
 1

Large-scale Complex IT Systems
Ian Sommerville, Dave Cliff, Radu Calinescu, Justin Keen, Tim Kelly, Marta
Kwiatkowska, John McDermid and Richard Paige

1. Introduction

On the afternoon of 6th May 2010, the US equity markets underwent an extraordinary upheaval. In
about 10 minutes, the Dow Jones Industrial Average dropped by over 600 points representing the
disappearance of around 800bn dollars of market value. In the course of this sudden downturn, the
share-prices of several blue-chip multinational companies went crazy – shares in companies that
had been a few tens of dollars plummeted to $0.01 in some instances, and rocketed to values over
$100,000.00 in others.

As suddenly as this market downturn occurred, it reversed; over the next few minutes most of the
loss was recovered. Share prices returned to levels within a few percentage points of the values
they had held before the crash. This ‘Flash Crash’ sparked a major enquiry into its causes by the
CFTC (Commodity Futures Trading Commission) and the SEC (Securities Exchange
Commission).

Various theories were discussed in the five months that it took to produce the final report on the
events of May 6th (CFTC&SEC, 2010). Many speculated on the role of high-frequency trading
(HFT) by investment banks and hedge funds, where algorithmic trading systems (algos) buy and
sell blocks of financial instruments on incredibly short timescales, often holding a position for a
second or less.

When the final report on the Flash Crash was finally published, it stated that the trigger-event for
the crash was a single block-sale of $4.1bn worth of futures contracts, executed with uncommon
urgency on behalf of a fund-management company. It was argued that the consequences of that
trigger event interacting with algos rapidly buying and selling shares rippled out to cause the
system-level failures.

The Flash Crash is an example of the kind of large-scale system failure that can arise as a
consequence of software actions. The ‘failure’ was not caused by software bugs - rather, the
interactions of independently-managed software systems created conditions that were unforeseen
by any of the owners and developers of the trading systems. This led to a failure in the broader,
socio-technical markets in which the algorithmic trading systems are used.

Our economy and society is becoming increasingly dependent on complex IT systems that are
created by integrating and orchestrating independently managed software systems. We argue here
that the incredible increase in scale and complexity in such systems means that we need new
software engineering techniques that can help us cope with the inherent complexity in these
systems. Without these, failures like the Flash Crash will become increasingly common and may
have large-scale societal effects. In this article, we explain that there are principled reasons why
current software engineering cannot scale and we propose a research and education agenda to help
us address the problems of large-scale complex, IT systems engineering.

 2

2. Coalitions of systems

The key factor that characterises large, complex IT systems is that these systems are assembled
from other existing and new systems, which are independently controlled and managed. Current
software engineering research and practice has paid little attention to the issues involved and the
most relevant background work comes from the discipline of systems engineering. Systems
engineering focuses on the development of systems as a whole, as defined by the International
Council for Systems Engineering (INCOSE)
(http://www.incose.org/practice/whatissystemseng.aspx):

“Systems Engineering integrates all the disciplines and specialty groups into a team effort forming
a structured development process that proceeds from concept to production to operation. Systems
Engineering considers both the business and the technical needs of all customers with the goal of
providing a quality product that meets the user needs.”

Systems engineering emerged to take an overall system-wide perspective on complex engineered
systems involving structures, electrical and mechanical systems. Now almost all systems are
‘software-intensive’ and the problems of constructing ultra-large scale software systems are being
addressed by this community (Sillitto, 2010).

Work from systems engineering that is particularly relevant to this paper is ‘system of systems‘
(SoS) research (Maier, 1998). Maier argues that the distinction between a system of systems and a
complex monolithic system is that the elements of a SoS are operationally and managerially
independent. He presents a characterization of different types of SoS from directed (systems
developed for a particular purpose) to virtual (systems that lack a central management authority or
centrally-agreed purpose).

