
Methods Ecol Evol. 2024;00:1–11.    | 1wileyonlinelibrary.com/journal/mee3

Received: 20 September 2023  | Accepted: 4 March 2024

DOI: 10.1111/2041-210X.14326  

R E S E A R C H  A R T I C L E

Ghostbusting—Reducing bias due to identification errors in 
spatial capture- recapture histories

Abinand Reddy Kodi1  |   Jasmin Howard1 |   David Louis Borchers1,2  |   
Hannah Worthington1  |   Justine Shanti Alexander3 |   Purevjav Lkhagvajav4 |   
Gantulga Bayandonoi5 |   Munkhtogtokh Ochirjav5 |   Sergelen Erdenebaatar5 |   
Choidogjamts Byambasuren4 |   Nyamzav Battulga5 |   Örjan Johansson3,6  |   
Koustubh Sharma3

1Centre for Research into Ecological and Environmental Modelling, School of Mathematics and Statistics, University of St Andrews, St Andrews, UK; 2Centre 
for Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch, South Africa; 3Snow 
Leopard Trust, Seattle, Washington, USA; 4Snow Leopard Conservation Foundation, Ulaanbaatar, Mongolia; 5World Wide Fund for Nature–Mongolia, 
Ulaanbaatar, Mongolia and 6Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2024 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Correspondence
Abinand Reddy Kodi
Email: ar337@st-andrews.ac.uk

Funding information
The Centre for Research into Ecological 
and Environmental Modelling

Handling Editor: Graziella Iossa

Abstract
1. Identifying individuals is key to estimating population sizes by spatial capture–

recapture, but identification errors are sometimes made. The most common 
identification error is the failure to recognise a previously detected individual, 
thus creating a ‘ghost’ Johansson. This results in positively biased abundance 
estimates.

2. Ghosts typically manifest as single detection individuals (‘singletons’) in the cap-
ture history. To deal with ghosts, we develop a spatial capture–recapture method 
conditioned on at least K detections. The standard spatial capture–recapture 
(SCR) model is the special case of K = 1. Ghosts can mostly be excluded by fitting 
a model with K = 2 (SCR- 2).

3. We investigated the effect of ‘singleton’ ghosts on the estimation of the model 
parameters by simulation. The SCR method increasingly overestimated abun-
dance with increasing percentage of ghosts, with positive bias even when only 
10% of the detected individuals were ghosts, and bias between 43% and 71% 
when 30% were ghosts. Estimates from the SCR- 2 method showed lower bias 
in the presence of ghosts, at the cost of a loss of precision. The mean squared 
error of the estimated abundance from the SCR- 2 method was lower in all sce-
narios with ghosts under high encounter rates and for scenarios with 30% or 
more ghosts with low encounter rates. We also applied our method to capture 
histories from camera trap surveys of snow leopards (Panthera uncia) at two sites 
from Mongolia and find that the SCR method produced higher abundance esti-
mates at both sites.
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1  |  INTRODUC TION

Estimating abundance and tracking changes in population sizes 
are imperative to inform conservation efforts for wildlife species. 
Spatial capture–recapture (SCR) methods (Borchers & Efford, 2008; 
Efford, 2004; Royle & Young, 2008) are widely used to estimate the 
abundance and distribution of species that can be individually iden-
tified. These methods rely on correctly identifying re- detections of 
animals and may give biased estimates if errors are made in animal 
identification. Here, we focus on non- invasive surveys in which an-
imals are not marked by surveyors but are uniquely identified from 
some innate features such as body markings in photographs in the 
case of a camera trap survey, or genetic fingerprinting from scat 
samples in the case of a scat survey.

Identification errors in camera trap surveys can occur due to 
poor observation conditions, poor quality photographs of individu-
als or variation in markings over time (Stevick et al., 2001). The level 
of experience of the people who perform the identification may also 
be a factor. For example, Gibbon et al. (2015) found that observers 
experienced in working with mountain bongos (Tragelaphus euryce-
rus isaaci) made identification errors in around one- sixth of cases, 
while inexperienced observers made errors in about one- fifth of 
cases when asked to determine whether pairs of photographs were 
of the same individual.

