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Collaborative machine learning (CML) techniques, such as federated learning, have been proposed to train deep 
learning models across multiple mobile devices and a server. CML techniques are privacy-preserving as a local 
model that is trained on each device instead of the raw data from the device is shared with the server. However, 
CML training is inefficient due to low resource utilization. We identify idling resources on the server and devices 
due to sequential computation and communication as the principal cause of low resource utilization. A novel 
framework PiPar that leverages pipeline parallelism for CML techniques is developed to substantially improve 
resource utilization. A new training pipeline is designed to parallelize the computations on different hardware 
resources and communication on different bandwidth resources, thereby accelerating the training process in 
CML. A low overhead automated parameter selection method is proposed to optimize the pipeline, maximizing 
the utilization of available resources. The experimental results confirm the validity of the underlying approach of

PiPar and highlight that when compared to federated learning: (i) the idle time of the server can be reduced by up 
to 64.1×, and (ii) the overall training time can be accelerated by up to 34.6× under varying network conditions for 
a collection of six small and large popular deep neural networks and four datasets without sacrificing accuracy. 
It is also experimentally demonstrated that PiPar achieves performance benefits when incorporating differential 
privacy methods and operating in environments with heterogeneous devices and changing bandwidths.
1. Introduction

Deep learning has found application across a range of fields includ-

ing computer vision [17,12], natural language processing [5,2] and 
speech recognition [7,10]. However, there are important data privacy 
and regulatory concerns in sending data generated on mobile devices to 
geographically distant cloud servers for training deep learning models. 
A new class of machine learning techniques has therefore been devel-

oped under the umbrella of collaborative machine learning (CML) to 
mitigate these concerns [38]. CML does not require data to be sent to a 
server for training deep learning models; rather the server shares models 
with devices that are then locally trained on the device.

CML is used in many real-world use-cases comprising a central server 
and multiple homogeneous mobile devices. Smartphone manufacturers, 
for example, analyse user data to improve the performance of a spe-

cific smartphone model [44,47]. For instance, CML can be employed to 
analyse the battery usage patterns of individual users on their phones to 
offer personalized plans for optimizing battery life. Similarly, CML can 

* Corresponding author.

be used to analyze the typing habits of the users and then automatically 
complete and correct the typing of the users.

There are three notable CML techniques reported in the literature, 
namely federated learning (FL) [19–21,28], split learning (SL) [8,39]

and split federated learning (SFL) [37,41]. However, these techniques 
under-utilize both compute and network resources, which results in 
training times that do not meet real-world requirements. The cause of 
resource under-utilization and the resulting performance inefficiency in 
the three CML techniques is considered next.

In FL, each device trains a local model of a deep neural network 
(DNN) using the data it generates. Local models are uploaded to the 
server and aggregated as a global model at a pre-defined frequency. 
However, the workload of the devices and the server is usually imbal-

anced [16,46,41]. This is because the server is only employed when the 
local models are aggregated and is idle for the rest of the time.

In SL, a DNN is usually decomposed into two parts, such that the 
initial layers of the DNN are deployed on a device and the remaining 
layers on the server. A device trains the partial model and sends the 
intermediate outputs to the server where the rest of the model is trained. 
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The training of the model on devices occurs in a round-robin fashion. 
Hence, only one device or the server will utilize its resources while the 
rest of the devices or the server are idle [37,38].

In SFL, which is a hybrid of FL and SL, the DNN is split across devices 
and the server. The devices, however, unlike SL, train the local models 
concurrently. Nevertheless, the server must wait while the devices train 
the model and transfer data, and vice versa.

Therefore, the following two challenges need to be addressed for 
improving resource utilization in CML:

a) Sequential execution on devices and the server causes resource under-

utilization: For FL, the server aggregates the models obtained from all 
devices after they complete training; for SL, after the training of the ini-

tial layers is completed on the devices, the remaining layers of the DNN 
are trained on the server. Since device-side and server-side computa-

tions in CML techniques occur in sequence, there are long idle times on 
both the devices and the server.

b) Communication between devices and the server results in resource 
under-utilization: Data transfer in CML techniques is time consuming [3,

36,6], during which time no training occurs on both the server and de-

vices. This increases the overall training time.

Although low resource utilization of CML techniques makes training 
inefficient, there is currently limited research that is directed at ad-

dressing this problem. This paper aims to address the above challenges 
by developing a framework, PiPar (pronounced as ‘piper’), that lever-

ages pipeline parallelism to improve the resource utilization of devices 
and servers in CML techniques when training DNNs, thereby increas-

ing training efficiency. The framework distributes the computation of 
DNN layers on the server and devices, balances the workload on both 
the server and devices and reorders the computation for different inputs 
in the training process. PiPar overlaps the device and server-side com-

putations with communication between the devices and server, thereby 
improving resource utilization, which in turn accelerates CML training.

PiPar redesigns the training process of DNNs. Traditionally, training 
a DNN involves the forward propagation pass (or forward pass) and 
backward propagation pass (or backward pass). In the forward pass, 
one batch of input data (also known as a mini-batch) is used as input 
for the first DNN layer and the output of each layer is passed on to 
subsequent layers to compute the loss function. In the backward pass, 
the loss function is passed layer by layer from the last layer to the first 
layer to compute the gradients of the DNN model parameters.

PiPar divides the DNN into two parts and deploys them on the 
server and devices as in SFL. Then the forward and backward passes 
are reordered for multiple mini-batches to reduce idle time. Each de-

vice executes the forward pass for multiple mini-batches in sequence. 
The immediate result of each forward pass (activations) is transmitted 
to the server, which executes the forward and backward passes for the 
remaining layers and transfers the gradients of the activations back to 
the device. The device then sequentially performs the backward passes 
for the mini-batches. The devices operate in parallel, and the local mod-

els are aggregated at a set frequency. Since many forward passes occur 
sequentially on the device, the communication for each forward pass 
overlaps the computation of the subsequent forward passes. Also, in
PiPar, the server and device computations occur simultaneously for dif-

ferent mini-batches. Thus, PiPar reduces the idle time of devices and 
servers by overlapping server and device-side computations and server-

device communication.

This paper makes the following contributions:

(1) The development of a novel framework PiPar to accelerate col-

laborative training of DNNs by improving resource utilization. PiPar is 
the first work to reduce resource idling in CML by reordering training 
tasks across a server and the participating devices. Idle time is reduced 
by leveraging pipeline parallelism to overlap device and server compu-

tations and device-server communication.

(2) Development of an low overhead automated parameter selec-

tion approach for further optimizing CML workloads across devices and 
2

servers to maximize the overall training efficiency.
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PiPar and the automated parameter selection approach are evalu-

ated on a lab-based testbed. The experimental results demonstrate that: 
a) compared to FL, PiPar can accelerate the training process by up to 
34.6 ×, and the idle time of hardware resources is reduced by up to 64.1 
×. b) the automated parameter selection approach can find the optimal 
or near-optimal parameters in less time than an exhaustive search. It 
is also experimentally demonstrated that PiPar achieves performance 
benefits when incorporating differential privacy methods and operating 
in environments with heterogeneous devices and changing bandwidths.

The rest of this paper is organized as follows. Section 2 considers 
the background and work related to this research. The PiPar frame-

work and the two approaches that underpin the framework are detailed 
in Section 3. Section 4 provides a theoretical analysis of model conver-

gence and accuracy using PiPar. Experiments in Section 5 demonstrate 
the effectiveness of the PiPar framework. Section 6 concludes this arti-

cle.

2. Background and related work

Section 2.1 provides the background of collaborative machine learn-

ing (CML), and Section 2.2 introduces the related research on improving 
the training efficiency in CML.

2.1. Background

The training process of three popular CML techniques, namely feder-

ated learning (FL), split learning (SL) and split federated learning (SFL), 
and their limitation due to resource under-utilization are presented.

2.1.1. Federated learning

FL [19–21,28] uses a set of devices coordinated by a central server 
to train deep learning models collaboratively.

Assume 𝐾 devices participate in the training process as shown in 
Fig. 1(a). In Step ①, the devices train the complete model 𝑀𝑘 locally, 
where 𝑘 = 1, 2, ..., 𝐾 . In each iteration, the local model trains on a mini-

batch of data by completing the forward and backward passes to com-

pute gradients of all model parameters and then update the parameters 
with the gradients. A training epoch involves training over the entire 
dataset, which consists of multiple iterations. In Step ②, after a prede-

fined number of local epochs, the devices send the local models 𝑀𝑘 to 
the server, where 𝑘 = 1, 2, ..., 𝐾 . In Step ③, the server aggregates the local 
models to obtain a global model 𝑀 , using the FedAvg algorithm [28]; 
𝑀 =

∑
𝑘

|𝑘|∑
𝑘 |𝑘|𝑀𝑘, where 𝑘 is the local dataset on device 𝑘 and | ⋅ | is 

the function to obtain the set size. In Step ④, the global model is down-

loaded to the devices. The next round of training continues until the 
model converges.

Typically, local model training on devices (Step ①) takes most of 
the time, while the server with more significant compute performance 
is idle. Therefore, PiPar utilizes the idle resources on the server during 
training.

2.1.2. Split learning

SL [8,39] is another privacy-preserving CML method. Since a DNN 
consists of consecutive layers, SL splits the entire DNN 𝑀 into two parts 
at the granularity of layers and deploys them on the server (𝑀𝑠) and 
the devices (𝑀𝑐𝑘 , where 𝑘 = 1, 2, ..., 𝐾).

As shown in Fig. 1(b), the devices train the initial layers of the DNN 
and the server trains the remaining layers, and the devices work in a 
round-robin fashion. In Step ①, the first device executes the forward pass 
of 𝑀𝑐1 on its local data, and in Step ②, the intermediate results, also 
known as activations, are sent to the server. In Step ③, the server uses 
the activations to complete the forward pass of 𝑀𝑠 to obtain the loss. 
The loss is then used for the backward pass on the server to compute the 
gradients of the parameters of 𝑀𝑠 and the gradients of the activations. 

In Step ④, the gradients of the activations are sent back to the device, 
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Fig. 1. Training of CML methods, assuming 𝐾 devices. The training steps (circled numbers) are explained in Section 2.1.
and in Step ⑤, the gradients of the parameters of 𝑀𝑐1 are computed in 
the device-side backward pass. Next, the parameters of the server-side 
model and device-side model are updated by their gradients. In Step ⑥, 
after a device trains for a certain number of epochs, the next device gets 
the latest model from the previous device and starts training its model 
in Step ⑦.

