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Damping of Kink Waves by Mode Coupling

I. Analytical Treatment
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ABSTRACT

Aims. To investigate the spatial damping of propagating kink waves in an inhomogeneous plasma. In the limit of a thin tube
surrounded by a thin transition layer, an analytical formulation for kink waves driven in from the bottom boundary of the
corona is presented.
Methods. The spatial form for the damping of the kink mode was investigated using various analytical approximations. When
the density ratio between the internal density and the external density is not too large, a simple differential-integral equation
was used. Approximate analytical solutions to this equation are presented.
Results. For the first time, the form of the spatial damping of the kink mode is shown analytically to be Gaussian in nature near
the driven boundary. For several wavelengths, the amplitude of the kink mode is proportional to (1 + exp(-z2/L2

g))/2, where
L2

g = 16/ǫκ2k2. Although the actual value of 16 in Lg depends on the particular form of the driver, this form is very general
and its dependence on the other parameters does not change. For large distances, the damping profile appears to be roughly
linear exponential decay. This is shown analytically by a series expansion when the inhomogeneous layer width is small enough.

Key words. Magnetohydrodynamics (MHD) – Sun: atmosphere – Sun: corona – Sun: magnetic topology – Sun: oscillations –
Waves

1. Introduction

CoMP (Coronal Multi-channel Polarimeter) observations
have revealed periodic Doppler shift oscillations propa-
gating along large, off-limb coronal loops (Tomczyk et al.
2007; Tomczyk &McIntosh 2009). From the analysis of the
ratio of outward and inward propagating power along loop
structures, Tomczyk & McIntosh (2009) found a strong
decay in the wave amplitudes as they travelled along the
loop. Indeed, only shorter loops show evidence of inward
power, implying the presence of either very efficient dissi-
pation or mode conversion. Furthermore, McIntosh et al.
(2011) demonstrated that these propagating, transverse
loop displacements carry a significant amount of energy
and hence could potentially play and important role in
coronal heating (Parnell & De Moortel, 2012) and/or the
solar wind acceleration (Ofman 2010). Finally, the ubiqui-
tous nature of these waves makes them very attractive as
a potential seismological tool (De Moortel & Nakariakov,
2012). Similar transverse oscillations have also been re-
ported in spicules (De Pontieu et al. 2007, He et al. 2009),

X-ray jets (Cirtain et al. 2007) and prominence fibrils
(Okamoto et al. 2007).

The observed waves show clear, periodic variations in
Doppler shifts (velocities) but only very weak signatures
in intensity. This incompressible nature, together with the
fact that the observed speeds are generally of the order of
the local Alfvén speed gives the waves a distinct Alfvénic
character (Goossens et al. 2009). Motivated by the numer-
ous observations of waves in coronal loops, for example in
Tomczyk et al. (2007), we recently performed a series of
3D numerical simulations (Pascoe et al. 2010, 2011, 2012).
Using 3D simulations of loop displacements, Pascoe et al.
(2010) clarified the nature of the observed loop displace-
ments as coupled kink-Alfvén waves: transverse footpoint
motions travel along the loop and through the inhomo-
geneity at the loop boundary, couple efficiently to (az-
imuthal) Alfvén waves. This mode coupling takes place
at locations where phase speed of the propagating kink
mode matches the local Alfvén speed (Allan & Wright,
2000) and energy is transferred from the transverse kink
modes to the Alfvén modes in the shell regions of the loop.
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Hence, the kink modes are effectively a moving source of
Alfvén waves untill all energy is transferred into the Alfvén
waves. Pascoe et al. (2010) showed that this coupling is
sufficiently efficient to qualitatively explain the observed
rapid amplitude decay. This mode coupling takes place
even for modest density contrasts or an arbitrary inhomo-
geneous medium (Pascoe et al. 2011). Further evidence
for the occurence of the mode coupling presence can be
found in the frequency filtering which is inherent to this
mechanism. Indeed, Terradas et al. (2010) demonstrated
that the damping of the transverse motions through mode
coupling is frequency-dependent, with higher frequencies
leading to shorter damping lengths. Subsequently, Verth et
al. (2010) found evidence for this frequency in the CoMP
data of Tomczyk & McIntosh (2009), strengthening the
interpretation of the observed, propagating Doppler shift
oscillations as coupled kink-Alfvén waves. Additional ef-
fects such as a the presence of a background flow or grav-
itational stratification on the mode coupling mechanism
were studied by Soler et al. (2011a, 2011b).

The damping lengths obtained through mode coupling
do not only depend on the frequency of the footpoint
displacements but also on the width of the inhomoge-
neous layer at the edge of the loop. Wider layers lead to
more efficient mode coupling and, hence, shorter damping
lengths. The periods observed by Tomczyk et al. (2007)
are of the order of several minutes (peaking at about 5
minutes) and to achieve the observed strong damping in
this period range, a relatively wide layer, of the order of
half of the loop radius, is required (Pascoe et al. 2010,
2012). Similar evidence for loops with wide boundary lay-
ers was obtained by seismological estimates derived from
the damping rate of standing, kink mode oscillations by
Goossens et al. (2002). Similar to the mode coupling mech-
anism described by Pascoe and co-authors, which operated
on open flux tubes, standing, kink mode oscillations, on
closed field lines, also undergo efficient damping through
resonant absorption in the presence of an inhomogeneous
shell regions (e.g. Hollweg & Yang 1988, Goossens et al.
1992, Ruderman & Roberts 2002).

The numerical simulations of Pascoe et al. (2012) re-
vealed a change in the characteristic damping profile of
the transverse velocity displacements: at low distance, a
Gaussian profile of the form exp(−z2) is present, followed
by an exponential damping profile of the form exp(−z)
at larger distances. The distance at which this transition
between the two damping profiles occurs appears to de-
pend on the density profile. For narrow inhomogeneous
layers, the exponential damping profile is evident after
only a few wavelengths. However, for wider shell regions,
the damping profile is largely Gaussian except at large dis-
tances. As observational evidence (both for propagating
and standing kink mode oscillations) suggests the pres-
ence of wide inhomogeneous shell regions, Pascoe et al.
(2012) suggested the Gaussian profile might be best suited
to the observed CoMP data. A transition to the exponen-
tial damping regime would still occur at larger distances
but, due to the strong damping, the amplitudes of the

Doppler shift oscillations are expected to be too small to
be observationally relevant.

A related study for the time dependent evolution of a
standing kink mode has been undertaken by Ruderman
and Terradas (2012). They find that the temporal be-
haviour of the kink mode amplitude is damped in a
Gaussian manner for small times, before approaching a
linear exponential damping for large times.

In this paper, we investigate the mode coupling process
analytically to clarify the nature of the Gaussian damp-
ing profile. The paper is organised as follows. The analyt-
ical problem is formulated in Section 2, followed by the
derivation of the governing equations in Section 3. The
nature of the damping profile is investigated in Section
4 by using various approximations. The key point of this
section is to demonstrate when previously used approxi-
mations are valid and when they fail. These approxima-
tions are compared with numerical simulations in Section
5. Conclusions are presented in Section 6.

