is of a

complexity that is not unusual for an ecological data set, but

that has normally not been considered in the statistical litera-

ture.While we do not want to focus toomuch on the particular

details of the study system, we briefly provide some contextual

information below and refer the interested reader to other arti-

cles for further details.

Study area and vegetation community

The study area is the coastal dune system of the El Rompido

sand spit, which is located at the mouth of the River Piedras

(Gulf of Cadiz, SW Spain) (37°12′N, 7°07′W). The spit

stretches east for about 12 km, is between 300 and 700 m in

width and currently covers an area of 534�7 ha, of which 57%

are interior sand dunes (Gallego-Fern�andez, Mu~noz Vall�es &

Dellafiore 2006). The El Rompido spit supports diverse vegeta-

tion communities (Gallego-Fern�andez, Mu~noz Vall�es &

Dellafiore 2006) and this includes 16 protected and/or endan-

gered species that have been recorded in the area (Mu~noz

Vall�es, Gallego-Fern�andez & Dellafiore 2009). The spit is

subject to low tourist pressure. Grazing by domestic livestock

(sheep and goats) is prohibited within the protected area.

Study species

Our focal species, Thymus carnosus Boiss. (Labiateae), is an

evergreen coastal shrub, up to 0�5 m high, endemic to the

southwestern of the Iberian Peninsula coastal dunes. The spe-

cies is in danger of extinction in Spain (Cabezudo et al. 2005)

and populations are also seriously declining in Portugal. The

main driver of decline is habitat destruction of coastal dune

systems by urbanization and tourism (Cabezudo et al. 2005).

The coast of Huelva is one of the southern extremes of its dis-

tribution (Parra et al. 2000) and El Rompido spit retains the

largest population found in Spain (Al�es, S�anchez Gull�on &

Pe~na 2003), this being a major factor behind much of the spit’s

inclusionwithin a natural protected area.

Retama monosperma (L.) Boiss. (Leguminoseae) is a leafless

leguminous shrub, growing to a height of 3�5 m, native to the

sandy soils of the southwest coast of the Iberian Peninsula.

Retama monosperma was planted in the middle of the El

Rompido spit in the 1930s as a dune stabilizing species (Galle-

go-Fern�andez, Mu~noz Vall�es & Dellafiore 2006) and over the

period 1956–2001, the basal cover of R. monosperma has

increased from 15 to 116 ha (Mu~noz Vall�es, Gallego-Fern�an-

dez & Dellafiore 2009). This invasion has resulted in a

profound change in the dune landscape from open plant

communities to shrubland of variable density and constitutes a

considerable threat to dune landscapes because it suppresses

natural vegetation of coastal dunes of high conservation value

(Mu~noz Vall�es et al. 2011). Recent studies in the study area

have shown thatT. carnosus is threatened both by the invasion

of R. monosperma on dunes and by livestock pressure. When

R. monosperma establishes in an area occupied byT. carnosus,

competition between the two species for light and water can

result in the eventual exclusion of T. carnosus. While sheep
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and goats do not eat T. carnosus, individual plants located

beneath the R. monosperma canopy are strongly affected by

trampling (Zunzunegui et al. 2012) – the livestock are attracted

to R. monosperma and hence trampling pressure is greatest

close to the invasive shrub.

In 2008, inmost western populations of the El Rompido spit

a high mortality of T. carnosus plants was observed and a high

proportion of survivors had a poor health status. The spatial

pattern of mortality/decline in health was apparently not

homogeneous, resulting in higher mortality in lower areas of

the dunes. This observation motivated the collection of the

data which we analyse in this study.

Data on the location and health status of plants were col-

lected at three study sites each with different livestock pressure:

(a) High herbivory plots (High1 and High2) were located in

the western part of the spit, outwith the protected area. The

vegetation is dominated by a shrub community composed

mainly of R. monosperma and T. carnosus. (b) Low herbivory

plots (Low1 and Low2) were outside the protected area, but in

a location where livestock access is less frequent. The vegeta-

tion is dominated byR. monosperma, T. carnosus and Artemi-

sia campestris. (c) Non herbivory plots (Nat1 and Nat2) were

located inside the protected area where they are never accessi-

ble to livestock. The vegetation is composed mainly of a shrub

community of R. monosperma, T. carnosus, Helichrysum

picardii,Artemisia campestris andCrucianella maritima.

