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For a finite group G, the superpower graph S(G) of G is an undirected simple graph
with vertex set G and two vertices are adjacent in S(G) if and only if the order of one

divides the order of the other in G. The aim of this paper is to provide tight bounds
for the vertex connectivity, discuss Hamiltonian-like properties of superpower graph of

finite non-Abelian groups having an element of exponent order.

We also give some general results about superpower graphs and their relation to
other graphs such as the Gruenberg–Kegel graph.
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1. Introduction

Graphs associated with groups and other algebraic structures have been actively

investigated, since they have valuable applications are related to automata theory

which can be seen in [17],[18] and the books [15],[16]. The research of graphical

representation of semi-group and group has emerged as a promising study area in

recent decades, generating a number of interesting results and problems. Some of

the most popular graphs in this area, Cayley graph [25], [8], [21], commuting graph

[23] and power graph [1],[19] are publicly available.

The superpower graphs of groups are a fairly recent development in the realm

of graphs from groups, and it was firstly introduced by Hamzeh and Ashrafi, which

they call the order supergraph S(G) of the power graph P (G) of a finite group,

in 2018 [13]. They asked, “What is the structure of G with |π(G)| = α(S(G))”?

The objective of the study was to explain the connection between P (G) and S(G)

as well as various structural properties of superpower graph. After that, Ma and

Su [22], investigated the independence number of S(G), and provided an answer

to this question. In [11], Hamzeh and Ashrafi calculated the superpower graph’s

automorphism groups and full automorphism groups. They also established that

the automorphism group of this graph might be represented as a combination of

wreath and Cartesian products of various symmetric groups. In [12], for specific

finite groups, the same authors have calculated the characteristic polynomial of

these graphs. As a result, it was possible to calculate the spectrum and Laplacian

spectrum of the graphs formed from dihedral, semi-dihedral, cyclic, and dicyclic

groups. In [2], Asboei and Salehi proved that G = PSL(2, p) or PGL(2, p) if and

only if S(G) = S(PSL(2, p)) orS(PGL(2, p)), respectively. They also proved that

if M is a sporadic simple group, then G = M if only if S(G) = S(M). In [14], the

authors investigated this graph’s Hamiltonianity, Eulerian and 2-connectedness.

With these motivations we explore the super power graphs for any finite groups.

In one of our earlier works, we have discussed finite Abelian groups. Hence, in this

paper to avoid repetition we will focus mainly on finite non-Abelian groups and in

particular non-ableian groups having an element of exponent order.

The paper is organized as follows: In Section 2, we present required definitions

and fix notations from both group theory and graph theory. Section 3 develops

a technique for studying the superpower graph of G based on a smaller graph,

the order graph of G. We use the technique to show, among other things, that

superpower graphs are perfect; we give a more elementary proof of this in Section

4. In Section 5, we present the main results of this paper by dividing it into two

subsections, one on Hamiltonian and Hamiltonian-like properties while the other

subsection discusses the vertex connectivity related findings. We conclude the article

with some open problems in Section 6.
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2. Preliminaries

The aim of this section is to provide some definitions and results from group theory

and graph theory to achieve the goal of this paper. We use standard definitions

and results from [10] for group theory and [3] for graph theory which we restate

here to establish notations. Throughout this paper, by a group G, we mean a finite

group of order n with the identity e. The order of an element x of G is denoted by

o(x). The exponent exp(G) of G is the least common multiple of the orders of the

elements of G, in other words, the smallest positive integer m such that xm = e for

all x ∈ G. We say that G has an element of exponent order if there exists x ∈ G
with o(x) = exp(G). Let π(G) be the set of orders of elements of G. Thus, G has

an element of exponent order if and only if π(G) is the set of all divisors of m, for

some integer m.

Note that any finite Abelian group, or any group of prime power order, contains

an element of exponent order, so this class of groups generalises both Abelian groups

and p-groups. Moreover, for any finite group G, there is an integer m such that Gm

contains an element of exponent order.

For each positive divisor d of n, define wd(G) = {x ∈ G : o(x) = d}. For any

subset X of G, we let X] = X \ w1(G), and G = G] \ wexp(G)(G). As usual, N
denotes the set of all natural numbers. Let Zn = {0, 1. · · · , n− 1} denote the cyclic

group of order n. Euler’s function φ is defined by the rule that, for a positive

integer n, the number of positive integers less than n that are relatively prime

to n is φ(n). Whenever we consider the prime factorization of a positive integer

n = pα1
1 pα2

2 · · · pαmm , it is assumed that m ≥ 2, that p1 < p2 < · · · < pm are primes

and that αi ∈ N for 1 ≤ i ≤ m.

By a graph Γ(V,E), we mean an undirected simple finite graph. A vertex of a

graph Γ is called a dominant vertex if it is adjacent to every other vertex of Γ. For

a graph Γ, let dom(Γ) denote the set of all dominant vertices in Γ. A connected

component of Γ is a maximal connected subgraph of Γ. If a graph Γ has a path P (or

a cycle C) which contains all the vertices of Γ, then P (or C) is called Hamiltonian

path (or Hamiltonian cycle) of the graph Γ. A Hamiltonian graph Γ is a graph

which contains a Hamiltonian cycle. A graph Γ is called 1-Hamiltonian if it is

Hamiltonian and all of its 1-vertex-deleted subgraphs are Hamiltonian. A graph Γ

is called Hamiltonian connected if any two vertices of Γ can be join by a Hamiltonian

path. A graph Γ on n vertices is called pancyclic if, for every ` with 3 ≤ ` ≤ n, there

exists a cycle of length ` in Γ. If a graph Γ have the property that for any vertices

u and v of it, there exist a path of each possible length `, d(u, v) ≤ ` ≤ n, then Γ

is called pan connected. A set of vertices T of a graph Γ is said to be a separating

set, if its removal increases the number of connected components of Γ. T is called

a minimal separating set if none of its non-empty proper subset is a separating set.