2. Problem formulation

We consider the propagation of kink waves in a semi-
infinite magnetic tube. In cylindrical coordinates r, ϕ, z
with the z-axis coinciding with the tube axis, the tube is
situated in the half-space z > 0. The equilibrium magnetic
field is in the z-direction, B0 = (0, 0, B0), and homoge-
neous. The equilibrium density, ρ(r) is given by

ρ(r) =











ρi, r ≤ R− ℓ/2,

ρt(r), R− ℓ/2 ≤ r ≤ R+ ℓ/2,

ρe, r ≥ R+ ℓ/2,

(1)

where ρi and ρe are constants, and ρi > ρe. Thus, the
Alfvén speed, VA(r) = B0/

√

µ0ρ(r), is a function of radius
alone and we use the notation

VA(r) =











Vi, r ≤ R− ℓ/2,

VA(r), R− ℓ/2 ≤ r ≤ R+ ℓ/2,

Ve, r ≥ R+ ℓ/2.

(2)

The tube is excited by imposing a velocity perturba-
tion at z = 0. Thus, waves are excited and these propa-
gate into the system, namely z > 0. We select the external
Alfvén speed to be 1 Mm s−1. Distances are measured in
Mm and periods in seconds.

In order to demonstrate the Gaussian nature of the
damping analytically, we neglect stratification, field line
curvature and expansion of the magnetic tube. The im-
portance of these physical phenomena will be discussed in
Section 6 but we expect them to be unimportant when
the wavelength and damping lengths are shorter than the
gravitational scale height, the radius of curvature and the
characteristic spatial scale of the tube’s radial variation.
These conditions may not necessarily be met in all coronal
flux tubes but are imposed for mathematical simplicity.

In this paper, we are interested in linearly polarized
(transverse) oscillations. The displacements in the radial
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and azimuthal directions are taken as ξr = ξr(r, z, t) cosϕ
and ξϕ = −ξϕ(r, z, t) sinϕ, respectively, and the perturbed
total pressure as P = B0bz/µ0 = P (r, z, t) cosϕ, where
bz is the z-component of the magnetic field perturbation.
This is a lateral kink mode (as opposed to the helical kink)
and, due to form of the equilibrium, there is no coupling
to other azimuthal mode numbers.

The linearised Magnetohydrodynamic (MHD) equa-
tions, describing the plasma evolution in the cold plasma
limit, are given in Ruderman (2011) (hereafter denoted as
Paper I) and they reduce to

∂(rξr)

∂r
− ξϕ = 0, (3)

Lξr ≡ ∂2ξr
∂z2

− 1

V 2
A

∂2ξr
∂t2

=
µ0

B2
0

∂P

∂r
, (4)

Lξϕ ≡ ∂2ξϕ
∂z2

− 1

V 2
A

∂2ξϕ
∂t2

=
µ0

B2
0

P

r
. (5)

For notational simplicity, we define the differential opera-
tors

Lk =
∂2

∂z2
− 1

C2
k

∂2

∂t2
, L =

∂2

∂z2
− 1

V 2
A

∂2

∂t2
, (6)

Li =
∂2

∂z2
− 1

V 2
i

∂2

∂t2
, Le =

∂2

∂z2
− 1

V 2
e

∂2

∂t2
. (7)

Ck is the fast kink speed determined by

2

C2
k

=
1

V 2
i

+
1

V 2
e

, ⇒ C2
k =

2B2
0

µ0(ρi + ρe)
, (8)

where B0 is the (constant) magnitude of the equilibrium
magnetic field, and µ0 the magnetic permeability of free
space. In our analysis, we use the equation for kink oscilla-
tions in a straight magnetic tube, derived in Paper I, using
the thin tube approximation. The thin tube approxima-
tion means that the z component of the induction equa-
tion reduces to (3) to leading order in a series expansion in
powers of the radial coordinate. The plasma is only incom-
pressible to leading order. Paper I considers a cold plasma
in the presence of background flow but here we consider
the static background case.

Equations (3), (4) and (5) are solved inside the tube
(r < R− l/2 with ξr and ξϕ only functions of z) and in the
external region (r > R+ l/2 with ξr and ξϕ proportional
to 1/r2 in the thin tube limit). The external solutions are
expressed in terms of the internal solutions by integrating
the solutions to the equations across the transition layer
(R− l/2 < r < R+ l/2). We define the internal solutions,
using the thin tube approximation, as

ξr(r, z, t) = η(z, t), ξϕ(r, z, t) = η(z, t),

µ0Pi

B2
0

= r

(

∂2η

∂z2
− 1

V 2
i

∂2η

∂t2

)

≡ rLiη. (9)

Following Paper I and the brief derivation in the Appendix
(see Section A.2 and Eq. (A.6)), we obtain the equation

Table 1. Definitions of variables and parameters used in this
paper.

Parameter/Variable Definition

ǫ l/R
χ Ck/VA

κ (ρi − ρe)/(ρi + ρe)
X (r −R)/(l/2)
s kz
Z κkz/2
ωT ωt− kz

governing the propagation of the radial component of the
fast kink mode, η(z, t), namely

Lkη ≡ ∂2η

∂z2
− 1

C2
k

∂2η

∂t2
= −M. (10)

The right-hand side of Eq. (10) describes the damping of
the fast kink mode. When the right-hand side is zero, the
kink wave propagates undamped from the photospheric
boundary. When M is non-zero inside the transition layer,
the energy in the kink wave (as identified by η) is con-
verted into the resonant Alfvén mode (as identified by the
spatial growth in amplitude of ξϕ at the location where the
value of the variable Alfvén speed equals the kink speed
Ck, i.e. where VA(rs) = Ck).

The quantity M on the right-hand side of Eq. (10) is
given by (see Appendix Eq. (A.6))

M = − ℓ

4R
Liη +

ℓ

4R
Leη +

µ0δP

2RB2
0

+
1

2
Leδξr, (11)

where δP = Pe − Pi and δξr = ξe − η are the jumps of P
and ξr across the transition layer.

In what follows, we use the thin tube thin boundary
(TTTB) approximation, and so have ǫ = l/R ≪ 1. Hence,
the leading order approximation to M, with respect to ǫ,
is given in the Appendix (see Eq. (A.11)) and the propa-
gating kink mode equation can be expressed as

Lkη = − 1

2R
Le

∫ R+l/2

R−l/2

ξϕdr. (12)

3. Derivation of the governing equation

To progress, the integral involving ξϕ in Eq. (12) must be
expressed in terms of η. Hence, we need to obtain the so-
lution for ξϕ in the transition layer. Thus, we must solve
Eq. (5), where the right hand side is replaced by the lead-
ing order solution, i.e. with P replaced by Pi and r by
R. Next we use Eq. (A.2), from the Appendix, to give to
leading order

Lξϕ = Liη. (13)

Below, we assume that the photospheric driver at z = 0
excites a linearly polarized kink wave with frequency ω
propagating in the positive z-direction. In the absence of
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the inhomogeneous annulus, the solution to Eq. (12) de-
scribes a constant amplitude, propagating wave for the
internal displacement that propagates with the speed Ck.
The perturbations of all variables, in this case, are func-
tions of T = t − z/Ck only and, for a fixed frequency
ω, have the form eiωT . Due to the transition layer, the
amplitude of the internal displacement, η, is resonantly
damped and for ǫ ≪ 1 the lengthscale for the damping
will be much longer than the wavelength L = 2πCk/ω
of the undamped kink wave. We do not prescribe the re-
lationship between the wavelength and the characteristic
scale of the amplitude variation, but only assume that this
scale is much larger than L. Inside the transition layer we
define a stretched radial coordinate, namely

X =
r −R

l/2
. (14)

The definitions of important variables used in this paper
are given in Table 1.