Unfortunately, terminology in this area can be confusing. Our view is that the use of the term
‘system’ implies that, irrespective of the components, the entity that is created is purposeful
(Checkland, 1981) – intentionally designed to serve some organizational purpose or need. This is
consistent with the definition of system of systems proposed by the US Department of Defense
(DoD, 2008):

“An SoS is defined as a set or arrangement of systems that results when independent and useful
systems are integrated into a larger system that delivers unique capabilities”

The implication is that an SoS is created by a single organization (e.g. the US Air Force) that
integrates internal and external systems to do something that serves some purpose for that specific
organization. There is an ‘owner’ of the whole system who has at least some influence over the
constituent systems and who can certainly decide which systems are components of the SoS.

The interacting algos that led to the Flash Crash are owned by different organisations and may be
systems of systems in their own right. They serve the different purposes of their owners and they
only cooperate because they have to. The owners of the individual organizational systems are often
competing and may be mutually hostile. Each system jealously guards its own information and may
change without consultation with any other systems.

In Maier’s terms, the collection of systems that led to the Flash Crash would be called a ‘virtual
system of systems’. However, the prefix ‘virtual’ is not consistent with other common usage of that
term e.g. ‘virtual machines’.

Rather than using the unintuitive term ‘virtual system of systems’, we propose an alternative
namely ‘coalition of systems’. A coalition of systems is a collection of systems that work together,
sometimes reluctantly, because it is in their mutual interest to do so. Coalitions of systems are not
explicitly designed but come into existence when different systems interact according to agreed
protocols. Like political coalitions, there may be hostility between the members and members may
enter and leave the coalition according to their interpretation of what is in their best interests.

 3

Coalitions of software systems make software engineering particularly challenging. We can’t
design dependability into the coalition as there is no overall design authority; nor can we control
the behaviour of individual systems. The systems in the coalition may change unpredictably, may
be completely replaced and the organizations running these systems may themselves go out of
existence. Coalition ‘design’ involves designing the protocols for communications and each
organization using the coalition orchestrate the constituent systems in their own way. However, the
designers and managers of each individual system have to consider how to make their systems
robust enough to ensure that their organizations are not threatened by failures or any undesirable
behaviour elsewhere in the coalition.

By analogy with Rittel and Weber’s notion of ‘wicked problems’ (1973), coalitions of systems can
be thought of as ‘wicked systems’ (Metcalfe, 2004). Wicked problems are impossible to
completely understand as they change as we attempt to address the problem. ‘Wicked systems’,
similarly, are constantly changing as they are developed and used and are impossible to understand
completely.

3. IT System complexity

The complexity of a system stems from the number and type of relationships between the system
components and between the system and its environment. If there are a relatively small number of
relationships between system components and these change relatively slowly over time then we can
develop deterministic models of the system and make predictions of its properties.

However, when there are many dynamic relationships between the elements in a system then we
have a complex system. Complex systems are non-deterministic and system characteristics cannot
be predicted by analysis of the system constituents. These characteristics emerge when the whole
system is put into use and they change over time, depending on how the system is used and the
system’s external environment.

Dynamic relationships include relationships between system elements and the system’s
environment that change. For example, a trust relationship is a dynamic relationship. Initially,
component A may not trust component B so, after some interchange, A checks that B has
performed as expected. Over time, these checks may be reduced in scope as A’s trust in B
increases. However, some failure in B may then profoundly influence that trust and after failure,
even more stringent checks may be introduced.

Complexity that stems from the dynamic relationships between the elements in a system is
‘inherent complexity’ – it depends on the number, existence and nature of these relationships. We
cannot analyse inherent complexity during system development as it depends on the system’s
dynamic operating environment. Coalitions of systems whose elements are large software systems
will always be inherently complex. The relationships between the elements of the coalition change
because they are not independent of the ways that the constituent systems are used and their
operating environments. Consequently, the non-functional and, often, the functional behaviour of
coalitions of systems is emergent and impossible to completely predict.

