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Abstract. The 2010 Biodiversity Target of the Convention on Biological Diversity (CBD), set in 2002,

which stated that there should be ‘a significant reduction of the current rate of biodiversity loss’ by 2010,

highlighted the need for informative and tractable metrics that can be used to evaluate change in biological

diversity. While the subsequent Aichi 2020 targets are more wide-ranging, they also seek to reduce the rate

of biodiversity loss. The geometric mean of relative abundance indices, G, is increasingly being used to

examine trends in biological diversity and to assess whether biodiversity targets are being met. Here, we

explore the mathematical and statistical properties of G that make it useful for judging temporal change in

biological diversity, and we discuss its advantages and limitations relative to other measures. We

demonstrate that the index reflects trends in both abundance and evenness, and that it is not prone to bias

when detectability of individuals varies by species. We note that it allows data from different surveys to be

combined to generate a composite index. However, the index exhibits high variance and unstable

behaviour when rarely-recorded species are included in the analyses.
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INTRODUCTION

The 2010 Biodiversity Target of the Convention

on Biological Diversity (CBD), agreed upon in

2002, marked a change in perspective on how

biodiversity should be measured (Butchart et al.

2010). The target stated that there should be ‘a

significant reduction of the current rate of

biodiversity loss’ by 2010. While it has now been

superseded by 20 targets for 2020 (CBD 2011), the

focus is still on how to reduce biodiversity loss.

Thus, effective measures of biodiversity trend

from long-term datasets are required, to assess

success or failure in meeting the targets (Pereira

and Cooper 2006, Mace and Baillie 2007, Magur-

ran et al. 2010). As these targets were agreed

upon by nations, it is reasonable to assume that

we need to measure the biodiversity of nations—

in other words large geographic regions, as

opposed to specific sites.

Key indicators of biodiversity have adopted G,
the geometric mean of relative abundance indi-

ces, as their biodiversity measure. These include

the international Living Planet Index (Loh et al.
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2005, Hails et al. 2008; Fig. 1) and the UK’s Wild
Bird Indicators (BTO 2011, Gregory et al. 2008,
Gregory and van Strien 2010; Fig. 2). Indices such
as these are key to identifying whether targets
such as the 2010 target have been met (Butchart
et al. 2010). While Buckland et al. (2005)
investigated the value of the geometric mean as
a composite index, and compared it with other
indices, its properties have not been investigated
in the context of the CBD targets. In this paper,
we explore the properties of G and make
recommendations on how best to exploit these
when drawing inference on biodiversity trends.

Many classical measures of biodiversity quan-
tify one or a combination of the following
components: number of species (termed species
richness), total abundance, and evenness (Ma-
gurran 2004, Buckland et al. 2005). Evenness
refers to the degree of uniformity of the species
proportions pi, where pi ¼ ni/n and is the
proportion of the count n of individuals that is
of species i. To help understand the advantages
and limitations of G relative to classical measures
based on these species proportions, we compare
and contrast it with the Shannon index H ¼
�
P

pilogepi (Shannon and Weaver 1949) and the
transformation �log(D) of Simpson’s index D ¼P

pi
2 (Simpson 1949).

THE GEOMETRIC MEAN AND RELATIVE

ABUNDANCE

Consider first survey data from a single site.
Suppose for species i in a community, we record
counts nij for years j ¼ 1, ..., J. Suppose further
that we have a known number S of species in the

community, so that i ¼ 1, ..., S. We convert our
counts to measures of relative abundance by
defining a baseline year, assumed here to be year
1, then calculating relative abundance for species
i in year j as nij/ni1. It is important to note that
abundance of species i is thus relative to that
species’ abundance in the baseline year; it is not
abundance of species i relative to the abundance
of other species. This contrasts with the species
proportions pi, which are also sometimes called
relative abundances, as they are assumed to
reflect the abundance of each species relative to
other species.

Note that relative abundance as defined above
is best regarded as a multiplicative measure. If
counts for one species increase from 100 to 200,
while those for another species decrease from 200
to 100, the respective relative abundances of the
two species at the second time point are 2 and
0.5. In additive terms, the first species has shown
greater change than the second. However,
regarded as a multiplicative measure, one rate
is the inverse of the other (0.5¼ 1/2), giving self-
consistency (Gregory and van Strien 2010). When
averaging a multiplicative measure, it is natural
to use a geometric mean rather than an arithme-
tic mean. Equivalently, it is natural to convert to a
log scale (for which log 0.5¼�log 2) and then to

Fig. 1. The Living Planet Index with 95% confidence

limits. (Source: WWF, ZSL, GFN.)