Thus, we look for solutions for η of the form

η(z, t) = η̃(z)eiωT = η̃(z)eiω(t−z/Ck) = η̃(z)ei(ωt−kz), (15)

where k = ω/Ck, and assume

L

η̃

dη̃

dz
≪ 1. (16)

To keep the expressions as simple as possible, we re-
strict our attention to the linear density profile. Thus, in-
side the transition layer,

ρ =
1

2
[ρi + ρe − (ρi − ρe)X ] .

In addition, we must specify boundary conditions for η and
ξϕ on the driven boundary at z = 0. We assume η̃(0) = a
and

ξϕ(r, 0, t) = a sgn(−X)eiωt =

{

aeiωt, −1 < X < 0,
−aeiωt, 0 < X < 1.

(17)

From the integral of Eq. (3), so that rξr =
∫

ξϕdr and
continuity of ξr, the leading order boundary condition for
ξr on z = 0 is ξr(r, z = 0, t) = aeiωt. This choice matches
the form of the undamped kink mode. We remind the
reader that terms proportional to ǫ are dropped to leading
order.

The solution to (13) is obtained by the method of
Variations of Parameters (Boyce & DiPrima, 2008). Thus,
we set

ξϕ = α(r, z)eiω(t−z/VA) + β(r, z)eiω(t+z/VA), (18)

where α(r, z) and β(r, z) are to be determined. We define
the ratio of the kink speed to the Alfvén speed as χ =
Ck/VA.

Hence, χ =
√
1− κX where κ = (ρi − ρe)/(ρi + ρe).

Substituting these results into Eq. (13), we have the pair
of equations

∂α

∂z
ei(ωt−kχz) +

∂β

∂z
ei(ωt+kχz) = 0,

−χ
∂α

∂z
ei(ωt−kχz) + χ

∂β

∂z
ei(ωt+kχz) = −ikκη̃(z)eiωT , (19)

and the solutions to these equations are

α = C1(X) +
ikκ

2χ

∫ z

0

η̃(u)e−ik(1−χ)udu, (20)

β = C2(X)− ikκ

2χ

∫ z

0

η̃(u)e−ik(1+χ)udu. (21)

When deriving the second equation in Eq. (19), we ne-
glect the small terms containing the derivatives of η̃(z) in
the right-hand side. Since the wavelength associated with
e−ik(1+χ)z is much less that the damping length of η, we
can integrate by parts (or equivalently average over one
wavelength) the expression for β and get, approximately,

β = C2(X)− aκ

2χ(1 + χ)
+

κ

2χ(1 + χ)
η̃(z)e−ik(1+χ)z . (22)

To eliminate any downward propagating waves, we choose

C2(X) =
aκ

2χ(1 + χ)
, (23)

so that

βei(ωt+kχz) =
κ

2χ(1 + χ)
η̃(z)eiωT . (24)

Hence, there is no contribution from downward propagat-
ing waves, as expected, and only the term due to the up-
ward propagating kink wave remains.

Integration by parts cannot be used for simplifying
α near X = 0, since the wavelength of the integrand,
2π/k(1 − χ), is no longer less than the damping length.
However, we can use that approach at X = −1 (or equiv-
alently at r = R − l/2) to confirm that ξϕ = η̃(z)eiωT

there.

Finally, we need to choose C1(X) so that the boundary
condition at z = 0, Eq. (17), is satisfied. Hence,

C1(X) = a sgn(−X)− aκ

2χ(1 + χ)
. (25)

This is the only place where the spatial form of the photo-
spheric driver appears, namely the first term on the right
hand side of Eq. (25). Thus, the solution for ξϕ is

ξϕ =

{(

a sgn(−X)− aκ

2χ(1 + χ)

+
ikκ

2χ

∫ z

0

η̃(u)e−ik(1−χ)udu

)

eik(1−χ)z

+
κ

2χ(1 + χ)
η̃(z)

}

eiωT . (26)

There are four terms in the expression for ξϕ, with the first
term dependent on the radial form of the boundary con-
dition at z = 0. The exponential factor for the undamped
kink mode, eiωT , has been taken outside the curly brack-
ets, leaving a complex function of kz, X and η̃ inside.

Next, we must integrate Eq. (26) across the transition
layer. This is done term by term in the Appendix. The
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final equation governing the propagation and damping of
the kink mode, on using Eq. (15) for the form of η, is

−2i
dη̃

ds
+

d2η̃

ds2
=

ǫκ

4

∫ 1

−1

ξϕdX =
ǫκ

4
{F (s)

+

∫ s

0

η̃(u)g(s− u)du+ η̃(s) ln

[

p4
p3

]}

(27)

on cancelling the common factor of eiωT and setting s =
kz. In deriving Eq. (27), we have only applied the operator
Le to the multiplier eiωT . The additional terms are small
for s greater than unity. They are also small for κ ≪ 1.
The inhomogeneous term is given by

F (s) = − 4a

κs2
− i

4a

κs
+

2a

κs2
(

eisp1 + eisp2
)

+ i
2a

κs

(√
1− κeisp1 +

√
1 + κeisp2

)

+ aei2s [Ci(sp3)− Ci(sp4)− iSi(sp3) + iSi(sp4)] ,(28)

and

g(s− u) =
ei(s−u)p1 − ei(s−u)p2

s− u
. (29)

We define, for later use, the complex function

G(s) =

∫ s

0

g(s− u)du. (30)

In Eqs. (27), (28) and (29), we have used the shorthand
notation,

p1 = 1−
√
1− κ, p2 = 1−

√
1 + κ,

p3 = 1 +
√
1− κ, p4 = 1 +

√
1 + κ, (31)

and Ci(x) and Si(x) are the cosine integral and the
sine integral, as defined in Abramowitz and Stegun,
(http://www.nr.com/aands/) and the Appendix.

When κ is not too large, i.e. less than about 1/2, we
can use the approximations p1 ≈ κ/2 and p2 ≈ −κ/2 and
express F (s) as

F (s) = −2ia

(

1− cosZ

Z

)

+O(κ), (32)

where Z = κkz/2. This approximation is valid for κ ≪
Z ≪ 1/κ. A more accurate representation of F , by taking
an extra term in the κ expansions of p1 and p2 is given by

F (s) = −2ia

(

1− cosZ cos
(

κZ
4

)

Z

)

+O(κ), (33)

by considering variations over the slower spatial scale
given by κZ/4 = κ2kz/8. Note that the Taylor series ex-
pansion for small κZ/4 gives the same approximation as
Eq. (32). The difference between the two approximations
only occurs for large κZ/4 and remains bounded. In ad-
dition, the expansion for small Z agrees with small kz ex-
pansion discussed below. Hence, the approximation given
by Eq. (32) remains accurate for 0 < Z < 4/κ.

4. Investigation of damping

In this section we investigate the spatial form of the damp-
ing of the kink mode. Firstly, we show that for small dis-
tances the amplitude decays Gaussianally and that this
behaviour is not due to the specific form of the photo-
spheric driver. Next we investigate a simple expansion in
powers of ǫ, the ratio of the width of the transition layer
to the radius of the flux tube. This illustrates that the
simple expansion breaks down once a certain distance is
reached. Finally, we use an expansion valid for small den-
sity ratios to derive a relatively simple looking equation to
describe the damping. This form of equation allows us to
investigate commonly used assumptions in the next sub-
section and demonstrates the importance of the various
terms involved.