If T is of least cardinality, then it is known as a minimum separating set of Γ. The

cardinality of a minimum separating set is the vertex connectivity of Γ and denoted

by κ(Γ).
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The power graph of a finite group G has vertex set G, with an edge from x to

y if one of x and y is a power of the other, that is, if xm = y or ym = x for some

integer m. Our main object of interest is the (order) superpower graph, which has

vertex set G and an edge from x to y if the order of one of x and y divides the

order of the other. Clearly it contains P (G) as a spanning subgraph.

Theorem 2.1 ([13], Theorem 2.3). Let G be a finite group. Then S(G) is com-

plete if and only if G is a p-group.

Lemma 2.1. Let G be a finite group having an element x of order exp(G). Then

o(g) | o(x)for all g ∈ G.

In one of our earlier works, we have proved similar results for finite Abelian

groups. Hence, in this paper, we will focus mainly on finite non-Abelian groups.

That is, for the rest of our paper G denotes a non-Abelian group having an element

of exponent order.

3. The order graph

Recall that π(G) denotes the set of orders of elements of G. We construct a graph,

which we call the order graph of G: the vertex set is π(G), and there is an edge

joining m and n if one of them divides the other. We denote this graph by Ord(G).

The weighted order graph is obtained from Ord(G) by labelling each vertex m with

the number of elements of order n in G.

Note that the graph S(G) can be reconstructed uniquely from the weighted

order graph of G; simply blow up each vertex of Ord(G) to a complete graph whose

number of vertices is equal to the weight of that vertex, and lift each edge to all

edges between the corresponding sets. Note also that Ord(G) is isomorphic to an

induced subgraph of S(G), obtained by choosing one element of G of each possible

order.

Let Γ and ∆ be graphs. We say that Γ is ∆-free if it has no induced subgraph

isomorphic to ∆. Two vertices v, w in a graph Γ are twins if they have the same

neighbours, possibly excepting each other: that is, either v and w are not joined

and have equal neighbourhoods, or they are joined and N(v) \ {w} = N(w) \ {v},
where N(v) is the neighbourhood of v.

Theorem 3.1. Let ∆ be a graph containing no pair of twins, and G a finite group,

then S(G) is ∆-free if and only if Ord(G) is ∆-free.

Proof. In an embedding of ∆ into S(G) as induced subgraph, two vertices of ∆

mapping to elements of G with the same order must be twins. So the mapping

taking an element of ∆ to the order of its image must be an injection, and is an

embedding in Ord(G). The converse is clear.

Theorem 3.2. For any finite group G, the following hold.
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(a) S(G) is perfect.

(b) If Ord(G) is Hamiltonian, then S(G) is Hamiltonian.

Proof. (a) The graph Ord(G) is the comparability graph of the partial order on

ω(G) defined by divisibility, so by Dilworth’s theorem [9] it is perfect. Now by the

Strong Perfect Graph Theorem [7], a graph is perfect if and only if it contains

neither an odd cycle of length at least 5 nor the complement of one. The odd cycles

and their complements have no pairs of twins, so it follows from Theorem 3.1 that

S(G) is also perfect.

(b) Take a Hamiltonian cycle in Ord(G) and lift it to a Hamiltonian cycle of

G by choosing a Hamiltonian path within the set of vertices of each possible order

and joining their ends according to the edges in the cycle in Ord(G).

We exploit this to show that, if G contains an element of exponent order, then

S(G) is Hamiltonian. This is a foretaste of stronger results which will be proved in

Section 5 below, including another proof of this fact.

By the above theorem, it suffices to show that, for any integer n, the compara-

bility graph of the poset of divisors of n (ordered by divisibility) is Hamiltonian.

Our proof of this is by induction on the number s of prime divisors of n. If s = 1,

then the graph is complete, so the result is true. So suppose that it holds for num-

bers m with s − 1 prime divisors, and let n = pam, where p is prime and m has

s− 1 prime divisors. We can identify the elements of this lattice with ordered pairs

(c, d), where c divides pa and d divides m; we have (c, d) ≤ (c′, d′) if c < c′ and

d < d′. The set of such pairs for fixed d carries a complete graph, which is Hamil-

tonian connected, while the set of such pairs for fixed c carries a graph isomorphic

to the comparability graph of the lattice of divisors of m, which (by induction) has

a Hamiltonian cycle ((c, x0), (c, x1), . . . , (c, xm−1), (c, x0)). Let C = {c0, . . . , ca−1}.
Now we construct a Hamiltonian cycle as follows. Start with a Hamiltonian path

from (c0, x0) to (c1, x0), the follow the edge to (c1, x1). Then follow a Hamiltonian

path from there to (c2, x1), and an edge to (c2, x2). Continue until we reach a ver-

tex (cm−1, xm−1) (we take the indices of the c vertices modulo m if necessary).

If cm−1 6= c0, then take a Hamiltonian path from (cm−1, xm−1) to (c0, xm−1) and

finally an edge back to (c0,m0). Otherwise, modify the path on vertices with second

component xm−2 so that its end point is, say, (c′, xm−2) with c′ 6= cm−1, and finish

as before.

This suggests a general question:

Problem 3.1. Which graph-theoretic properties can be lifted from Ord(G) to S(G)?