Fig. 2. Estimated trends in biodiversity, as assessed

by the geometric mean of annual relative abundance

indices, of woodland birds, farmland birds and

seabirds in the UK. Also shown is the trend corre-

sponding to data on all species for which there are

sufficient data (114 species). (Source: Defra, BTO, RSPB

and JNCC.)
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take the arithmetic mean on this scale. Back-
transforming this mean gives the geometric mean
on the original scale.

Thus we can define the index in year j as

Gj ¼ exp
1

S

XS

i¼1

log
nij

ni1

 !
: ð1Þ

To allow inference to be drawn on a region
given data from sample sites, a randomized
survey design should be used (Theobald et al.
2007). Such a design allows regional abundance
of species within the community to be estimated,
as in our case study below. We can then calculate
the index based on abundance estimates instead
of counts:

Gj ¼ exp
1

S

XS

i¼1

log
N̂ij

N̂i1

 !
ð2Þ

where N̂ij is the estimated abundance of species i
in year j for the surveyed region.

PROPERTIES OF THE GEOMETRIC MEAN INDEX

Because the index G is a mean of trends in
relative abundance, it is natural to assume that it
reflects only changes in abundance. However, the
use of a geometric mean rather than an arithme-
tic mean has implications that are best illustrated
through an example. Suppose we have a ‘com-
munity’ of just three species, censused at two
time points, giving the abundances of Table 1. We
show the percentage change in several biodiver-
sity measures between the two time points in
Table 2. On an additive scale, abundance has not
changed between years 1 and 2. However, the
effect of using the geometric mean is that we

work on a multiplicative scale. The relatively
small changes in absolute terms of the rare
species represent large percentage changes, so
changes in these rare species dominate the index
G. We conclude that there has been a substantial
reduction in biodiversity, by this measure; the
practical effect of working on a multiplicative
scale is that trends in evenness generate trends in
the index even when overall abundance is not
changing.

To clarify this further, suppose we have
abundances Nij of species i (i ¼ 1, ..., S ) in year
j. Assuming that the abundances are known, the
index Gj for year j is given by

Gj ¼ exp
1

S

XS

i¼1

log
Nij

Ni1

 !

¼ exp
1

S

XS

i¼1

ðlogNij � logNi1Þ
 !

:

Note that G1¼ 1, and so the above represents a
multiplicative change between years 1 and j, Gj/
G1. Assuming that the total number of species S
is constant, we can infer that Gj , G1 if and only
if the mean of the log abundances in year j is less
than the mean of the log abundances in year 1.
Now consider the multiplicative change in
species proportions between years 1 and j:pij/pi1
¼ expf(logNij� logNj)� (logNi1� logN1)g, where
Nj¼

P
iNij is total abundance in year j. If overall

abundance remains constant, then Nj ¼ N1 and
hence pij/pi1 ¼ expflogNij � logNi1g and

Gj ¼ exp
1

S

XS

i¼1

logpij �
1

S

XS

i¼1

logpi1

 !
:

The mean of the log species proportions has
the key property of an evenness measure, in that
it attains its maximum value when all the species
proportions are equal: pij¼1/S for all i (Smith and
Wilson 1996). Thus when overall abundance and

Table 1. Abundances of three species at two time

points of a hypothetical community. Also shown are

relative abundances at the second time point

(relative to the first), and species proportions.

Species, i 1 2 3

Abundance of species i in year 1, Ni1 800 160 40
Abundance of species i in year 2, Ni2 900 80 20
Relative abundance of species i in

year 2, Ni2/Ni1

1.125 0.500 0.500

Proportion of species i in year 1,
pi1 ¼ Ni1/

P
i’ Ni’1

0.800 0.160 0.040

Proportion of species i in year 2,
pi2 ¼ Ni2/

P
i’ Ni’2

0.900 0.080 0.020

Table 2. Biodiversity measures for the hypothetical

community of Table 1.

Measure Year 1 Year 2 % change

Arithmetic mean of abundance 333.3 333.3 0.0%
Geometric mean of relative

abundance G
1.000 0.655 �34 .5%

Shannon index H 0.600 0.375 �37.5%
Log-transformed Simpson’s

index �log(D)
0.405 0.202 �50.0%
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number of species are constant, Gj may be
regarded as a measure of the change in evenness
from year 1 to year j. When overall abundance is
changing, changes in G reflect changes in both
abundance and evenness.