Compared to FL, device-side computation is significantly reduced 
because only a few layers are trained on devices. However, since the 
devices work in sequence (instead of in parallel as FL), the overall train-

ing efficiency decreases as the number of devices increases.

2.1.3. Split federated learning

Since FL is computationally intensive on devices and SL works inef-

ficiently on the device, SFL [37] was developed to alleviate both limi-

tations. Similar to SL, SFL also splits the DNN across the devices (𝑀𝑐𝑘 , 
where 𝑘 = 1, 2, ..., 𝐾) and the server (𝑀𝑠) and collaboratively trains the 
DNN. However, in SFL, the devices train in parallel and utilize a ‘main’ 
server for training the server-side model and a ‘Fed’ server for aggrega-

tion.

The training process is shown in Fig. 1(c). In Step ①, the forward pass 
of 𝑀𝑐𝑘 , where 𝑘 = 1, 2, ..., 𝐾 , are executed on the devices in parallel, and 
in Step ②, the activations are uploaded to the main server. In Step ③, 
the main server trains 𝑀𝑠, and in Step ④, the gradients are sent back to 
all devices before they complete the backward pass in Step ⑤. At a pre-

defined frequency, the models 𝑀𝑐𝑘 , where 𝑘 = 1, 2, ..., 𝐾 , are uploaded 
to the Fed server in Step ⑥. In Step ⑦, the models are aggregated to the 
global model 𝑀𝑐 . In Step ⑧, 𝑀𝑐 is downloaded to the devices and used 
for the next round of training.

SFL utilizes device parallelism to improve the training efficiency of 
SL [38]. However, the server still waits while the devices are training the 
model (Step ①) and transmitting data (Step ②), and vice versa, which 
leads to resource under-utilization. PiPar addresses this problem by par-

allelizing the steps performed on the server and the devices.

2.2. Related work

Existing research to improve the training efficiency of CML focuses 
on the three aspects considered below.

2.2.1. Improving resource utilization using pipeline parallelism

Approaches employing pipeline parallelism have been proposed to 
improve the compute and network utilization of resources. GPipe [15]

and PipeDream [29] use pipeline parallelism when a DNN is distributed 
to multiple computing nodes and parallelizes the computations on dif-
3

ferent nodes. They both reduce the idle time on computing resources. 
To further improve the hardware utilization, PipeMare [45] implements 
asynchronous training, and Chimera [25] uses bidirectional pipelines 
instead of a unidirectional one. PipeFisher [31] takes advantage of idle 
resources to execute second-order optimization to accelerate model con-

vergence. However, these approaches for distributed DNN training can-

not be directly applied to CML for three reasons.

Firstly, the context in which current pipeline parallelism approaches 
were designed to operate in is completely different from CML. They were 
designed for GPU clusters with substantial compute resources where the 
data flow is sequential (data is provided as input to one node and then 
the output goes to the next node and so on). However, in CML, the data 
generated on end-user devices is not shared with other devices or servers 
to preserve privacy. PiPar is therefore proposed to tackle the problem 
of distributed training of devices in centralized topologies.

Secondly, in existing pipeline parallelism approaches, different lay-

ers of the DNN are mapped onto different nodes in a cluster and they do 
not share weights. However, in CML, each device trains a local model 
on its data, and the model weights are subsequently synchronized with 
other devices. PiPar splits the model across the server and all the de-

vices to alleviate the computational burden on the devices and proposes 
a method to synchronize the server-side and client-side models.

Thirdly, the bandwidth between different devices and servers in CML 
will be variable as seen in real-world mobile environments. However, 
the bandwidth between the nodes of a GPU cluster is relatively less 
prone to such variability. Since communication time between nodes of a 
GPU cluster is relatively small, existing pipeline parallelism approaches 
tend to hide communication behind computation. However, the com-

munication of activations and gradients in CML is a substantial volume, 
which is not handled by existing approaches. PiPar takes this into ac-

count, and hence, a parameter selection method is proposed to overlap 
the communication and computation.

Given the above limitations, we propose a novel framework, PiPar
that fully utilizes the computing resources on the server and devices 
and the bandwidth available between them to improve the training ef-

ficiency of CML.

2.2.2. Reducing the impact of stragglers

Stragglers among the devices used for training increase the overall 
training time of CML. A device selection method was proposed based 
on the resource availability of devices to minimize the impact of strag-

glers [30]. Certain neurons of the DNN on a straggler are masked to 
accelerate computation [43]. Local gradients were aggregated hierar-

chically to accelerate FL on heterogeneous devices [40]. To balance 

workloads across heterogeneous devices, FedAdapt [41] offloaded DNN 



Z. Zhang, P. Rodgers, P. Kilpatrick et al.

layers from devices to a server. An adaptive asynchronous federated 
learning mechanism [26] was proposed to mitigate stragglers.

These methods alleviated the impact of stragglers but did not ad-

dress the fundamental challenge of sequential computation and com-

munication between the devices and server that results in low resource 
utilization.

2.2.3. Reducing communication overhead

In limited bandwidth environments, communication overhead limits 
the training efficiency of CML techniques. To reduce the communication 
traffic in FL, a relay-assisted two-tier network was developed [33]. Mod-

els and gradients were transmitted simultaneously and aggregated on 
the relay nodes. Pruning, quantization and selective updating were used 
to reduce the model size and thus reduce the computation and commu-

nication overhead [42]. The communication involved in the backward 
pass of SFL was improved by averaging the gradients on the server-side 
model and broadcasting them to the devices instead of unicasting the 
unique gradients to devices [32]. Overlap-FedAvg [48] was proposed 
to decouple the computation and communication during training and 
overlap them to reduce idle resources. However, the use of computing 
resources located at the server was not fully leveraged.

These methods are effective in reducing the data volume transferred 
over the network, thus reducing the communication overhead. How-

ever, this reduces model accuracy.

3. PiPar

This section develops PiPar, a framework to improve the resource 
utilization of CML in the context of FL and SFL. PiPar accelerates the 
execution of sequential DNNs for the first time by leveraging pipeline 
parallelism to improve the overall resource utilization in centralized 
CML.

The PiPar framework is underpinned by two approaches, namely 
pipeline construction and automated parameter selection. The first approach 
constructs a training pipeline to balance the overall training work-

load by (a) reallocating the computations for different DNN layers on 
the server and devices, and (b) reordering the forward and backward 
passes for multiple mini-batches of data by scheduling them onto idle 
resources. Consequently, not only is the resource utilization improved 
by using PiPar, but also the overall training of the DNN. The second 
approach of PiPar enhances the performance of the first approach by au-

tomatically selecting the optimal control parameters (such as the point 
at which the DNN must be split across the device and the server and 
the number of mini-batches that can be executed concurrently in the 
pipeline).

3.1. Motivation

The following three observations on low resource utilization when 
training DNNs in CML motivate PiPar.

(1) The server and devices need to work simultaneously: The devices 
and server work in an alternating manner in the current CML methods, 
which is a limitation that must be addressed to improve resource uti-

lization. In FL, the server starts to aggregate local models only after all 
devices have completed training their local models. In SL/SFL, the se-

quential computation of DNN layers results in the sequential working of 
the devices and the server. The dependencies between server-side and 
device-side computations need to be eliminated to reduce the result-

ing idle time on the resources. PiPar attempts to make the server and 
the devices work simultaneously by reallocating and reordering training 
tasks.

(2) Compute-intensive and I/O-intensive tasks need to be overlapped: 
Compute-intensive tasks, such as model training, involve large-scale 
computations performed by computing units (CPU/GPU), while IO-

intensive tasks refer to input and output tasks of disk or network, such as 
4

data transmission, which usually do not have a high CPU requirement. A 
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computationally intensive and an I/O-intensive task can be executed in 
parallel on the same resource without mutual dependencies. However, 
in current CML methods, both server-side and device-side computations 
are paused when communication is in progress, which creates idle time 
on compute resources. PiPar improves this by overlapping compute-

intensive and I/O-intensive tasks.

(3) Workloads on the server-side and client-side need to be balanced: 
Idle time on resources is also caused due to imbalanced workloads on 
the server and devices. PiPar balances the workloads on the server and 
device sides by splitting the DNN carefully.

3.2. Pipeline construction

Assume that 𝐾 devices and a server train a sequential DNN collabora-

tively by using data residing on each device. Conventionally, the dataset 
on each device is divided into multiple mini-batches that are fed to the 
DNN in sequence. Training on each mini-batch involves a forward pass 
that computes a loss function and a backward pass that computes the 
gradients of the model parameters. A training epoch ends after the entire 
dataset has been fed to the DNN. To solve the problem of low resource 
utilization faced by the current CML methods, PiPar constructs a train-

ing pipeline that reduces the idle time on resources during collaborative 
training.

Each forward and backward pass of CML methods comprises four 
tasks: (i) the device-side compute-intensive tasks, such as model train-

ing; (ii) the device-to-server I/O-intensive task, such as data upload-

ing; (iii) the server-side compute-intensive task, such as model training 
(only in SL and SFL) and model aggregation; (iv) the server-to-device 
I/O-intensive task, such as data downloading. The four tasks can only 
be executed in sequence in current CML methods, resulting in idle re-

sources. To solve this problem, a pipeline is developed to balance and 
parallelize the above tasks. The pipeline construction approach involves 
three phases, namely DNN splitting, training stage reordering and multi-

device parallelization.

3.2.1. Phase 1 - DNN splitting

The approach aims to overlap the above-mentioned four tasks to re-

duce idle time on computing resources on the server and devices as well 
as idle network resources. Since this approach does not reduce the com-

putation and communication time of each task, it needs to balance the 
time required by the four tasks to avoid straggler tasks from increasing 
the overall training time. For example, in FL, the device-side compute-

intensive task is the most time-consuming, while the other three tasks 
require relatively less time. In this case, overlapping the four tasks will 
not significantly reduce the overall training time. Therefore, it is more 
appropriate to split the DNN and divide the training task across the 
server and the devices (similar to previous works [37,41]). In addi-

tion, since the output of each DNN layer has a variable size, different 
split points of the DNN will result in different volumes of transmitted 
data. Thus, changing the split point based on the computing resources 
and bandwidth can also balance the I/O-intensive tasks with compute-

intensive tasks. The selection of the best splitting point is presented in 
Section 3.3.