4.1. Small kz

Let us use Eq. (27) to study the properties of propagating
kink waves. We start our analysis by investigating the so-
lution of this equation for small kz. In the Appendix, we
show that the expansion of F (s) on the right-hand side of
Eq. (27) is given by, (see Sections A.4.1 and A.4.2),

F (s) ≈ isB − a (1 + 2is) ln

[

1 +
√
1 + κ

1 +
√
1− κ

]

+isa
(√

1 + κ−
√
1− κ

)

, (34)

where

B =
2

3κ
a
(

2− (1 + κ)3/2 − (1− κ)3/2
)

. (35)

For example, for κ = 1/3, the linear approximation pro-
vides a good fit to both F (s) and the coefficient of η̃ out to
s ≈ 5 (see Figure 1). In this case, small s means 0 ≤ s < 5.
Therefore, we can express Eq. (27) as

−2i
dη̃

ds
+

d2η̃

ds2
=

ǫκ

4

{

isB − 2isa ln

[

1 +
√
1 + κ

1 +
√
1− κ

]

+2isa
[√

1 + κ−
√
1− κ

]

+i

∫ s

0

(η̃(u)− a)
[√

1 + κ−
√
1− κ

]

du

+(η̃(s)− a) ln

[

1 +
√
1 + κ

1 +
√
1− κ

]}

. (36)

When κ is not too close to unity, κ < 1, Equation (36)
can be approximated by

−2i
dη̃

ds
+

d2η̃

ds2
=

ǫκ2

8

{

(η̃(s)− a) + 2i

∫ s

0

(η̃(u)− a) du + ais

}

. (37)

This form of the equation is used to illustrate the method
of analysis with the result for more general κ listed below.
Since η̃ = a when ǫ = 0, we set η̃ − a = ǫη̃1(s) and, in
the weak damping limit and for small values of s, terms
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containing η̃− a on the right hand side of Eq. (36) can be
neglected. Hence, the O(ǫ) equation is

−2i
dη̃1
ds

+
d2η̃1
ds2

− κ2

8
{ais} = 0. (38)

The solution is to this equation is the complementary func-
tion and a particular integral. Since it has to satisfy the
boundary condition η̃(0) = a, it contains only one arbi-
trary constant. To determine this constant, we once again
use the condition that there is no downward propagating
wave. As a result we obtain

η̃ = a

(

1− ǫκ2s2

32
+ i

ǫκ2s

32

)

+O(ǫ2). (39)

It is common in considering the effect of weak damping,
where dη̃/ds = O(ǫ), to assume that the second deriva-
tive will be O(ǫ2), i.e. smaller than the first derivative.
However, this is not the case, as shown by Eq. (39). Instead
the imaginary term in Eq. (39) results from keeping the
second derivative. The amplitude of η̃ is, however,

1− ǫκ2s2

32
+O(ǫ2)

and this can be obtained directly from Eq. (37) by drop-
ping the second derivative. Thus, the second derivative
term modifies the phase of the weakly damped kink mode.

Repeating the above method for general κ, we can
show that, for small s,

η̃ ≈ a[1− ǫq(κ)(s)2] (40)

where

q(κ) =
1

24

[

2− (1 − 2κ)
√
1 + κ− (1 + 2κ)

√
1− κ

]

+
κ

8
ln

1 +
√
1− κ

1 +
√
1 + κ

. (41)

It is worth noting that

q(κ) ≈ κ2

32
(42)

with the accuracy better than 2.5% for 0 < κ < 1. This
approximation for q can be used even for values of κ close
to unity. For example, when the density contrast is 10 so
that κ = 9/11, the maximum error in replacing Eq. (41)
by the simpler expression of Eq. (42) is less than 1.6%.

To clearly highlight the behaviour of the damping, we
investigate the logarithm of η̃ so that, for example, e−z/L

would appear as a straight line. For our expansion given
by Eq. (40), we have ln(ξr/a) = −ǫq(κ)s2, where s = kz.
This is consistent with

ln(η/a) ≈
(

− ǫκ2s2

32

)

,

but there are other functions which have the same initial
terms in their expansion. For example,

η̃ ≈ a

2

{

1 + exp

(

− ǫκ2s2

16

)}

=
a

2

{

1 + exp

(

− z2

L2
g

)}

,(43)

Fig. 1. The imaginary part of F (s) is shown as a solid curve
and the small z expansion is shown as a dot-dashed curve,
for κ = 1/3. The real part of F (s) is the dotted curve. The
approximation to the imaginary part of F (s) given by (33) is
the dashed curve.

where

L2
g =

16

ǫκ2k2
, (44)

is a slightly better fit to the numerical solution provided

s is not too large. Here not too large means up to a dis-
tance of approximately a wavelength divided by κ from
the boundary driver. Since the long wavelength limit is
used, this can be a significant distance from the location
of the driver.

Thus, the amplitude of η̃ decreases Gaussianally for
small s. Although the series given by Eq. (40) is the correct
expression for small s, this can be expressed by a number
of different functional forms that have the same expansion
for small s.

4.2. Expansion in powers of ǫ

Before progressing, we study the approximations to
F (s) = Fr(s) + iFi(s). Figure 1 shows that the imagi-
nary part of F (s), Fi(s), dominates Fr(s), for 0 < s < 30,
and the small s expansion is valid out to s = 5. Note that
Eq. (33) provides a good fit to Fi(s) for 0 < s < 50, as seen
in Figure 1. Now we look to express η̃ in powers of ǫ as
η̃ = a+ ǫη̃1(s)+O(ǫ2). Hence, ln η̃ = ln a+ ǫη̃1(s)+O(ǫ2).
Since both the imaginary parts of F (s) and G(s) are larger
than the respective real parts, we drop the real parts.
Dropping the second derivative, we have

−2
dη̃1
ds

=
κ

4
(Fi(s) + aGi(s)) . (45)

Hence,

η̃1(s) = −κ

8

∫ s

0

(Fi(u) + aGi(u)) du. (46)

This is shown is Figure 2. Our simple expansion in pow-
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Fig. 2. η̃1 is shown as a function of s as a solid curve, for
κ = 1/3. The triple dot-dashed curve is the approximation
−(κs)2/32, the dot-dashed curve is −π(κs)/8 + 2 and the
dashed curve is −π(κs)/8 + ln(κs/2)/2 + 0.9. Note that the
function is initially Gaussian for small s but, although modi-
fied by the logarithm term, it is approximately linear for large
s.

ers of ǫ must break down whenever ǫη̃1 becomes of or-
der unity. This secular behaviour suggests that there is
a slower lengthscale associated with the damping of the
kink mode. However, this slow scale is not simply a linear
combination of ǫ and z.

Thus, the expansion in powers of ǫ is only valid for
small enough distances, such that ǫη̃1 ≪ 1. For large dis-
tances, this expansion will always break down. However,
the distance where it begins to break down does depend
strongly on ǫ. For small enough ǫ, we can clearly see how
the form of the damping is initially Gaussian in character
but it switches to an almost linear form further up. If ǫ is
larger, but still less than unity, the expansion will be valid
for the Gaussian part only.

4.3. Expansion in powers of κ

Returning to the kink mode Eq. (27), we expand the right
hand side in powers of κ. Defining the new independent
variable Z = κkz/2, the equation is

−i
dη̃

dZ
+

κ

4

d2η̃

dZ2
=

−i
ǫ

2

{

a(1− cosZ)

Z
−
∫ Z

0

η̃(u)
sin(Z − u)

Z − u
du

}

+O(κ).

