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ABSTRACT: A packed reactor bed incorporating a polymer-supported isothiourea HyperBTM catalyst derivative has been used to
promote the enantioselective synthesis of a range of heterocyclic products derived from α-azol-2-ylacetophenones and -acetamides
combined with alkyl, aryl, and heterocyclic α,β-unsaturated homoanhydrides in continuous flow via an α,β-unsaturated acyl-
ammonium intermediate. The products are generated in good to excellent yields and generally in excellent enantiopurity (up to 97:3
er). Scale-up is demonstrated on a 15 mmol scale, giving the heterocyclic product in 68% overall yield with 98:2 er after
recrystallization.
KEYWORDS: packed bed reactor, supported isothiourea HyperBTM, continuous flow, α,β-unsaturated acyl-ammonium,
enantioselective catalysis

■ INTRODUCTION
Enantioselective organocatalyzed reaction processes are now
established as an effective alternative to metal and biocatalyzed
transformations, allowing the formation of complex enantioen-
riched products from simple starting materials.1 Despite
significant advances in this area, the most commonly
recognized drawback to the use of organocatalysts is the
relatively high catalyst loading (often 10−20 mol %) that is
typically required for effective catalysis, combined with their
generally poor recyclability. Consequently, the design and
application of recyclable organocatalysts are of high interest,
allowing a more sustainable and cost-effective approach. In this
context, the heterogenization of homogeneous chiral catalysts
is a promising approach that has been investigated through the
attachment of chiral catalysts to organic polymers, dendrimers,
membrane supports, or porous inorganic oxides.2−8 When
coupled with advances in continuous-flow technology,9−12 a
range of asymmetric reaction processes have been demon-
strated, ranging from applications of transfer hydrogenation
and organozinc addition to aldol and Michael addition reaction
processes (Scheme 1A).13−26

As a representative example, in 2017, Pericas̀ and co-workers
reported an asymmetric cycloaddition reaction promoted by an
immobilized variant of the isothiourea catalyst benzotetrami-
sole (BTM).23 The isothiourea catalyst was attached to a
polymer to give a new class of immobilized Lewis base
organocatalysts that afforded cycloaddition products with
excellent yield and stereoselectivity. The immobilized catalysts
could be recycled by filtration but showed mechanical
degradation. However, incorporating this heterogeneous
catalyst into a continuous-flow setup using a packed bed
reactor allowed the enantioselective reaction to be performed
and allowed separation of the supported catalyst simulta-
neously. Such packed bed reactors allow the reaction solution

to pass through a polymer-supported catalyst embedded
between two filters to achieve continuous product formation.12

Compared to conventional batch reactors, such a strategy has
several advantages such as (i) continuous flow can avoid hot
spots effectively, (ii) higher effective equivalents of the
catalyst/reagent loading compared to substrate are offered,
leading to improved efficiency, and (iii) no additional
separation process is required to recycle the immobilized
catalyst.10 We applied these principles to previous work on the
acylative kinetic resolution of secondary and tertiary alcohols
employing the isothiourea HyperBTM (2S,3R)-1 as an
organocatalyst.27−31 Consequently, HyperBTM was immobi-
lized onto a Merrifield resin ((2S,3R)-4) and applied to the KR
of a range of both secondary and tertiary alcohols in
continuous flow, allowing an effective KR on a 28.8 mmol
scale to be carried out with yields and selectivities comparable
to those obtained from the batch process via an acyl-
ammonium intermediate (Scheme 1B).32 Notably, all of
these kinetic resolution processes were applied with the same
packed bed of (2R,3S)-4, resulting in a total operation time in
excess of 100 h in flow without significant degradation.
Nitrogen-containing heterocycles are privileged structural