DATA DESCRIPTION

The data set comprises observations of point patterns in six

plots (each 25 m 9 25m in size), two plots for each of three

different levels of livestock pressure (‘High’, ‘Low’, ‘Nat’), in

which the area marked by ‘Nat’ is non-accessible to livestock.

The two plots with high level of livestock pressure are adjacent.

For each plot, the data consist of the location of the individual

T. carnosus plants as well as their health status, a mark that

provides additional information on the individuals in the spa-

tial pattern. Data on the health status have been collected on a

scale from 0 (dead) to 4 (very healthy), which, for the purposes

of this analysis, have been aggregated into two categories dead

or in poor health (0–2) and alive and healthy (3–4). Moreover,

for each plot, covariate data on the location and size of the

R. monosperma plants and the distance to the water-table have

been collected. Table 1 in the Appendix displays a summary of

the data for each plot. Figures 1–5 in the Appendix show the

point pattern formed by T. carnosus (a),R. monosperma cover

(b), distance from the water level (c) and distances to the near-

est neighbours (d) for each of the plots.

Jointmodel of T. carnosus pattern and health
status

Using INLA, we are able to fit a joint model to the spatial pat-

tern and the health status, i.e. the marks. The spatial pattern

formed by the plants reveals those areas where environmental

conditions have been suitable for plant establishment and sur-

vival over the longer term while the health status of the plants

provides complementary information, as it is anticipated to

reflect the impact of the most recent extreme drought. Fitting a

joint model hence allows us to assess the impact of drought on

both short-term and long-term processes simultaneously. In

other words, we take an integrated approach that allows cova-

riates to impact differently on the spatial pattern and on the

health status. Using a joint spatial effect, we can then account

for both spatial autocorrelation and dependence between the

pattern and the marks that cannot be explained by the empiri-

cal covariates.

MODEL DESCRIPTION

Tomodel the point pattern, we use a log-GaussianCox process

construction. As INLA fits models that are based on discrete

GaussMarkov randomfields, we have to approximate the spa-

tially continuous random field Λ(s) = exp (Z(s)) using a grid.

Hence, to fit the model with INLA, the observation window in

each of the k = 1, …, 6 plots is discretized into

N = nrow 9 ncol grid cells {sijk} with area |sijk|, i = 1, …, nrow,

j = 1, …, ncol and nrow = ncol = 40. Grids with a finer resolu-

tion have been used to assess if the results are influenced by the

fineness of the grid, but produced essentially the same results.

Let {yijk} denote the observed number of points in the grid cells

for plot k. Due to the Cox process construction, the number of

points in grid cell {sijk} follows a Poisson distribution given

gð1Þijk , the value of a latent field in the same grid cell (see Rue,

Martino&Chopin 2009):

yijkjgð1Þijk �Po
�
jsijkj expðgð1Þijk Þ

�
: eqn 1

Each individualT. carnosus plant has been classified according

to health status. Letmijk be the number of plants categorized as

being healthy in grid cell sijk in plot k. Given the value of a sec-

ond latent field gð2Þijk in the same grid cell,mijk follows a binomial

distribution

mijkjgð2Þijk �Binðyijk; pijkÞ; eqn 2

where pijk ¼ expðgð2Þijk Þ=ð1þ expðgð2Þijk ÞÞ is the probability of

plants being healthy and yijk is the total number of T. carnosus

plants in grid cell sijk.

The main interest is now in constructing the models for the

two latent fields gð1Þijk and gð2Þijk . The full models for the latent field

gð1Þ for the spatial pattern and gð2Þ for the marks that will be

considered are specified by

gð1Þijk ¼b01 þ b11RCðsijkÞ þ b21WDðsijkÞ þ LSPkþ
fðzcðsijkÞÞ þ fks ðsijkÞ þ uðsijkÞ

eqn 3

gð2Þijk ¼b02 þ b12RCðsijkÞ þ b22WDðsijkÞ þ LSPkþ
gðzcðsijkÞÞ þ gks ðsijkÞ þ vðsijkÞ;

eqn 4

respectively.Here, b01 and b02 are offsets, RC(sijk) is a covariate

describing the degree of R. monosperma cover in grid cell sijk.

