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Bacterial infections are increasingly difficult to treat owing to the spread of

antibiotic resistance. A major concern is Gram-negative bacteria, for which the

discovery of new antimicrobial drugs has been particularly scarce. In an effort to

accelerate early steps in drug discovery, the EU-funded AEROPATH project

aims to identify novel targets in the opportunistic pathogen Pseudomonas

aeruginosa by applying a multidisciplinary approach encompassing target

validation, structural characterization, assay development and hit identification

from small-molecule libraries. Here, the strategies used for target selection are

described and progress in protein production and structure analysis is reported.

Of the 102 selected targets, 84 could be produced in soluble form and the de

novo structures of 39 proteins have been determined. The crystal structures of

eight of these targets, ranging from hypothetical unknown proteins to metabolic

enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770,

PA4098, PA4485, PA4992 and PA5259), are reported here. The structural

information is expected to provide a firm basis for the improvement of hit

compounds identified from fragment-based and high-throughput screening

campaigns.

1. Introduction

Pseudomonas aeruginosa is a Gram-negative pathogen responsible

for a significant level of hospital-acquired infections, particularly in

burns victims and immunocompromised and cystic fibrosis patients

(Kerr & Snelling, 2009; Ratjen & Döring, 2003). Two major factors

contribute to the success of this opportunistic pathogen. Firstly,

P. aeruginosa is able to survive in moist environments with low

nutrient supply and can establish itself in niches characteristic to the

clinical environment. Secondly, the bacterium is highly adapted to

acquire antibiotic resistance and many strains have been identified

that employ common mechanisms such as modification of the drug or

its target, active efflux and/or decreased uptake of drugs (Breiden-

stein et al., 2011; Livermore, 2002). The need for novel and improved

antibiotics to tackle P. aeruginosa and related drug-resistant Gram-

negative bacteria has been well recognized, along with the practical

difficulties associated with antibacterial drug development (Payne et

al., 2007; Shlaes, 2003).

Armed with annotated genome sequences from important Gram-

negative pathogens, increasing knowledge of the mechanism of action

of existing drugs and some data on gene essentiality, we have pursued

potential drug targets in P. aeruginosa. In support of our study, we are

assisted by an improved understanding of the types of molecules that

are likely to provide either drug targets (Hunter, 2009) or appropriate

lead compounds (O’Shea & Moser, 2008).

A thorough assessment of a potential drug target requires an

efficient source of pure material for structural and ligand-binding

studies, an accurate crystallographic model, compound-screening

data using fragment or designed libraries and, where possible,

structure–activity relationships for groups of inhibitors. This infor-

mation would also underpin the search for new inhibitors that might

represent useful lead compounds. A multidisciplinary approach has

been implemented towards these objectives in the AEROPATH

project (http://www.aeropath.eu/). A bio-chemoinformatics analysis

of the P. aeruginosa genome and of published information on ligands

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5195&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=wd5195&bbid=BB68
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for the targets was achieved in the course of the study (G. J. Bick-

erton, I. M. Carruthers, W. N. Hunter & A. L. Hopkins, in prepara-

tion). Screening of fragment libraries and a collection of bioactive

molecules has been carried out using differential scanning fluorimetry

(DSF) and nuclear magnetic resonance (NMR) spectrometry.

Appropriate enzyme assays have been developed and then applied in

high-throughput screens (HTS; Eadsforth et al., 2012). A subset of

targets has been subjected to in vivo studies to elucidate whether

single-gene-knockout strains of P. aeruginosa strain PAO1 (Schnell

et al., 2012) are capable of establishing infection in the lungs of mice.

However, at the core of the project is the derivation of structural

models of the potential targets. The crystal structures allow a

druggability analysis of the active sites (Krasowski et al., 2011) and

are essential to support the derivation of the structure–activity

relationships of the ligands identified.

Here, we describe the strategies chosen for target selection, protein

production and a medium-throughput approach to derive three-

dimensional information for the selected P. aeruginosa proteins. Of

the 102 targets, 84 could be produced in soluble form and 37 de novo

crystal structures and two NMR structures of these proteins have

been obtained. We report the crystal structures of a subset of these

targets ranging from well characterized metabolic enzymes to

proteins with unknown functions.

2. Methods

2.1. Target selection and construct design

Target selection was based on the available genome sequence and

preliminary annotation of P. aeruginosa strain PAO1 (Stover et al.,

2000) together with results of mutagenesis studies to identify

potentially essential genes (Jacobs et al., 2003; Liberati et al., 2006).

Target selection also involved other considerations such as feasibility

of enzyme assay, chemogenomics information and an appropriate

balance of novel uncharacterized proteins versus established targets

for antibacterial drug design. In a few cases we selected close

orthologues if the target from PAO1 proved intractable. For parti-

cular targets, the genes from Actinobacter baumannii (Fyfe et al.,

2009), Burkholderia cenocepacia (Morgan et al., 2011) and Serratia

marcesens (Rao et al., 2011) have proven useful.

The coding sequences of the chosen genes of the reference strain

PAO1 were obtained from the website of the Pseudomonas genome

annotation database (http://www.pseudomonas.com). Signal

sequences (Petersen et al., 2011) were removed, but otherwise full-

length proteins were initially cloned. In a small number of cases,

further constructs were made to overcome issues with insoluble

expression. The coding sequences were amplified by PCR using

PfuTurbo polymerase (Stratagene), LongTemplate polymerase

(Roche) or Long PCR (Fermentas) for GC-rich sequences. Targets

were cloned into one of five vectors, each providing an N-terminal

cleavable His6 tag: pET28a (thrombin-cleavage site), pNIC28-Bsa4

[tobacco etch virus (TEV) cleavage site], a modified Gateway pDEST

vector (TEV cleavage site; Oke et al., 2010), pEHISTEV and

pEHISGFPTEV (TEV cleavage site; Liu & Naismith, 2009)

(depending on convenience and laboratory practice at the time).