Another well-studied graph which has a role to play here is the Gruenberg–Kegel

graph of G (sometimes called the prime graph). We refer to [5] for a summary of its

properties. We call it for short the GK-graph and denote it by GK(G). Its vertices

are the prime divisors of |G|, with an edge from p to q if and only if G contains

an element of order pq. Detailed information about the groups whose GK graph
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is disconnected is available from a theorem proved by Gruenberg and Kegel in an

unpublished manuscript and refined by later authors.

Recall that G] denotes G \ {e}, while Ord(G]) and S(G]) denote the graphs

Ord(G) or S(G) with the number 1 or the identity element respectively removed.

Theorem 3.3. For a finite group G, there are bijections between the connected

components of the graphs GK(G), Ord(G]) and S(G]).

Proof. The bijection between the last two is clear from our earlier discussion.

Take a set of primes forming a connected component of the Gruenberg–Kegel

graph. The prime-power orders form complete subgraphs of Ord(G]), and the edges

of the GK-graph connect them up. Any number which is an order of an element of

G is joined in Ord](G) to an element of prime power order.

For the converse, note that the set of prime divisors of any element order in G

induce a complete subgraph in GK(G), so any path in Ord(G]) can be replaced by

a path in GK(G).

We briefly mention a class of groups at the opposite extreme to the groups

with elements of exponent order which are our main subject. These are the EPPO

groups, the groups in which every element has prime power order. After preliminary

results by Higman (on the solvable EPPO groups) and Suzuki (on the simple ones),

all EPPO groups where classified by Brandl [4] in 1981; the result can be found in

[5]. For an EPPO group G, the GK graph has no edges, while Ord(G]) and S(G])

are disjoint unions of complete graphs, one for each prime divisor of |G|.

4. Perfectness of S(G)

In this section we show that S(G) is the comparability graph of a partial order, and

hence is perfect, and that there is no further restriction on the induced subgraphs.

Unlike the proof in the preceding section, this does not depend on the Strong Perfect

Graph Theorem.

A partial preorder on a set X is a reflexive and transitive relation R on X. Its

comparability graph is the graph on the vertex set X in which x and y are joined

if x R y or y R x. A partial preorder is a partial order if x R y and y R x imply

x = y. A partial order is a total order if, for any x, y ∈ X, either x R y or y R x.

Proposition 4.1. The classes of comparability graphs of partial preorders and of

partial orders are equal.

Proof. Every partial order is a partial preorder. Conversely, let R be a partial

preorder. Define a relation ≡ by the rule that x ≡ y if and only if x R y and y R x.

It is easily seen that ≡ is an equivalence relation. Now enlarge the relation R to a

new relation ≤ by imposing a total order on each equivalence class of ≡. The result

is a partial order with the same comparability graph as R.
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Proposition 4.2. The superpower graph of a group G is the comparability graph

of a partial order.

Proof. Define a relation R on G by the rule that x R y if o(x) | o(y). This relation

is reflexive and transitive, thus is a partial preorder; and the superpower graph is

its comparability graph. Now the result follows using the preceding Proposition.

Proposition 4.3. Let X be the comparability graph of a partial order. Then there

is a group G such that X is an induced subgraph of the superpower graph of G.

Proof. Let ≤ be a partial order on V (X) whose comparability graph is X. Put

↓(x) = {y ∈ V (X) : y ≤ x}. Then we have

• ↓(x) = ↓(y) if and only if x = y;

• ↓(x) ⊆ ↓(y) if and only if x ≤ y.

To see this, observe that in each case the reverse implication is true, since ≤ is a

transitive relation. In the other direction, suppose that ↓(x) ⊆ ↓(y); then x ∈ ↓(y),

so x ≤ y. If ↓(x) = ↓(y), then x ≤ y and y ≤ x, so x = y, since ≤ is a partial order.

Now choose distinct primes px for each x ∈ V (X), and let

N =
∏

x∈V (X)

px.

Let G be the cyclic group of order N , and for each x ∈ V (X) let gx be an element

of G whose order is

o(gx) =
∏

y∈↓(x)

py.

If x ∼ y then, without loss, x ≤ y, so ↓(x) ⊆ ↓(y), whence o(gx) | o(gy). The

argument reverses. So the map x 7→ gx is an embedding ofX as an induced subgraph

of the superpower graph of G.

5. Main results

It is a well known fact that dominant vertices play an important role in characteri-

zation of graphs. In fact, if a graph contains a dominant vertex, then it is connected

and diameter is at most two. Note that for any group G, the identity element, e,

of G is a dominant vertex in S(G). So, we say a graph S(G) is dominatable, if it

contains dominant vertices other than identity, that is |dom(S(G))| > 1. Thus, it is

interesting to find out the set of all dominant vertices in S(G). In the following the-

orem, we find the number of dominant vertices in S(G) for any finite non p-group

G having an element of exponent order.

Proposition 5.1. Suppose that G is not of prime power order. The element x is

a dominant vertex in S(G) if and only if either x = e or o(x) = exp(G).
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Proof. Clearly e is a dominant vertex, so suppose that x is a dominant vertex with

x 6= e. If o(x) 6= exp(G), then there is an element y whose order does not divide

o(x); so o(x) divides o(y). Then there is a prime power pm which divides o(y) but

not o(x), and an element of order pm in the subgroup generated by y; so x is not

dominant. Conversely, if o(x) = exp(G), then x is dominant, by definition.