However, even when the relationships between system elements are simpler, relatively static and,
in principle, understandable, there may be so many elements and relationships that understanding
these relationships is practically impossible. This type of complexity is ‘epistemic complexity’ – it
stems from our lack of knowledge about the system rather than inherent system characteristics
(Rushby, 2009). For example, it may be possible in principle to deduce the traceability
relationships between requirements and design but, if the appropriate tools are not available, then it
may be practically impossible to do so.

If you don’t know enough about a system’s components and their relationships, you cannot make
predictions about it, even if that system does not have dynamic relationships between its elements.
Epistemic complexity increases with the size of the system – as we build larger and larger systems,

 4

it is inevitable that they will become harder to understand and their behaviour and properties will
be harder to predict.

This distinction between inherent and epistemic complexity is important. As we discuss in the
following section, we believe that it is the primary reason why we need new approaches to software
engineering.

4. Reductionism and software engineering

In some respects, software engineering has been incredibly successful. Compared to the systems
that were being built in the 1970s and 1980s, modern software is much larger, considerably more
reliable and often developed more quickly. Software products deliver astonishing functionality for
relatively low prices.

Software engineering has focused on reducing and managing epistemic complexity so, where
inherent complexity is relatively low and, critically, where a single organization controls all
elements of the system, software engineering is very effective. However, we argue that for
coalitions of systems with a high degree of inherent complexity, current software engineering
techniques are inadequate.

We see this in the failures that are common in large government-funded projects. The software is
delivered late, is more expensive to develop than anticipated and does not meet the needs of its
users. An example of such a project was the automation of health records in the UK where the
project was abandoned after 10 years of development. Estimates of the costs of this failure range
from 5 to 10 billion dollars.

We argue that there is a fundamental reason why current software engineering cannot effectively
manage inherent complexity, with the consequence that our software engineering methods are
unsuitable for building 21st century wicked systems. To understand this, we need to examine the
essential ‘divide-and conquer’ reductionist assumption that is the basis for modern engineering.

Reductionism is a philosophical position that a complex system is nothing but the sum of its parts,
and that an account of it can be reduced to accounts of individual constituents. From an engineering
perspective, this means that you should design a system so that it is composed of discrete, smaller
parts and define interfaces that allow these parts to work together. You then build the system
elements and integrate these to create the desired system.

Researchers in software engineering generally adopt this reductionist assumption and their work
has either been around finding better ways to decompose problems or systems (e.g. work in

Owners of a system
control its development

Decisions made rationally,
driven by technical criteria

Definable problem and
clear system boundaries

No single
owner or
controller

Decisions driven
by political

motives

Wicked problem
and constantly
renegotiated

system boundaries

Reductionist assumptions

Control Rationality Problem definition

Wicked systems reality

Figure 1: Reductionist assumptions and wicked systems

 5

software architecture), better ways to create the parts of the system (e.g. object-oriented
techniques) or better ways of system integration (e.g. test-first development).

There are three fundamental reductionist assumptions that underlie software engineering methods
and techniques as shown in Figure 1:

1. Owners of a system control its development. A reductionist perspective takes the view that
there is an ultimate controller who has the authority to take decisions about a system and
who can therefore ‘enforce’ decisions on, for example, how components should interact.
However, when systems are composed of independently owned and managed elements, there
is no such owner or controller and there is no central authority to make or enforce design
decisions.

2. Decisions are made rationally and are driven by technical criteria. In fact, decision making
in organizations is profoundly influenced by political considerations where actors in the
organization strive to maintain or improve their current position or avoid losing face.
Technical considerations are rarely the most significant factor in large system decision
making.

3. There is a definable problem and clear system boundaries. The nature of ‘wicked problems’
is that the ‘problem’ is constantly changing depending on the perception of stakeholders and
external events. The system boundaries are influenced by both these changes and the status
and perspectives of stakeholders. As these change, the boundaries are redefined.