When the modified pDEST vector was employed, the common

oligonucleotide 50-GGGGACAAGTTTGTACAAAAAAGCAGGC-

TTCGAAGGAGATATACATATGTCGTACTACCATCACCATCA-

CCATCACGATTACGATATCCCAACGACCGAAAACCTGTAT-

TTTCAGGGC-30 was used in PCR alongside two gene-specific

oligonucleotides. In two cases (PA0254 and PA1165), where PCR

amplification failed (possibly owing to a high GC content of 72.6%),

synthetic codon-optimized versions were sourced (GenScript). All

sequences of the cloned genes were confirmed by DNA sequencing

(Eurofins MWG Operon, Ebersberg, Germany).

2.2. Expression screening, scale up and purification

Expression screening was carried out in the Escherichia coli host

strains BL21(DE3) and C43(DE3) at 310 and 294 K in 2 ml LB

cultures. The cultures were induced at mid-log phase (OD600 = 0.4–

0.6) and expression was induced by the addition of isopropyl �-d-1-

thiogalactopyranoside to 0.1 mM concentration. After incubation,

the cells were harvested by centrifugation and broken up using the

BugBuster reagent (Novagen) or by sonication supplemented with

DNase I (2 mg ml�1) in a total volume of 200 ml. The lysate was

cleared by centrifugation and filtration through a 0.2 mm pore-size

Eppendorf tube-adapted filter (Amicon). SDS–PAGE was used to

analyse the total, soluble and insoluble protein distribution of lysed

cells. In addition, the fraction which could be bound to 10 ml Ni2+–

NTA beads (Qiagen) and eluted with 300 mM imidazole was exam-

ined. Proteins which gave soluble material were scaled up (typically

to 1.5–4 l cultures depending on the level of expression in the small-

scale experiments) in LB medium supplemented with the appropriate

antibiotic. Temperature, growth time, antibiotic and induction

conditions followed the small-scale experiments. Cell pellets were

thawed and resuspended in 10 mM Tris–HCl pH 8.0, 300 mM NaCl,

10 mM imidazole or 10 mM sodium phosphate pH 7.4, 500 mM NaCl,

10 mM imidazole, 10% glycerol. Lysozyme (Sigma), DNase I (Roche)

and EDTA-free protease-inhibitor cocktail tablets (Roche) were

added to 0.04 mg ml�1, 0.004 mg ml�1 and one tablet per 50 ml of

lysis buffer, respectively. Cells were lysed either by sonication or by

passage through a One Shot cell disruptor (Constant Systems) and

were fractionated by centrifugation at 18 000g for 25 min to separate

the soluble and insoluble fractions. Selenomethionine-substituted

proteins were produced according to the metabolic inhibition method

(Van Duyne et al., 1993), while 13C- and 15N-labelled proteins for

NMR structure determination were produced in Spectra 9 medium

(Cambridge Isotope Laboratories Inc.). The lysates were applied to

immobilized metal-ion chromatography medium (Qiagen and GE

Healthcare) in batch mode for 60 min at 277 K with constant agita-

tion. Proteins were eluted with an imidazole gradient and after

dialysis were cleaved with either thrombin or TEV protease at 293 K

followed by a second Ni2+–NTA affinity step to remove uncleaved

and contaminating proteins. The final step of the purification protocol

involved size-exclusion chromatography using S200 or S75 columns,

depending on protein size. Purified proteins were characterized by

SDS–PAGE, dynamic light scattering, differential scanning fluori-

metry (DSF), mass spectrometry and, where available, enzyme assays.

2.3. Protein structure determination

Crystallization screening was performed using Phoenix, Mosquito

or Cartesian Honeybee crystallization robots by sitting-drop vapour

diffusion. Appropriate protein concentrations were determined using

a pre-crystallization test. In the initial screen, the commercial screens

JCSG+ and PACT (Qiagen), SaltRx (Hampton Research) and

Wizard I and II (Emerald BioSystems) were applied alongside in-

house stochastically designed screens (Oke et al., 2011). Where

applicable, cofactors and potential ligands were added to the protein

samples. For proteins which were amenable to DSF, screens to

identify potential ligands (Ericsson et al., 2006) or a buffer screen to

identify stabilizing conditions prior to the crystallization experiment

were performed. Crystal quality was optimized by systematically

varying the crystallization conditions.
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X-ray diffraction data were collected on beamlines I02, I03 and I04

at Diamond Light Source (Didcot, England), I911-2 and I911-3 at

MAX IV Laboratory (Lund, Sweden), and ID23-1, ID14-1, ID14-4,

ID29 and BM14 at the European Synchrotron Radiation Facility

(Grenoble, France) or in-house using a Rigaku MicroMax-007 HF Cu

anode with VariMax optics alongside a Rigaku Saturn 944+ CCD.

X-ray data were processed with MOSFLM (Leslie, 2006), XDS

(Kabsch, 2010), HKL-2000 (Otwinowski & Minor, 1997) or in an

automated manner with xia2 (Winter, 2010) and were scaled using the

CCP4 suite (Winn et al., 2011). The majority of the crystal structures

were solved by molecular replacement using the programs Phaser

(McCoy et al., 2007) or MOLREP (Vagin & Teplyakov, 2010). Where

molecular replacement failed or was not suitable, experimental

phasing using sulfur-single wavelength anomalous diffraction

(S-SAD), selenomethionine multi-wavelength and single-wavelength

anomalous diffraction (Se-MAD and Se-SAD) or multiple and single

isomorphous replacement using heavy-metal derivatives were

employed. The locations of heavy and anomalous scattering atoms

and initial phases were determined by SHELXC/D/E (Sheldrick,

2008) and improved with automated model building using PHENIX

(Adams et al., 2002) and CCP4 (Winn et al., 2011). Electron-density

and difference density maps were inspected and models were

adjusted and ligands and solvent molecules were added using Coot

(Emsley et al., 2010); they were refined with REFMAC5 (Murshudov

et al., 2011) and validated with MolProbity (Chen et al., 2010) and

STAN (http://xray.bmc.uu.se/usf/www.html).