Hence, the second order derivative can be neglected to
leading order in κ and the weak density variation assump-
tion κ ≪ 1 leads to

dη̃

dZ
=

ǫ

2

{

a(1− cosZ)

Z
−
∫ Z

0

η̃(u)
sin(Z − u)

Z − u
du

}

. (47)

Eq. (47) is the important equation that can be used to in-
vestigate the spatial damping of the the propagating kink

mode, whenever the density contrast is not too large. For
example, good agreement is found with the numerical so-
lutions (see Section 5) whenever ρi/ρe ≤ 3 or equivalently
κ ≤ 1/2. The advantage of Eq. (47) over the full expression
in Eq. (27) is its relative simplicity. This equation can be
solved numerically. We can use it also to investigate how
some standard approximations compare with the full so-
lution. In addition, the inhomogeneous term in Eq. (47)
is derived directly from the imposed form of the photo-
spheric driver. Changing the driver changes this one term.
However, as we will see below, neglecting this term does
not change the conclusion that the damping is Gaussian
in nature over the first few wavelengths. It is just that the
rate of the Gaussian damping is different.

4.3.1. Expansion in powers of ǫ

Next, we can expand η̃ in powers of ǫ and obtain

η̃ = a+
ǫa

2

{

∫ Z

0

1− cosu

u
du −

∫ Z

0

∫ u

0

sin s

s
ds du

}

.

Evaluating the integrals, we have

η̃ = a+
ǫa

2
{γ + 1 + lnZ − Ci(Z)− ZSi(Z)− cosZ, }(48)

where γ ≈ 0.5772 is Euler’s constant and Ci(Z) and
Si(Z) are the Cosine and Sine integrals respectively
(Abramowitz and Stegun, http://www.nr.com/aands/).
We can approximate η̃ by

a− ǫa

2

(

Z2

4
− Z4

288
+

Z6

21600

)

for Z < 4,

a− ǫa

2

(

πZ

2
− lnZ − 1− γ +

cosZ

Z2

)

for Z > 4, (49)

where the appropriate asymptotic expansions for Ci(Z)
and Si(Z) have been used. Note that the logarithm of η̃,
when ǫ is small, is simply

ln(η̃/a) =
ǫ

2
(γ + 1 + lnZ − Ci(Z)− ZSi(Z)− cosZ).(50)

This form is used when comparing with the numerical so-
lution for small ǫ in Section 5 below. From Eq. (49), we
expect ln η̃ to behave like −ǫπZ/4 + (ǫ lnZ)/2 for large
Z, so that the Terradas et al. (2010) results will slightly
over-estimate the damping rate due to the neglect of the
logarithmic term. The behaviour for small Z is again the
same as the real part of Eq. (39).

We remind the reader that, for large Z, the expansion
in powers of ǫ will break down whenever the magnitude
of η̃ − a becomes of order unity. The small Z expansion,
however, will remain valid for small ǫ and κ.

4.4. Approximate solutions to Eq. (47)

Eq. (47) can be solved numerically and the results are
compared with the full numerical solution to the linear
MHD equations (as discussed in Pascoe et al., 2012). This
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Fig. 3. The different approximations for η̃ are shown as a func-
tion of Z = κkz/2 for ǫ = 0.2. The solid curve is the numerical
solution to Eq (47). Approximation 1, Eq. (51), is shown as
a dashed curve, Approximation 2 as a dot-dashed curve and
Approximation 3 as a triple dot-dashed curve.

comparison is discussed in Section 5. Before that, we can
use Eq. (47) to investigate commonly used approximations
in the large z limit and compare these approximations
with the numerical solution of Eq. (47).

4.4.1. Approximation 1

Firstly, consider the behaviour of η̃(kz) for 1 ≪ kz ≪ ǫ−1.
The first term on the right-hand side of Eq. (47) is O(1/z)
when compared to the second term. Hence, we neglect the
first term. Thus, for large Z, we solve

dη̃

dZ
+

ǫ

2

∫ Z

0

η̃(u)
sin(Z − u)

Z − u
du = 0. (Approx. 1) (51)

where Z = κkz/2. This approximate equation can be
solved by a Laplace transform but it is not straight-
forward to invert the transform back to physical space.
Instead we solve this equation numerically to determine
Approximation 1, η̃1(Z). Approximation 1 is shown in
Figure 3 as a dashed curve.

4.4.2. Approximation 2

Using the mean value theorem, the integral in Eq. (51)
can be expressed as

∫ Z

0

η̃(u)
sin(Z − u)

Z − u
du = η̃(z)

∫ Z

0

sin(Z − u)

Z − u
du

−
∫ Z

0

η̃′(c) sin(Z − u)du,

where the derivative of η̃ is evaluated at c and u ≤ c ≤ Z.
Since the derivative of η̃ is O(ǫ), we neglect the second
term. Hence, Eq. (51) reduces to

dη̃

dZ
+ η̃(z)

ǫ

2

∫ Z

0

sin(Z − u)

Z − u
du = 0. (Approx. 2)

and this can be solved by an integrating factor to give

η̃2(Z) = a exp

{

− ǫ

2

∫ Z

0

Si(u)du

}

= a exp
{

− ǫ

2
(ZSi(Z) + cosZ − 1)

}

. (52)

For large Z, Si(Z) → π/2 and so

η̃ ≈ a exp

{

− ǫπκkz

8

}

, (53)

as derived by Terradas et al. (2010). This approximate so-
lution is shown in Figure 3 as a dot-dashed curve. Despite
neglecting the inhomogeneous terms, which arise through
the form of the photospheric driver when solving for the
resonant Alfvén mode inside the transition layer, this so-
lution also has a Gaussian form for small Z of the form
a exp{−ǫZ2/4} and only takes on the linear exponential
damping for large Z. So the inhomogeneous term only
changes the value of the coefficient of Z2 in the Gaussian
damping.

4.4.3. Approximation 3

Next we re-introduce the inhomogeneous term on the
right-hand side of (47) but take the η̃(z) outside the inte-
gral again and investigate

dη̃

dZ
+

ǫ

2
η̃(z)

∫ Z

0

sin(Z − u)

Z − u
du =

ǫ

2

{

1− cosZ

Z

}

. (Approx. 3)

Again we can use an integrating factor to obtain

η̃3(Z) = a

{

∫ Z

0

ǫ

2

[

1− cosu

u

]

exp

(

ǫ

2

∫ u

0

Si(s)ds

)

du

+1} exp
(

− ǫ

2

∫ Z

0

Si(u)du

)

. (54)

The first term in curly brackets on the right-hand side is
due to the inhomogeneous term, while the second term is
the same as Approximation 2. η̃3(Z) is shown as the triple
dot-dashed curve in Figure 3. Note that for small Z this
approximation has the form

η̃3(Z) ≈ a

{

∫ Z

0

ǫ

4
ueǫu

2/4dZ + 1

}

e−ǫZ2/4

≡ a

2

{

1 + e−ǫZ2/4
}

. (55)

As shown above in Eq. (43), this approximate solution has
the same Taylor series expansion as the small z expansion
derived earlier.

Finally, we can solve Eq. ( (51) numerically to deter-
mine the validity of using the mean value theorem to de-
rive Approximation 3. The numerical result for η̃ is shown
in Figure 3 as the solid curve.
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There is a significant difference between the approx-
imate solutions η̃1(Z), η̃2(Z) and η̃3(Z) when Z is suf-
ficiently large. The neglect of the inhomogeneous term,
Approximations 1 and 2, changes the coefficient of the
Gaussian term at small Z and results in too much damp-
ing. However, it still remains Gaussian in nature. For
larger Z, Approximation 1 is more or less parallel to the
numerical solution to Eq. (47). Approximation 2 damps
significantly faster. Approximation 3 includes the inho-
mogeneous term but the simplifying assumption of taking
η̃ outside the integral predicts a slower damping rate at
large Z. However, it does have the correct behaviour for
small Z.