Advantages
Limpert et al. (2001) discuss advantages of

using a geometric mean in a more general
context, and Buckland et al. (2005), Lamb et al.
(2009), Gregory and van Strien (2010), and
O’Brien et al. (2010) consider its merits in the
context of wildlife surveys.

The index Gj reflects trends in abundance: if all
species are declining at the same rate (so that
there is no trend in evenness), then Gj will decline
at this rate. By contrast, the Shannon and
Simpson’s indices will show no trend. Similarly,
if species trends are variable and predominantly
negative, and are uncorrelated with how com-
mon each species is, Gj will decline, while the
Shannon and Simpson’s indices will again remain
roughly constant. However, as noted above, Gj

also reflects trends in evenness.
The index Gj is unaffected if detectability varies

by species, as it is based on within-species trends;
if detectability of individuals of a given species
does not change over time, we do not need to
estimate detectability to avoid bias, regardless of
whether detectability varies among species. To
see this, denote the probability that an individual
of species i is detected, given that it is on a
surveyed plot, by pi, independent of year. Denote
the estimated expected count of species i in year j
on a random plot within the region by Ê(nij).
Given a randomized survey design, we can
estimate this quantity. Estimated abundance N̂ij

is then M 3 Ê(nij)/pi where M is the total number
of plots in the region (whether sampled or not).
When we substitute this into Eq. 2, the unknown
probability pi cancels, allowing us to evaluate the
index. By contrast, the Shannon and Simpson’s
indices are biased when detectability varies by
species, unless counts are corrected using spe-
cies-specific estimates of detectability (Buckland
et al. 2010). However, Gj is likely to suffer greater
bias than the Shannon and Simpson’s indices if
there is a trend in detectability over time within
species—unless we estimate and correct for
detectability. (A trend in detectability that is
common to all species does not affect measures

based on species proportions.)
Two important advantages arise because Gj is

based on within-species trends, standardized to a
baseline year. First it makes no difference
whether we use counts of individuals or biomass
to quantify abundance, provided there is no
trend over time within species in mean weight of
individuals. (For heavily-exploited fish stocks for
example, there may be a downward trend in the
mean size of fish (Fisher et al. 2010), so that Gj

calculated from biomass would show greater
reduction than Gj calculated from counts of
individuals.) Second we can readily combine
trends obtained from different surveys, which is
not possible for classical measures of biodiversi-
ty. Thus the Living Planet Index combines trends
in relative abundance of nearly 5,000 popula-
tions, representing nearly 1,700 species of mam-
mal, bird, reptile, amphibian and fish, while the
UK’s Wild Bird Indicators combine trends from a
number of different surveys. The geometric mean
is thus a very natural method to adopt when we
wish to construct composite indices across
surveys, regions or communities.

A consequence of the above two advantages is
that we can combine relative abundance trends
from surveys that use different units of measure-
ment. For example, trends in a plant species
might be quantified using percent cover, those
for a bird species using counts, and those for a
fish species using biomass. We can legitimately
combine these different trends into a composite
index.

When combining trends from different sur-
veys, the issue that the surveys may span
different time periods must be addressed. If for
example a new survey started in 2008, the 2008
index from the new survey can be scaled to equal
the composite index in 2008, ensuring that it does
not affect trends up to 2008, but does subse-
quently. A similar approach can be used if for
example a previously-common species becomes
too rare to include in the index; in the final year
that it is included, the index is calculated both
with and without the data for this species, and
the latter rescaled to match the former. Any
subsequent estimates are scaled by the same
amount.

Disadvantages
A major limitation of Gj is that it cannot be
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calculated if any of the relative abundance
estimates are zero. Thus if a species is not
recorded in a given year, the index cannot be
evaluated. We could add a small quantity to
zeros (O’Brien et al. 2010), but the index is
sensitive to the quantity chosen, and has poor
precision if rarely recorded species are included.
Hence typically, species with small sample sizes
in some or all years are excluded from analysis.
Thus it is not a useful measure if primary interest
is in rare, or rarely recorded, species, or in species
that are not consistently present in the commu-
nity. However, most biodiversity measures per-
form poorly in such cases. The index Gj gives
equal weight to all species (Zar 1999), and so is
sensitive to changes in rarely-recorded species,
but also has poor stability and precision when
such species are included; by contrast, indices
such as the Shannon and Simpson’s are very
insensitive to changes in rarely-recorded species,
which allows them to have high stability and
precision. If we include rarely-recorded species
when calculating Gj, problems are reduced but
not eliminated by developing a model for counts,
and replacing the observed counts by the
corresponding predicted counts before evaluat-
ing the index.