WD(sijk) represents the distance from the terrain to the water

level (measured as the altitude plus the depth of water-table).

The values of this covariate are not available at all grid cells

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution
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and have therefore been interpolated from the original mea-

surements. As the distribution of these distances is skewed, the

values have been log-transformed. LSPk is the degree of live-

stock pressure for plot k. This is a categorical covariate (or ‘fac-

tor’). To ensure identifiability, we use a sum-to-zero constraint,

as is common in models that contain factor variables. The b-
parameters for the linear effects of R. monosperma cover and

distance to water are unknown coefficients.

f(zc(sijk)) and g(zc(sijk)) are functions of a constructed covari-

ate reflecting local interaction in grid cell sijk. Here, we use a

constructed covariate representing the distance from the mid-

point of each cell to the nearest point in the pattern outside the

cell (see the Appendix for more detail). This reflects the local

intensity in each grid cell andmay be used as ameasure of local

competition. As we do not know if the dependence on this con-

structed covariate is linear, we fit a smooth function to it.

fks ðsijkÞ and gks ðsijkÞ are GMRFs (spatially structured effects)

describing the spatial autocorrelation not explained by the co-

variates. Finally, u(sijk) and v(sijk) are spatially unstructured

random effects, i.e. random error terms. We aim to jointly fit

the model to the point pattern and the marks using Eqns (3)

and (4), expressing dependence between the pattern and the

marks in this way. In this case, the spatial effect for the marks

is proportional to the spatial effect for the pattern,

gks ðsijkÞ ¼ bsf
k
s ðsijkÞ. Methods for model comparison may be

used to check whether the full model in (3) and (4), or a sub-

model provides the best fit according to a model comparison

criterion, here theDIC.

SPECIFYING THE MODEL IN R-INLA

We briefly explain here how the full model is specified in a

call using the library R-INLA; submodels are specified by

leaving out the appropriate terms in the model specification.

Detailed code for running the model discussed here – includ-

ing the appropriate data transformation – can be found in

the Appendix.

The joint model for both latent fields is specified in a single

model specification. In general, the model can be specified

within the call to the function inlawhich uses the approxima-

tion algorithm based on INLA. However, this can look very

complicated. Hence, for the sake of the exposition, we explain

this in two separate steps to make the code easier to read. We

initially describe how the model for the latent field is specified

as a model formula in R and then describe the call to the func-

tion inla afterwards.

As we are fitting a joint model to both the marks and the

spatial pattern, we have two separate response variables. These

have to be stored in a matrix (called outcome.matrix

below) with two columns, one for each outcome variable. We

also have to specify separate offsets (beta.pat and beta.

status) for each of the two components as well as separate

explanatory variables for the degree of R. monosperma cover

(retama.pat and retama.status) and for the distance to

the water-table (topo.pat and topo.status). Any nonlin-

ear effects are specified by f(.). This notation is used for the

random effect accounting for the different levels of livestock

pressure (lsp.pat and lsp.status), where the model is

specified as iid. It is also used for the constructed covariate

(const.pat and const.status; here the model is a one-

dimensional CARmodel of order 1, rw1) and the spatial effect

(I.pat and I.status); here the model is a two-dimensional

CAR model of order 2, rw2d). For each of the two response

variables, the model for the spatial effect is chosen to be the

same across all replicates, i.e. across the six plots, including the

choice of the hyperparameters. This is achieved by specifying

the relevant plot for each grid cell using the command repli-

cate.

formula=outcome.matrix~-1+beta.pat+beta.status

+retama.pat+retama.status+topo.pat+topo.status

+f(lsp.pat,model="iid")+f(lsp.status,

model="iid")

+f(inla.group(constructed.pat),model="rw1",

hyper=param.cc)

+f(inla.group(constructed.status),model="rw1",

hyper=param.cc)