Theorem 5.2. Let G be a finite non p-group and dom(S(G)) be the set of all

dominant vertices in the superpower graph S(G) of G. Then

|dom(S(G))| =

{
tφ(exp(G)) + 1, if G has an element of exponent order;

1, otherwise;

where t is the number of distinct cyclic subgroups of order exp(G) in G.

Proof. If there is no element of exponent order, then e is the only dominant vertex.

Otherwise, let m = exp(G). If o(x) = m, then 〈x〉 contains φ(m) elements of order

m, all of which are dominant and generate the same cyclic group. So each cyclic

group of orderm contains φ(m) elements of orderm, and there is no overlap between

these sets of size φ(m). So the theorem is proved.

Remark 5.1. For any non-Abelian finite simple group G, |dom(S(G))| = 1. The

proof follows from Theorem 5.2 and the fact that G does not contain an element

or order exp(G), [24].

As mentioned in the proof of Theorem 5.2, if G contains an element of order

exp(G) then S(G) always contains a dominant vertex other than identity and hence

we have the following corollary.

Corollary 5.1. For any finite group G having an element of order exp(G), the

superpower graph S(G) is dominatable.

5.1. Hamiltonian-Like Properties in S(G)

In [6], it was proved that power graph P (G) of any cyclic group of order at least

three is Hamiltonian, [see Theorem 4.13]. In [13], it was proved that S(G) = P (G) if

and only if G is a finite cyclic group. Thus, S(G) is Hamiltonian for any cyclic group

of order at least three. Can we extend this result for finite groups? Unfortunately,

the result may not hold in general. For instance, in [20], we have shown that the

superpower graph S(D2n) of the dihedral group D2n is Hamiltonian if and only if n

is an even integer whereas S(T4n) of dicyclic group is Hamiltonian for any integer

n (one can prove this in similar lines as we proved for S(D2n)). In the following

theorem we prove that S(G) is Hamiltonian under certain condition.

Theorem 5.3. Let G be a finite group G of order n ≥ 3, having an element of

order exp(G). Then S(G) is Hamiltonian.
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Proof. Let G be a finite group with ak = exp(G) and 1 = a1 < a2 < a3 < · · · <
ak−1 < ak are all orders of elements in G. Clearly, ai|ak ∀ i, 1 ≤ i ≤ k − 1

which gives that every vertex of the set wak(G) is adjacent to all other vertices

of the graph S(G). Also, the identity element e is adjacent to all other vertices

of S(G). For each element of order a, induced subgraph say Ha on wa(G) forms

a clique in S(G). We get Hamiltonian cycle in S(G) as follows: Start from the

vertex v1 ∈ dom(S(G)). From v1, go to any vertex of the clique Ha2 and traverse

all vertices of Ha2 . Now we have a Hamiltonian path containing all the vertices in

Ha2 ∪ {v1}. Note that the terminal vertex of this Hamiltonian path is adjacent to

a vertex v2 ∈ dom(S(G)) and v2 6= v1. From v2, go to any vertex of the clique

Ha3 and traverse all vertices of Ha3 . Now the terminating vertex of the resulting

Hamiltonian path is adjacent to a vertex v3 ∈ wak(G) and v3 6∈ {v1, v2}. Repeat this

until all the cliques Hai(G), 2 ≤ i ≤ k − 1 are covered. Since k − 2 < |dom(S(G))|,
there are sufficient number of vertices in dom(S(G)) to connect all disjoint cliques.

Finally, complete the cycle by joining all the uncovered vertices of dom(S(G)) by

path to v1. The entire process of identifying a Hamiltonian cycle is given in Fig. 1.

a1
vs

v3
v2

v1

f1

fw

b1

by cu

c1

z1

zx

Hak−1Ha2

Hak−2Ha3

dom(S(G))

Fig. 1. Hamiltonian Cycle in S(G)

Corollary 5.2. For any finite group G with o(G) ≥ 4 having an element of order

exp(G), S(G) is 1-Hamiltonian.

Proof. Let ak = exp(G) be the largest order of an element in the group G and

let g ∈ G. If o(g) = ai, 2 ≤ i ≤ k − 1, then g is a vertex in the clique induced by

wai(G) for the divisor ai of o(G). Further Hai \{g} remains as a clique and so it has

a spanning path whose initial and terminal vertices can be joined by two different

vertices of dom(S(G)). Now, the proof can be completed as in the case of Theorem

5.3.

If o(g) = ak, then g ∈ dom(S(G)). As seen in the proof of Theorem 5.3, there are

sufficient number of vertices in dom(S(G)) \ {g} to connect all the disjoint cliques
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corresponding to all proper divisors of o(G). Hence the required Hamiltonian cycle

can be obtained as in Theorem 5.3. Thus, S(G) \ {g} contains a Hamiltonian cycle

implying that S(G) is 1-Hamiltonian.

Corollary 5.3. For any finite group G of order at least three having an element

of order exp(G), S(G) is pancyclic.

Proof. Let ak = exp(G). Clearly, dom(S(G)) forms a clique in S(G) and

|dom(S(G))| = tφ(ak) + 1, where t is the number of cyclic subgroups of order

ak in the group G. So we have cycles of length 3 to tφ(ak) + 1. Also, Theorem

5.3 implying that S(G) contains a cycle of length n. For any g1 ∈ V (S(G)), by

Corollary 5.2, S(G) \ {g1} is Hamiltonian and thus S(G) contains a cycle of length

n − 1. Note that, in the proof of Corollary 5.2, we see that as long as we keep

choosing a vertex g ∈ wai ⊂ V (G) \ {dom(S(G))}, obtaining a cycle containing

remaining vertices is immediate. Choose g2 ∈ wai(G) (if exists), otherwise choose

{g2} ∈ waj (G) for some 2 ≤ i, j ≤ ` and we immediately get that S(G) \ {g1, g2}
is Hamiltonian. So S(G) contains a cycle of length n− 2. Recursively deleting the

vertices of wai for each i, 2 ≤ i ≤ l, we can get cycles of length n− 2 to tφ(ak) + 2.