Like camera trapping, genotyping methods are known to be 
prone to errors. This led to the development of Mt,� models for non- 
spatial capture–recapture (CR) surveys (Lukacs & Burnham, 2005). 
In this model, identification errors lead to artificially introduced 
individuals that Yoshizaki (2007) termed ‘ghosts’. The Mt,� model 
estimates an additional parameter �, the probability that a single 
detection was identified correctly, to account for ghosts. Lukacs 
and Burnham (2005), however, do not model in their likelihood 
the probability that the misidentified single detection is another 
individual's recapture. This shortcoming was addressed by Link 
et al. (2010) and extended by Bonner et al. (2016) using a Bayesian 
approach. A more efficient maximum likelihood estimator for the 
Mt,� model was subsequently proposed by Vale et al. (2014) which 
allowed for more thorough investigation of the statistical prop-
erties of the model. However, it has been difficult to apply these 
models to real data, and the resulting population size estimates 

suffer from poor precision unless there are high capture prob-
abilities or many capture occasions (Vale et al., 2014). Wright 
et al. (2009) proposed that the identification error rate may be 
estimated directly by genotyping all samples at least twice, but 
this is not always cost- effective, so manual error correction prior 
to modelling may be preferable (Fewster, 2017). Yoshizaki (2007) 
proposed and developed a model dropping all single captures and 
conditioning on at least two captures in the CR likelihood. Conn 
et al. (2011) generalised this method to account for transient ani-
mals in a survey.

Identification errors from photographs can be more complex 
than simply creating ghosts. Different types of misidentification 
errors can have different impacts on the structure of a capture 
history (the record of detections for each individual), and hence on 
abundance estimates. As outlined in Johansson et al. (2020), split-
ting errors occur when a photographic capture of an individual is not 
matched to the correct individual, and is not matched to any other 
individual, splitting the capture history of the correct individual in 
two and creating a ‘ghost’. A combination error occurs when all cap-
tures of an individual are falsely matched to a different individual, 
removing an entire capture history and reducing the (recorded) num-
ber of individuals detected. A shifting error is when a splitting error, 
reducing the capture history of one individual, is combined with a 
combination error from another individual; the capture event moves 
between individuals without changing the number of individuals de-
tected. An exclusion error occurs when photographs are discarded 
despite containing sufficient information to make an identification, 
reducing the number of captures in their capture history. Splitting 
errors will lead to positively biased abundance estimates, combina-
tion errors will lead to negative bias. Johansson et al. (2020) found 
abundance estimates using closed population capture–recapture 
methods to be largely unaffected by shifting errors, but may be bi-
ased due to exclusion errors if these do not also cause a reduction in 
the number of animals within capture histories, or if there is hetero-
geneity in the probability of exclusions among individuals.

If marking patterns do not change considerably over the survey 
period and vary sufficiently between individuals, falsely identifying 
captures of two different individuals as being from the same indi-
vidual (as in combination errors and some shifting errors) should 
be rare (Morrison et al., 2011). Van Horn et al. (2014) found that 

4. Capture histories are susceptible to errors when generated from passive detec-
tors such as camera traps and genetic samples. The SCR- 2 method can remove 
bias from ghost capture histories, at the cost of some loss in precision. We recom-
mend using the SCR- 2 method in cases when there may be more than 10% ghosts 
or surveys with a large number of single detection capture histories, except per-
haps when the sample size is very low.

K E Y W O R D S
camera trapping, misidentification, population estimation, singletons, spatial capture–
recapture
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observers who continued to make errors after training were twice 
as likely to falsely identify two photos of the same bear as two 
different Andean bears (Tremarctos ornatus) than falsely match two 
different individuals. Stevick et al. (2001) found that observers did 
not falsely match different individuals, they only produced false- 
negative errors in which a photograph and a biopsy were falsely 
identified as being of two different humpback whales (Megaptera 
novaeangliae), mainly due to poor photographic quality. Johansson 
et al. (2020) found that the impact of splitting errors far outweighed 
the impact of combination errors in snow leopard (Panthera uncia) 
CR surveys, resulting in systematically positively biased abundance 
estimates—by one- third on average. They further noted that split-
ting errors, typically resulting in singleton ghosts, were the most 
common of the misidentification errors.