+f(I.pat,model="rw2d",nrow=2*n.columns,ncol=n.

columns,

replicate=plot.pat,hyper=param.spatial)

+f(I.status,model="rw2d",nrow=2*n.columns,

ncol=n.columns,

replicate=plot.status,hyper=param.spatial)

Once this has been specified we can call the function inla

as follows:

result=inla(formula,family=c

("poisson","binomial"),

data=outcome.matrix,Ntrials=Ntrials,E=Area,

control.compute=list(dic=T))

Here, we need to specify the two different distributions for

the two response variables using family =c(“poisson”,

“binomial”). For the Poisson distribution, we specify the

size of the area of the cells E = Area while, for the binomial

case, we specify the number of trials, i.e. the number of plants

per cell. The term control.compute=list(dic=T) may

be included such that the DIC is calculated as well (Spiegelhal-

ter et al. 2002). The hyperparameters have to be chosen care-

fully; in particular for the spatial effects it is important to

choose parameters such that the spatial effect is smooth. This

is critical for avoiding overfitting, because a spatial effect that

is too coarse can potentially explain every single point in the

pattern. In this case, the spatial effect would make any empiri-

cal covariates redundant and also defy both the purpose of the

model and the use of the spatial effect. This is because it would

explain any spatial variation in the data by being an almost

exact copy of the data, that is naturally unable to distinguish

between the effect of the covariates and any remaining spatial

structure. The specific parameters chosen heremay be found in

the code in theAppendix.

To find a best possible model for the given data set, we eval-

uate several submodels of the joint model described in (3) and

(4), using DIC for model comparison and finding posterior

estimates for relevant parameters. Initially, we fit amodel with-

out the constructed covariates and spatial effects to assess

which of the empirical covariates are significant (see section

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution
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Assessing the influence of empirical covariates). In the section

Adding constructed covariates and spatial effects, we move on

to include the constructed covariates and a common spatial

effect for the pattern and themarks. Themain aim of including

these terms is to account for additional small- and large-scale

structure not explained by the empirical covariates. Through

this, we are able to better understand the spatial structure in

the data and relate this to the potential ecological processes

that have caused these, such as dispersal mechanisms or sug-

gest associations with unobserved covariates.

Results

ASSESSING THE INFLUENCE OF EMPIRICAL

COVARIATES

Separate DIC-values for the pattern and the marks gained

from running models with the intercepts, the unstructured

fields and different subsets of the empirical covariates are given

in Table 1. For the intensity of the pattern, we notice that all

the empirical covariates are relevant to the model as the DIC

increases if any of these terms are left out. However, there is no

evidence that R. monosperma cover directly impacts on the

health status of the plants.

Significance of the empirical covariates may also be assessed

by calculating posterior means, standard deviations and credi-

ble intervals for each term (see Table 2). These results support

the conclusions already made. The negative posterior mean

indicates that R. monosperma cover has a negative impact on

the location of the T. carnosus plants; this is reasonable

because only few T. carnosus plants grow underneath

R. monosperma plants. However, the competitive effect of

R. monosperma is not significant for the health status of the

T. carnosus plants and is hence not considered in the final

model. Hence, competition with R. monosperma impacts on

the long-term establishment of the plants in the environment,

but it does not impact on short-term survival.

The distance to the water-table has a positive significant

effect on both the location and the health status of the T.

carnosus plants. This indicates that the density of T. carnosus

plants is higher in areas where the water-table is low and that

these plants are also healthier. The level of livestock pressure

(LSP) is seen to impact on both the intensity of the pattern and

on the health status of the plants as all credible intervals for dif-

ferent levels of LSP are significantly different from 0 (results

not shown). However, to more fully account for random struc-

ture due to different study regions, and to provide a better

understanding of spatial processes in the data, spatially struc-

tured effects should also be included in themodel.

ADDING CONSTRUCTED COVARIATES AND SPATIAL

EFFECTS

We now add constructed covariates and a joint spatially struc-

tured effect to account for local clustering and random large-

scale variation impacting on short- and long-term survival,

respectively, not explained by the empirical covariates. As

mentioned, these effects might easily be overfitted to the actual

pattern making the empirical covariates in the model redun-

dant. Thus, the prior parameters for these effects need to be

chosen carefully to avoid overfitting. We choose to estimate

joint spatial effects for the pattern and the marks, for each of

the given plots.