Thus S(G) contains cycles of all length ` for 3 ≤ ` ≤ n and hence S(G) is pancyclic.

It is not always true that there exists a Hamiltonian path between any pair of

vertices in a graph even if it a Hamiltonian. However, this happens in the case of

the superpower graph S(G) of any finite group G which contains an element of

exp(G) and hence we have the following result.

Corollary 5.4. For any finite group G having an element of order exp(G), S(G)

is Hamiltonian connected.

Proof. Let u.v ∈ V (S(G)) be two distinct vertices in S(G). Without loss of gen-

erality, one can take u = v1 ∈ wa2(G) and v = v2 ∈ wa3(G) where a2 and a3
are two non-trivial distinct divisors of ak. Start from the vertex v1 and traverse

along the spanning path in Ha2 and join it with a vertex v3 of dom(S(G)). From

v3 go to any vertex of Ha4 and repeat the process until all vertices of the cliques

Hai(G) ∪ dom(S(G)), 5 ≤ i ≤ k − 1 belongs to the path such that v` ∈ dom(S(G))

is the last vertex of this path. Now, join vk−1 to a vertex x 6= v2 of Ha3 . Upon

completing the path from x to v2 in Ha3 , we obtain the required Hamiltonian path

between u and v in S(G).

Corollary 5.5. For any finite group G having an element of order exp(G), S(G)

is pan connected.

Proof. Let u, v ∈ V (S(G)) be two distinct non-adjacent vertices in S(G). Then

there always exists a path of every length from 2 to n. Now the required path can

be obtained by inserting the vertices from Hai ∪ dom(S(G)), 2 ≤ i ≤ k − 1 in such
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a way that any two vertices of cliques Hai , Haj can be joined through a vertex of

dom(S(G)).

What will be the effect on Hamiltonianity of the graph S(G), if we remove all

dominant vertices from it? The following theorem answers this question. For a finite

p-group G, S(G) is a null graph, so in the following theorem, we consider class of

finite non p-groups.

Theorem 5.4. Let G be a finite non p-group having an element of order exp(G).

Let wexp(G)(G) = {x ∈ G : o(x) = exp(G)}. Then the induced subgraph HG of the

superpower graph S(G) induced by G = G \ ({e} ∪ wexp(G)(G)) is Hamiltonian if

and only if exp(G) is not a product of two distinct primes.

Proof. Let ak = exp(G). Assume that HG is Hamiltonian. If ak = pq for two

distinct primes p and q, then HG = Hp ∪ Hq is disconnected as there is no path

connecting the vertices of Hp and Hq, a contradiction.

Conversely, assume that ak is not a product of two distinct primes. i.e., ak =

pβ1

1 p
β2

2 · · · pβmm and βi ∈ N,m ≥ 2 and p1 < · · · < pm are distinct primes. Since G is

not a p-group, m ≥ 2. By the assumption on ak, we have either β1 > 1 or β2 > 1

or m ≥ 3. Since G is not a p-group and by the assumption on ak, the largest order

of an element in the set G = G \ ({e} ∪ wak(G)) will be
ak
p1

(= ak, say).

Let wak(G) = {b1, · · · , bs} be the set of all elements of order ak. Let {a1, . . . , a`}
be the set of all non trivial divisors of ak with 1 < a1 < a2 < · · · < d` < ak. Let

wai(G) be the set of all elements of order ai in G and let Hai be the subgraph in-

duced by wai(G). For each i, 1 ≤ i ≤ `, let PHai = 〈vi, ui · · · , xi〉 be the Hamiltonian

path in Hai . Then the induced subgraph H of HG on the vertices of
⋃

1≤i≤`
wai ∪wak

is Hamiltonian, since C = 〈b1, PHa1 , b2, PHa2 , b3, · · · , b`, PHa` , b`+1, · · · , bs〉 is a

Hamiltonian cycle in H.

It remains for us to include remaining vertices from HG\H into C appropriately

to get Hamiltonian cycle in HG. Based on the condition on ak, we observe that the

only possible subsets of different orders in G \ {
⋃

1≤i≤`
wai(G) ∪ wak(G)} are of the

form wp1β1 (G) and w
p
β1
1 r

(G), where r = ai, for some i, 1 < i ≤ `. If cliques H
p
β1
1

,

Hp1β1aj exist in HG\H, then the spanning paths P (v
′

1, u
′

1) of Hp
α1
1

and P (v
′

j , u
′

j) for

1 < j ≤ ` ofHp1α1aj are inserted into the spanning path ofHai andHaj respectively,

as shown in Fig. 2. That is, the required Hamiltonian cycle CHG in HG is given by

〈b1, P1, b2, P2, · · · , b`, Pl, b`+1, · · · , bs〉, where Pj = 〈vj , v
′

j , P (v
′

j , u
′

j), uj , P (uj , xj)〉
(if it exists).

Corollary 5.6. Let G be a finite non p-group having an element of order exp(G),

which is not a product of two primes. Then HG is 2-connected.
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Fig. 2. Hamiltonian Cycle in HG

Corollary 5.7. Let G be finite non p-group which is either Abelian or nilpotent.