Splitting DNNs does not affect model accuracy, since it does not alter 
computations but rather the resource on which they are executed. In FL, 
each device 𝑘, where 𝑘 = 1, 2, ..., 𝐾 , trains a complete model 𝑀𝑘. PiPar
splits 𝑀𝑘 to a device-side model 𝑀𝑐𝑘 and a server-side model 𝑀𝑠𝑘

represented as:

𝑀𝑘 =𝑀𝑠𝑘 ⊕𝑀𝑐𝑘 (1)

where the binary operator ⊕ stacks the layers of two partitions of a DNN 
as a complete DNN.

There are 𝑘 pairs of {𝑀𝑐𝑘 , 𝑀𝑠𝑘}, where 𝑀𝑐𝑘 is deployed on device 
𝑘 while all of 𝑀𝑠𝑘 are deployed on the server. This is different from SL 

and SFL where only one model is deployed on the server-side. Assume 
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Fig. 2. Pipelines for one training iteration in conventional training and PiPar
when using a split DNN. “Comp” is an abbreviation for computation. 𝑓 , 𝑏, 𝑢 and 
𝑑 represent forward pass, backward pass, upload and download, respectively. 
Superscripts indicate server-side (𝑠) or client-side (𝑐) computation or communi-

cation.

the complete model 𝑀𝑘 contains 𝑄 layers, 𝑀𝑐𝑘 contains the initial 𝑃
layers and 𝑀𝑠𝑘 contains the remaining layers, where 1 ≤ 𝑃 ≤𝑄.

Splitting the DNN maintains the consistency of the training process 
and does not change the model accuracy; this is demonstrated in Sec-

tion 4.1.

3.2.2. Phase 2 - training stage reordering

After splitting the DNNs and balancing the four tasks, idle resources 
in the training process need to be utilized. This is achieved by reordering 
the computations for different mini-batches of data.

Fig. 2(a) shows the pipeline of one training iteration of a split DNN 
for one pair of {𝑀𝑠𝑘 , 𝑀𝑐𝑘} (the device index 𝑘 is not shown). Any for-

ward pass (𝑓 ), backward pass (𝑏), upload task (𝑢) and download task 
(𝑑) for each mini-batch is called a training stage.

The idle time on the device exists between the forward pass 𝑓𝑐 and 
the backward pass 𝑏𝑐 of the device-side model. Thus, PiPar inserts the 
forward pass of the next few mini-batches into the device-side idle time 
to fill up the pipeline. As shown in Fig. 2(b), in each training itera-

tion, the forward passes for 𝑁 mini-batches, 𝑓𝑐
1 to 𝑓𝑐

𝑁
, are performed 

on the device in sequence. The activations of each mini-batch are sent 
to the server (𝑢1 to 𝑢𝑁 ) once the corresponding forward pass is com-

pleted, which utilizes idle network resources. Once the activations of 
any mini-batch arrive, the server performs the forward and backward 
passes, (𝑓𝑠

1 , 𝑏
𝑠
1) to (𝑓𝑠

𝑁
, 𝑏𝑠

𝑁
), and sends the gradients of the activations 

back to the device (𝑑1 to 𝑑𝑁 ). After completing the forward passes of the 
mini-batches and receiving the gradients, the device performs the back-

ward passes, 𝑏𝑐1 to 𝑏𝑐
𝑁

. Then the model parameters are updated and the 
training iteration ends. A training epoch ends when the entire dataset 
has been processed, which involves multiple training iterations.

Fig. 2(b) shows that compared to conventional training (Fig. 2(a)), 
the four tasks can be considerably overlapped and it is possible to sig-

nificantly reduce the idle time of the server and the devices.

To guarantee a similar model accuracy as classic FL, the gradients 
must be obtained from the same number of data samples when the model 
is updated. This requires that the number of data samples involved in 
each training iteration in PiPar should be the same as the original batch 
size in FL. Since 𝑁 mini-batches are used in each training iteration, the 
size of each mini-batch 𝐵′ is reduced to 1∕𝑁 of the original batch size 
𝐵 in FL.

𝐵′ = ⌊𝐵∕𝑁⌋ (2)

Reordering training stages does not impact model accuracy, which 
5

is demonstrated in Section 4.2.
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Fig. 3. PiPar using single and multiple devices. Comp, 𝑓 , 𝑏, 𝑢 and 𝑑 represent 
computation, forward pass, backward pass, upload and download, respectively. 
The superscripts 𝑠𝑘 and 𝑐𝑘 represent the index of the model 𝑀𝑠𝑘 and 𝑀𝑐𝑘 , 𝑘 =
1, 2, respectively.

3.2.3. Phase 3 - multi-device parallelization

The workloads of multiple devices involved in collaborative training 
need to be coordinated. On the device-side, each device 𝑘 is responsible 
for training its model 𝑀𝑐𝑘 , and PiPar allows them to train in parallel for 
efficiency. On the server-side, the counterpart 𝐾 models (𝑀𝑠1 to 𝑀𝑠𝐾 ) 
are deployed and trained simultaneously. However, this may result in 
contention for compute resources.

Fig. 3(a) shows the case of a single device (same as Fig. 2(b) but does 
not show communication), whereas Fig. 3(b) and Fig. 3(c) show the case 
of multiple devices. Fig. 3(b) offers a solution to train the server-side 
models sequentially. However, the server-side models that are trained 
relatively late will cause a delay in the backward passes for the corre-

sponding device-side models, for example, 𝑏𝑐2𝑛 , where 𝑛 = 1, 2, ..., 𝑁 , in 
Fig. 3(b).

Alternatively, data parallelism can be employed. The activations 
from different devices are deemed as different inputs and the server-

side models are trained in parallel on these inputs. This is shown in 
Fig. 3(c). It is worth noting that, compared to training a single model, 
training multiple models at the same time may result in longer train-

ing time for each model on a resource-limited server. This approach, 
nonetheless, mitigates stragglers on devices.

At the end of each training epoch, the device-side models 𝑀𝑐𝑘 are 
uploaded to the server and will constitute the entire models 𝑀𝑘 when 
combined with the server-side models 𝑀𝑠𝑘 (Equation (1)). The complete 
model 𝑀𝑘 of each device is aggregated to obtain a complete global 
model 𝑀 , using the FedAvg algorithm [28].

𝑀 =
𝐾∑
𝑘=1

|𝑘|∑𝐾

𝑘=1 |𝑘|𝑀𝑘 (3)

where 𝑘 is the local dataset on device 𝑘 and | ⋅ | is the function to 
obtain the size of the given dataset. The server-side global model 𝑀𝑠

and device-side global model 𝑀𝑐 are split from 𝑀 using

𝑀 =𝑀𝑠 ⊕𝑀𝑐 (4)

The devices download 𝑀𝑐 to update the local models for the subse-

quent training epochs, and the server-side models are updated by 𝑀𝑠.

It has been shown in the previous phases that the accuracy of each 
local model 𝑀𝑘 in PiPar is not affected. The FedAvg algorithm is used 

in PiPar to generate the global model 𝑀 by aggregating 𝑀𝑘, where 𝑘 =
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Algorithm 1: Device-Side Training in PiPar.

/* Run on Client 𝑘. */
Input: local dataset 𝑘 ; batch size 𝐵′; learning rate 𝜂; model split point 

𝑃 𝑘 ; number of mini-batches in each iteration 𝑁𝑘

Output: Device-side models 𝑀𝑐𝑘

1 Build 𝑀𝑐𝑘 based on 𝑃 𝑘

2 while model has not converged do

// Start a training epoch
3 for 𝑖 = 1 to ⌊|𝑘|∕𝐵′𝑁𝑘⌋ do

// Start a training iteration
4 for 𝑛 = 1 to 𝑁𝑘 do

5 Load a mini-batch 𝐱𝑛 of the size 𝐵′ from 𝑘

6 Compute the activation 𝐚𝑛 using Equation (17)

7 Send 𝐚𝑛 and labels 𝐲𝑛 to the server

8 end

9 for 𝑛 = 1 to 𝑁𝑘 do

10 Receive 𝑔(𝐚𝑛) from the server

11 Compute the gradients of model weights 𝑔(𝑀𝑐𝑘 |𝑔(𝐚𝑛)) using 
Equation (22)

12 end

13 Update 𝑀𝑐𝑘 ←𝑀𝑐𝑘 − 𝜂

𝑁𝑘

∑𝑁𝑘

𝑛=1 𝑔(𝑀
𝑐𝑘 |𝑔(𝐚𝑛))

14 end

15 Send ‘stop epoch’ signal to the server

16 Send 𝑀𝑐𝑘 to the server

17 Receive 𝑀𝑐𝑘 ′ from the server

18 Update 𝑀𝑐𝑘 ←𝑀𝑐𝑘 ′

19 end

20 Send ‘stop training’ signal to the server

21 Return 𝑀𝑐𝑘

1, 2, ..., 𝐾 , which is the same as in classic FL. Therefore, PiPar maintains 
a similar model accuracy to FL.

3.2.4. Training overview

The entire training process of PiPar is shown in Algorithm 1 and 
Algorithm 2.

All devices train simultaneously using Algorithm 1. On device 𝑘, the 
device-side model 𝑀𝑐𝑘 is initially built given the split point (Line 1). 
Line 2 to Line 19 shows the complete training process until the model 
converges. In each training epoch (Line 3 to Line 18), the entire dataset 
is processed. A training epoch consists of multiple training iterations, 
each processing 𝐵′𝑁𝑘 data samples. In each training iteration (Line 4 
to Line 13), the forward passes of 𝑁𝑘 mini-batches are executed in se-

quence (Line 6), and the activations are sent to the server (Line 7). Their 
gradients are then received from the server (Line 10), and the backward 
passes are executed sequentially to compute the gradients of the weights 
of 𝑀𝑐𝑘 (Line 11). At the end of a training iteration, the model is updated 
based on the gradients (Line 13). After all training iterations are com-

pleted, the signal ‘stop epoch’, and 𝑀𝑐𝑘 is sent to the server (Line 15 
to Line 16). The device then receives a global device-side model 𝑀𝑐𝑘 ′

from the server (Line 17) and uses it to update the current model (Line 
18). When the model converges, the client sends a ‘stop training’ signal 
to the server, thus completing the training process (Line 20). Since all 
device-side models are synchronized, all devices will send a ‘stop train-

ing’ signal to the server simultaneously.