motifs commonly found in bioactive natural products,
pharmaceuticals, and agrochemicals.33 For example, pyrazo-
lone and thiazolone scaffolds have found broad applications as
bioactive compounds in medicinal chemistry, including
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antiplatelet,34 anti-inflammatory,35 and anticancer36 activity.
They are also utilized as ligands,37 organic semiconductors,
and dyes.38 As a consequence, the development of effective
methods to allow the preparation of nitrogen-containing
heterocycles is a recognized challenge in the synthetic
community. In previous work, we reported the isothiourea
HyperBTM (2S,3R)-1 catalyzed enantioselective formal cyclo-
addition reaction between 2-phenacylbenzothiazole and
cinnamic anhydride (Scheme 1B), giving access to 2 and 3
in good yield and enantioselectivity.39 In this manuscript we
demonstrate the efficiency of this protocol in continuous flow,
allowing the first use of an immobilized isothiourea catalyst to
exploit the formation of an α,β-unsaturated acyl-ammonium

intermediate.40,41 The immobilized catalyst (2S,3R)-4 is
loaded in a jacketed Omnifit column and connected to a
single-piston pump that is used to generate the reaction flow
and form the product continuously. To showcase the potential
industrial applicability of this process, a 15 mmol scale-up was
performed to demonstrate the durability and recyclability of
the immobilized HyperBTM catalyst (2S,3R)-4.

■ RESULTS AND DISCUSSION
Polymer-supported catalyst (2S,3R)-4 was prepared by
demethylation of (2S,3R)-8-methoxyHyperBTM and subse-
quent immoblization onto Merrifield resin via previously
established methodology.24,32 Initial proof-of-concept and

Scheme 1. (A) The Application of Immobilised Asymmetric Organocatalysts in Flow and (B) Comparison of Isothiourea-
Catalyzed Traditional Homogeneous Reactions and Comparison to Heterogeneous Packed Bed Reactor Processes in Flow
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subsequent optimization were used, employing a model system
consisting of the addition of 2-phenacylbenzothiazole to
cinnamic anhydride. Polystyrene-supported catalyst (2S,3R)-4
(700 mg, 0.55 mmol) was loaded in a size-adjustable, medium-

pressure borosilicate glass column to create a vertical packed
bed reactor (flow from bottom to top) fitted with a cooling
jacket to control the reaction temperature using a recirculating
chiller. Based upon our previous demonstration of kinetic

Table 1. Screening of Reaction Solventsa

entry solvent 2 erb 3 erb 2 yield (%)c 2:3d

1 CHCl3 72:28 84:16 89 93:7
2 toluene 92:8 96:4 50 85:15
3 THF 90:10 88:12 91 92:8
4 CH2Cl2 95:5 94:6 59 92:8
5 EtOAc 91:9 92:8 84 89:11
6 CPME 91:9 92:8 72 90:10
7 THF:CH2Cl2 (1:1) 94:6 91:9 75 87:13
8 THF:CH2Cl2 (2:1) 93:7 92:8 86 86:14
9 THF:CH2Cl2 (4:1) 93:7 92:8 86 84:16
10 THF:CH2Cl2 (8:1) 92:7 91:9 91 84:16
11 EtOAc:CH2Cl2 (1:1) 93:7 91:9 71 85:15

aReactions were carried out using the same catalyst bed of 700 mg polymer-supported (2S,3R)-4 with 0.1 mL·min−1 flow rate, and the catalyst is
regenerated using MeOH/chloroform (1:9) after each reaction. bThe er was determined by HPLC analysis on a chiral stationary phase. cIsolated
yield. dThe ratio of products was determined by 1H NMR of the crude reaction mixture.