Then the induced subgraph HG of the superpower graph S(G) induced by G = G \
({e} ∪ wexp(G)(G)) is Hamiltonian if and only if exp(G) is not a product of two

distinct primes.

Proof. Result follows from the fact that both groups mention above contains an

element of order exp(G).

So far, we have discussed the Hamiltonian properties of S(G) when G has an

element of order exp(G). What will happen if G does not have an element of order

exp(G)? The following examples shows that it may or may not be Hamiltonian.

Example 5.1. Let D2n denotes the dihedral group D2n of order 2n. Then S(D2n)

does not have elements of order exp(G) if and only if n is odd. Also, S(D2n) is not

Hamiltonian if and only if n is odd, [20].

Example 5.2. Consider the dicyclic group T4n of order 4n. It can be seen that

S(T4n) does not have elements of order exp(G) if and only if n is odd. Also, when

n is odd, S(T4n) is Hamiltonian.

In [14], Hamzeh and Ashrafi proposed a conjecture which states that for any

non-Abelian finite simple groups G, S(G) is not Hamiltonian. Consider the Mathieu

groups M11 and M22. It can be seen that corresponding graphs S(M11) and S(M22)

are not Hamiltonian. Since these graphs contain cliques H11 ⊂ S(M11) and H7 ⊂
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S(M22) such that no vertex of these cliques are adjacent to any vertex in S(M11) \
{H11, e} and S(M22) \ {H7, e}, respectively.

In the following theorem we use this idea and prove that S(An) is not Hamilto-

nian for n ≥ 5, where An denotes non-Abelian finite simple alternating group on n

symbols.

Theorem 5.5. For any alternating group An, n ≥ 5 of permutation group Sn,

S(An) is not Hamiltonian.

Proof. For given integer n ≥ 5, there always exist a prime number p ∈ (bn2 c, n)

and cycle of order p in An. Let Pp be a spanning path in S(An) corresponding to

wp(An). Clearly, one of the last vertex of Pp will not adjacent to any other vertex

implying that S(An) is not Hamiltonian.

Consider the following question posted by Hamzeh and Ashrafi in [14]:

Problem 5.1. In a finite non-Abelian simple group G, can we always find an

integer r, such that elements in wr(G) of order r (as we have done in case of An)

are not adjacent to any vertex of S(G) \ Hr other than e ∈ G, where Hr is the

induced subgraph on wr(G)?

Note that, when such a subgraph Hr exists, then S(G) is not Hamiltonian.

From the above remarks, can we generalize these observations to any finite non-

Abelian simple groups. If so, then we can state an interesting property for any

simple group as follows:

Problem 5.2. If G is a non-Abelian, non-p finite simple group then S(G) is non-

Hamiltonian. In other words, if S(G) is Hamiltonian, then G cannot be a non-

Abelian simple group.

With this observation, we next move on to study when the graph S(G) becomes

Eulerian. In [14], it was proved that S(G) is Eulerian if and only if G is a group of

odd order. Now what will be the effect on order of G if we removed all dominant

vertices from S(G). Following theorem gives answer of this question.

Theorem 5.6. Let G be a finite non p-group. Then HG is Eulerian if and only if

O(G) is even integer.

Proof. Suppose HG is Eulerian. Let π(G) = {a1, a2, · · · , a`} be the set of all

element orders in G. Then for any x ∈ G with o(x) = ai

degHG(x) = wai(G) +
∑

ai|aj or aj |ai ai 6=aj

waj (G)− 1. (5.1)

For each i, 1 ≤ i ≤ `, number of elements of order ai = tiφ(ai), where ti is the

number of cyclic subgroups of order ai in G. Also, it is well known fact that φ(k) is

odd if and only if k ∈ {1, 2}. Clearly, degHG(x) is even if and only if expression in
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(5.1) is even which is possible if and only if G must have odd numbers of involutions

elements. Thus, o(G) is even. Conversely, If n is even then by Cauchy theorem, G

and hence G must have an involutions and these are odd in numbers. By expression

in 5.1, degree of any element in HG is even. Thus, HG is Eulerian.

5.2. Vertex connectivity of S(G)

It is well known that any graph containing Hamiltonian cycle is 2-connected and

hence S(G) is 2-connected for any finite group G having an element of order exp(G).

In the following theorem, we are giving the tight lower bound for the vertex con-

nectivity of S(G) for any finite group G having an element of order exp(G), which

extend the results [14, Theorem 2.7] and [13, Theorems 2.11].

Theorem 5.7. Let G be a finite group having an element of order exp(G). Then

κ(S(G)) ≥ tφ(exp(G)) + 1, where t is the number of distinct cyclic subgroups of

order ak in G. Further, κ(S(G)) = tφ(exp(G)) + 1 if and only if exp(G) = pq,

where p, q are different primes.

Proof. Let G be a finite group having an element of order ak = exp(G). Then to

disconnect S(G), we need to remove at least all vertices of dom(S(G)), since these

vertices are adjacent to all other vertices of S(G). This implies that κ(S(G)) ≥
tφ(exp(G)) + 1.

Next we prove the second part of the statement. Let exp(G) is product of two

distinct primes, that is ak = pq and G = G \ ({e}∪wak(G)). Since there is no path

between elements of order p and q, the induced subgraph HG is disconnected. Thus

κ(S(G)) = tφ(ak) + 1.