The best approach in understanding the spatial damp-
ing of the kink mode through mode coupling to the Alfvén
mode in the transition layer, is to solve Eq. (47) numeri-
cally. Keeping in mind the results shown in Figure 3, the
error in using Approximation 3 is not too significant. It
has the advantage of having a solution in a closed analyt-
ical form. The functions Si and Ci are rapidly obtained
from computer algebra packages, such as Maple, and it is
easy to use a package to numerically integrate the terms
in Eq. (54). The small Z expansion, using Eq. (54) gives
the correct Gaussian behaviour.

5. Comparison with Numerical Results

The numerical solution to the linear MHD equations re-
mains the most accurate description of the damped kink
mode. In this section, the approximate solutions derived
(and the methods illustrated) in the previous section are
compared with the actual numerical results. Two different
numerical codes are used, a second order Lax-Wendroff
scheme and a fourth order, finite difference method. The
numerical results obtained with the two different meth-
ods are consistent and indicate that the results obtained
are not dependent on the method used to solve the linear
MHD equations. We consider two examples for a small
transition layer, namely small ǫ (ǫ < κ < 1) and a small
density contrast (κ < ǫ < 1).

Figure 4 shows the results for a period of 36 s, a width
of the transition layer to radius ratio of 0.2 and a den-
sity contrast of 1.3. Thus, we have ǫ = 0.2 and κ ≈ 0.13
and the small κ Eq. (47) is appropriate. The solution to
Eq. (47), namely the amplitude of the kink mode, is shown
as a dashed curve, while the solid curve is the full numer-
ical solution for the kink mode, ln |ξr|, on the axis, r = 0.
The agreement is extremely good for all distances apart
from the leading initial wavelength. To illustrate the ac-
tual form of the damping the logarithm of the absolute
value of ξr is also shown. What is clear is how the be-
haviour of the damping is Gaussian for small distances,
as shown in Section 4, and switches to almost linear for
larger distances. Despite having ǫ = 0.2, the TTTB equa-
tion provides an extremely good fit to the full solution.
This is because the density ratio is only 1.3 and the im-
portant parameter κ is small. Thus, the damping is weak
and Eq. (47) provides a good approximation.

Fig. 4. The amplitude of η = ξr and the logarithm of the
modulus of η at the centre of the tube are shown as functions
of distance z. The solid curve represents the numerical solution,
the dashed curve is the numerical solution of (47). The period
is 36 s, the ratio of the width of the transition layer to the
radius is 0.2 and the density ratio, ρi/ρe = 1.3.

Next we consider the situation where the period is 24
s, which is just long enough for the long wavelength limit
to apply, the width of the transition layer to radius ratio
is small (ǫ = 0.05) and the density contrast is 2 (κ = 1/3).
Note that the value of κ is still quite small and we expect
Equations (48) and (49) to give a good approximation.
The comparison is shown in Figure 5. As above, the dashed
curve in Figure 5 outlines the amplitude of the kink mode,
by solving Eq. (47). In addition, the solid curve is the
result of the small ǫ expansion given by Eq. (48). Both
of the approximations match with the numerical solution
to the linear MHD equations, showing that, although the
small κ equation has a relatively simple form, the solution
provides excellent agreement with the numerical solution.

Finally, we show the results for a density contrast of 10,
period of 48 s and ǫ = 0.05 in Figure 6. For these param-
eters, the thin tube, thin boundary analysis is still appro-
priate. However, what is not so clear is whether the small
κ description is still relevant. From Section 4.1, we expect
the form of the Gaussian profile to be unaffected by the
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Fig. 5. The amplitude of η = ξr and the logarithm of the mod-
ulus of η at the centre of the tube are shown as functions of
distance z. The solid curve represents the numerical solution
using the fourth order scheme, the dashed curve is the numer-
ical solution of Eq. (47) and the red solid curve is the small ǫ
solution given by Eq. (48). The period is 24 s, the width of the
transition layer is 0.05 and the density ratio, ρi/ρe = 2.

large density contrast, since the approximation given by
Equation 42, is accurate to better than 2% for this choice.
Hence, the initial Gaussian part still provides an excel-
lent approximation. In addition, at large z, the damping
will approach the limit predicted by Terradas, Goossens
and Verth, (2010) and, with the small and large z limits
fixed, the approximation given by the solution to Eq. (47)
continues to give an excellent fit to the numerical results.

6. Conclusions

So which approximations should one use in analysing ob-
servations of propagating kink modes? For the magnetic
flux tube considered in this paper, if the density contrast is
large, then the full damped kink mode equation, Eq. (27),
is used. However, if the density contrast is smaller than
about 3, then solutions to the small κ equation, Eq. (47),
agree with the full numerical results. The solution to

Fig. 6. Line styles as in Figure 5 . The period is 48 s, the width
of the transition layer is 0.05 and the density ratio, ρi/ρe = 10.

Eq. (47) can be approximated by the analytical solution
of Approximation 3, Eq. (54), where the Sine Integral, Si,
is readily computed in various computer algebra packages.

The different approximations used in solving Eq. (47)
show clearly that the Gaussian behaviour for small dis-
tances is not just due to the form of driving on the bound-
ary. It appears in the homogeneous kink mode equation
as well, when the radial profile of ξr on z = 0 is com-
pletely ignored. However, the form of the boundary driver
does influence the value of the coefficient of the Gaussian
term. It is possible to eliminate the Gaussian damping by
selecting a very specific photospheric driving profile, that
has strong localised variations inside the transition layer.
Any smoother profile will result in the Gaussian behaviour
noted in this paper.

The nature of the damping of the kink mode changes
at larger distances to roughly linear, although there is re-
ally a series solution here which varies gently over several
wavelengths. The change in character from Gaussian to
‘almost linear’ occurs between the values of Z = 2 and
Z = 4 and is essentially independent of the width of the
transition layer. If L is the wavelength of the undamped
kink mode, this change over distance can be expressed
in terms of L as 2L/πκ and 4L/πκ. For a density ratio
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of 2, or κ = 1/3, the Gaussian behaviour is appropriate
for at least 2 to 3 wavelengths, while a density ratio of
1.3 (κ = 0.13), on the other hand, it is valid for 5 to 10
wavelengths.

The small-κ equation is a relatively simple equation
that can be used to investigate the damping of the kink
mode and the coupling to the Alfvén mode in the transi-
tion layer. While both κ and ǫ should be small, whether
κ < ǫ or visa-versa is unimportant. The comparison be-
tween the predictions of the small-κ equation and the full
numerical solution is extremely good for the cases shown.
However, a detailed parameter study is necessary to de-
termine how good the small-κ assumption is (see Pascoe
et al., 2013). This also determines how to use both the
Gaussian and linear damping rates when analysing obser-
vations of propagating kink waves.