Related to the above problem, we assume that
the number of species S in the community is
known. We avoid this issue by monitoring only
species that are observed in our samples in
sufficient numbers, so that trends reflect the
subset of species we analyse, not the whole
community. Periodically, the species included
may need to be revised, and the time series of
estimates recalculated. This is likely to be
necessary if conditions change or if some
previously dominant species become rare or vice
versa. As noted above, by appropriate rescaling
of the index, species can drop into or out of the
index to accommodate changes in the communi-
ty.

If it is feasible to conduct species-specific
surveys of the rare species of interest, then the
surveys can be designed to ensure adequate
sample sizes of rare species. Because the index is
derived by taking an average of within-species
relative abundance estimates, we can estimate
trends for each species independently, before
combining them. This is the philosophy under-
lying the Living Planet Index. However, for

highly diverse communities, where most species
are unrecorded or seldom recorded, as with
tropical arthropods for example (Coddington et
al. 2009), the index Gj is likely to be of limited
value.

Note that Gj is entirely a relative measure—
relative to the baseline year. It is only useful for
looking at time trends within a site or region, not
for comparing sites or communities (although of
course we may want to compare within-site time
trends across sites or communities).

TESTING FOR TREND

When the survey design comprises a set of
sample plots based on a randomized scheme, a
natural and straightforward way to quantify
precision of biodiversity measures is to use the
nonparametric bootstrap, with plots as the
resampling unit. If for example we have a
stratified scheme based on a random sample of
1 km squares from each stratum, we can generate
a bootstrap resample by sampling the 1 km
squares with replacement within each stratum,
so that the number of sampled squares in each
stratum is the same as for the original sample.
(When a plot is selected for a resample, the entire
time series of data from that plot is included.) We
then analyse the resample exactly as for the
original sample. This is repeated for a large
number of resamples (typically around 1000 or
more), and the variation in bootstrap estimates
used to quantify precision. For example if we use
the percentile method to estimate 95% confidence
limits for the annual biodiversity measure, and
we have say 999 bootstrap resamples, we order
the bootstrap estimates of biodiversity for a given
year from smallest to largest, and extract the 25th
smallest and 25th largest estimates as confidence
limits (Buckland 1984).

A disadvantage of this approach when using
the geometric mean of relative abundances is that
the first point (corresponding to the baseline
year) has zero variance (the index is necessarily
1), then confidence intervals steadily get wider
and less useful over time. This effect is evident in
the Living Planet Index (Fig. 1). A related issue is
that, if the baseline year is year 1 of a scheme, and
the effort in that year was low relative to later
years, the estimated diversity for later years is
relative to year 1 for which there is poor

v www.esajournals.org 5 September 2011 v Volume 2(9) v Article 100

BUCKLAND ET AL.



precision, compromising the precision of the
entire time series. Even if precision was good in
the baseline year, precision for a subsequent year
is driven by variance both in the baseline year
and in the subsequent year.

The 2010 target itself suggests a solution to this
problem. It states that there should be ‘a
significant reduction of the current rate of
biodiversity loss’ by 2010. The slope or first
derivative of the trend curve quantifies the rate of
change in biodiversity. If we wish to draw
inference about change in the rate of change,
then this corresponds to the second derivative of
the trend curve. Fewster et al. (2000) estimated
the second derivative numerically to identify
time points at which the slope of the trend
changed for species-specific trends. They used
the bootstrap as described above to obtain
confidence intervals for the second derivative,
and identified years in which the confidence
interval did not span zero as likely change-
points. Buckland et al. (2005) applied the same
approach to the geometric mean of relative
abundances, to identify years in which there
was a change in the rate of change in the overall
biodiversity measure. These results are indepen-
dent of choice of baseline year (i.e., they are
unaffected if the baseline year is changed), and
confidence interval length does not increase with
increasing length of the time series.