Analyses of quaternary structures were carried out using the PISA

server (Krissinel & Henrick, 2007) and by inspection in Coot.

Structural comparisons were based on the SSM algorithm (Krissinel

& Henrick, 2004) implemented in Coot (Emsley et al., 2010). Searches

of the Protein Data Bank for related structures were performed using

DALI (Holm & Rosenström, 2010).

3. Results and discussion

3.1. Target selection

The selected targets (Supplementary Table S11) include several

hypothetical proteins, but are primarily proteins involved in meta-

bolic processes known to be important for bacterial survival, growth

or virulence. For example, enzymes involved in folate metabolism

(Lucock, 2000), the biosynthesis of fatty acids (Parsons & Rock,

2011), isoprenoids (Hunter, 2007), cell-wall components (Vollmer &

Seligman, 2010), lipid A (King et al., 2009) and rhamnose (Giraud &

Naismith, 2000) or components of the machinery implicated in

secretion of virulence factors (Jani & Cotter, 2010) were selected. A

database was established with external links (G. J. Bickerton, I. M.

Carruthers, W. N. Hunter & A. L. Hopkins, in preparation) to assist

project coordination and to capture information of direct use in the

experiments.

3.2. Soluble protein into crystallization trials

Most of the cloned genes resulted in soluble proteins in sufficient

amounts for crystallization screens using a single-construct approach.

In several cases, however, more elaborate screening was required, for

instance by the use of several constructs incorporating fused proteins

such as glutathione-S-transferase or co-expression of chaperones

alongside codon-optimized cell lines for protein expression. Of the 84

proteins that were identified as soluble in the small-scale expression

screens, we purified 79 on a large scale. Of the five proteins that did

not progress, three were owing to failure to scale up and two were

abandoned owing to changes in priority. The success rate from the

target selection to the crystallization step was 77%, which compares

well with those obtained in similar projects using bacterial proteins

(Oke et al., 2010; Lesley et al., 2002). The crystallization-screening

campaigns and subsequent optimization steps resulted in crystals for

47 of the protein samples (Table 1).

3.3. Structure determination

Overall, the project has so far provided de novo structural infor-

mation for 39 proteins: 37 by X-ray crystallography and two by NMR.

Of the crystal structures, 24 were determined by molecular replace-

ment and 11 using experimental phasing (Table 2). In addition to

these structures, more than 60 complexes with ligands (cofactors,

substrates, inhibitors) have been determined. The crystal structures

of some of these targets have already been published by consortium

members, in combination with cofactor or ligand complexes (Sains-

bury et al., 2011; Kopec et al., 2011; O’Rourke et al., 2011; Schnell et

al., 2012) and the effects of gene knockouts of P. aeruginosa in a

mouse-infection model (Schnell et al., 2012). In the following sections,

we report several representative target-protein structures ranging

from known enzymes to hypothetical proteins of unknown function.

3.4. Crystal structure of the uroporphyrinogen III synthase HemD

(PA5259)

Uroporphyrinogen III (U3) is the first cyclic tetrapyrrole

compound in the haem-biosynthesis pathway and is located at a

metabolic branching point (Panek & O’Brian, 2002). From U3,

biosynthetic routes lead to haem, sirohaem or cobalamin (vitamin

B12). The structure of P. aeruginosa uroporphyrinogen III synthase

(HemD, PA5259) was solved to 2.4 Å resolution using Se-SAD

phasing.

3.4.1. Experimental. The gene coding for HemD was cloned into

pET28a (Novagen) with upstream NdeI and downstream HindIII

sites (Supplementary Table S2), expressed in E. coli BL21(DE3) and

purified following the procedures outlined in x2. The construct used

for structure analysis consisted of full-length HemD (residues 1–251)

with three additional residues (Gly-Ser-His) at the N-terminus

remaining after tag removal by thrombin cleavage. Crystals of

PA5259 were produced by hanging-drop vapour diffusion by mixing

2 ml protein solution at a concentration of 15–36 mg ml�1 and 2 ml

well solution (0.1 M sodium cacodylate pH 6.7, 0.87 M sodium

citrate). The drops were equilibrated against 1.0 ml reservoir solu-

tion. Single crystals were produced by seeding. Crystals of seleno-

methionine-substituted protein were obtained using a condition
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Table 1
Summary of gene-to-structure statistics within the AEROPATH project.

Targets Cloned Expressed Soluble Insoluble Purified Crystals Structures

Total 102 99 84 18 79 47 39†

† Includes two NMR structures.

Table 2
Phasing experiments for the crystal structures.

MR S-SAD Se-SAD HA-SAD Se-MAD

Total 24 6 2 4 1

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: WD5195).



identical to that for the native enzyme. The crystals were cryopro-

tected by transfer into a well solution containing 30%(v/v) MPD prior

to flash-cooling in liquid nitrogen.