Table 2. Screening of Base and Anhydride Equivalentsa

entry iPr2Net (M) anhydride (M) 2 erb 3 erb 2 yield (%)c 2:3d

1 0.066 0.084 93:7 92:8 86 86:14
2 0.048 0.084 94:6 92:8 84 85:15
3 0.036 0.084 95:5 92:8 86 85:15
4 0.024 0.084 95:5 91:9 84 83:17
5 0.009 0.084 93:7 91:9 82 83:17
6 0.000 0.084 94:6 92:8 78 80:20
7 0.036 0.078 94:6 92:8 84 86:14
8 0.036 0.072 93:7 91:9 83 88:12
9 0.036 0.066 94:6 91:9 81 89:11
10 0.036 0.060 94:6 91:9 76 92:8
11 0.000 0.060 94:6 93:7 59 81:19
12e 0.036 0.060 93:7 92:8 78 93:7

aReactions were carried out using the same catalyst bed of 700 mg polymer-supported (2S,3R)-4 with 0.1 mL·min−1 flow rate in THF:CH2Cl2 =
2:1, and the catalyst is regenerated using MeOH/chloroform (1:9) after each reaction. bThe er was determined by HPLC analysis on a chiral
stationary phase. cIsolated yield. dThe ratio of products was determined by 1H NMR of the crude reaction mixture. eReaction was carried out with
a flow rate of 0.05 mL·min−1.
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Scheme 2. Scope of the Annulation Reactiona

aReactions were carried out using the same catalyst bed of 700 mg polymer-supported (2S,3R)-4 with 0.1 mL·min−1 flow rate in THF:CH2Cl2 =
2:1, and the catalyst is regenerated using MeOH/chloroform (1:9) after each reaction. bThe er was determined by HPLC analysis on a chiral
stationary phase. cIsolated yield. d1H NMR yield. eRatio of regioselectivity by 1H NMR of the crude reaction mixture. fReactions were carried out
in CHCl3 due to problems with solubility of the starting materials.
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resolutions in flow,32 solutions of 2-phenacylbenzothiazole
(0.060 M = 1.0 equiv.) and base (0.066 M = 1.1 equiv.) in one
syringe and cinnamic anhydride (0.084 M = 1.4 equiv.) in
another syringe were delivered to the reactor bed via a mixing
T-piece using a syringe pump with a flow rate of 0.1 mL·min−1

equating to a residence time of 40 min using PTFE tubing with
a 1/32″ inner diameter. Optimization studies aimed to
maximize product enantioselectivity and yield and began
with the screening of reaction solvents (Table 1). The use of
CHCl3 gave 2 in a good 89% yield but moderate 72:28 er with
good regiocontrol (93:7 ratio of lactam 2:lactone 3 arising
from either N- or O-cyclization, respectively, Table 1, entry 1).
Toluene or CH2Cl2 gave only poor conversion, but CH2Cl2
gave product 2 in high enantioselectivity (95:5 er, Table 1,
entry 4). Performing the reactions in THF, in industrially
preferred EtOAc, or CPME provided 2 in good yield (72−
91%) but slightly reduced enantioselectivity (91:9 er), with
THF giving the highest product yield (Table 1, entries 3, 5,
and 6). Based on these findings, the use of a mixed solvent
system consisting of CH2Cl2 (best enantioselectivity) and
THF (highest yield) was trialled (Table 1, entries 3 and 7−
10). Using different proportions of CH2Cl2 and THF, trends in
reactivity indicated increased enantioselectivity but a decreas-
ing yield with higher proportions of CH2Cl2. A 2:1 mixture of
THF:CH2Cl2 (entry 8) was identified as optimal, leading to
the best compromise between product yield and enantiose-
lectivity. Another mixed solvent system involving ethyl acetate
was also tested, resulting in a slightly decreased yield but

otherwise unchanged er (Table 1, entry 11). The absolute
configuration of the products was identified by comparison to
that within the literature, consistent with the generally
accepted stereochemical model for these types of pro-
cesses.28,39,42−60