For wicked systems, these assumptions are never true and many software project ‘failures’, where
software is delivered late and over-budget, are a consequence of adherence to this reductionist view
of the world. To help us address inherent complexity, software engineering must evolve to look
outwards and to embrace the other systems, people and organizations that make up the software
systems’ environment. We need to represent, analyze, model and simulate potential operational
environments for coalitions of systems to help us understand and manage, so far as is it is possible
to do so, the complex relationships in the coalition.

5. Challenges for research and education

There are initiatives in the US and in Europe that are starting to address the problem of engineering
large, complex, coalitions of systems. In this US, the influential SEI report (Northrop et. al 2006)
on Ultra-Large Scale Systems (ULSS) has triggered research at the SEI and has led to the creation
of ULSSIS, a research consortium involving Virginia, Michigan State, Vanderbilt Universities and
UCSD. In the UK, the Large-Scale Complex IT systems (LSCITS) initiative is addressing
problems of both inherent and epistemic complexity in large-scale IT systems and Hillary Sillitto
from Thales is considering design principles for ULSS (2010).

Northrop et al. have made the point that we need to go beyond incremental improvements to
current methods and have identified research areas that are important for ULSS namely human
interaction, computational emergence, design, computational engineering, adaptive system
infrastructure, adaptable and predictable system quality and policy, acquisition and management.
Their report suggests that it is essential to deploy expertise from a range of disciplines to address
these problems.

We are in complete agreement that the research required is inter-disciplinary and that incremental
improvements in existing techniques will be insufficient to address future software engineering
challenges. However, ‘breakthroughs’ in engineering research are uncommon and take many years
to be exploited. Across the world, we are now engineering large complex software systems and so
there is also a need for a more immediate, perhaps more incremental, research, driven by the
practical problems of complex IT systems engineering.

 6

Part of this will involve developing and extending current software engineering methods. Epistemic
complexity will continue to increase as software systems get larger and larger and we need
software engineering techniques, such as formal analysis and modelling, to help deal with this. But
most of the work has to focus on the challenges posed by complexity.

5.1 A research agenda for software engineering
The engineering of coalitions of systems involves the engineering of individual systems so that
they can work effectively in a coalition and the orchestration and configuration of a coalition of
systems to meet some organizational needs. Based on the ideas in the ULSS book and our own
experience in the UK LSCITS initiative, we have identified the ‘top-10’ problems that define a
research agenda for future software systems engineering.

1. How can we model and simulate the interactions between independent systems?

 To help us understand and manage coalitions of systems we need dynamic models that are
updated in real-time with information from the actual system. We need these models to help
us make rapid ‘what-if’ assessments of the consequences of system change options. This will
require new performance and failure modelling techniques where the models can adapt
automatically from system monitoring data. Of course, we are not suggesting that
simulations can be complete or can predict all possible problems. However, other
engineering disciplines have benefited enormously from simulation and we believe that
comparable benefits might be achieved for software engineering.

2. How can we monitor coalitions of systems and what are the warning signs of problems?

 In the run-up to the Flash Crash there were no indicators that might have indicated that the
system was tending towards an unstable state. To help avoid the transition to an unstable
system state, we need to know what are the indicators that provide information about the
state of the coalition of systems, how these indicators may be used to provide both early
warnings of system problems and, if necessary, switch to safe-mode operating conditions
that will stop damage occurring. To make effective use of this data, we need visualization
techniques that reveal the subtleties of coalition operation and interactions to operators and
users.

3. How can systems be designed to recover from failure?

 A fundamental principle of software engineering is that we should build systems so that they
do not ‘fail’. This has led to the development of methods and tools based on fault avoidance,
fault detection and fault tolerance.

 However, as we construct coalitions of systems with independently-managed elements and
negotiated requirements, it is increasingly impractical to avoid ‘failure’. Indeed, what seems
to be a ‘failure’ for some users may not affect some others. Because some failures are
ambiguous, automated systems cannot cope on their own. Human operators have to use
information from the system and intervene to recover from the failure and restore the system.
This means that we need to understand the socio-technical processes of failure recovery, the
support that these operators need and how to design coalition members to be ‘good citizens’
and to support failure recovery.