Data for the native crystals were collected on beamline ID23-1 and

data for SeMet-substituted crystals were collected on beamline

ID14-4 at the ESRF (Supplementary Table S3). Data were processed

with MOSFLM (Leslie, 2006) and scaled with SCALA (Winn et al.,

2011). The HemD crystals belonged to the tetragonal space group

P43212 and details of the data statistics are given in Supplementary

Table S3. The structure was determined using the SAD protocol of

Auto-Rickshaw (Panjikar et al., 2009) and was refined with

REFMAC5 (Murshudov et al., 2011). Details of the refinement

statistics are given in Supplementary Table S3. The crystallographic

data have been deposited in the PDB with accession code 4es6.

3.4.2. Overall structure. P. aeruginosa HemD is a monomeric

enzyme comprising two globular �/�-domains linked by a pair of

antiparallel �-strands (Fig. 1 and Supplementary Fig. S1a). The cavity

at the domain interface is sufficiently large to provide space for

binding of the linear tetrapyrrole substrate hydroxymethylbilane. The

overall fold is identical to that of other known uroporphyrinogen III

synthases, but the orientation of the domains is quite different to

some of these enzymes (PDB entries 1jr2, 3re1, 3d8n, 3d8r and 1wcx;

Mathews et al., 2001; Schubert et al., 2008; Peng et al., 2011; E.

Mizohata, T. Matsuura, K. Murayama, H. Sakai, T. Terada, M. Shir-

ouzu, S. Kuramitsu & S. Yokoyama, unpublished work), as reflected

by the significant variation in r.m.s.d. values from 1.9 to 5.2 Å upon

superposition of the crystal structures. The conformation of PA5259

in the crystals corresponds to the ligand-free closed state of the

enzyme (Schubert et al., 2008). The low level of conservation of

active-site residues when compared with the human enzyme

(Mathews et al., 2001) suggests that the development of selective

inhibitors of PA5259 might be feasible.

3.5. Crystal structure of the unknown protein PA2169

PA2169, annotated as a hypothetical protein, is a representative of

the DUF2383 domain of unknown function, with no structure linked

to this entry in Pfam (Punta et al., 2012). Sequence alignments indi-

cated low sequence identity (maximum of 16%) to ferritin-like

proteins and domains.

3.5.1. Experimental. The gene coding for PA2169 was cloned into

pET28a (Novagen) with upstream NdeI and downstream HindIII

sites (Supplementary Table S2), expressed in E. coli BL21(DE3) and

purified following the procedures outlined in x2. The construct used

for structure analysis consisted of full-length PA2169 (residues 1–150)

with three additional residues (Gly-Ser-His) at the N-terminus

remaining after tag removal by thrombin cleavage. Crystallization

was performed using the vapour-diffusion method in hanging-drop

format by mixing 2 ml protein solution at 20 mg ml�1 concentration

with 1 ml well solution consisting of 19%(w/v) PEG 10K, sodium

acetate pH 4.6, 20 mM strontium chloride. The drops were equili-

brated against 1.0 ml well solution. The crystals used for X-ray data

collection were cryoprotected with well solution containing 25%(v/v)

ethylene glycol. Crystals in space groups P21 and P212121 were
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Figure 1
Schematic view of the structure of HemD (PA5259). Secondary-structural elements
are colour-coded in yellow (�-strands) and red (�-helices). The N- and C-termini
are shown as blue and red spheres, respectively.

Figure 2
(a) Schematic view of the structure of PA2169, a protein of unknown function. The dotted line indicates the flexible loop that is not well defined in electron density. (b)
Surface representation of PA2169 with residues colour-coded according to sequence conservation from white (not conserved) to cyan (invariant). (c) View of the potential
metal-binding site in PA2169 comprising residues Glu102, Asp106 and His139.



obtained under the same conditions. The monoclinic crystals gave

better diffraction statistics and therefore structure analysis was

pursued using these data. X-ray data were collected on beamline

ID23-1 at ESRF. Data were processed with MOSFLM (Leslie, 2006)

and scaled with SCALA (Winn et al., 2011). Details of the data

statistics are given in Supplementary Table S4. A search model

derived from a ferritin-like domain of an uncharacterized protein

from Anabaena variabilis (PDB entry 3fse; Joint Center for Structural

Genomics, unpublished work) was successfully used to solve the

structure by molecular replacement, despite a low sequence identity

of only 16%. Two polypeptides constitute the asymmetric unit.

The structure was refined with REFMAC5 (Murshudov et al., 2011)

and details of the refinement statistics are given in Supplementary

Table S4. The crystallographic data have been deposited in the PDB

with accession code 4etr.

3.5.2. Overall structure. The structure of PA2169 revealed a four-

helix-bundle fold (Fig. 2a and Supplementary Fig. S1b) with the same

topology as observed in the ferritin-like module of the redox-defence

protein from Mycobacterium smegmatis (Roy et al., 2007). The crystal

structure is thus consistent with circular-dichroism spectroscopy using

purified protein samples, which suggested an all-� fold for PA2169. A

disulfide bond is formed between Cys30 and Cys101. The protein

lacks the metal-ion-binding site that is typical of the ferritin family

(Theil, 2011) and the iron-binding residues are not conserved. In the

structure of PA2169 a triad composed of Glu102, Asp106 and His139

is found in a different location to the iron-binding site in the ferritin

family and resembles a potential metal-binding site. These residues

are conserved in proteins belonging to the DUF2383 domain

sequence family (Figs. 2b and 2c). However, attempts to provide

experimental evidence for metal binding using differential scanning

fluorimetry and cocrystallization were unsuccessful.

3.6. Crystal structure of PA4992, a putative aldo–keto reductase

PA4992 is annotated as a member of the aldo–keto reductase

superfamily. These enzymes catalyze the reversible reduction of

ketones to the respective alcohols using NAD(P)H as a hydride

donor (Jez & Penning, 2001; Ellis, 2002).