Table 3 summarizes theDIC-values for various jointsmodel

for the pattern and the marks as the different terms are added

to the model. The final model with the lowest DIC, using a

common spatial effect, is the following:

gð1Þijk ¼b01 þ b11RCðsijkÞ þ b21WDðsijkÞ þ LSPk þ fðzcðsijkÞÞþ
fks ðsijkÞ þ uðsijkÞ

eqn 5

gð2Þijk ¼ b02 þ b22WDðsijkÞ þ LSPk þ bsf
k
s ðsijkÞ þ vðsijkÞ

eqn 6

in which the estimated value of bs is 1�343. The constructed

covariate is significant for the pattern, but the model fit does
Table 1. Separate DIC values for pattern and marks including inter-

cepts, empirical covariates and error fields; RC refers toRetama mono-

sperma cover, WD to the distance from the terrain to the water level

and LSP to livestock pressure

Model

DIC

(pattern)

DIC

(marks)

No empirical covariates 13 055 3273

Empirical covariates RC,WDandLSP 12 167 2358

WithoutRC 12 475 2358

WithoutWD 12 183 2364

Without LSP 12 491 3205

Table 2. Posterior mean, standard deviation and 95%pointwise credi-

ble intervals for fixed effects; RC refers to Retama monosperma cover

andWD to the distance from the terrain to the water level

Mean SD

2�5%
quant.

97�5%
quant.

Intercept for pattern b01 �0�828 0�109 �1�047 �0�618
RC for pattern b11 �1�007 0�056 �1�117 �0�898
WD for pattern b21 0�096 0�023 0�051 0�143
Intercept formarks b02 0�402 0�306 �0�203 0�998
RC formarks b12 �0�266 0�175 �0�606 0�079
WD formarks b22 0�180 0�066 0�052 0�311

Table 3. Summary of DIC values for joint models of the pattern and

marks, having increasing complexity

Randomfieldmodel DIC

Only intercepts 17189

Add unstructured terms 16328

Add significant empirical covariates 14525

Add constructed covariates 13877

Add common spatial effect 13593
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not improve if it is included in the model for the marks.

Figure 1 shows the estimated functional relationship

between the constructed covariate and the spatial pattern.

The plot reveals that the plants are locally clustered (up to

around 2 m), as the curve shows that the intensity of the

pattern is high if the constructed covariate, i.e. the distance

to the nearest neighbour, is low. The same constructed co-

variate is non-significant for the health status resulting in a

flat curve (result not shown). In other words, the model

does not indicate that the health status is worse or better in

areas where the pattern is locally clustered than in areas

where the plants do not cluster locally.

Figure 2 shows the estimated common spatially structured

effect, i.e. residual spatial autocorrelation unexplained by the

covariates, for each of the plots. As these are clearly exhibiting

a structure that is not flat or uniform in space, they reveal that

the residual spatial autocorrelation is present in the data that

cannot be explained by the covariates alone. A careful inspec-

tion of these surfaces might serve as a means of identifying

additional covariates that might improve the model and

impact on the establishment ofT. carnosus plants.

For more specific results, we may consider the posterior dis-

tribution for the explanatory variables. The posterior means as

well as standard deviations and 95% credible intervals for the

intercepts, the degree ofR. monosperma cover and the distance

to the water-table in the final model, are summarized in

Table 4.We notice that the empirical covariates are still signifi-

cant after the constructed covariate and the spatial effect have

been added. The effect of livestock pressure on the intensity of

the pattern and on the marks (posterior mean and 95% credi-

ble intervals) is illustrated in Fig. 3. Livestock pressure clearly

has a strong effect on the health status of the plants. Not sur-

prisingly, plants seem to be healthier at a low level of livestock

pressure while a high level of livestock pressure worsens the

health status. The non-herbivory plots (‘Nat’) are non-accessi-

ble for livestock, but have a high percentage ofR. monosperma

cover and the number of T. carnosus plants here is lower than

in the other plots.