To further increase product enantioselectivity, the effect of
base and anhydride equivalents was investigated. A series of
reactions using varying equivalents of iPr2NEt (from 1.1 to 0.0
equiv.) was performed, with relatively little variation in
selectivity and product yield (Table 2, entries 1−6). Optimal
product enantioselectivity was obtained using 0.6 equiv. of
iPr2NEt, which also resulted in a good yield and enantiose-
lectivity (86%, 95:5 er) (Table 2, entry 3). The effect of
varying the equivalents of the α,β-unsaturated anhydride (from
1.4 to 1.0 equiv.) was investigated (entries 7−11). Although
little variation in selectivity was observed overall, a general
trend of increased formation of 2 over 3, combined with
decreasing isolated yield but increased enantioselectivity of
major product 2 was observed with decreasing equivalents of
the cinnamic anhydride. Choosing to maximize product er was
prioritized, with 1.0 equiv. of cinnamic anhydride selected as
the best conditions for this process as it minimized reagent
excess while maintaining high yield (entry 10 prioritized over
entry 3). Interestingly, performing the reactions without base
and reduced anhydride concentrations resulted in a signifi-
cantly decreased yield of 2 (entry 11). In an attempt to further
increase the product yield, the residence time was doubled by
decreasing the flow rate from 0.1 to 0.05 mL·min−1 (entry 12),

Scheme 3. Scope of the Annulation Reaction with Variation of Heteroaromatic Enol Nucleophilesa

aReactions were carried out using the same catalyst bed of 700 mg polymer-supported (2S,3R)-4 with 0.1 mL·min−1 flow rate in THF, and the
catalyst is regenerated using MeOH/chloroform (1:9) after each reaction. bThe er was determined by HPLC analysis on a chiral stationary phase.
cIsolated yield.
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resulting in similar product yields and enantioselectivities.
Under conditions comparable to those for entry 10, use of the
immobilized catalyst (2S,3R)-4 in batch gave an 86:14 mixture
of 2:3, with product 2 isolated in 68% yield (91:9 er) and
product 3 in 11% yield (92:8 er; see the SI for full details).
Scope and Limitations of the Enantioselective

Annulation Process in Flow. Having identified the optimal
conditions for the model reaction process, the scope and
limitations of this annulation were investigated. Initially,
variation within a range of α,β-unsaturated anhydrides was
probed (Scheme 2). In each case the constitutional isomeric
products were separable, with the lactam product arising from
N-cyclization being dominant. Incorporation of an electron-
withdrawing 4-F3CC6H4 substituent and a halogenated 4-
FC6H4 substituent led to a slight reduction in regioselectivity
of the reaction, giving constitutional isomers 5/6 and 7/8 in
good yield (83%/13%, 74%/21%, respectively) and excellent
enantioselectivity (94:6/91:9, 94:6/93:7 er). 2-Chlorocinnam-
ic anhydride led to products 9/10 in only moderate yield
(58%/6% yield) and poor enantioselectivity (79:21/62:38 er)
using CHCl3 as the solvent due to the poor solubility of 2-
chlorocinnamic anhydride in THF:CH2Cl2 (2:1). 4-MeOC6H4
substitution was tolerated and gave 11/12 in good yield (81%/
16% yield) but slightly decreased regioselectivity (90:10/
88:12). 4-MeC6H4 13/14 and 3-MeC6H4 substitution 15/16
led to a slight improvement in the yield (84%/8% yield, 81%/
10% yield, respectively) with excellent enantioselectivity in
either case (93:7/89:11 er, 96:4/92:8 er, respectively). In
addition, the reaction scope was extended to incorporate 1-
naphthyl substitution, as well as heterocyclic 2-furyl and 2-
thienyl substituents, which gave good yields of 17/18, 19/20,
and 21/22, respectively, with excellent enantioselectivity
(96:4/80:20, 93:7/79:21, 97:3/87:13 er, respectively). Alkyl
substitution within the anhydride was also tolerated, giving 23/
24 in a good yield with high enantioselectivity (96:4/95:5 er).
To further probe reactivity and regioselectivity in these