Algorithm 2 is executed on the server-side. The server first builds 
𝐾 models 𝑀𝑠𝑘 , where 𝑘 = 1, 2, ..., 𝐾 (Line 1), and starts training the 
models until a signal ‘stop training’ is received from all devices (Line 
2). In each training epoch (Line 3 to Line 23), the 𝐾 models are trained 
simultaneously (Line 3 to Line 19) and aggregated into a global model 
(Line 20 to Line 23). A training epoch of model 𝑘 does not end until a 
signal ‘stop epoch’ (Line 5) is received from device 𝑘, which involves 
multiple training iterations. During a training iteration (Line 6 to Line 
15), the server receives the activations and labels from device 𝑘 (Line 
7) and uses them to compute the loss function (Line 9 to Line 10). After 
6

that, the gradients of activations and model weights are computed (Line 
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Algorithm 2: Server-Side Training in PiPar.

/* Run on the server. */
Input: Number of devices 𝐾 ; structure of the DNN with 𝑄 layers; 

learning rate 𝜂; model split point 𝑃 𝑘 and number of 
mini-batches in each iteration 𝑁𝑘, where 𝑘 = 1, 2, ..., 𝐾

Output: Server-side models 𝑀𝑠𝑘 , where 𝑘 = 1, 2, ..., 𝐾
1 Build 𝑀𝑠𝑘 , where 𝑘 = 1, 2, ..., 𝐾 based on 𝑃 𝑘

2 while ‘stop training’ signal not received do

// Start a training epoch.
3 for 𝑘 = 1 to 𝐾 in parallel do

4 Initial the size of dataset on device 𝑘: 𝐷𝑘 ← 0
5 while ‘stop epoch’ signal not received from all devices do

// Start a training iteration
6 for 𝑛 = 1 to 𝑁𝑘 do

7 Receive activations 𝐚𝑛 and labels 𝐲𝑛
8 Update 𝐷𝑘 ←𝐷𝑘 + |𝐚𝑛|
9 Compute the output 𝐲̂𝑛 using Equation (18)

10 Compute loss function 𝑙(𝐲𝑛, ̂𝐲𝑛)
11 Compute the gradients of activation 

𝑔(𝐚𝑛) ← 𝜕𝑙

𝜕𝐲̂𝑛
𝑏̃𝑄(𝑏̃𝑄−1(...𝑏̃𝑄+1(𝐚𝑛)))

12 Compute the gradients of model weights 𝑔(𝑀𝑠𝑘 |𝑎𝑛)
using Equation (22)

13 Send 𝑔(𝐚𝑛) to device 𝑘
14 end

15 Update 𝑀𝑠𝑘 ←𝑀𝑠𝑘 − 𝜂

𝑁𝑘

∑𝑁𝑘

𝑛=1 𝑔(𝑀
𝑠𝑘 |𝑎𝑛)

16 end

17 Receive 𝑀𝑐𝑘 from device 𝑘
18 Make up complete model 𝑀𝑘 ←𝑀𝑠𝑘 ⊕𝑀𝑐𝑘

19 end

20 Calculate global model 𝑀 ←
∑𝐾

𝑘=1
𝐷𝑘∑𝐾

𝑘=1 𝐷
𝑘
𝑀𝑘

21 Split 𝑀 to 𝑀𝑠𝑘 ′,𝑀𝑐𝑘 ′, where 𝑘 = 1, 2, ..., 𝐾 based on 𝑃 𝑘

22 Send 𝑀𝑐𝑘 ′ to device 𝑘, where 𝑘 = 1, 2, ..., 𝐾
23 Update 𝑀𝑠𝑘 ←𝑀𝑠𝑘 ′

24 end

25 Return 𝑀𝑠𝑘 , where 𝑘 = 1, 2, ..., 𝐾

11 to Line 12). The former is then sent to device 𝑘 (Line 13), and the 
latter is used to update 𝑀𝑠𝑘 at the end of the training iteration (Line 15). 
After receiving the ‘stop epoch’ signal, the server receives the device-side 
model 𝑀𝑐𝑘 from device 𝑘 (Line 17) and makes up a complete model 𝑀𝑘

(Line 18). The 𝐾 models 𝑀𝑘, where 𝑘 = 1, 2, ..., 𝐾 , are aggregated into 
a global model 𝑀 (Line 20). 𝑀 is then split into a server-side model 
𝑀𝑠𝑘 ′ and a device-side model 𝑀𝑐𝑘 ′ (Line 21). 𝑀𝑐𝑘 ′ is sent to device 𝑘
(Line 22), and 𝑀𝑠𝑘 ′ is used to update 𝑀𝑠𝑘 (Line 23). A training epoch 
ends. Training is completed when the ‘stop training’ signal is received 
from all devices.

If a given device disconnects from the server, the aggregation carried 
out on the server will exclude the model of the device. If the device 
reconnects to the server, then it will download the latest global model 
and continue training.

Algorithm 1 and Algorithm 2 have the same computational com-

plexity as the FedAvg algorithm [28]. However, PiPar introduces par-

allelism within training.

3.3. Automated parameter selection

To maximize the utilization of idle resources, two parameters of Pi-
Par that impact the performance of the training pipeline are considered:

a) Split point of a DNN is denoted as 𝑃 . All layers with indices less 
than or equal to 𝑃 are deployed on the device and the remaining layers 
are deployed on the server. The number of layers determines the amount 
of computation on a server/device, and the volume of data output from 
the split layer determines the communication traffic. Therefore, find-
ing the most suitable value for 𝑃 for each device will balance the time 
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required for computation on the server and the device as well as the 
communication between them.

b) Parallel batch number denoted as 𝑁 is the number of mini-batches 
used for concurrent training in each iteration. The computations of the 
mini-batches fill up the pipeline, so the number of mini-batches for each 
training iteration must be determined.

The naive choice of {𝑃 , 𝑁} makes the results of PiPar no worse than 
FL and SFL. When 𝑃 is the layer number and 𝑁 = 1, PiPar is the same 
as FL; when 𝑃 is the same split point as SFL and 𝑁 = 1, PiPar is the 
same as SFL. However, carefully selected {𝑃 , 𝑁} values can further op-

timize the performance of PiPar. The optimal values of {𝑃 , 𝑁} can be 
obtained by an exhaustive search. The model will be trained with all 
parameter combinations, and then the optimal parameter combination 
with the shortest training time can be selected. This is unsuitable to be 
adopted in PiPar in practical as it is time consuming. In addition, we can 
also select {𝑃 , 𝑁} values empirically. Empirical selections will make Pi-
Par a better solution than FL and SFL, but cannot make it achieve its 
optimal performance as the exhaustive search. Therefore, we propose 
an automated parameter selection approach that identifies an optimal 
or near-optimal combination of parameters in a shorter time than ex-

haustively searching. These parameters vary with DNNs, server/device 
combinations, and network conditions. Therefore, the developed ap-

proach relies on estimating the training time for different parameters 
given the DNN and the network condition.

The approach aims to select the best pair of {𝑁𝑘, 𝑃𝑘} for each de-

vice 𝑘 to minimize the idle resources in the three phases. Firstly, we 
need to know how much they affect the pipeline. Several training itera-

tions are profiled to identify the size of the output data and the training 
time for each layer of the DNN. Secondly, the training time for each 
epoch can be estimated using dynamic programming, given a pair of 
{𝑁𝑘, 𝑃𝑘}. Thirdly, the candidates for {𝑁𝑘, 𝑃𝑘} are shortlisted. Since 
the training time can be estimated for every candidate, the one with the 
lowest training time will be selected. The three phases are explained in 
detail as follows.

3.3.1. Phase 1 - profiling

In this phase, an additional training period is required. The complete 
model is trained on each device and server separately for a predefined 
number of iterations. If the entire model cannot fit in the memory of the 
devices, the devices train as many layers as possible and the server trains 
the complete model. The following information is empirically collected:

a) Time spent in the forward/backward pass of each layer deployed on 
each device and server. Assume that 𝑓𝑐𝑘

𝑞 , 𝑏̃𝑐𝑘𝑞 , 𝑓𝑠
𝑞

and 𝑏̃𝑠
𝑞

denote the for-

ward and backward pass of layer 𝑞 on device 𝑘 and server, and 𝑡()
denotes time. Then, 𝑡(𝑓𝑐𝑘

𝑞 ), 𝑡(𝑏̃𝑐𝑘𝑞 ), 𝑡(𝑓𝑠
𝑞
) and 𝑡(𝑏̃𝑠

𝑞
) are the time taken 

for the forward and backward pass on the devices and server, which are 
measured and recorded during training.

b) Output data volume of each layer in the forward and backward pass.

𝑣̃
𝑓
𝑞 and 𝑣̃𝑏

𝑞
denote the output data volume for layer 𝑞 in the forward and 

backward passes. The data volumes are measured and recorded during 
training.

3.3.2. Phase 2 - training time estimation

To estimate the time spent in each training epoch of {𝑀𝑐𝑘 , 𝑀𝑠𝑘}, 
given the pairs of {𝑁𝑘, 𝑃𝑘} for device 𝑘, the time for each training 
stage must be estimated.

Assume that 𝑓𝑐𝑘
𝑛 , 𝑏𝑐𝑘𝑛 , 𝑓𝑠𝑘

𝑛 and 𝑏𝑠𝑘𝑛 is the time spent in the for-

ward and backward passes of 𝑀𝑐𝑘 and 𝑀𝑠𝑘 for mini-batch 𝑛, where 
𝑛 = 1, 2, ..., 𝑁𝑘. The time spent in each stage is the sum of the time spent 
in all relevant layers. Since the size of each mini-batch in PiPar is re-

duced to 1∕𝑁𝑘, the time required for each layer is reduced to 1∕𝑁𝑘. 
The time of each training stage is estimated by the following:

𝑡(𝑓𝑐𝑘 ) =
𝑃𝑘∑ 𝑡(𝑓𝑐𝑘

𝑞 )
(5)
7

𝑛

𝑞=1 𝑁𝑘
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𝑡(𝑓𝑠𝑘
𝑛 ) =

𝑄∑
𝑞=𝑃𝑘+1

𝑡(𝑓𝑠𝑘
𝑞 )

𝑁𝑘
(6)

𝑡(𝑏𝑐𝑘𝑛 ) =
𝑃𝑘∑
𝑞=1

𝑡(𝑏̃𝑐𝑘𝑞 )
𝑁𝑘

(7)

𝑡(𝑏𝑠𝑘𝑛 ) =
𝑄∑

𝑞=𝑃𝑘+1

𝑡(𝑏̃𝑠𝑘𝑞 )
𝑁𝑘

(8)

Assume that 𝑢𝑘
𝑛

and 𝑑𝑘
𝑛

are the time required for uploading and 
downloading between device 𝑘 and the server for mini-batch 𝑛, where 
𝑛 = 1, 2, ..., 𝑁𝑘, and 𝑤𝑘

𝑢
and 𝑤𝑘

𝑑
are the uplink and downlink bandwidths. 