Unless an index incorporates relative abun-
dance estimates from a large number of datasets,
it is likely to show short-term fluctuations. Figs. 1
and 2 illustrate this; the Living Planet Index is
based on nearly 5000 time series of relative
abundance estimates, so that the trend curve is
very smooth. The Wild Bird Indicators of Fig. 2
however show short-term fluctuations. If we only
wish to draw inference on longer-term trends in
biodiversity, we may wish to smooth the short-
term fluctuations out by applying some scatter-
plot smoother. This can be done either by
smoothing the species-specific relative abun-
dance trends before the geometric mean is
calculated or by directly smoothing the index
once it has been derived from the (unsmoothed)
abundance estimates. Fewster et al. (2000) and
Buckland et al. (2005) used generalized additive
models (Hastie and Tibshirani 1990) to obtain
smoothed trends in this way. Other possible
methods include kernel regression, locally

weighted regression and running-median
smoothers (Hastie and Tibshirani 1990). By using
smoothed time series, we improve precision for
detecting long-term trends, while reducing the
number of change-points detected: those corre-
sponding to short-term variation in trend, caused
perhaps by weather effects, will no longer be
identified.

Very often, the raw data are not available when
a composite index is formed. Provided the
estimated trends are available for each species
separately, one option is to implement the
bootstrap by resampling species instead of sites
(Buckland et al. 2005). This treats species as a
random effect, and would be appropriate if the
species were a random subset of the species in
the region and community of interest. When
there is no sub-sampling of species (so that all
relevant species that are encountered are record-
ed), the method tends to generate pessimistic
estimates of precision, so that real changes in
trend are more likely to go undetected. Butchart
et al. (2010) formed a composite index from nine
different indicators of trend, and used the
bootstrap to quantify precision, presumably by
resampling these nine indicators.

EXAMPLE: BIODIVERSITY TRENDS IN UK BIRDS

We consider data from the British Breeding
Bird Survey (BBS) for the years 1994–2008
(Newson et al. 2005, 2008, Freeman et al. 2007).
We exclude data for 2001, as access to many sites
was not possible in that year due to an outbreak
of foot-and-mouth disease. Volunteer observers
survey 1 km2 plots, selected according to a
stratified random sampling scheme, where the
sampling rate is proportional to the number of
available volunteers in each stratum. Stratifica-
tion is by regions which correspond roughly to
UK counties.

Plots are surveyed using line transect sampling
(Buckland et al. 2001). In each assigned plot, an
observer walks along two parallel 1 km transects
and records every bird detected in one of four
categories—within 25 m of the line, between 25
and 100 m of the line, beyond 100 m, or flying
over. In accordance with Newson et al. (2008), we
only consider the first two categories here. Each
plot is visited twice during the breeding season.
We use data from the early visit only, except for
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summer migrants, for which we use data from
the late visit only.

Following standard distance sampling meth-
ods, we assume that all birds on the line (i.e., at
distance 0) are detected and that the probability
of detection then drops with increasing distance
from the line (Buckland et al. 2001, 2004). This
fall-off is modeled by specifying and fitting a
detection function, which was chosen to be half-
normal here. A single model across all years and
sites was fitted for each species by maximum
likelihood estimation. We used AIC to select
between three models. In the first, year was
included as a factor covariate, allowing detect-
ability to vary by year. In the second, year was
included as a continuous covariate, allowing a
trend in detectability. For the third, detectability
had no dependence on year. Given estimates of
the detection probabilities for individuals of
species i in year j, abundance of the UK
population for species i in year j can be estimated
as

N̂ij ¼
X

r

Ar

mjra
½
X

s

X
k

1

p̂ijksr
�

where p̂ijksr is the estimated detection probability
of the kth detected bird at site s in region
(stratum) r. Within a plot, we have two strips
each of length 1 km and half-width 100 m, giving
a ¼ 0.4 km2 as the survey area covered per plot,
mjr is the number of plots visited in year j in
region r, and Ar is the size of that region.

We present analyses for a group of 23 species
classified as woodland/park/garden birds in
Gregory et al. (2005) (Table 3). The list was
restricted to those species considered to be
representative; they include both specialist (with
respect to habitat use) and non-specialist species.