4. How can we integrate socio-technical factors into systems and software engineering
methods?

 Software and systems engineering methods have been created to support the development of
technical systems and, by and large, consider human, social and organisational issues to be
outside the system boundary. However, these non-technical factors significantly affect the
development, integration and operation of coalitions of systems. There is a considerable
body of work on socio-technical systems but this has not been ‘industrialised’ and made
accessible to practitioners. A recent paper (Baxter and Sommerville, 2010) surveys this work

 7

and proposes a route to industrial use of socio-technical methods. However, much more
research and experience is required before socio-technical analyses can be routinely used for
complex systems engineering.

5. To what extent can coalitions of systems be self-managing?

 The coalitions of systems that will be created are complex and dynamic and it will be
difficult to keep track of system operation and respond in a timely way to the monitoring and
health measurement information that is provided. We need research into self-management so
that systems can detect changes in both their own operation and in their operational
environment and dynamically reconfigure themselves to cope with these changes. The
danger is that reconfiguration will create further problems so a key requirement is for these
techniques to operate in a safe, predictable and auditable way and to ensure that self-
management does not conflict with ‘design for recovery’.

6. How can we manage complex, dynamically changing system configurations?

 Coalitions of systems will be constructed by orchestration and configuration and the desired
system configurations will change dynamically in response to load, indicators of the system
health, unavailability of components and system health warnings. We need ways of
supporting construction by configuration, managing configuration changes and recording
changes (including automated changes from the self-management system) in real-time so
that we have an audit trail recording what the configuration of the coalition was at any point
in time.

7. How can we support the agile engineering of coalitions of systems?

 The business environment changes incredibly quickly in response to economic
circumstances, competition and business reorganization. The coalitions of systems that we
create will have to change rapidly to reflect new business needs. A model of system change
that relies on lengthy processes of requirements analysis and approval simply will not work.

 Agile methods of programming have been successful for small to medium sized systems
where the dominant activity is system development. For large and complex systems,
development processes are often dominated by coordination activities involving multiple
stakeholders and engineers who are not co-located. How can we evolve agile approaches that
are effective for ‘systems development in the small’ to support multi-organization, global
software development?

8. How should coalitions of systems be regulated and certified?

 Many coalitions of systems will be critical systems whose failure could threaten individuals,
organizations and economies. They may have to be certified by a regulator who will check
that, as far as possible, the systems will not pose a threat to their operators or the wider
systems’ environment. But certification is increasingly expensive. For some safety-critical
systems the cost of certification may exceed the costs of development. These costs will
continue to rise as systems become larger and more complex.

 Although certification as currently practised is almost certainly impossible for coalitions of
systems, there is an urgent need for research that allows for incremental and evolutionary
certification so that our ability to deploy critical complex systems is not curtailed by the
certification requirements. This is a social as well as a technical issue – our societies have to
decide what level of certification is socially and legally acceptable.

9. How can we do ‘probabilistic verification’ of systems?

 Our current techniques of system testing and more formal analysis are based on the
assumption that the system has a definitive specification and that behaviour which deviates
from that specification can be recognized. Coalitions of systems will have no such
specification nor will system behaviour be guaranteed to be deterministic. The key

 8

verification issue will not be ‘is the system correct’ but ‘what is the probability that it
satisfies essential properties, such as safety, that take into account its probabilistic, real-time
and non-deterministic behaviour’ (Kwaitowska et al., 2009; Ge at al., 2010).

10. How should shared knowledge in a coalition of systems be represented?

 We assume that the systems in a coalition will interact through service interfaces so there
will not be any over-arching controller in the system. Information will be encoded in a
standards-based representation. The key problem will not therefore be a problem of
compatibility – it will be a problem of understanding what the information that systems
exchange actually means.