Since the size of transmitted data is reduced to 1∕𝑁𝑘 :

𝑡(𝑢𝑘
𝑛
) =

𝑣̃
𝑓

𝑃 𝑘

𝑤𝑘
𝑢
𝑁𝑘

(9)

𝑡(𝑑𝑘
𝑛
) =

𝑣̃𝑏
𝑃 𝑘

𝑤𝑘
𝑑
𝑁𝑘

(10)

The time required by all training stages is estimated using the above 
equations. The training time of each epoch can be estimated using dy-

namic programming. Within each training iteration, a given training 
stage has previous and next stages (exclusions for the first and last 
stages) as shown in Table 1. The first stage is 𝑓𝑐𝑘

1 and the last stage 
is 𝑏𝑐𝑘

𝑁
. We use 𝑇 (𝑟) to denote the total time from the beginning of the 

training iteration to the end of stage 𝑟, and 𝑡(𝑟) to denote the time spent 
in stage 𝑟. Thus, the overall training time is 𝑇 (𝑏𝑐𝑘

𝑁
). Since any stage can 

start only if all of its previous stages have been completed, we have:

𝑇 (𝑏𝑐𝑘
𝑁
) = 𝑡(𝑏𝑐𝑘

𝑁
) + max

𝑟∈𝑝𝑟𝑒𝑣(𝑏𝑐𝑘
𝑁
)
𝑇 (𝑟) (11)

𝑇 (𝑟) = 𝑡(𝑟) + max
𝑟′∈𝑝𝑟𝑒𝑣(𝑟)

𝑇 (𝑟′) (12)

𝑇 (𝑓𝑐𝑘
1 ) = 𝑡(𝑓𝑐𝑘

1 ) (13)

where 𝑝𝑟𝑒𝑣() is the function to obtain all previous stages of the input 
stage. Since 𝑡(𝑏𝑐𝑘

𝑁
) is already obtained in Phase 2, Equation (11) to Equa-

tion (13) can be solved by recursion. The overall time of one training 
iteration can then be estimated.

3.3.3. Phase 3 - parameter selection

In this phase, the candidates of {𝑁𝑘, 𝑃𝑘} are shortlisted. Since the 
training time can be estimated for each candidate, the one with the 
shortest training time can be selected.

Assume that the DNN has 𝑄 layers, such as dense, convolutional and 
pooling layers, and that the memory of devices can only accommodate 
the training of 𝑄′ layers, where 𝑄′ ≤ 𝑄. The range of 𝑃𝑘 is {𝑃𝑘|1 ≤
𝑃𝑘 ≤𝑄′, 𝑃𝑘 ∈ℤ+}, where ℤ+ is the set of all positive integers.

Given 𝑃𝑘, the idle time of the device 𝑘 between the forward pass 
and backward pass of each mini-batch (the blank timeline between 𝑓𝑐

and 𝑏𝑐 in Fig. 2(a)) needs to be filled up by the forward passes of the 
following multiple mini-batches. As a result, the original mini-batch and 
the following mini-batches are executed concurrently in one training 
iteration.

For example, as shown in Fig. 2(a), the device idle time between 𝑓𝑐

and 𝑏𝑐 is equal to 𝑡(𝑢) + 𝑡(𝑓𝑠) + 𝑡(𝑏𝑠) + 𝑡(𝑑). Thus, the forward passes or 
backward passes of the subsequent ⌈ 𝑡(𝑢)+𝑡(𝑓𝑠)+𝑡(𝑏𝑠)+𝑡(𝑑)

min{𝑡(𝑓𝑐 ),𝑡(𝑏𝑐 )} ⌉ mini-batches can 
be used to fill in the idle time, making the parallel batch number 𝑁 =
1 + ⌈ 𝑡(𝑢)+𝑡(𝑓𝑠)+𝑡(𝑏𝑠)+𝑡(𝑑)

min{𝑡(𝑓𝑐 ),𝑡(𝑏𝑐 )} ⌉. Since the batch size used in PiPar is reduced 
to 1∕𝑁 , the time required for forward and backward passes of each 
layer, uploading and downloading is reduced to 1∕𝑁 . The parallel batch 

number for device 𝑘 is estimated as:
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Table 1

Stages of a training iteration indicating the pre-

vious and next stages.

Stage Previous Stages Next Stages

𝑓
𝑐𝑘

1 𝑛∕𝑎 𝑓
𝑐𝑘

2 , 𝑢𝑘1
𝑓
𝑐𝑘
𝑛 ,1 < 𝑛 <𝑁 𝑓

𝑐𝑘

𝑛−1 𝑓
𝑐𝑘

𝑛+1, 𝑢
𝑘
𝑛

𝑓
𝑐𝑘
𝑁

𝑓
𝑐𝑘

𝑁−1 𝑏
𝑐𝑘

1 , 𝑢𝑘
𝑁

𝑢𝑘1 𝑓
𝑐𝑘

1 𝑢𝑘2 , 𝑓
𝑠𝑘

1
𝑢𝑘
𝑛
,1 < 𝑛 <𝑁 𝑢𝑘

𝑛−1, 𝑓
𝑐𝑘
𝑛 𝑢𝑘

𝑛+1, 𝑓
𝑠𝑘
𝑛

𝑢𝑘
𝑁

𝑢𝑘
𝑁−1, 𝑓

𝑐𝑘
𝑁

𝑓
𝑠𝑘
𝑁

𝑓
𝑠𝑘

1 𝑢𝑘1 𝑏
𝑠𝑘
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(14)

For each device 𝑘, the best {𝑁𝑘, 𝑃𝑘} can be selected from the short-

listed candidates by estimating the training time.

Since the training time of PiPar with parameter pair {𝑁𝑘, 𝑃𝑘} is 
estimated based on profiling data from training complete models with 
the original batch size, this approach does not guarantee the selection of 
optimal parameters. However, our experiments in Section 5.4 show that 
the parameters selected by this approach are similar to optimal values.

4. Convergence analysis

This section analyses the impact of splitting neural network and re-

ordering training stages on model convergence and final accuracy.

4.1. Splitting DNNs and model accuracy

We will demonstrate that splitting a DNN does not impact model 
accuracy. Assuming that 𝐱0 is a mini-batch of data and 𝐲 is the corre-

sponding label set, 𝑓𝑞 denotes the forward pass function of layer 𝑞 and 
𝐱𝑞 denotes the output of layer 𝑞, where 𝑞 = 1, 2, ..., 𝑄.

𝐱𝑞 = 𝑓𝑞(𝐱𝑞−1) (15)

The forward pass of the complete model 𝑀𝑘 in FL is:

𝐲̂ = 𝑓𝑄(𝑓𝑄−1(...𝑓1(𝐱0))) (16)

where 𝐲̂ is the output of the final layer. If the model is split, then the 
training that occurs on the device and server is also split into two phases.

𝐚 = 𝐱𝑃 = 𝑓𝑃 (𝑓𝑃−1(...𝑓1(𝐱))) (17)

𝐲̂′ = 𝑓𝑄(𝑓𝑄−1(...𝑓𝑃+1(𝐚))) (18)

where 𝐚 is the activations that are transferred from device 𝑘 to the server 
8

and 𝐲̂′ is the final output.
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𝐲̂′ = 𝑓𝑄(𝑓𝑄−1(...𝑓𝑃+1(𝐚)))

= 𝑓𝑄(𝑓𝑄−1(...𝑓1(𝐱)))

= 𝐲̂

(19)

Thus, the loss function when splitting the model is the same as the 
original loss function when the model is not split.

𝑙(𝐲, 𝐲̂) = 𝑙(𝐲, 𝐲̂′) (20)

We use 𝑏̃𝑞 to denote the backward pass function of layer 𝑞, which is 
the derivative of 𝑓𝑞 .

𝑏̃𝑞(𝐱𝑞−1) =
𝜕𝑓𝑞(𝐱𝑞−1)
𝜕𝐱𝑞−1

= 𝜕𝐱𝑞
𝜕𝐱𝑞−1

(21)

The weights in layer 𝑞 of the original model and the split model are 
denoted as 𝐰𝑞 and 𝐰′

𝑞
, respectively. Assume 𝑔 is the gradient function, 

then:

𝑔(𝐰′
𝑞
) =

𝜕𝑙(𝐲, 𝐲̂′)
𝜕𝐲̂′

𝑏̃𝑄(𝑏̃𝑄−1(...𝑏̃𝑞+1(𝐱𝑞))) (22)

𝑔(𝐰𝑞) =
𝜕𝑙(𝐲, 𝐲̂)
𝜕𝐲̂

𝑏̃𝑄(𝑏̃𝑄−1(...𝑏̃𝑞+1(𝐱𝑞))) (23)

Based on Equation (22) and Equation (23):

𝑔(𝐰′
𝑞
) = 𝑔(𝐰𝑞) (24)

Since splitting a DNN does not change the gradients, it consequently 
does not impact model accuracy.

4.2. Reordering training stages and model accuracy

We will demonstrate that the model accuracy of a DNN remains the 
same before and after reordering the training stages. The dataset on 
client 𝑘 is denoted as 𝑘. 𝑘 denotes a mini-batch in the original train-

ing process and 𝑘
𝑛
, where 𝑛 = 1, 2, ..., 𝑁 , to denote mini-batches in a 

training round after reordering training stages, where 𝑘 =
⋃𝑁

𝑛=1
𝑘
𝑛
.