Discussion

In this contribution, we have highlighted the potential for

using an emerging statistical methodology, INLA, within the

context of spatial ecological data. We have explained how it

promises to facilitate the analysis of more complex spatial data

sets than has to date been possible and have demonstrated this

potential using a typically complex data set of spatial plant dis-

tributions that, in this case, includes individual health status as

well as spatial covariates. We anticipate that INLA will have

twomajor impacts on the inferences wemake from spatial eco-

logical data. The first is that it promises to substantially

improve the robustness of the sorts of inferences that we are

already making; this is because it enables the real complexity

that exists in many ecological data sets to be more fully incor-

porated. The second benefit is that it will make new inferences

possible that could not have been considered previously. In

particular, these are likely to relate to gaining insights into pro-

cesses and patterns that operate simultaneously or at different

levels of a system such as the different temporal scales in the

study data set. Similarly, several types of data that inform on

the same or related processes may be analysed in one inte-

gratedmodel. This includes situations where data are available

from a number of sources with a different quality and we can

substantially gain from jointly exploiting all the information

contained in these.

In this discussion, we will first provide some relatively

brief ecological interpretation of the results gained for our

case study before turning to the main focus of the article,

which is the application of INLA in spatial ecological analy-

sis in general. Here, we will describe the current state of the

statistical field and explain what is and what is not currently

possible using INLA and suggest some promising potential

avenues where ecological analysis may progress rapidly

using the currently available methods. Finally, we will high-

light where further work between ecologists and statisticians

will be required to develop the methodology such that it is

able to deal with an even greater range of spatial ecological

data sets.

ECOLOGICAL DISCUSSION

Our analysis of the marked point pattern (i.e. the spatial distri-

bution of plants according to health status) yields some clear

results. It confirms that T. carnosus is found much less fre-

quently in the proximity of R. monosperma (under R. mono-

sperma canopy). Given our expectation that R. monosperma is

a strong competitor, it is not surprising that we find substan-

tially reduced densities of T. carnosus near R. monosperma. In

addition, in sites with higher livestock disturbance, we believe

the reduced T. carnosus density under the canopy, is due to a

trampling effect of the livestock which are often located in the

proximity of the R. monosperma. In terms of health status, we

find no effect of R. monosperma presence on T. carnosus. This

suggests that, in a particularly dry year, R. monosperma pres-

ence does not have a short-term impact on local T. carnosus

plants. From this result, we might hypothesize that the longer

2 4 6 8 10

−2
−1

0
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2
3

Distance d in meters

f(
d)

Fig. 1. Effect of the constructed covariate on the log intensity of the

point pattern formed by the Thymus carnosus plants as a smooth func-

tionwith 95%credibility intervals (dashed lines).
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term negative effect ofR. monosperma on T. carnosus (that we

do observe in the data) is perhaps more due to competition for

light rather than competition for water.

The most interesting result revealed by our spatial analysis

relates to the distance-to-water covariate: while T. carnosus

plants are typically at higher density close to water, they are

generally healthier when they are further from the water. The

Mediterranean-type climate is characterized not only by a

strong seasonal variability of rainfall, with cool, wet winters

and hot, dry summers, but with unpredictable alternating years

of severe drought with others of high precipitation rates. So,

following an unusually dry year, we observe higher mortality

of individuals that are growing closer to the water-table, a

result that, at first sight, seems counterintuitive and warrants

some explanation. In commonwith all other species occupying

the harsh environment represented by the Mediterranean

dunes, T. carnosus has to be well-adapted to water stress

which, especially during summer, can be substantial. Plants liv-

ing in such water-limited ecosystems have evolved a range of

rooting strategies that enable them to avoid serious water-
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Fig. 2. Estimated common spatial trend for the spatial pattern andmarks (posteriormean) in each of the five plots.

Table 4. Posterior mean, standard deviation and 95%pointwise credi-

ble intervals for fixed effects of the final model; RC refers to Retama

monosperma cover and WD to the distance from the terrain to the

water level

Mean SD

2�5%
quant.

97�5%
quant.