annulation processes, a range of α-azol-2-ylacetophenones was
synthesized and used with both cinnamic anhydride and
crotonic anhydride with slightly altered conditions to ensure
optimal yields (THF was used as a single solvent, Scheme 3).
The reaction with 2-phenacylthiazole gave exclusively the
lactamization products for both cinnamic anhydride and
crotonic anhydride, giving 25 and 26, respectively, in excellent
yield (94%, 97% yield) and with good enantioselectivity (94:6,
91:9 er). For the reaction of 2-phenacylbenzoxazole with
cinnamic anhydride, a complete switch in regioselectivity
compared with 2-phenacylbenzothiazole was observed, giving
almost exclusively the lactonization product 27 in good
enantioselectivity (98:2 er) albeit in moderate yield (43%

yield). Changing to crotonic anhydride, 28 was obtained in an
increased 82% yield but at the cost of decreased
enantioselectivity (92:8 er). The use of 2-phenacylbenzimida-
zole with cinnamic anhydride showed good activity and
regioselectivity but gave a 50:50 mixture of tautomeric
products (combined yield of 92%) that could not be separated
by HPLC analysis (see the SI for further information). To
simplify the product mixture, acylation using benzoyl chloride
was successfully attempted, giving 29 as the sole product in
good yield (76%) and enantioselectivity (90:10 er). The use of
crotonic anhydride in a similar procedure gave separable
products N-acyl 30 and O-acyl 31 in a good overall combined
yield (75%) with moderate enantioselectivity (86:14 er).
Unambiguous confirmation of the constitution of O-acyl
derivative 31 was achieved by single crystal X-ray analysis.61

Unfortunately, the use of 2-benzothiazol-2-yldimethylaceta-
mide led to reduced reactivity with both cinnamic anhydride
(giving 32, 25% yield, 98:2 er) and crotonic anhydride (giving
33, 35% yield, 80:20 er).
Finally, the robustness of the same packed bed reactor was

further probed by performing the annulation of 2-phenacyl-
thiazole with cinnamic anhydride on a 15 mmol scale over a 42
h period (Scheme 4). An isolated yield for 25 of 89% (4.45 g)
with a 92:8 er was obtained for the 15 mmol scale reaction,
similar to the results observed on a 0.3 mmol scale consistent
with no significant catalyst degradation or inactivation.
Recrystallization of product (R)-25 led to improved
enantiopurity (99:1 er), resulting in an overall yield of 68%
(3.4 g). As a control to monitor potential catalyst
decomposition over this extended run, the reaction on a 0.3
mmol reaction scale was carried out directly before and after
the scaled-up reaction for comparison, giving comparable
results (see the SI for full details). Furthermore, the conversion
to product was monitored at various time-points throughout
the 42 h run, again indicating no significant deterioration of
catalyst performance.
In conclusion, we have demonstrated the first use of a

polymer-supported isothiourea in a packed bed reactor for
enantioselective annulation reactions of α-azol-2-ylacetophe-
nones and acetamides with α,β-unsaturated anhydrides via an
α,β-unsaturated acyl-ammonium intermediate in continuous
flow. In this protocol, the use of 2-phenacylbenzothiazole as a
pronucleophile has been applied to generate a range of
heterocyclic products, with good reactivity observed with alkyl,
aryl, and heterocyclic β-substituted α,β-unsaturated homo-
anhydrides. Additionally, three alternative α-azol-2-ylacetophe-
nones and one α-azol-2-ylacetamide were investigated, with
their reactivity and regioselectivity in this annulation process
explored, giving products in high yield (up to 96%) and

Scheme 4. 15 mmol Scale-Up under Optimized Reaction Conditions
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excellent enantioselectivity (up to 99:1 er after recrystalliza-
tion). All optimization, demonstration of the scope and
limitations, and scale-up in this report used the same 700 mg
batch of polymer-supported catalyst to generate the fixed
reactor bed. This indicates that the polymer-supported
isothiourea HyperBTM (2S,3R)-4 exhibits a consistent and
stable catalytic performance to promote the asymmetric
annulation of α,β-unsaturated anhydrides with α-azol-2-
ylacetophenones and -acetamides.
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