In the original training process, the model is updated after the back-

ward pass of each mini-batch 𝑘. Assuming 𝑀𝑘 is the original model 
and 𝜂 is the learning rate, then the updated model is:

𝑀𝑘
𝑛𝑒𝑤

=𝑀𝑘 − 𝜂

𝐵

∑
𝐱∈𝑘

𝑔(𝑀𝑘|𝐱) (25)

In PiPar, the model is updated after the backward pass of the last 
mini-batch 𝑘

𝑛
in each training round. The updated model is:

𝑀𝑘
𝑛𝑒𝑤

′ =𝑀𝑘 − 𝜂

𝑁

𝑁∑
𝑛=1

𝑔(𝑀𝑘|𝑘
𝑛
) (26)

We have:

𝑀𝑘
𝑛𝑒𝑤

′ =𝑀𝑘 − 𝜂

𝑁

𝑁∑
𝑛=1

⎛⎜⎜⎝
1
𝐵′

∑
𝐱∈𝑘

𝑛

𝑔(𝑀𝑘|𝐱)⎞⎟⎟⎠
=𝑀𝑘 − 𝜂

𝑁𝐵′

𝑁∑
𝑛=1

∑
𝐱∈𝑘

𝑛

𝑔(𝑀𝑘|𝐱)
=𝑀𝑘 − 𝜂

𝑁𝐵′

∑
𝐱∈𝑘

𝑔(𝑀𝑘|𝐱)
≈𝑀𝑘 − 𝜂

𝐵

∑
𝐱∈𝑘

𝑔(𝑀𝑘|𝐱)
=𝑀𝑘

𝑛𝑒𝑤

(27)

Therefore, the updated models with and without reordering the 
training stages are nearly the same (and the same if 𝑁𝐵′ = 𝐵). Thus, 

reordering training stages does not impact model accuracy.
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Table 2

Architecture of VGG-5, ResNet-18 and MobileNetV3-

Small 1.

VGG-5 ResNet-18 MobileNetV3-Small

CONV-3-32 CONV-7-64 CONV-3-16

CONV-3-64 RES-3-64 × 2 BNECK-3-16

CONV-3-64 RES-3-128 × 2 BNECK-3-24 × 2

FC-128 RES-3-256 × 2 BNECK-5-40 × 3

FC-X RES-3-512 × 2 BNECK-5-48 × 2

FC-X BNECK-5-96 × 3

CONV-1-576

CONV-1-1024

FC-X

5. Experimental studies

This section quantifies the benefits of PiPar and demonstrates its 
superiority over existing CML techniques. We first consider the exper-

imental environment in Section 5.1. The training efficiency and the 
model accuracy and convergence of PiPar are compared against ex-

isting CML techniques in Section 5.2 and Section 5.3, respectively. In 
Section 5.4, the performance of the proposed automated parameter se-

lection approach is evaluated. Section 5.5 analyses the impact of batch 
size on the performance of PiPar. Section 5.6 explores the impact on 
performance when using heterogeneous devices, when using differen-

tial privacy methods and when the bandwidth changes.

5.1. Setup

The test platform consists of one server and 100 devices. An 8-core 
i7-11850H processor with 32 GB RAM is used as the server that collabo-

ratively trains DNNs with 100 Raspberry Pi 3B devices, each with 1 GB 
RAM.

The network conditions considered are: (1) 4G: 10Mbps uplink band-

width and 25Mbps downlink bandwidth; (2) 4G+: 20Mbps uplink band-

width and 40Mbps downlink bandwidth; (3) WiFi: 50Mbps uplink band-

width and 50Mbps downlink bandwidth. A regular network with a nor-

mal error rate is used in the experiments. The TCP/IP protocol used 
will handle packet loss. When the protocol detects packet loss, it will 
re-transmit the packet.

Two settings, the first using small DNNs and the second using 
large DNNs, are used in the experiments. The small DNNs, namely 
VGG-5 [35], ResNet-18 [13] and MobileNetV3-Small [14] (Table 2) 
are trained on the MNIST [4] and CIFAR-10 [23,22] datasets. The 
large DNNs, namely VGG-16 [35], ResNet-101 [13] and MobileNetV3-

Large [14] (Table 3) are trained on the CIFAR-100 [22] and Tiny Im-

ageNet [34] datasets. VGG, ResNet and MobileNet series models are 
convolutional neural networks (CNN) and are representative of high-

performing models from the computer vision community for testing 
CML methods on devices [9,11,37]. Since the Raspberry Pis have lim-

ited memory, the large DNNs cannot be trained using FL as the entire 
model needs to fit on the device memory. The small and large DNNs 
can be trained using SFL and PiPar since the models are split across 
the device and server, and the device only executes a few layers. We 
have chosen a range of small and large DNNs to demonstrate that Pi-
Par can work across a range of settings. MNIST and CIFAR-10 have ten 
classes, while CIFAR-100 and Tiny ImageNet have 100. Each dataset is 
split into training, validation and test datasets, as shown in Table 4. Dur-

ing training, the data samples are provided to the DNN as mini-batches. 
The size of each mini-batch (referred to as batch size), unless otherwise 
specified, is 100 for each device in FL and SFL. The batch size in PiPar
is ⌊100∕𝑁𝑘⌋, where 𝑁𝑘 is the parallel batch number for device 𝑘 and 
𝑘 = 1, 2, ..., 100 (refer to Equation (2)).

1 ‘CONV-A-B’ represents a convolutional layer of A × A kernel size and of B 
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output channels. ‘FC-A’ represents a fully connected layer with the output size A. 
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Table 3

Architecture of VGG-16, ResNet-101 and MobileNetV3-

Large.

VGG-16 ResNet-101 MobileNetV3-Large

CONV-3-64 × 2 CONV-7-64 CONV-3-16

CONV-3-128 × 2 RES-3-64 BNECK-3-16

CONV-3-256 × 3 RES-3-256 × 3 BNECK-3-24 × 2

CONV-3-512 × 6 RES-3-512 × 4 BNECK-5-40 × 3

FC-4096 × 2 RES-3-1024 × 23 BNECK-3-80 × 4

FC-X RES-3-2048 × 2 BNECK-3-112 × 2

FC-X BNECK-5-160 × 3

CONV-1-960

CONV-1-1280

FC-X

Table 4

Training, validation and test data sizes used in the 
experiments.

Dataset
Training

Set Size

Validation

Set Size

Test

Set Size

MNIST 60,000 2,000 8,000

CIFAR-10 50,000 2,000 8,000

CIFAR-100 50,000 2,000 8,000

Tiny ImageNet 100,000 2,000 8,000

5.2. Efficiency results

The experiments in this section compare the efficiency of PiPar with 
FL and SFL. Although SL is a popular CML technique, it is significantly 
slower than SFL since each device operates sequentially. Hence, SL is 
not considered in these experiments. All possible split points for SFL 
are benchmarked (based on the benchmarking method adopted in Scis-

sion [27]), and the efficiency of SFL with the best split point is reported. 
The split point and parallel batch number for PiPar are selected by the 
approach proposed in Section 3.3.

5.2.1. Comparing efficiency

The efficiency of the CML techniques is measured by training time 
per epoch. Section 5.3.1 will highlight that the loss curves of FL, SFL and

PiPar overlap, so the same number of epochs are required for model 
convergence using the three techniques. Hence, if PiPar reduces the 
training time per epoch, it reduces the overall training time.

Fig. 4 shows the training time per epoch of six DNNs (three small 
and three large DNNs) for FL, SFL and PiPar under 4G, 4G+ and WiFi 
network conditions. The three large DNNs, namely VGG-16, ResNet-101 
and MobileNetV3-Large cannot be trained using FL as the entire model 
needs to be trained on the device but the device memory is limited and 
does not support the size of these models. It is immediately evident that 
the training time per epoch for PiPar is lower than FL and SFL in all 
cases.

When training VGG-5 models on MNIST (Fig. 4(a)) and CIFAR-10 
(Fig. 4(d)), the difference of FL training time under three network condi-

tions (5.6%) is smaller than that of SFL (59%) and PiPar (57%), because 
the devices only upload and download once at the end of the train-

ing epoch (it requires less communication compared to SFL and PiPar). 
However, FL trains the entire model on each device, which requires 
longer computational time. When the bandwidth is low (for example, 
4G), FL outperforms SFL, because the latter requires more communica-

tion time. However, under 4G+ and WiFi, SFL has shorter training times 

‘RES-A-B’ denotes a residual block that consists of two convolutional layers of A 
× A kernel size and of B output channels. The output of each residual block is the 
output of the last inner convolutional layer plus the input of the residual block. 
“BNECK-A-B” denotes a bottleneck residual block that consists of an expansion 
layer, a convolutional layer with the kernel size A × A and a projection layer 
with the output channel number B. The number of classes is denoted as X. The 

activation, batch normalization and pooling layers are not shown for simplicity.
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Fig. 4. Training time per epoch for FL, SFL and PiPar under different network conditions for small DNNs.

Fig. 5. Training time per epoch for SFL and PiPar under different network conditions for large DNNs. FL results are not shown as the entire DNN does not fit on the 

device memory.

because of fewer device-side computations. Under all network condi-

tions, PiPar outperforms FL and SFL. It is noteworthy that the benefits 
of PiPar are evident when training needs to occur in a limited band-

width environment since more computations can be overlapped with 
communication (communication takes more time under limited band-

width). PiPar accelerates FL by 1.4 × - 3.4 × and SFL by 1.4 × - 2.0 
×.

FL is slow when training ResNet-18 (Fig. 4(b) and Fig. 4(e)) and 
MobileNet-Small (Fig. 4(c) and Fig. 4(f)) because they are deeper net-

works with more layers. Both SFL and PiPar outperform FL. PiPar has 
the shortest training time per epoch under all network conditions. In 
training ResNet-18, PiPar accelerates FL by 15.5 × - 30.5 × and SFL by 
1.4 × - 2.2 ×; in training MobileNetV3-Small, PiPar accelerates FL by 
10.5 × - 34.6 × and SFL by 1.2 × - 2.3 ×.

Although FL cannot be executed on the devices when training large 
DNNs, namely VGG-16 (Fig. 5(a) and Fig. 5(d)), ResNet-101 (Fig. 5(b) 
and Fig. 5(e)) and MobileNetV3-Large (Fig. 5(c) and Fig. 5(f)), PiPar
accelerates the training process by 1.12 × - 2.2 × when compared to 
SFL.

5.2.2. Comparing resources utilization

The metric used to compare the utilization of hardware resources is 
the idle time of the server and devices, which is the total time that the 
server/device does not contribute to training models in an epoch. The 
device-side idle time is the average idle time for all devices. A lower 
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idle time corresponds to a higher hardware resource utilization. Since 
the devices are homogeneous, it is assumed that there is a negligible 
impact of stragglers.