A generalized additive model (GAM) was
used to smooth the time series of density
estimates for each species. To fit the GAM, we
calculated mean counts (weighted to allow for
stratification) from the original data and included
an offset term for the detectability conversion to
density estimates. A gamma error distribution
was assumed for the mean counts, together with
a log link function. The smoother uses thin-spline
regression and was given an upper limit of 3 df
where the actual df is determined during the
model fitting procedure by cross-validation
(Wood 2006). The density estimates were then

scaled up to give UK abundance estimates for
each species. Relative abundance estimates and
species proportions for all species, calculated
from both the smoothed and the unsmoothed
abundance estimates, can be found in the
Appendix.

In Fig. 3, we show the geometric mean of
relative abundance estimates plotted against
year, and also the Shannon and Simpson’s indices
calculated from the species proportions, where
both the relative abundance estimates and the
species proportions were calculated from
smoothed absolute abundance estimates.
Change-points in trends were determined
through a numerical approximation of the
second derivative of the curve (Fewster et al.
2000). A nonparametric bootstrap as described
above was used to quantify precision, and 95%
percentile confidence intervals for both indices
are shown in Fig. 3. Confidence intervals were
also calculated for the second derivative, and
points for which the interval did not span zero
are indicated. These reveal likely change-points
in long-term trends in biodiversity.

Table 3. UK bird species classified by experts as

representative of the woodland/park/garden bird

community (Gregory et al. 2005).

Common name Scientific name

Sparrowhawk Accipiter nisus
Buzzard Buteo buteo
Great spotted woodpecker Dendrocopus major
Jay Garrulus glandarius
Goldcrest Regulus regulus
Blue tit Cyanistes caeruleus
Great tit Parus major
Coal tit Periparus ater
Long-tailed tit Aegithalos caudatus
Chiffchaff Phylloscopus collybita
Willow warbler Phylloscopus trochilus
Blackcap Sylvia atricapilla
Garden warbler Sylvia borin
Wren Troglodytes troglodytes
Blackbird Turdus merula
Song thrush Turdus philomelos
Mistle thrush Turdus viscivorus
Spotted flycatcher Muscicapa striata
Robin Erithacus rubecula
Redstart Phoenicurus phoenicurus
Dunnock Prunella modularis
Tree pipit Anthus trivialis
Chaffinch Fringilla coelebs

Notes: We omit wryneck (Jynx torquilla), which has not been
recorded at any BBS site. Data from the early visit only was
used for all species except tree pipit, chiffchaff, willow
warbler, blackcap, garden warbler, spotted flycatcher and
redstart, for which data from the late visit only were used.
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The geometric mean for the UK woodland and
park bird community has increased appreciably
since 1994, although the rate of increase slowed
in the late 1990s. Neither the Shannon index nor
Simpson’s index identify this increase, because it
reflects increased abundance rather than in-
creased evenness of the community. Nor does
either index show significant changepoints.

Note that the indices could be calculated from
unsmoothed abundance estimates, followed by
smoothing of the indices. We found that infer-
ence was little affected by which of these two
options was adopted. An advantage of smooth-
ing the abundance estimates first is that, if any
species has a zero count, we cannot calculate the
geometric mean of unsmoothed counts. Howev-
er, inclusion of species that can have zero counts
compromises precision and stability of results, so
this advantage is of little significance.

DISCUSSION

Nichols and Williams (2006) argue that sur-
veillance monitoring—i.e. monitoring trends un-
guided by a priori hypotheses—is frequently an
inefficient option. They favor targeted monitor-
ing. While it is true that species-specific trends
from omnibus surveys are often estimated with
poor precision, so that management action is
triggered only belatedly, in a biodiversity con-
text, precision is improved by combining data
from a number of species into a composite index.
Further, it is generally not possible to implement
targeted monitoring of sufficient species to allow
effective monitoring of the biodiversity of an
entire region.

We have shown that trends in G reflect trends
in both abundance and evenness. This raises the
question of how a decline in G should be
interpreted. In the absence of other measures,
we cannot know whether the decline reflects a
decline in overall abundance or a decline in
evenness, or some combination of both. Indeed, it
may be that one of these two components is
increasing, but more than offset by a decline in

Fig. 3. Geometric mean of relative abundance

estimates (top), Simpson’s index on a log scale

(�log(D), middle), and the Shannon index (bottom)

for the woodland/park/garden community. All were

calculated from abundance estimates that had first

been smoothed using generalized additive models.