Intercept for pattern b01 �3�214 0�432 �4�085 �3�206
RC for pattern b11 �0�404 0�059 �0�521 �0�404
WD for pattern b21 0�066 0�028 0�013 0�065
Intercept formarks b02 0�332 0�366 �0�389 0�333
WD formarks b22 0�150 0�068 0�017 0�150
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deficit (Larcher 1995; Rodriguez-Iturbe et al. 2001; Collins &

Bras 2007; Viola et al. 2008); these include both intensive

exploitation strategies involving roots and transpiration

systems that rapidly respond to intermittent and unpredictable

rainfall events during the summer months and extensive

exploitation strategies with roots that extend deeper and enable

individuals to benefit from soil moisture at much greater

depths. Many species are characterized as utilizing mainly one

of these rooting strategies (Viola et al. 2008; Jenerette et al.

2012), such as dimorphic root systems (Dawson & Pate 1996).

However, T. carnosus is quite plastic and can use both strate-

gies to a greater or lesser extent depending upon local environ-

mental conditions. In the absence of a water-table near the

surface, the species typically develops a root system capable of

taking water from precipitation or condensation on the surface

of soil (a more intensive strategy). However, when groundwa-

ter is close (<1�5 m), the radical system ofT. carnosus is dimor-

phic, with some shallow roots but also deeper roots that can

reach groundwater. We hypothesize that the plasticity in root-

ing strategy provides the likely explanation for our observation

that the plants growing closer to the water-table are the ones to

suffer the most from an unusually dry summer. We suggest

that these individuals are likely to be much more reliant on the

deeper water accessed by their extensive rooting system and

have invested much less heavily in an intensive rooting system

that would equip them to access the water available near the

surface from light precipitation or condensation. So, when the

water-table drops, they are likely to be prone to suffer a much

greater water-deficit than those individuals with a more inten-

sive rooting system that do not rely on the deeper water. This

type of rooting strategy would correspond with the response

found by Zunzunegui, Caldeira-D�ıaz-Barradas &Novo (2000)

in another Mediterranean species, Halimium halimifolium.

Even thoughwater-table was further away for plants at the top

of the dune, Halimium halimifolium plants from this site

exhibited better physiological and vegetative responses than

Halimium halimifolium plants growing in the dune slack. It was

suggested that these individuals acclimated to permanent water

availability could show higher sensitivity to drought events

than the former, which never reached the water-table. Our

result provides an interesting example of how plastic responses

to spatially heterogeneous environmental conditions may

make the response of individuals to environmental stress inher-

ently hard to predict.

METHODOLOGICAL DISCUSSION

In this article, we discuss a marked spatial point process model

and jointly fit this model to both the spatial pattern formed by

individual plants and the associated marks. Using INLA

enables us to fit this complex point process model at relatively

little computational cost, while it would be computationally

prohibitive to do this with standard MCMC methods (see

Rue, Martino & Chopin 2009 for comparisons of running

times). In addition, the full model and appropriate submodels

may be considered to allow for model comparison. Certainly,

INLAmay be applied to fit many other complex point process

models. This includes other marked point processes such as

multivariate models, and models with marks following other

distributions, such as normal for continuous marks, Poisson

for count data, zero-inflated Poisson, etc. Similarly, INLA also

facilitates the integrated analysis of other joint models such as

models of a spatial pattern and spatial covariates that account

for measurement error in the covariates (Illian, Sørbye & Rue

2012) or spatio-temporal point patterns. The latter constitute

an emerging field within statistics (Diggle 2007) and this prom-

ises to open even more opportunities for analysis of ecological

data.