 Currently, we address this problem on a system by system basis with negotiations taking
place between system owners to clarify what shared information means. However, if we
allow for dynamic coalitions with systems entering and leaving the coalition, this is no
longer a practical approach. The key issue is developing a means of sharing the meaning of
information – perhaps using ontologies as proposed in the work on the semantic web
(Antoniou and Van Harmelan, 2008).

A major problem that researchers face is a lack of knowledge of what currently happens in real
systems. High-profile failures, such as the Flash Crash, lead to enquiries but we need more
information about the practical difficulties faced by developers and operators of coalitions of
systems and how they cope with problems that arise. New ideas, tools and methods, need to be
supported by long-term empirical studies of these systems and their development processes to
provide a solid information base to inform research and innovation.

The LSCITS project (Cliff et al. 2010; Cliff and Northrop, 2011) is tackling some of these issues.
We are working with partners from the computer industry, financial services and healthcare to
develop an understanding of the fundamental systems engineering problems that they face. We
have a long-term engagement with the UK body that manages national healthcare data who need to
create coalitions of systems for external access and analysis of the vast amounts of data involved.

We are developing practical techniques of socio-technical systems engineering (Baxter and
Sommerville, 2010) and are exploring the problems of designing for failure (Sommerville, 2008).
We have developed practical and predictable techniques for autonomic system management
(Calinescu and Kwiatkowska, 2009, Calinescu et al, 2011) and are investigating the scaling-up of
agile methods (Paige et al., 2008). We are exploring possibilities for incremental system
certification (Ge et al., 2010) and are working on the development of techniques for system
simulation and modelling.

5.2 Education
To help us address the practical issues of creating, managing and operating wicked systems, we
need engineers who are equipped with knowledge and understanding of the challenges posed by
these systems and with techniques that lie outside a ‘normal’ software or systems engineering
education.

In the UK, we are providing graduate student education with a new kind of doctoral degree,
comparable in standard to a PhD. Our students get an Engineering Doctorate (EngD) in Large-scale
complex IT systems, (University of York, 2009) where the key differences between an EngD and a
PhD are:

1. Students have to work on an industrial problem and spend a significant period of time
working in industry on that problem. Universities simply cannot replicate the complexity of
modern software-intensive systems and few faculty have experience and understanding of
these systems.

 9

2. Students take a range of courses that focus on complexity and systems engineering such as
systems engineering for LSCITS, socio-technical systems, high-integrity systems
engineering, empirical methods and technology innovation.

3. Students don’t have to produce a conventional ‘thesis’ – a book on a single topic but can
produce a portfolio of work around their selected area. This is a better reflection of the
reality of work in industry and makes it easier for the topic to evolve as systems change and
new research emerges.

However, graduating a few advanced doctoral students is simply not enough. Universities and
industry now need to work together to create Masters courses that educate complex systems
engineers for the 21st century. Figure 2 sets out our thoughts on what might be covered in such
courses. We understand that a comparable course in ULSS is being developed at Queens University
in Canada but, at the time of writing, no details on this are available.

Masters courses in this area have to be multidisciplinary, bringing together engineering and
business disciplines. It is not only the knowledge that these disciplines bring that is important. It is
also critical that students are sensitised to the perspectives of different disciplines and so move out
of the silo of single discipline thinking.

6. Conclusions

Since the advent of widespread networking in the 1990s, our societies have grown increasingly
dependent on complex software-intensive systems. Serious failures of these systems will have
profound social and economic consequences. As Sillitto (2010) says, we are building these systems
without an understanding of how to analyze their behaviour and without appropriate engineering
principles to support their construction.

We have argued here that there are fundamental reasons why existing approaches cannot be
‘scaled-up’ to create coalitions of systems and that incremental improvements to today’s methods
are not enough to cope with complexity. Put bluntly, existing software engineering is not good
enough. We need to think differently to address the urgent and growing need for new engineering
approaches that can help us construct complex systems that we can trust.