Conversely, assume that κ(S(G)) = tφ(ak) + 1. Suppose G has an element of

order exp(G) = ak which satisfies ak = pα1qβ1 and α1, β1 are integers, α1, β1 ≥ 1

and either α1 > 1 or β1 > 1. We will prove that κ(S(G)) > tφ(ak) + 1 by showing

that HG is connected. For u, v ∈ V (HG), take w, x, z ∈ V (HG) with o(w) is the

least prime divisor of o(u) and o(z) is the least prime divisor of o(v) and o(x) is

the product of least prime divisors of o(u) and o(v). Then P :=< u,w, x, z, v >

is a path between u and v. Also, by the same way it can be shown that HG is

connected if exp(G) has at least three prime divisors. Otherwise, HG is connected.

Thus, exp(G) has at most two prime divisors with ak = pq in G.

Let G be a finite group of order n = pα1
1 pα2

2 · · · pαmm ,m ≥ 2 having an element

of order ak = exp(G). Let the prime decomposition of ak = pβ1

1 p
β2

2 · · · pβss , 1 ≤ s ≤
m,βi ≥ 0, 1 ≤ i ≤ s. Let a0 = pβ1

1 , a1 =
ak
a0

and π(G) = {a0, a1, a2, · · · , ak} be the

set of all orders of elements in G.

In the following theorem, we find the tight upper bound for the vertex connec-

tivity of S(G) using the notations defined above.

Theorem 5.8. Let G be a finite group of order n = pα1
1 pα2

2 · · · pαmm ,m ≥ 2. Then
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there exist a minimal separating set T of S(G) with

κ(S(G)) ≤ |T | =
∑

(ai|a1 or a1|ai,ai 6=a1)

tiφ(ai), (5.2)

where ti is the number of distinct cyclic subgroups of order ai in G. Also, this bound

is tight.

Proof. Consider the graph S(G) and define a set T in S(G) as follows:

T = {wai(G)| ai|a1 or a1|ai, 2 ≤ i ≤ k},

Clearly, T is a separating set of S(G), since there is no path between any vertices

of the cliques wa0(G) and wa1(G). Let A and B are two connected component of

S(G) \ T such that wa0(G) ∈ A and wa1(G) ∈ B. Now, we prove that this set is a

minimal separating set by showing that for any non empty subset T † of T , there

is a path, connecting u ∈ wa0(G) and v ∈ wa1(G) in S(G) \ T †. Without loss of

generality assume that T \ T † = {x} with x ∈ war (G). Since either ar|a1 or a1|ar,
there exist a path P1(u, x), connecting u and x in A ∪ wr(G). Similarly, let y ∈ B
such that o(y) = arp

βs
s , then there exist a path P2(y, v), connecting y to v in B.

Now, consider the path P =:< P1(u, x), x, y, P2(y, v) > which connect u to v in

S(G) \ T †. Thus, T is a minimal separating set of S(G). If ti, number of cyclic

subgroups of order ai in G, 1 ≤ i ≤ r. Then

|T | =
∑

(ai|a1 or a1|ai), ai 6=a1

tiφ(ai).

Thus, κ(S(G)) ≤ |T |.
Now, we show that the obtained bound is in fact tight. That is, there exists a

minimum separating set T , with |T | given above serve the κ(S(G)) for the group

G ' D2n when n = 2αpβ . Clearly, in line with the above proof, the separating

set given by T = {wpi(G) : 0 ≤ i ≤ β − 1} ∪ {w2jpβ (G) : 1 ≤ j ≤ α} with

|T | = pβ−1 + (2α − 1)(pβ − pβ−1) is minimal. Next we show that T is, in fact,

minimum. Let T † be any other minimal separating set of S(D2n).

Claim |T †| ≥ |T |: Without loss of generality assume that S(G) \ T † has two com-

ponents say A and B. Let x ∈ A and y ∈ B be such that there is no path joining x

and y in S(G) \ T †. Clearly, both x and y are not of odd order, otherwise they will

be adjacent. Also, both x are y are not of even order, otherwise they can be joined

through an element of w2(G). Note that if w2(G) ⊂ T †, then |T †| ≥ |T |. Finally,

let us assume that o(x) = p` and o(y) = 2spt for some 1 ≤ s ≤ α, 1 ≤ t < ` ≤ β.

Therefore, the minimal separating set T †, that separates x and y, is then given by

T † =
{
wpi(G) : 0 ≤ i < `

}⋃{
w2jp`(G) : 1 ≤ j ≤ α

}⋃{
w2jpi(G) : 1 ≤ j ≤ α, `+ 1 ≤ i ≤ β

}
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and with

|T †| =
`−1∑
i=0

φ(pi) +

α∑
j=1

φ(2jp`) +

α∑
j=1

β∑
i=`+1

φ(2jpi) = p`−1 + (2α − 1)(pβ − p`−1).

Thus, we get that |T †| − |T | = (2α − 2)(pβ−1 − p`−1) ≥ 0. Hence, T is a minimum

separating set of S(G).

Corollary 5.8. Let G be an finite non p-group of order n having an element of

order = ak = exp(G). If ak is not a product of two distinct prime, then the bounds

of κ(S(G)) is given by

tφ(exp(G)) + 1 ≤ κ(S(G)) ≤ |T |, when exp(G) is a product of two primes and

tφ(exp(G)) + 3 ≤ κ(S(G)) ≤ |T |, otherwise

where t denotes the number of cyclic subgroups of order ak in G and T is the

minimal separating set given in theorem 5.8 and |T | is given by equation (5.2).

Proof. Note that the required lower bound follows from Corollary 5.6 and Theorem

5.7 while the upper bound follows from Theorem 5.8.