In discussing the data example here, we aim at introducing

an ecological audience to spatial modelling based on INLA fit-

ting a latent Gaussian model, in particular a marked Cox pro-

cess model to an ecological data set. Many spatial point

process models, including Poisson models (Aarts, Fieberg &

Matthiopoulos 2012) and Gibbs process models (Baddeley &

Turner 2005) do not assume a latent random model, but use

models that are based on a deterministic trend. Modelling the

spatial trend in these models hence often assumes that an

explicit and deterministic model of the trend as a function of

location (and spatial covariates) is known (Baddeley & Turner

2005). The estimated values of the underlying spatial trend are

considered fixed values, which are subject neither to stochastic

variation nor to measurement error. As it is based on a latent

NatLowHigh

−1
·0

−0
·5

0·
0

0·
5

−2
−1

0
1

2

NatLowHigh

(b)(a)

Fig. 3. Effect of livestock pressure on the intensity of the spatial pattern (a) and health status (b) of theThymus carnosus plants.
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random field, the approach discussed here differs from these

approaches in assuming a hierarchical, doubly stochastic struc-

ture. This provides a flexible class of point processes models

which assume that the spatial trends exist in the data that can-

not be accounted for by the covariates. The spatial trend is

hence not regarded as deterministic, but assumed to be a

randomfield.

In general, analysing the spatial pattern formed by individu-

als in space is not necessarily the interest of all ecological stud-

ies involving spatial data and hence point process models are

certainly only one type of spatial model that is relevant here.

As the class of latent Gaussian models is very general, many

other spatial (and indeed non-spatial) data structures may be

fitted with INLA. For instance, similar modelling techniques

may also be applied to geostatistical data, i.e. a situation where

the aim is to fit a spatially continuous model to measurements

taken at a finite number of discrete locations (Diggle &Ribeiro

2007). This includes situations where preferential sampling is

likely to have occurred (Diggle,Menezes& Su 2010). Similarly,

models for data that have been collected on a – regular or irreg-

ular – spatial grid can also be fitted taking a strongly related

approach to the model discussed here (Rue & Held 2005). In

other words, while we discuss one specific example here, the

INLA methodology is generally applicable to many other

spatial models.

It is worth mentioning that many other complex data struc-

tures that are not necessarily spatial may be fitted with INLA –

in a Bayesian setting. Examples include models with random

effects, dynamic linear models, stochastic volatility models,

generalized linear (mixed)models, generalized additive (mixed)

models, spline smoothing, semiparametric regression, space-

varying (semiparametric) regression models, disease mapping,

spatio-temporal models, survival models etc. (see Rue,

Martino & Chopin 2009). While INLA facilitates the fitting of

increasingly complex models, there will inevitably be eventual

limitations. In particular, an increase in the number of

hyperparameters will eventually also slow down INLA.

The current approach uses a regular spatial grid and approx-

imates both the latent field and the spatial pattern by this grid.

Due to this, a dense lattice has to be used to be as exact as

possible. Recent statistical developments that approximate the

random field by the solution to a stochastic differential equa-

tion (SPDE) defined on a triangulation avoid these issues.

Here, the resolution of the spatial component can be locally

controlled (Lindgren, Rue&Lindström 2011). Combining this

SPDE approach with INLA is currently undergoing develop-

ment. This will allow for more flexible models to be fitted since

the spatial field and hence the latent process may be defined to

account for phenomena relevant in realistic data sets such as

varying boundary conditions or observation windows with

holes (Simpson et al. 2011).

In summary, INLA already provides considerable oppor-

tunities for the fitting of spatial ecological data that would

previously have been impossible to fit using other

approaches. Although most often ecologists will apply newly

emerging statistical methods some time (often some consider-

able time) after they have been initially developed by the stat-

isticians, the development and application of the methods

can, in this case, benefit substantially from the close working

together of spatial ecologists and statisticians. There are

many ways in which INLA can be further developed such

that it is able to be used for analysis of a greater range of spa-

tial data and ecologists with an intimate knowledge of their

data, and of the key questions they want to explore using

their data, can help to prioritize the directions future statisti-

cal developments take. The ecologists benefit by having meth-

ods available to address questions they may otherwise be

unable to answer while the statisticians benefit by having

access to ecological data exhibiting interesting statistical

properties that may often demand the development of new

statistical approaches. We hope and anticipate that over the

next few years we will witness a rapid development of these

statistical methods driven, at least in part, by a recognition

that they offer enormous potential to provide novel insights

into ecological processes through the analysis of complex spa-

tial data.
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Appendix S1. Fitting complex ecological point process models with

integrated nested Laplace approximation (INLA).
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