There are several possible extensions to this work, such
as including stratification, field line curvature and mag-
netic field expansion. The density decrease in the direction
of wave propagation is known to modify the amplitude
of the velocity and magnetic field perturbations, increas-
ing one and decreasing the other so that, when the wave-
length is less than the stratification length, the perturbed
Poynting flux remains constant. Most recently Soler et
al. (2011b) have investigated the effect of stratification.
When the density is decreasing away from the location of
the driver, there is a competition between the increase in
amplitude, due to the stratification, and a decrease due
to the damping. Thus, we expect the same competition to
occur between the Gaussian damping and the amplitude
increase. If the density varies over a distance much shorter
than the wavelength, there may be reflection.

The effect of field line curvature on the kink wave has
been reviewed recently by Van Doorsselaere, Verwichte
and Terradas, (2009). For a semi-toroidal loop, the curved
extension to the straight cylinder considered here, they
find that curvature does not change either the normal
mode frequency or the damping due to the narrow in-
homogeneous layer. Only when ǫ, the ratio of the transi-
tion layer width to loop radius, is large is there a signifi-
cant effect. However, large values of ǫ cannot be accurately
treated by the Thin Tube, Thin Boundary approximation
used here. The equations for the evolution of propagating,
damped kink modes for large values of ǫ must be solved
numerically (see Pascoe et al., (2013) in this issue).

The expansion of the flux tube cross section has been
studied by, for example, De Moortel et al. (2000) and
Smith et al. (2007). As the flux tube widens, the wave-
length shortens. This will enhance the damping through
mode coupling. However, the shortening of the wavelength
will eventually invalidate the long wavelength assumption
of the thin tube. If the expansion of the magnetic field
is characterised by the length LA, we would expect the
Gaussian damping to be the dominate effect for LA > Lg,
where Lg is defined in Eq. (44). On the other hand, if
LA < Lg, the Gaussian damping envelope is likely to be
modified.

The Gaussian form of the damping demonstrated in
this paper may be modified by the various extensions to
the straight, unstratified plasma cylinder described above.
However, it is clear that the straightforward application
of a simple linear exponential damping, while easy to ap-
ply, may give misleading results. A detailed comparison
of these results when used for coronal seismology, is dis-
cussed in the accompanying paper by Pascoe et al. (this
issue).

Throughout the paper we have used the term ‘mode
coupling’ to describe the conversion of energy from the
compressional (kink-like) driven wave to an incompress-
ible (Alfvén-like) wave. Both terms refer to the same phys-
ical processes, but in different situations, and ‘mode cou-
pling/conversion’ can be thought of as more general than
the term ‘resonant absorption’. Consider the system of
equations driven harmonically in time but studied with
different boundary conditions. In this paper, the field lines
are open and the axial wavenumber, k, is determined by
the solution to these equations. If, on the other hand, the
ends of the field lines are tied and it is the radial bound-
ary that is driven, then the axial wavenumber becomes a
discrete quantity. There is a large volume of papers con-
sidering this second case. The main features are that the
global kink mode resonates at one particular radius, where
its energy is absorbed, and its eigenfunction is singular
here. The fact that the location of the singularity corre-
sponds to a resonant matching of kink and natural Alfvén
frequencies has led to this solution being termed ‘reso-
nant’ absorption. The solution we describe differs in that
we do not have tied ends to our field lines, so there is no
quantized k and no natural Alfvén frequency. Moreover,
our solution does not have any singularities: There is sim-
ply an accumulation of energy around a particular radius,
but there is no singularity. The location of energy accu-
mulation may be identified by the matching the kink and
Alfvén phase speeds (Allan and Wright, 2000). Of course,
if k was determined by line tied boundary conditions, then
matching phase speeds is equivalent to matching natural
frequencies. Finally, we note that there is no singularity
in the solutions if the finite length loop case is studied as
an initial value problem and is not driven continually in a
harmonic manner.

This paper has presented a detailed mathematical
derivation of the damping of propagating kink waves.
Amid all the mathematical expressions, there are only
a few key results that are necessary for applying these
results in practice. A simple flow diagram, shown in
Figure 7, identifies the important equations to use and the
conditions under which they apply. Obviously the Thin
Boundary assumption is essential in deriving the appro-
priate expressions from integrating across the transition
layer. Hence, the results in this paper will provide use-
ful results for ǫ . 0.2. While the general damped kink
mode is described by Eq. (27), the much simpler equa-
tion, Eq. (47), that was derived only assuming κ ≪ 1, is
applicable for all density contrasts. Eq. (47) can be solved
numerically but, if ǫ ≤ 0.05 then Eq. (48) provides a very
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Fig. 7. Flow chart to identify the appropriate expressions to
use.

good approximation to the damping envelope. Finally, if
0.05 < ǫ . 0.2, a useful approximation can be derived on
using η̃3 in Eq. (54) for general z and Eq. (55) for small
values of κkz/2.
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Appendix A: Derivation of kink mode equation

We give a short derivation of the basic equations, starting from Equations (3) - (5). The solutions are obtained in the
three regions, inside the flux tube, outside the flux tube and in the transition layer.

A.1. Internal solution

Using the thin tube (or long wavelength) limit, the internal solutions can be expressed as

ξr = η(z, t), ξϕ = η(z, t),
µ0P

B2
0

= rLiη (A.1)

Hence, at r = R− l/2 = R(1− ǫ/2), we have

ξr = η,
µ0Pi

B2
0

= R
(

1− ǫ

2

)

Liη. (A.2)

A.2. External solution

Again using the thin tube limit, we have

ξr =
R2(1 + ǫ/2)2

r2
ξe(z, t), ξϕ = −ξr,

µ0P

B2
0

= −R2(1 + ǫ/2)2

r
Leξe(z, t). (A.3)

Hence, at r = R+ l/2 = R(1 + ǫ/2), we have

ξr = ξe,
µ0Pe

B2
0

= −R
(

1 +
ǫ

2

)

Leξe. (A.4)

Since both ξr and P are continuous across the transition layer as ǫ → 0, we can state ξe = η + δξr, Pe = Pi + δP,
where both δξr and δP tend to zero as ǫ → 0. Using (A.4), we have, correct to O(ǫ2),

ξe = η + δξr,

−Le (η + δξr)
(

1 +
ǫ

2

)

= Liη
(

1− ǫ

2

)

+
µ0δP

RB2
0

. (A.5)

Rearranging Eq. (A.5), the final equation for the propagating kink mode is

Lkη = −M ≡ −1

2

(

Leδξr +
1

R

µ0δP

B2
0

− ǫ

2
Liη +

ǫ

2
Leη

)

. (A.6)

Note that the right hand side of (A.6) is of O(ǫ). It is the leading order expressions for δξr and δP that we now need
to calculate and this is done from the transition layer solutions.

A.3. Transition Layer Solution

Integrating Eq. (3) across the thin transition layer, we have

[rξr ]
R+l/2
R−l/2 = R(1 + ǫ/2)ξe −R(1− ǫ/2)η =

∫ R+l/2

R−l/2

ξϕdr,

δξr + ǫη =
1

R

∫ R+l/2

R−l/2

ξϕdr +O(ǫ2). (A.7)

Integrating (4) we have

µ0δP

RB2
0

=
1

R

∫ R+l/2

R−l/2

Lξrdr =
1

R

∫ R+l/2

R−l/2

Lηdr +O(ǫ2). (A.8)

Remembering that η is independent of r,
∫ R+l/2

R−l/2
Ldr is l times the average value of the operator L and, for the linear

density profile, the average is Lk, thus,

1

R

∫ R+l/2

R−l/2

Lξrdr = ǫLkη = O(ǫ2), (A.9)
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since Lkη = O(ǫ). Hence, for the linear density profile

µ0δP

RB2
0

= O(ǫ2). (A.10)

We substitute Eq. (A.7) into Eq. (A.6) and, using both Eq. (A.10), Li + Le = 2Lk and that again Lkη = O(ǫ),
this results in the propagating kink mode equation

Lkη = − 1

2R
Le

∫ R+l/2

R−l/2

ξϕdr. (A.11)

A.4. Integration of ξϕ across the Transition Layer

In this section we evaluate

1

2R

∫ R+l/2

R−l/2

ξϕdr =
ǫ

4

∫ 1

−1

ξϕdX. (A.12)

Using the solution for ξϕ given by (26), the integral across the transition layer is made up of four terms. These are
evaluated in turn.