3.6.1. Experimental. The gene coding for PA4992 was cloned into

the pNIC28Bsa4 vector (GenBank accession No. EF198106) using

ligation-independent cloning (Supplementary Table S2), expressed in

E. coli BL21(DE3) and purified following the procedures outlined in

x2. As removal of the affinity tag by TEV protease resulted in protein

precipitation, the uncleaved construct was used for structure analysis,

consisting of residues 1–270 (full-length PA4992) and the affinity tag,

including a linker at the N-terminus (MHHHHHHSSGVDLGTE-

NLYFQS). Rod-shaped crystals of apo PA4992 were grown at 293 K

from droplets consisting of 2 ml reservoir solution [0.1 M bis-tris

methane pH 6.35, 0.1 M sodium malonate, 16%(w/v) PEG 3350] and

2 ml PA4992 solution (12 mg ml�1 in 20 mM Tris–HCl pH 8.0, 150 mM

NaCl). The droplets were equilibrated against 1.0 ml reservoir solu-

tion. Crystals of the holoenzyme were obtained by incubating the

protein with 10 mM NADP+ at room temperature for 10 min before

crystallization. The best crystals of the NADP+ complex were grown

using 25.5% polyacrylic acid, 0.1 M HEPES pH 7.4 as a reservoir

solution. Crystals were briefly soaked in well solution containing

25%(v/v) glycerol before cooling in liquid nitrogen. X-ray data were

collected from a crystal of the apoenzyme on beamline I9-11 at MAX

IV Laboratory and from a crystal of the holoenzyme on beamline

ID21-1 at the ESRF (Supplementary Table S5). Data were processed

with MOSFLM (Leslie, 2006) and scaled with SCALA (Winn et al.,

2011).

The structure of the holoenzyme was determined by molecular

replacement using the coordinates of AKR11C1 from Bacillus

halodurans (PDB entry 1ynp; Marquardt et al., 2005) as a template

and were refined with REFMAC5 (Murshudov et al., 2011). The final

model of holo PA4992 was used to determine the structure of apo

PA4992, which was subsequently refined following the same protocol

(Supplementary Table S5). At the N-terminus, residues from the tag

were defined in the electron density and were included in the model.

However, no or weak electron density was present for three flexible

loop regions, 33–41, 180–181 and 222–226, and the last two C-terminal

residues, indicating disorder, and these residues were therefore not

modelled. The crystallographic data have been deposited in the PDB

with accession codes 4exb (apoenzyme) and 4exa (holoenzyme).

3.6.2. Overall structure. PA4992 folds into a (�/�)8-barrel typical

of aldo–keto reductases (Fig. 3 and Supplementary Fig. S1c).

The closest structural homologue is AKR11C1 from B. halodurans

(Marquardt et al., 2005), with an r.m.s.d. of 1.8 Å for 220 aligned C�

atoms. Binding of NADP+ to PA4992 occurs in the open

shallow crevice near the C-terminal helix �8, without significant
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Figure 3
Schematic view of the structure of the putative aldo–keto reductase PA4992. Bound
NADP+ and the putative catalytic triad are shown as stick models. The
nicotinamide ribose moiety of NADP+ is not shown as it is disordered in the
crystals.

Figure 4
Schematic view of the structure of the uncharacterized protein PA4485. The
conserved Asp70 is represented as a stick model.



conformational changes, as indicated by the r.m.s.d. of 0.3 Å between

the structures of the apoenzyme and the holoenzyme. The adenosine

segment of NADP+ is well defined in the electron-density map;

however, the nicotinamide moiety is not and appears to be flexible.

The position of the cofactor is similar to that observed in AKR11,

although none of the residues forming hydrogen bonds or salt bridges

with NADP+ atoms are retained in PA4992. Nevertheless, the enzyme

contains the catalytic triad, in this case Asp66, Tyr71 and Lys94, which

is conserved in the AKR family (Jez & Penning, 2001), suggesting a

similar chemistry and mechanism.

3.7. Crystal structure of the conserved hypothetical protein PA4485

PA4485 is annotated as an essential gene in P. aeruginosa with no

human homologue.

3.7.1. Experimental. The gene coding for PA4485 was cloned into

pEHISGFPTEV (Supplementary Table S2), expressed in E. coli

and purified following the procedures outlined in x2. The construct

entering our pipeline was truncated to residues 32–125. The crystals

used for data collection were obtained using the sitting-drop vapour-

diffusion method at 293 K by mixing 0.15 ml protein solution

(8 mg ml�1) with 0.15 ml reservoir solution [25%(w/v) PEG 3350,

0.2 M sodium chloride, 0.1 M bis-tris pH 5.5]. The drops were equi-

librated against 0.07 ml reservoir solution. Two data sets were

collected: the first, for structure solution, was collected in-house and

an additional higher resolution data set was collected on beamline I03

at Diamond Light Source and was used for refinement. For phasing,

the crystals were soaked in 200 mM 5-amino-2,4,6-triiodoisophthalic

acid (I3C) for approximately 5 min and were back-soaked in mother

liquor containing 20%(w/v) glycerol prior to data collection. All data

were processed and reduced with HKL-2000 (Otwinowski & Minor,

1997; Supplementary Table S6). Phases were determined using SAD

(Sheldrick, 2008) and the structure was refined using the methods

outlined in x2 (Table S6). The crystallographic data have been

deposited in the PDB with accession code 4avr.

3.7.2. Overall structure. PA4485 is a single-domain protein with

overall dimensions of 25 � 23 Å. The core of the protein (residues

1–9 and 26–94) adopts a six-stranded �-barrel fold (Fig. 4 and

Supplementary Fig. 1d). The barrel is sealed off at one end by a

seven-residue �-helix positioned between strands �7 and �8. In

addition, there is a small extension protruding from the bulk of the

protein (residues 10–25). After strand �1 of the barrel fold, this insert

folds into a short 310-helix that turns through almost a right angle

such that the remaining two short �-strands pack against the core of

the protein (Fig. 4).