!"#$%&#' ()*+)%%,+)*' -.#+)%##'

/0$,1201,*%'#310%'#"#$%&#'
'

45&60%7+$"'
'

81$9%&1:310'&5;%0+)*'
'

!53+52$%39)+310'#"#$%&#'
'
'
'

!"#$%&#'%)*+)%%,+)*'
'

!"#$%&#'6,53.,%&%)$'
'

!"#$%&#'+)$%*,1:5)'
'

!"#$%&#',%#+0+%)3%'
'
'
'
'

<,*1)+=1:5)10'391)*%'
'

>%*10'1);',%*.01$5,"'+##.%#'
'

?%39)505*"'+))5@1:5)'
'

A,5*,1&'&1)1*%&%)$'

<6:5)#'B,5&'45&6.$%,'!3+%)3%C'()*+)%%,+)*C'A#"39505*"C'-.#+)%##'

D);.#$,+10'6,5E%3$'

Figure 2: Outline structure for Masters course in Large-Scale Complex IT Systems

 10

Sidebar: Socio-technical systems

Engineers are primarily concerned with building technical systems with hardware and software
components. They assume that the system requirements reflect the organizational needs for
integration with other systems, compliance and business processes. Yet, when we consider systems
in use, these are not simply technical systems but ‘socio-technical systems’. To reflect the fact that
these are evolving and interacting communities that include technical, human and organisational
elements, these are sometimes called ‘socio-technical ecosystems’. However, the term ‘socio-
technical systems’ is one that is more commonly used.

Socio-technical systems are organizational systems that include people and processes as well as
technological systems. The process definitions set out the intentions of the system designers as to
how the system should be used but, in reality, the people in the system interpret and adapt these in
a range of different ways depending on their education, experience and culture. Individual and
group behaviours also depend on organizational rules and regulations as well as ‘organizational
culture’ – ‘the way we do things around here’.

An over-simplification that has hindered software engineering for many years is that it is possible
to consider technical software-intensive systems that are intended to support work in an
organization in isolation. The so-called ‘system requirements’ are the interface between the
technical system and the wider socio-technical system yet we know that requirements are
inevitably incomplete, incorrect and out of date.

Coalitions of systems cannot operate on this basis. Rather, we must recognize that these are rich
socio-technical systems and by taking advantage of the abilities and inventiveness of people we can
create more effective and more resilient systems.

Acknowledgments

We would like to thank our colleagues Gordon Baxter and John Rooksby of St Andrews University
and Hillary Sillitto of the Thales Group for their constructive comments on drafts of this paper. We
would also like to thank the reviewers of earlier versions of this paper for their helpful and
constructive comments.

The work here was partially funded by the UK Engineering and Physical Science Research
Council, grant number EP/F001096/1.

References

Antoniou, G. and van Harmelen, F. A Semantic Web Primer, 2nd Edition. Cambridge Mass.:MIT
Press, 2008.

Baxter, G. and Sommerville, I. ‘Socio-technical systems: From design methods to systems
engineering’. Interacting with Computers. doi:10.1016/j.intcom.2010.07.003. 2010.

Calinescu, R. and Kwiatkowska, M. ‘Using Quantitative Analysis to Implement Autonomic IT
Systems’. In: Proc. 31st Intl. Conf. Software Engineering (ICSE'09), pp. 100-110. 2009.

Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dynamic QoS
management and optimisation in service-based systems. IEEE Transactions on Software
Engineering, 37 (3), 387-409. doi:10.1109/TSE.2010.92, 2011.

Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M., McDermid, J., Paige, R. and
Sommerville, I. The UK Large-Scale Complex IT Systems (LSCITS) Initiative. Manuscript
available from http://lscits.cs.bris.ac.uk/docs/LSCITSoverview2010.pdf. 2010.

Cliff, D. and Northrop, L. The Global Financial Markets: An Ultra-Large Scale Systems
Perspective. Briefing paper for UK Government Office for Science Foresight Project on the Future
of Computer Trading in the Financial Markets.

 11

http://www.bis.gov.uk/assets/bispartners/foresight/docs/computer-trading/11-1223-dr4-global-
financial-markets-systems-perspective.pdf. 2011.