6. Conclusion

In this paper, we have mostly studied the finite non-Abelian groups having an ele-

ment of exponent order and their superpower graphs. We have studied the structure

of superpower graphs in terms of their separating sets and have given tight bounds

for the vertex connectivity. Further, we have also discussed the Hamiltonian-like

properties of these superpower graphs. Overall, these results extend the scope for

the superpower graphs defined on finite Abelian groups to finite non-Abelian groups.

We conclude this article with an open problem:

Problem 6.1. Characterize non-simple groups which do not have any element of

exponent order such that their superpower graph is non-Hamiltonian.

References

[1] Jemal Abawajy, Andrei Kelarev, and Morshed Chowdhury, Power graphs: A survey.
Electronic Journal of Graph Theory and Applications (EJGTA), 1(2):125–147, 2013.

[2] Alireza Khalili Asboei and Seyed Sadegh Salehi, Some results on the main supergraph
of finite groups. Algebra and Discrete Mathematics, 30(2):172–178, 2020.

[3] J. A. Bondy and U. S. R Murty, Graph Theory. Springer Publishing Company, In-
corporated, 1st edition, 2008.

[4] Rolf Brandl, Finite groups all of whose elements are of prime power order, Bollettino
UMI (5) 18(A) (1981), 491–493.

[5] Peter J. Cameron and Natalia Maslova, Criteria of unrecognizability of a finite group
by its Gruenberg-Kegel graph, J. Algebra 607 (2022), 186–213.

[6] Ivy Chakrabarty, Shamik Ghosh, and M K Sen, Undirected power graphs of semi-
groups. In Semigroup Forum, volume 78, pages 410–426. Springer, 2009.



February 14, 2023 21:49 WSPC/INSTRUCTION FILE ws-jaa

The Superpower Graphs of Finite Groups 17

[7] Maria Chudnovsky, Neil Robertson, Paul Seymour and Robin Thomas, The strong
perfect graph theorem, Ann. Math. 164 (2006), 51–229.

[8] Stephen J Curran and Joseph A Gallian, Hamiltonian cycles and paths in cayley
graphs and digraphs—a survey. Discrete Mathematics, 156(1-3):1–18, 1996.

[9] Robert P. Dilworth, A decomposition theorem for partially ordered sets, Ann. Math.
51 (1950), 161–166.

[10] Joseph A. Gallian, Contemporary abstract algebra. Narosa publishing house, fourth
edition, 1999.

[11] Asma Hamzeh and Ali-Reza Ashrafi, Automorphism groups of supergraphs of the
power graph of a finite group. Europ. J. Combinatorics, 60:82–88, 2017.

[12] Asma Hamzeh and Ali Reza Ashrafi, Spectrum and l− spectrum of the power graph
and its main supergraph for certain finite groups. Filomat, 31(16):5323–5334, 2017.

[13] Asma Hamzeh and Ali Reza Ashrafi, The order supergraph of the power graph of a
finite group. Turk J Math, 42(4):1978–1989, 2018.

[14] Asma Hamzeh and Ali Reza Ashrafi, Some remarks on the order supergraph of the
power graph of a finite group. International Electronic Journal of Algebra, 26(26):1–
12, 2019.

[15] Andrei Kelarev. Graph algebras and automata, CRC Press, 2003.
[16] Andrei V Kelarev, Ring constructions and applications, volume 9. World Scientific,

2002.
[17] Andrei Kelarev, Labelled cayley graphs and minimal automata. Australasian J. Com-

binatorics, 30:95–101, 2004.
[18] Andrei Kelarev, Joe Ryan, and John Yearwood, Cayley graphs as classifiers for

data mining: the influence of asymmetries. Discrete Mathematics, 309(17):5360–5369,
2009.

[19] Ajay Kumar, Lavanya Selvaganesh, Peter J Cameron, and T Tamizh Chelvam, Recent
developments on the power graph of finite groups–a survey. AKCE International
Journal of Graphs and Combinatorics, 18(2):65–94, 2021.

[20] Ajay Kumar, Lavanya Selvaganesh, and T Tamizh Chelvam, Structural Properties
of Super PowerGraph of Dihedral Group D2n. preprint: submitted for Publication.

[21] Cai Heng Li, On isomorphisms of finite cayley graphs—a survey. Discrete Mathemat-
ics, 256(1-2):301–334, 2002.

[22] Xuanlong Ma and Huadong Su, On the order supergraph of the power graph of a
finite group. Ricerche di Matematica, pages 1–10, 2020.

[23] Mahsa Mirzargar, A survey on the automorphism groups of the commuting graphs
and power graphs. Facta Universitatis, Series: Mathematics and Informatics, pages
729–743, 2019.

[24] A. V. Vasiliev and Evgeny P. Vdovin, An adjacency criterion for the prime graph of
a finite simple group. Algebra and Logic, 44(6):381–406, 2005.

[25] David Witte and Joseph A Gallian, A survey: Hamiltonian cycles in cayley graphs.
Discrete Mathematics, 51(3):293–304, 1984.

Acknowledgements

The research work of

(a) Ajay Kumar is supported by CSIR-UGC JRF, New Delhi, India, through

Ref No.: 19/06/2016(i) EU-V/Roll No. 417267.

(b) Lavanya Selvaganesh is partially supported by SERB, India, through Grant

No. MTR/2018/000254 under the scheme MATRICS.



February 14, 2023 21:49 WSPC/INSTRUCTION FILE ws-jaa

18 Ajay Kumar et. al.

(c) T. Tamizh Chelvam is supported by CSIR Emeritus Scientist Scheme of

Council of Scientific and Industrial Research (No.21(1123)/20/EMR-II),

Government of India.