The asymmetric unit of PA4485�N31 contains two molecules.

Analysis with PISA suggests there is no stable dimer arrangement in

the crystal. The PISA complex significance score (CSS) is 0.46, where

a score of 1 suggests strong evidence for stable oligomer formation

and a score of 0 represents little evidence of stable interfaces. The

PISA analysis is consistent with the data from gel filtration, which

indicate a monomer in solution.

The closest structural relatives of PA4485, with r.m.s.d. values in

the range 1.9–2.0 Å, are Expb1, a �-expansin promoting extension

and relaxation of grass cell walls (Yennawar et al., 2006), MltA, a lytic

transglycosylase that cleaves the �-1,4-glycosidic linkage between

N-acetylmuramic acid and N-acetylglucosamine of peptidoglycan

(Powell et al., 2006), and EGV, an endoglucanase responsible for

hydrolysis of the �-1,4-linked glucose residues of cellulose (Hirvonen

& Papageorgiou, 2003). All of these proteins belong to a family that

shares the six-stranded double-� �-barrel fold. Sequence alignments

show that a catalytic aspartic acid, Asp70 in PA4485, is conserved

across these proteins and also in PA4485, raising the possibility that

this protein might have a similar function in polysaccharide hydro-

lysis. To investigate this hypothesis, native crystals were soaked with a

variety of sugars including sucrose, arabinose, fructose and cellobiose,

and X-ray diffraction data were subsequently collected and analysed.
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Figure 5
Schematic view of the structure of the putative short-chain dehydrogenase PA4098. (a) Structure of the enzyme subunit, with bound NAD+ and the putative catalytic triad
Ser133, Tyr146 and Lys150 shown as stick models. (b) Tetrameric quaternary structure of PA4098.



However, none of these experiments yielded electron-density maps

that indicated the binding of a saccharide ligand.

3.8. Crystal structure of the hypothetical protein PA4098

PA4098 is an essential protein of P. aeruginosa and has been

annotated as a probable short-chain dehydrogenase reductase

(SDR).

3.8.1. Experimental. The gene coding for PA4098 was cloned into

pDEST14 (Supplementary Table S2), expressed in E. coli and puri-

fied following the procedures outlined in x2. The construct entering

crystallization trials comprised residues 1–241. An additional glycine

residue is present at the N-terminus of the protein owing to the

cloning strategy. The hexagonal crystals used for data collection were

obtained by the vapour-diffusion method at 293 K by mixing 1 ml

protein solution (22 mg ml�1) with 1 ml reservoir solution [1.31 M

sodium acetate, 0.14 M ammonium tartrate, 2%(v/v) butanediol,

0.1 M sodium acetate pH 4.5] and equilibrating the drops against

0.07 ml reservoir solution. Data were also collected from a complex

of PA4098 with NAD+ obtained by soaking apo crystals grown from

1.56 M sodium acetate, 0.1 M ammonium tartate, 3.2%(v/v) butane-

diol, 0.1 M sodium acetate pH 5.0 in a cryobuffer consisting of

25%(v/v) PEG 400, 10 mM NAD+. The crystals were cryoprotected

by soaking them in mother liquor supplemented with 15%(v/v)

glycerol prior to data collection. X-ray data were collected on

beamlines I03 and I02 at Diamond Light Source from crystals of the

apoenzyme and the holoenzyme, respectively. X-ray data from the

apoenzyme crystals were processed and scaled using HKL-2000 and

data from the holoenzyme crystals were processed and scaled with

xia2 (Supplementary Table S7).

Phases were obtained by MR using a monomer of 2-deoxy-d-

gluconate 3-dehydrogenase from Thermus thermophilus (PDB entry

1x1e; RIKEN Structural Genomics/Proteomics Initiative, unpub-

lished work) as a template and the structure was refined using

REFMAC5 (Murshudov et al., 2011). The asymmetric unit contained

two molecules and all of the residues of the apo structure have been

modelled satisfactorily despite relatively weak electron density for

the loop between residues 182 and 188 (Supplementary Table S7).

The crystallographic data have been deposited in the PDB with

accession codes 4avy (apoenzyme) and 4b79 (holoenzyme).

3.8.2. Overall structure. PA4098 contains a Rossmann fold (Fig. 5

and Supplementary Fig. S1e), with the core of the subunit formed by

a central parallel �-sheet of seven strands which is flanked by five

�-helices. The closest structural relative in the PDB is the hypo-

thetical protein TT0321 from T. thermophilus HB8 (PDB entry 2d1y;

43% identity; RIKEN Structural Genomics/Proteomics Initiative,

unpublished work), with an r.m.s.d. of 1.2 Å for 220 aligned C� atoms.

The major structural difference between PA4098 and this and other

closely related members of this enzyme family is the lack of an �-helix

between the �2 and �3 strands in PA4098. The overall structures of

the polypeptide chains in the asymmetric units are almost identical,

with r.m.s.d. values of 0.2 Å (apo versus apo) and 0.3 Å (apo versus

holo). PA4098 forms a tetramer in the crystal similar to the subunit

arrangement in other family members.