As shown in Fig. 6, PiPar reduces the server-side idle time under all 
network conditions when training VGG-5, ResNet-18 and MobileNetV3-

Small on MNIST and CIFAR-10. Since the server has more computing 
resources than the devices, model training is faster on the server. Hence, 
reducing the server-side idle time takes precedence over reducing the 
device-side idle time. Since FL trains complete models on the devices, 
the devices are rarely idle. However, the server is idle for a large propor-

tion of the time when the model is trained. Compared to FL, SFL utilizes 
more resources on the server because the server trains multiple layers.

PiPar reduces the server-side idle time by overlapping the server-side 
computations, device-side computations and communication between 
the server and the devices. Compared to FL and SFL, the server-side idle 
time using PiPar is reduced up to 64.1 × and 2.9 ×, respectively. PiPar
also reduces the device-side idle time of SFL up to 23.1 × in all cases.

Fig. 7 highlights that, compared to SFL, PiPar also reduces idle time 
when training VGG-16, ResNet-101 and MobileNetV3-Large on CIFAR-

100 and Tiny ImageNet. Server-side idle time and device-side idle time 
of SFL are reduced up to 2.3 × and 2.5 ×, respectively.

5.3. Convergence and model accuracy results

It is theoretically proven in Section 4 that PiPar achieves compa-

rable model accuracy and convergence as FL. It will be empirically 
demonstrated that PiPar does not adversely impact the convergence 

and accuracy of models.
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Fig. 6. Idle time per epoch on the server and devices in FL, SFL and PiPar under different network conditions for small DNNs. ‘S’ and ‘D’ in the legend represent 
server-side and device-side idle time, respectively. They are shown in the upward and downward bars.

Fig. 7. Idle time per epoch on the server and devices in SFL and PiPar under different network conditions for large DNNs. ‘S’ and ‘D’ in the legend represent server-side 
and device-side idle time, respectively. They are shown in the upward and downward bars. FL results are not shown as the entire DNN does not fit on the device 
memory.
The convergence curves and test accuracy of the small and large 
DNNs using FL, SFL and PiPar are reported. Note that due to the limited 
memory of devices, the large DNNs could not be executed using FL. Since 
network conditions do not affect model convergence and accuracy in FL 
and SFL, only the results for WiFi are reported.

5.3.1. Comparing convergence

Fig. 8 and Fig. 9 report the loss curves of FL, SFL and PiPar on the 
11

validation datasets using the small and large DNNs, respectively. The 
results highlight that for all combinations of DNNs and datasets, the 
loss curves of PiPar generally overlaps those of FL and SFL. Therefore,

PiPar does not affect model convergence.

It is noted that regardless of the DNN and dataset choice, PiPar con-

verges within the same number of epochs as FL and SFL. Since PiPar

reduces the training time per epoch, as presented in Section 5.2.1, the 

overall training time is therefore reduced.
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Fig. 8. Validation loss for FL, SFL and PiPar using small DNNs.

Fig. 9. Validation loss for SFL and PiPar using large DNNs. FL results are not shown as the entire DNN does not fit on the device memory.
5.3.2. Comparing accuracy

In Table 5, the test accuracy of the small DNNs using FL, SFL and Pi-
Par are reported. The last row shows the difference between the model 
accuracy of PiPar and the higher one of FL and SFL, denoted as Δ. The 
results for FL,2 SFL and PiPar on the large DNNs are shown in Table 6. 
As seen in both tables, in all cases PiPar achieves comparable accu-

racy as FL and SFL on the test dataset, where the difference in accuracy 
ranges from -0.2% to +2.07%. Specifically, in the worst case, the test ac-

curacy of training MobileNetV3-Small on CIFAR-10 achieved by PiPar
is 0.2 lower than FL but still 0.7 higher than SFL.

These results empirically demonstrate that splitting a DNN and re-

ordering the training stages in PiPar does not sacrifice model accuracy 
while obtaining a higher training efficiency.

2 Since FL cannot be run on the devices due to limited memory, a high-

performance testbed is used to train large DNNs using FL. The high-performance 
testbed comprising 128 CPUs, two A6000 GPUs and 256 GB memory. Note that 
the compute capability of devices does not affect the accuracy but only training 
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time.
5.4. Evaluation of automated parameter selection

The results presented here demonstrate the effectiveness of the auto-

mated parameter selection approach in PiPar. Initially, we exhaustively 
benchmarked all possible parameters to obtain the optimal parameters. 
We then show that PiPar selects parameters that are obtained in less 
time than an exhaustive search, but achieves optimal or near-optimal 
training time.

The control parameters of PiPar, namely split point 𝑃𝑘 and parallel 
batch number 𝑁𝑘 for device 𝑘, where 𝑘 = 1, 2, ..., 𝐾 , affects training 
efficiency (Section 3.3). 𝑃𝑘 and 𝑁𝑘 for all devices are the same in our 
experiments since we consider homogeneous devices; so we use 𝑃 and 
𝑁 .

The optimal split point 𝑃𝑜𝑝𝑡 and parallel batch number 𝑁𝑜𝑝𝑡 can be 
found by exhaustively searching given a finite search space. As shown 
in Table 2 and Table 3, VGG-5, ResNet-18, MobileNetV3-Small, VGG-

16, ResNet-101 and MobileNetV3-Large consist of 5, 10, 15, 16, 35 and 
19 sequential layers, respectively. We have 𝑃 ∈ [1, 5] for VGG-5, 𝑃 ∈
[1, 10] for ResNet-18, 𝑃 ∈ [1, 15] for MobileNetV3-Small, 𝑃 ∈ [1, 16] for 
VGG-16, 𝑃 ∈ [1, 35] for ResNet-101 and 𝑃 ∈ [1, 16] for MobileNetV3-
Large. Note that DNNs, such as ResNet-18 and ResNet-101, have parallel 
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Table 5

Model accuracy (percentage) for FL, SFL and PiPar using small DNNs.

Technique
MNIST CIFAR-10

VGG-5 ResNet-18 MobileNetV3-Small VGG-5 ResNet-18 MobileNetV3-Small

FL 97.96 98.11 97.71 81.39 71.79 67.35

SFL 97.96 98.23 97.71 81.34 71.1 66.45

PiPar 97.94 98.49 97.73 81.31 72.39 67.15

Δ -0.02 +0.26 +0.02 -0.08 +0.6 -0.2

Table 6

Model accuracy (percentage) for FL, SFL and PiPar using large DNNs.

Technique
CIFAR-100 Tiny ImageNet

VGG-16 ResNet-101 MobileNetV3-Large VGG-16 ResNet-101 MobileNetV3-Large

FL 52.79 26.16 37.01 44.94 23.49 29.3

SFL 51.89 27.11 37.3 44.93 23.49 29.53

PiPar 52.98 27.64 37.64 45.78 25.56 29.6

Δ +0.19 +0.53 +0.34 +0.84 +2.07 +0.07
branches that cannot be split. In this case, only connections between 
sequential layers can be selected as split points. Assuming batch size for 
FL is 𝐵, since the batch size for PiPar ⌊𝐵∕𝑁⌋ is no less than 1, we have 
𝑁 ∈ [1, 𝐵]. To exhaustively search for the optimal pair {𝑃𝑜𝑝𝑡, 𝑁𝑜𝑝𝑡}, the 
DNNs are trained for one iteration using all possible {𝑃 , 𝑁} pairs in
PiPar, and the pair with the shortest training time is considered optimal.

The proposed method is to select 𝑃 and 𝑁 for each experiment. 
There is only one training iteration in the profiling stage. We com-

pare {𝑃 , 𝑁} selected by our approach against {𝑃𝑜𝑝𝑡, 𝑁𝑜𝑝𝑡} determined 
by the exhaustive search in terms of training time and search time. 
𝑇𝑃 ,𝑁 denotes the training time for each epoch given 𝑃 and 𝑁 . We have 
𝑇𝑃 ,𝑁 ≥ 𝑇𝑃𝑜𝑝𝑡,𝑁𝑜𝑝𝑡

. The score in Equation (28) measures how close 𝑇𝑃 ,𝑁 is 
to 𝑇𝑃𝑜𝑝𝑡,𝑁𝑜𝑝𝑡

, which is between 0 and 1. The higher the score, the better 
the {𝑃 , 𝑁} values perform in terms of training time.

𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃𝑜𝑝𝑡,𝑁𝑜𝑝𝑡

𝑇𝑃 ,𝑁

(28)

The results for small and large DNNs are shown in Table 7 and 
Table 8, respectively. 𝑆𝑃 ,𝑁 is the search time to obtain 𝑃 and 𝑁 for 
the automated parameter selection approach or the exhaustive search; 
smaller is better. For both small and large DNNs, the proposed method 
selects near optimal parameters in all cases (with a 𝑆𝑐𝑜𝑟𝑒 ≥ 0.96) and 
optimal parameters in 83.3% cases. In addition, our approach selects 
optimal split point 𝑃 in all cases.

The results highlight that the time to exhaustively search is substan-

tially high to be practical in the real-world. The average cost of our 
approach is 27% of one training epoch, which is 6957 × faster than 
exhaustively searching. The approach is only executed once before train-

ing. Since raining consists of hundreds of epochs or more, the overhead 
of executing this algorithm is negligible (less than 0.3%). Therefore, our 
approach provides a practical approach to determine the parameters of

PiPar.

5.5. Batch size analysis

Compared to FL, PiPar in Phase 2 increases the number of mini-

batches involved in each training iteration and reduces the batch size. 
Assume 𝐵 is the FL batch size. The batch size in PiPar is 𝐵′ = ⌊𝐵∕𝑁⌋, 
where 𝑁 is the parallel batch number (Equation (2)). The DNNs are 
trained using FL and SFL for different 𝐵 and PiPar for corresponding 
𝐵′ under different network conditions.

Fig. 10 shows the training time per epoch for FL, SFL and PiPar using 
VGG-5 and CIFAR-10, while Fig. 11 shows the training time per epoch 
for SFL and PiPar using VGG-16 and CIFAR-100. The training time of 
FL/SFL/PiPar decreases as the batch size increases because intra-batch 
parallelisation can be leveraged for matrix multiplication operations 
when a larger batch is trained. However, increasing batch sizes is not an 
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effective way to speed up training because it requires more memory and 
reduces model accuracy [18]. The results highlight that PiPar is consis-

tently faster than FL and SFL for VGG-5 and faster than SFL for VGG-16 
under all network conditions, regardless of batch sizes. The same trend 
is seen when training other four DNNs and two datasets.