CFTC & SEC. Findings Regarding the Market Events of May 6th, 2010. Report of the staffs of the
CFTC and SEC to the Joint Advisory Committee on Emerging Regulatory issues. September 30th,
2010. http://www.sec.gov/news/studies/2010/marketevents-report.pdf

Checkland, P. Systems Thinking, Systems Practice. Chichester, UK: Wiley. 1981.

DoD. Systems Engineering Guide for Systems of Systems. US Department of Defense. 2008.
http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf

Ge, X., R. Paige, R.F. and J. McDermid. Analysing System Failure Behaviours With PRISM.
In Proc. 4th IEEE International Conference on Secure Software Integration and Reliability
Improvement Companion, pages 130-136. 2010.
Ge, X., Paige, R.F. and McDermid, J. A. An Iterative Approach for Development of Safety-Critical
Software and Safety Arguments. In: Proc. Agile 2010, IEEE Press, August 2010.

Goth, G. Ultralarge Systems: Redefining Software Engineering. IEEE Software, 25 (3), 91–94.
2008.

M. Kwiatkowska, M., Norman, G., and Parker D., PRISM: Probabilistic Model Checking for
Performance and Reliability Analysis. ACM SIGMETRICS Performance Evaluation Review, 36(4),
pages 40-45, ACM.March 2009.
Maier, M.W., ‘Architecting Principles for System of Systems’, Systems Engineering, 1(4), 1998,
pp. 267-284.

Metcalfe, M. Strategic Knowledge Sharing: A Small Worlds Perspective. Proc. Information
Systems Foundations: Constructing and Criticising Workshop. Hard, D. and Gregor, S. (eds).
Australian National University. http://epress.anu.edu.au/info_systems/mobile_devices/pr01.html.
2004.

Paige, R. F., Charalambous, R., Ge, X. and Brooke, P.J. ‘Towards Agile Development of High-
Integrity Systems’, in Proc. 27th Int. Conf. on Computer Safety, Reliability and Security
(SAFECOMP) 2008, LNCS, Springer-Verlag, Newcastle, UK. 2008.

 Northrop, L. et al. Ultra-Large-Scale Systems: The Software Challenge of the Future. Technical
Report. Carnegie Mellon University Software Engineering Institute. 2006.

Rittel, H., and Webber, M. ‘Dilemmas in a General Theory of Planning’. Policy Sciences, Vol. 4,
Elsevier Scientific Publishing Company, Inc., Amsterdam, 155-73, 1973.

Rushby, J. Software Verification and System Assurance. Proc. 7th IEEE Int. Conf. on Software
Engineering and Formal Methods. Hanoi, Vietnam. 2009.

Sommerville, I. ‘Designing for Recovery: New Challenges for Large-scale Complex IT Systems’.
Keynote address, 8th IEEE Conference on Composition-based Software Systems. Madrid. 2008.
http://sites.google.com/site/iansommerville/keynote-talks/DesigningForRecovery.pdf

Sillitto, H. ‘Design Principles for Ultra-Large Scale (ULS) Systems’. Proc. 20th INCOSE
International Symposium, Chicago, July 2010.

University of York. The LSCITS Engineering Doctorate Centre. http://www.cs.york.ac.uk/EngD/.
2009.

Authors

Ian Sommerville is a Professor in the School of Computer Science, St Andrews University,
Scotland.

 12

Dave Cliff is a Professor in the Department of Computer Science, Bristol University, England.

Radu Calinescu is a Lecturer in the Departent of Computer Science, Aston University, England

Justin Keen is a Professor in the School of Health Informatics, Leeds University, England

Tim Kelly is a Senior Lecturer in in the Department of Computer Science, York University,
England.

Marta Kwaitkowska is a Professor in the Department of Computer Science, Oxford University
England.

John McDermid is a Professor in the Department of Computer Science, York University, England.

Richard Paige is a Professor in the Department of Computer Science, York University, England.

	
	
	

	

	