The binding of the cofactor NAD+ at the end of the central �-sheet

is similar to that observed in other SDR enzymes (Oppermann et al.,

2003). Binding of NAD+ results in a different conformation of the

loop comprising residues 182–188 (involved in NAD+ binding), which

becomes partially disordered in the holo structure. A sequence

alignment of PA4098 with SDR family members shows that all of the

sequence motifs common to SDR enzymes and required for NAD

binding and activity are conserved in PA4098 and the proposed

catalytic triad of PA4098, Ser133, Tyr146 and Lys150, adopts a similar

conformation and displays interactions with those observed in other

SDR enzymes. The presence of an acidic residue in the pocket would

preclude the binding of NADP (Persson et al., 2003) owing to clashes

with the phosphate group, while its absence and a basic residue close

by indicates NADP binding. There are no such basic or acidic resi-

dues in the sequence of PA4098; instead, the 2-OH group forms a

hydrogen bond to the backbone of Leu42. This region of the protein

structure would preclude binding of NADP (clash with phosphate)

without significant rearrangement of the structure.

3.9. Crystal structure of PA3770

PA3770 is annotated as inosine-50-monophosphate dehydrogenase

(IMPDH) catalyzing the conversion of inosine 50-monophosphate to

xanthosine 50-monophosphate in the guanine-nucleotide biosynthesis

pathway.

3.9.1. Experimental. The gene coding for PA3770 was cloned into

pDEST14 (Supplementary Table S2), expressed in E. coli and
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Figure 6
Schematic view of the structure of the subunit (a) and tetramer (b) of the putative inosine-50-monophosphate dehydrogenase PA3770. The location of the missing subdomain
and active-site flap are highlighted in the structure of the subunit.



purified following the procedures outlined in x2. The construct

entering crystallization trials comprised residues 1–489 of the PA3770

coding sequence with an additional glycine residue at the N-terminus

arising from the cloning protocol. The crystal used for data collection

was obtained by sitting-drop vapour diffusion at 293 K by mixing

0.15 ml protein solution (13 mg ml�1) with 0.15 ml reservoir solution

[0.1 M MES pH 6.5 containing 11%(w/v) PEG 4000]. Droplets were

equilibrated against 0.07 ml reservoir solution. The crystals were

cryoprotected by doping the mother liquor with 25%(v/v) glycerol

prior to data collection. X-ray data were collected on beamline ID29

at ESRF and were processed using xia2 (Winter, 2010; Supplementary

Table S8).

Phases were obtained by MR using the structure of a subunit of

inosine-50-monophosphate dehydrogenase from Thermotoga mari-

tima (PDB entry 1vrd; Joint Center for Structural Genomics,

unpublished work) as a template and the structure of PA3770 was

refined using the protocol described in x2 (Supplementary Table S8).

The crystallographic data have been deposited in the PDB with

accession code 4avf.

3.9.2. Overall structure. The three-dimensional structure of

IMPDH has been well characterized and has recently been reviewed

(Hedstrom, 2009). The catalytic domain folds into an eight-stranded

�/�-barrel (Fig. 6 and Supplementary Fig. S1f). The closest structural

homologue to PA3770 is IMPDH from the Gram-negative bacterium

Borrelia burgdorferi (PDB entry 1eep; McMillan et al., 2000). The two

proteins align over 313 residues with an r.m.s.d. of 0.8 Å. Like many

of the IMPDH structures deposited in the PDB, no electron density is

visible in our structure for the subdomain residues 91–204. In addi-

tion, electron density for residues 385–420 corresponding to the so-

called ‘active-site flap’ is also missing. Nevertheless, the overall

architecture of the proposed active site in PA3770 is the same as that

found in the B. burgdorferi enzyme.

The protein forms a tetramer in the asymmetric unit with a total

buried surface area of 11 200 Å2, equivalent to approximately 23% of

the total surface area. Data from gel filtration indicated a molecular

mass of around 200 kDa, which is consistent with tetramer formation.

3.10. Crystal structure of the hypothetical protein PA1645

PA1645 is annotated as a hypothetical protein that has no human

homologues.

3.10.1. Experimental. The gene coding for PA1645 was cloned into

pEHISGFPTEV (Supplementary Table S2), expressed in E. coli and

purified following the procedures outlined in x2. The target entering

our pipeline was truncated to residues 20–135. The crystal used for

data collection was obtained by sitting-drop vapour diffusion at 293 K

by mixing 0.15 ml protein solution (6 mg ml�1) with 0.15 ml reservoir

solution (0.64 M lithium sulfate, 0.18 M sodium acetate, 0.1 M sodium

citrate pH 4.5). The drops were equilibrated against 0.07 ml reservoir

solution. The crystals were cryoprotected by doping the mother

liquor with 25%(v/v) glycerol prior to data collection. Extremely

highly redundant X-ray data were collected at a wavelength of 1.6 Å

on beamline I03 at Diamond Light Source and were processed with

xia2 (Winter, 2010; Supplementary Table S9).

Phases were determined by S-SAD using the SHELXC/D/E suite

of programs (Sheldrick, 2008) and the structure was refined using

REFMAC5 (Murshudov et al., 2011; Supplementary Table S9). All of

the residues are ordered in each of the three monomers in the

asymmetric unit. The crystallographic data have been deposited in

the PDB with accession code 2xu8.

3.10.2. Overall structure. Each monomer consists of a five-

stranded antiparallel �-sheet sandwiched between two short �-helices

(Fig. 7 and Supplementary Fig. S1g). One large loop protrudes

between strands 3 and 4, and in the trimer these loops form an apex to

the oligomeric structure. On the opposite side of the trimer, �3 from

each monomer packs in a manner akin to an angled propeller,

creating a funnel leading to a positively charged surface at the base.

However, the funnel is partially blocked by residue Gln105. PA1645

also binds 11 SO4
2� ions, a component of the crystallization condi-

tions. Interestingly, one of the SO4
2� ions is located just below the

triad of Gln105 residues and is anchored by a network of interactions

with water molecules. There are no direct contacts between the

sulfate ion and the protein.