5.6. Robustness analysis

We explore the robustness of PiPar to more complex environments. 
In Section 5.6.1, heterogeneous devices are used to evaluate the per-

formance of PiPar against FL and SFL. The impact of using differential 
privacy methods is considered in Section 5.6.2. Finally, the impact of 
changing network bandwidth on the overhead of the automated param-

eter selection approach is considered in Section 5.6.3. In this section, 
only representative results are shown that are obtained from an eval-

uation using VGG-5, ResNet-18 and MobileNetV3-Small on CIFAR-10 
under different network conditions. A similar trend is noted for other 
datasets.

5.6.1. Impact on performance with heterogeneous devices

The impact on the performance using a homogeneous and heteroge-

neous testbed is considered. The setup of the homogeneous testbed was 
presented in Section 5.1. In the heterogeneous testbed, the same number 
of devices are used but the CPU frequency of half of the devices is re-

duced from 1.2 GHz to 600 MHz to create an environment with different 
compute capabilities of devices.

Fig. 12 shows the training time per epoch for FL, SFL and PiPar. 
Compared to the homogeneous testbed, the training time on the het-

erogeneous increases since there are slower devices. The faster devices 
have to wait for the stragglers before model aggregation. In all cases,

PiPar has lowest training time compared to FL and SFL on both homo-

geneous and heterogeneous testbeds. Specifically, on the heterogeneous 
testbed, PiPar accelerates training of FL by up to 32 × and SFL by up 
to 1.8 ×. In addition, FL has a larger difference in performance between 
testbeds than SFL and PiParsince the latter trains the last several lay-

ers of the DNN (as the DNN is partitioned) on the server, which is not 
affected by the heterogeneity of devices.

5.6.2. Impact on performance when using differential privacy methods

Differential Privacy (DP) [1,24] is used in CML methods to enhance 
privacy in CML by adding noise into data transferred between the de-

vices and server. We consider the performance overhead introduced 
when using DP methods in FL, SFL and PiPar.

Two DP methods are considered. Firstly, classic DP [1] is used to 
add noise to local models on devices before they are sent to the server to 
make them irreversible. Secondly, PixelDP [24] adds an additional noise 
layer before the first layer of device models, which prevents activations 
from being restored to raw data via reverse engineering.

Fig. 13 shows the training time per epoch for different CML methods 

with and without DP methods. Classic DP introduces an overhead of up 
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Table 7

Parameters selected by the approach in PiPar in contrast to the optimal parameters for small DNNs.

Model Dataset Network
Proposed Approach Exhaustive Search 𝑆𝑐𝑜𝑟𝑒

(Equation (28))𝑃 𝑁 𝑇𝑃,𝑁 𝑆𝑃 ,𝑁 𝑃𝑜𝑝𝑡 𝑁𝑜𝑝𝑡 𝑇𝑃𝑜𝑝𝑡 ,𝑁𝑜𝑝𝑡
𝑆𝑃𝑜𝑝𝑡 ,𝑁𝑜𝑝𝑡

VGG-5

MNIST

4G 2 4 10.5 1.7 2 4 10.5 481.8 1

4G+ 1 10 7.9 1.4 1 11 7.7 477.0 0.97

WiFi 1 6 4.5 1.3 1 6 4.5 474.2 1

CIFAR-10

4G 1 12 19.8 6.2 1 12 19.8 2034.2 1

4G+ 1 6 13.1 4.5 1 8 12.9 1818.4 0.98

WiFi 1 3 10.3 4.2 1 3 10.3 1816.2 1

ResNet-18

MNIST

4G 1 7 9.8 1.6 1 7 9.8 3393.9 1

4G+ 1 4 5.9 1.5 1 4 5.9 3130.5 1

WiFi 1 3 5.3 1.4 1 3 5.3 3018.4 1

CIFAR-10

4G 1 8 13.2 4.2 1 8 13.2 13753.4 1

4G+ 1 6 10.0 4.0 1 6 10.0 13634.0 1

WiFi 1 3 8.9 3.8 1 3 8.9 13535.9 1

MobileNetV3-Small

MNIST

4G 2 5 4.8 1.2 2 5 4.8 4955.0 1

4G+ 2 4 4.1 1.1 2 4 4.1 4847.5 1

WiFi 1 4 3.6 1.1 1 4 3.6 4816.7 1

CIFAR-10

4G 2 8 12.8 4.1 2 8 12.8 33549.2 1

4G+ 1 12 8.4 3.7 1 12 8.4 33382.1 1

WiFi 1 9 6.7 3.1 1 9 6.7 32780.5 1

Table 8

Parameters selected by the approach in PiPar in contrast to the optimal parameters for large DNNs.

Model Dataset Network
Proposed Approach Exhaustive Search 𝑆𝑐𝑜𝑟𝑒

(Equation (28))𝑃 𝑁 𝑇𝑃,𝑁 𝑆𝑃 ,𝑁 𝑃𝑜𝑝𝑡 𝑁𝑜𝑝𝑡 𝑇𝑃𝑜𝑝𝑡 ,𝑁𝑜𝑝𝑡
𝑆𝑃𝑜𝑝𝑡 ,𝑁𝑜𝑝𝑡

VGG-16

CIFAR-100

4G 1 20 122.8 13.6 1 16 117.6 34274.4 0.96

4G+ 1 16 62.2 6.1 1 16 62.2 19753.2 1

WiFi 1 6 34.9 5.2 1 6 34.9 12535.2 1

Tiny ImageNet

4G 1 16 455.7 22.4 1 16 455.7 824884.0 0.96

4G+ 1 14 240.4 18.7 1 16 233.7 452372.8 0.97

WiFi 1 12 112.9 16.8 1 16 110.2 245357.0 1

ResNet-101

CIFAR-100

4G 1 4 26.8 5.9 1 4 26.8 29004.6 1

4G+ 1 2 20.3 4.3 1 2 20.3 28408.6 1

WiFi 1 2 19.3 3.8 1 2 19.3 28347.6 1

Tiny ImageNet

4G 1 8 52.6 11.1 1 8 52.6 122736.22 1

4G+ 1 6 50.9 10.3 1 4 49.0 119846.0 0.96

WiFi 1 3 47.0 9.9 1 3 47.0 117718.5 1

MobileNetV3-Large

CIFAR-100

4G 1 16 13.3 4.1 1 16 13.3 41844.5 1

4G+ 1 6 8.6 3.6 1 6 8.6 36807.8 1

WiFi 1 4 7.8 3.4 1 4 7.8 35651.0 1

Tiny ImageNet

4G 1 16 35.5 8.6 1 16 35.5 79864.6 1

4G+ 1 12 21.9 7.8 1 12 21.9 57710.0 1

WiFi 1 8 14.4 7.7 1 8 14.4 46406.2 1

Fig. 10. Training time per epoch for FL, SFL and PiPar using VGG-5 and the CIFAR-10 dataset with different batch sizes 𝐵.

Fig. 11. Training time per epoch for SFL and PiPar using VGG-16 and the CIFAR-100 dataset with different batch sizes 𝐵. FL results are not shown as the entire 
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DNN does not fit on the device memory.
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Fig. 12. Training time per epoch for FL, SFL and PiPar using small DNNs on CIFAR-10 under different network conditions on homogeneous and heterogeneous 
testbeds.

Fig. 13. Training time per epoch for FL, SFL and PiPar using small DNNs on CIFAR-10 under different network conditions with and without differential privacy 

methods.

to 11.7 s to FL, 0.16 s to SFL and 0.15 s to PiPar. Compared to SFL and

PiPar, FL has the largest overhead using DP because in FL the entire 
model is trained on the device and classic DP will add noise to each 
parameter in the model. The overhead of PixelDP on FL, SFL and PiPar
(up to 0.3 s) is comparable since they use the same size of inputs and 
PixelDP adds noise to these inputs. The results highlight that the two 
DP methods applied to PiPar do not introduce a larger overhead than 
15

FL and SFL.
5.6.3. Impact of changing bandwidth on the overhead for automated 
parameter selection

It was shown in Section 5.4 that the automated parameter selection 
approach only needs to execute once before training in a stable network 
environment. Therefore, the overhead incurred is negligible. In this sec-

tion, we measure the overhead of the approach in an unstable network 
where the bandwidth changes between 4G, 4G+ and WiFi conditions 

periodically in a controlled manner.
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Fig. 14. The percentage overhead of the automated parameter selection approach with respect to training time for different intervals in which the bandwidth changes.
The overhead is measured for different intervals in which the band-

width changes. The network is more unstable for smaller intervals. 
Fig. 14 shows the percentage overhead for running the parameter se-

lection approach with respect to training time for different intervals in 
which the bandwidth changes. The intervals considered range from 1 
minute to 60 minutes. If the bandwidth changes every hour, the over-

head of parameter selection is only 0.14%, 0.11% and 0.1% of the train-

ing time for VGG-5, ResNet-18 and MobileNetV3-Small, respectively. 
Considering the worst case in the experiments, which is a change of 
bandwidth every minute, the approach overhead is up to 8.3% of the 
training time. If the bandwidth change occurs on an average every 10 
minutes or more then the overhead incurred is less than 1%.

6. Conclusion

Deep learning models are collaboratively trained using paradigms, 
such as federated learning, split learning or split federated learning 
on a server and multiple devices. However, they are limited in that 
the computation and communication across the server and devices are 
inherently sequential. This results in low compute and network re-

source utilization and leads to idle time on the resources. We propose 
a novel framework, PiPar, that addresses this problem for the first 
time by taking advantage of pipeline parallelism, thereby accelerating 
the entire training process. A novel training pipeline is developed to 
parallelize server-side and device-side computations as well as server-

device communication. In the training pipeline, the DNN is split and 
deployed on the server and devices, and the training process on dif-

ferent mini-batches of data is re-ordered. A low overhead parameter 
selection approach is then proposed to maximize the resource utilization 
of the pipeline. Consequently, when compared to existing paradigms, 
our pipeline significantly reduces idle time on compute resources by 
up to 64.1 × in training popular DNNs under different network condi-

tions. An overall training speed up of up to 34.6 × is observed. It is also 
experimentally demonstrated that PiPar achieves performance benefits 
when incorporating differential privacy methods and operating in envi-

ronments with heterogeneous devices and changing bandwidths.
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