A.4.1. Term 1

Now the integral of the first term on the RHS of Eq. (26), due to the radial profile of the driving boundary condition
of ξϕ, is

∫ 1

−1
a sgn(−X)ei(ωt−kχz)dX = a

∫ 0

−1
ei(ωt−k

√
(1−κX)z)dX − a

∫ 1

0
ei(ωt−k

√
(1−κX)z)dX

= −
(

4a
k2κz2 + i 4a

kκz

)

eiωT + 2a
k2κz2

(

ei(ωt−k
√
1−κz) + ei(ωt−k

√
1+κz)

)

+i 2a
kκz

(√
1− κei(ωt−k

√
1−κz) +

√
1 + κei(ωt−k

√
1+κz)

)

= −eiωT
[

4a
k2κz2 + i 4a

kκz − 2a
k2κz2

(

eikz(1−
√
1−κ) + eikz(1−

√
1+κ)

)

− i 2a
kκz

(√
1− κeikz(1−

√
1−κ) +

√
1 + κeikz(1−

√
1+κ)

)]

.

For large kz, this is proportional to (kz)−1. The influence of the choice of boundary condition does becomes less
important after several wavelengths.

For small values of kz, we can expand the result in a series to show that the first term is

2

3κ
aeiωT

(

2− (1 + κ)3/2 − (1− κ)3/2
)

ikz

For small κ, Term 1 can be expressed as

−2ia

Z
(1− cosZ)aeiωT +O(κ)

where we have defined

Z =
κs

2
=

κkz

2
. (A.13)

A.4.2. Term 2

The second term on the RHS integrates to give

−aκ
2

∫ 1

−1
ei(ωt−k

√

1−κXz)

χ(1+χ) dX = −aκ
2 eiωT+i2kz

∫ 1

−1
e−ikz(1+

√

1−κX)
√
1−κX(1+

√
1−κX)

dX

= −aeiωT+i2kz
[

Ci(kz(1 +
√
1 + κ))− Ci(kz(1 +

√
1− κ))− iSi(kz(1 +

√
1 + κ)) + iSi(kz(1 +

√
1− κ))

]

,

where Ci(x) and Si(x) are the Cosine integral and Sine integral respectively, defined by

Ci(x) = γ + lnx+

∫ x

0

1− cos t

t
dt,

where γ = 0.57721 . . . is Euler’s constant and

Si(x) =

∫ x

0

sin t

t
dt.
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Again this term is proportional to (kz)−1 for large kz.
For small values of kz, it is easier to start from the integral expression. Hence, the first two terms in the Taylor

series are

aeiωT

{

− ln

[

1 +
√
1 + κ

1 +
√
1− κ

]

− 2ikz ln

[

1 +
√
1 + κ

1 +
√
1− κ

]

+ ikz
(√

1 + κ−
√
1− κ

)

}

.

For small values of κ, term 2 can be shown to reduce to

−κ

2

sinZ

Z
aeiωT +O(κ2),

where Z = κkz/2, as above.

A.4.3. Term 3

The third term is

∫ 1

−1

ikκ

2χ
ei(ωt−kχz)

{
∫ z

0

η̃(u)e−ik(1−χ)udu

}

dX =
ikκeiωT

2

∫ z

0

η̃(u)

{

∫ 1

−1

eik(1−
√
1−κX)(z−u)

√
1− κX

dX

}

du

= eiωT

∫ z

0

η̃(u)
eik(z−u)(1−

√
1−κ) − eik(z−u)(1−

√
1+κ)

z − u
du.

The expansion of the coefficient of η̃ for small kz gives to leading order

ik eiωT

∫ kz

0

η̃(u)
[√

1 + κ−
√
1− κ

]

du

The expansion for small κ gives, where Z = κkz/2,

2i eiωT

∫ Z

0

η̃(u)
sin(Z − u)

Z − u
du+O(κ).

A.4.4. Term 4

Consider the final term,

κ

2
η̃(z)eiωT

∫ 1

−1

1

χ(1 + χ)
dX

=
κ

2
η̃(z)eiωT

∫ 1

−1

1
√

(1− κX)(1 +
√

(1− κX)
dX,

= −η̃(z)eiωT
[

ln(1 +
√

1− κX)
]1

−1
,

= η̃(z)eiωT ln

[

1 +
√
1 + κ

1 +
√
1− κ

]

The expansion for small κ gives

eiωT κ

2
η̃(z) +O(κ2).

A.5. Final expression

We can now bring together the expressions for all four terms to rewrite the kink mode equation, (A.11), as

Lkη = − ǫLe

4

∫ 1

−1

ξϕdX,

= − ǫ

4
Le

{

−eiωT

[

4a

k2κz2
+ i

4a

kκz
− 2a

k2κz2

(

eikz(1−
√
1−κ) + eikz(1−

√
1+κ)

)

−i
2a

kκz

(√
1− κeikz(1−

√
1−κ) +

√
1 + κeikz(1−

√
1+κ)

)

]

+ aeiωT ei2kz [Ci(p4kz)− Ci(p3kz)]
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−iaeiωT ei2kz [Si(p4kz) + iSi(p3kz)] +

∫ z

0

η(u)
eik(z−u)(1−

√
1−κ) − eik(z−u)(1−

√
1+κ)

z − u
du+ η(z) ln

[

p4
p3

]

}

,

= − ǫLe

4

{

F (kz)eiωT +

∫ z

0

η(ku)g(z − u)du+ η ln

[

p4
p3

]}

= eiωT ǫk2κ

4

(

F (kz) +

∫ z

0

η̃(ku)g(z − u)du+ η̃ ln

[

p4
p3

])

− ǫ

4
Lk

{

eiωTF (kz) +

∫ z

0

η(ku)g(z − u)du+ η ln

[

p4
p3

]}

.

Expressing η as η̃(z)eiωT , our final equation is

L1η̃ =
ǫk2κ

4

(

F (kz) +

∫ z

0

η̃(ku)g(z − u)du+ η̃ ln

[

p4
p3

])

− ǫ

4
L1

{

F (kz) +

∫ z

0

η̃(ku)g(z − u)du+ η̃ ln

[

p4
p3

]}

, (A.14)

where p3 = 1 +
√
1− κ, p4 = 1 +

√
1 + κ, L1 = d2/dz2 − 2ikd/dz and Le = −k2κ+ Lk. In Eq. (A.14), the operator,

L1, acting on the final terms in the curly brackets on the right hand side, results in terms that are small for κ ≪ 1.
In fact, the terms remain small even for κ ≤ 1/2. Hence, we will neglect them and the comparison with the numerical
results confirms this is a valid assumption (see Section 5).

Eq. (A.14) is an inhomogeneous, integro-differential equation for η̃(z), the slowly varying amplitude function that
describes the damping of the kink mode.