Unsmoothed index values are shown as crosses. A

square indicates a point at which the long-term trend in

biodiversity has changed for the worse (corresponding

 
to a 95% confidence interval for the second derivative

that is entirely in the positive range). Dashed lines

show pointwise 95% confidence limits for the indices.
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the other. In our example, we show that further
interpretation is possible, if we also calculate
additional measures. Fig. 3 shows a strong
positive trend in G, while both the Shannon
and Simpson’s indices suggest little change,
indicating that the increase in G is primarily
due to an upward trend in abundance rather
than in evenness.

By using a measure such as G that is sensitive
to changes in abundance of rarely-recorded
species, precision may be poor relative to
measures that are insensitive to such changes,
such as the Shannon and Simpson’s indices.
Studeny et al. (2011) address this insensitivity
by embedding the Shannon and Simpson’s
indices in a parametric family of indices, where
a parameter controls the relative weighting given
to rare and common species in the community.
This allows a trade-off between precision and
sensitivity to changes amongst rarely-recorded
species.

The effect of invasive species on biodiversity
trend estimates should be borne in mind. The
absence of trend in a biodiversity index might
mask a reduction in native species, offset by an
increase in invasive alien species. A simple
solution to this issue is to omit alien species.
However, in the context of climate change and of
consequent changes in natural ranges, it may be
difficult to distinguish undesirable aliens from
welcome additions to the natural fauna or flora
of a region.

We conclude that G provides an effective way
of combining time trends in relative abundance
across species and surveys to assess whether
biodiversity targets have been met. Although
conceptually a measure of trends in abundance, it
also reflects trends in evenness. Further proper-
ties are that it is not prone to bias when
detectability varies by species, and it allows data
from different surveys to be combined to
generate a composite index, even when units of
measurement differ between surveys. On the
other hand, the index exhibits high variance and
unstable behaviour when rarely-recorded species
are included in the analyses. While inclusion of
such species in classical measures such as the
Shannon and Simpson’s indices causes no statis-
tical difficulties, there is also negligible gain from
including them, as noted above. For these
reasons we do not believe that the exclusion of

rarely-recorded species is necessarily problematic
for regional biodiversity monitoring, and that
this constraint should not be considered a major
failing of the index G.

The deeper question is which aspect of the
assemblage we want our chosen metric to
emphasize. As Gaston (2011) argues, common
species are important contributors to ecosystem
function, structure, biomass and energy turnover.
By contrast, rare species generally are not. For
example, if a species that occurs in 100% of sites
declines by 50%, then we might expect a greater
impact on ecosystem function than if a species
that occurs in only 1% of sites declines by 50%.
Thus, one view might be that it is the trends in
the common species that we most need to
monitor. However, rare or declining species, such
as some pollinators (Fitzpatrick et al. 2007), may
play important functional roles. Moreover, the
relationship between species richness and func-
tion is complex (Tilman et al. 2006, Hector and
Bagchi 2007, Creed et al. 2009, Jain et al. 2010).
Conservation biologists often target rare species
or wish to protect areas of high species richness,
and in this context the ability to evaluate trends
in low abundance taxa or track richness may be
crucial (Gotelli and Colwell 2010). G is a useful
tool for biodiversity monitoring, but to use it
effectively, it is essential to appreciate both what
it can, and what it cannot, do.
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APPENDIX

Fig. A1. Relative abundance estimates for sparrowhawk, buzzard, great spotted woodpecker, jay, goldcrest,

blue tit, great tit, coal tit, long-tailed tit, chiffchaff, willow warbler and blackcap. Smoothed estimates are shown

by lines, while the points represent unsmoothed estimates.
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Fig. A2. Relative abundance estimates for garden warbler, wren, blackbird, song thrush, mistle thrush, spotted

flycatcher, robin, redstart, dunnock, tree pipit and chaffinch. Smoothed estimates are shown by lines, while the

points represent unsmoothed estimates.

v www.esajournals.org 13 September 2011 v Volume 2(9) v Article 100

BUCKLAND ET AL.



Fig. A3. Species proportions for sparrowhawk, buzzard, great spotted woodpecker, jay, goldcrest, blue tit,

great tit, coal tit, long-tailed tit, chiffchaff, willow warbler and blackcap. Smoothed estimates are shown by lines,

while the points represent unsmoothed estimates.
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Fig. A4. Species proportions for garden warbler, wren, blackbird, song thrush, mistle thrush, spotted

flycatcher, robin, redstart, dunnock, tree pipit and chaffinch. Smoothed estimates are shown by lines, while the

points represent unsmoothed estimates.
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