An analysis of the oligomerization state of the protein with PISA

returned a CSS of only 0.194. Such a low score suggests that the

proposed arrangement may not be stable. The total buried surface

area in the PA1645�N19 trimer is 8230 Å2, which represents 46% of

the total surface area available. This compares with a total buried

surface area of 6320 Å2, which is 34% of the total surface area

available, for Plasmodium falciparum dUTPase (PDB entry 2y8c), a

confirmed protein trimer of similar mass to PA1645 (Baragaña et al.,

2011). However, PA1645�N19 elutes from a gel-filtration column as

two peaks, one of which is analogous in size to the proposed trimer,

with a molecular mass close to 40 kDa. These data therefore suggest

that PA1645 most likely exists in solution in an equilibrium between

monomeric and trimeric states.
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Figure 7
Schematic view of the structure of the monomer and the putative trimer of the uncharacterized protein PA1645. Helices �3 that form a ‘funnel’-like structure are labelled
alongside Gln105, which blocks the entrance of this funnel. The sulfate ion at the base of the funnel is also depicted.



3.11. Crystal structure of the putative oxidoreductase PA1648

PA1648 has been annotated as a probable oxidoreductase.

3.11.1. Experimental. The gene coding for PA1648 was cloned into

pDEST14 (Supplementary Table S2), expressed in E. coli and puri-

fied following the procedures outlined in x2. The construct entering

crystallization trials comprised residues 1–334 encoded by the

PA1648 gene and one additional glycine residue at the N-terminus of

the protein as a result of the cloning protocol. The crystal used for

data collection was obtained by mixing 1 ml reservoir solution [0.9 M

sodium citrate, 0.1 M MES pH 6.5, 0.1 M magnesium sulfate,

10%(v/v) glycerol] with 1 ml protein solution and equilibrating

against 0.1 ml well solution. The crystal was cryoprotected by soaking

in mother liquor containing 20%(v/v) glycerol prior to data collec-

tion. In addition, an NADP+-bound complex was formed by soaking a

native crystal with 25 mM NADP+ overnight prior to cryoprotection

and data collection. X-ray data were collected on beamlines I03 and

I02 at Diamond Light Source from crystals of the apoenzyme and the

holoenzyme, respectively. X-ray data were processed with XDS and

scaled using XSCALE (Kabsch, 2010; Supplementary Table S10).

Phases were determined by MR using a model generated from

double-bond reductase from Arabidopsis thaliana (Youn et al., 2006;

PDB entry 2j3h). The apo structure was used as a model to solve

the ligand-bound complex. The protein models were refined using

REFMAC5 (Murshudov et al., 2011) and protocols described in x2.

Details of the refinement statistics are given in Supplementary Table

S10. The crystallographic data have been deposited in the PDB with

accession codes 4b7c (apoenzyme) and 4b7x (holoenzyme).

3.11.2. Overall structure. The PA1648 monomer is comprised of

a catalytic domain and a nucleotide-binding domain (Fig. 8 and

Supplementary Fig. S1h). The catalytic domain is formed by residues

1–129 and 299–334, which includes �-helices 1, 2 and 11 and �-strands

1–8, 15 and 16. The strands form five-stranded and three-stranded

antiparallel twisted sheets and a two-stranded parallel �-sheet. The

nucleotide-binding domain comprises residues 130–298 (�-helices

3–10 and �-strands 9–14) and adopts the characteristic Rossmann

fold. The cofactor-binding site is located in a cleft between the

catalytic and nucleotide-binding domains. A DALI search of the

PDB with the PA1648 dimer revealed structural similarity to

numerous members of the medium-chain reductase superfamily. The

conservation of sequence is most pronounced in the nucleotide-

binding domain and includes the GXXS (residues 246–249) and

glycine-rich GXXGXXXG (residues 158–165) motifs, which interact

with the adenine and nicotinamide moieties of the NADP+, as

observed in the homologue 2j3h (Youn et al., 2006). This particular

homologue shares a sequence identity of 41% with PA1648 and aligns

326 C� atoms with an r.m.s.d. of 1.4 Å. The catalytic domain showed

relatively little sequence identity (5%) to the structural homologues

and lacks the polyproline helix observed in some other members of

the family.

There are 12 molecules in the asymmetric unit, which form six

homodimers assembled in a trimeric arrangement (Fig. 8). Gel-

filtration analyses show the protein to be dimeric in solution,

suggesting that the dodecamer arrangement is a crystallographic

artifact.

4. Concluding remarks

Our long-term objective is to elucidate the potential and to provide

a comprehensive assessment of selected P. aeruginosa proteins as

targets for therapeutic intervention. In this endeavour, we targeted a

number of proteins for crystallographic study. We generated valuable

reagents such as expression plasmids for efficient production of

soluble recombinant proteins and established protocols for purifica-

tion, biochemical and biophysical assays, compound screening and
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Figure 8
Schematic view of the dimer (a) and dodecamer (b) of the probable oxidoreductase PA1648. The catalytic and nucleotide-binding domains are labelled alongside the two
consensus motifs and the NADP+-binding site.



crystallization. We have obtained new structural data on potential

drug targets and enriched the PDB collection of structures from this

pathogen. The structural information that we have generated has

allowed an assessment of the druggability of these targets based on a

novel algorithm (Krasowski et al., 2011) and will be published else-

where. Furthermore, our work provides templates for structure-based

approaches by computational methods and/or fragment screening to

further support inhibitor development. New chemical entities that

bind and inhibit selected targets have already been identified and will

provide starting points for hit-to-lead compound development. Our

PAO1 genome assessment, results and experiences are available

online at http://aeropath.lifesci.dundee.ac.uk/.
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