Spatial capture–recapture methods have been developed to 
deal with situations in which no identities are known (Chandler & 
Royle, 2013), in which only a fraction of the population is marked and 
these animals are identifiable without errors (Sollmann et al., 2013; 
Whittington et al., 2018), and in which single flanks of individuals 
are observed without errors, but the two flanks of the same individ-
ual cannot be confidently matched (Augustine et al., 2018). Jiménez 
et al. (2021) implemented a random thinning model to account for ex-
clusion errors—detections that are discarded as a result of not being 
able to identify them either as an existing or as a new individual. There 
is currently no method that can effectively account for ghosts in SCR.

Here, we extend the method proposed by Yoshizaki (2007) for 
non- spatial CR, to deal with ghosts in SCR. We do this by developing 
a maximum likelihood estimator for capture histories that involve at 
least K detections of individuals. We fit the SCR model conditioned 
on at least two captures (SCR- 2) to exclude ghosts, the rationale 
being that ghosts are predominantly singletons and so can be ex-
cluded by using K = 2.

We first investigate the properties of the SCR- 2 method by sim-
ulation. We investigate the bias, standard error and mean squared 
error of SCR and SCR- 2 parameter estimates caused by ghost cap-
ture histories, and use the simulation results to identify when using 
the SCR- 2 method would be advisable. We also implement the SCR- 2 
method on two camera trap surveys of snow leopards (Panthera 
uncia) and compare estimates from the SCR and SCR- 2 models.

2  |  MATERIAL S AND METHODS

2.1  |  Model formulation

Consider a passive detector survey, such as hair snares (binary de-
tectors) or camera traps (count detectors) across multiple occasions 
over a survey period. We assume the individuals i = 1, 2, … ,N move 
around their activity centres, and we model the spatial distribution 
of these activity centres as a realisation of a Poisson point process 
over the survey region X ∈ ℝ

2. Let s ∈ X denotes the location of 
any activity centre and si denotes the activity centre of individual i . 
The intensity of the point process that generates activity centres is 

D
(
zs ,�

)
, or D(s;�) for brevity, where zs is a vector of covariate values 

at s and � is the parameter vector of the point process.
Suppose J traps are placed across the survey region on T occa-

sions. Let xj ∈ X denotes the location of the jth trap. Let �ijt be the 
number of times individual i  was detected at trap j on occasion t. For 
binary detectors, �ijt = 1, if individual i  was detected at trap j on oc-
casion t and zero otherwise. For detectors that record counts �ijt ∈ ℕ . 
Let �ij =

(
�ij1, … ,�ijT

)
 be the vector of the ith individual's capture 

history at trap j, �ij⋅ =
∑T

t=1
�ijt be the number of times individual 

i  was detected at trap j across all T occasions, �i =
(
�i1., … ,�iJ.

)
 

be the vector of the ith individual's capture history at each of the J 
traps across all occasions and �i⋅ =

∑J

j=1
�ij. be the total number of 

times individual i  was detected. Let n(K) be the number of individuals 
detected at least K times in the survey (so that n(1) is the total number 
of individuals detected). Ω(K) =

(
�i; i = 1, … , n(K)

)
 denotes the set 

of capture histories for the n(K) individuals with �i⋅ ≥ K, that is, the 
capture histories with at least K detections.

The conditional probabilities of the capture histories given the 
activity centres �ijt ∣ si are assumed to be independent. Based on 
the type of observations generated by the detector, any suitable 
distribution can be used to model them. For binary detector sur-
veys, we define the probability of detecting an individual i  with an 
activity centre at si at trap j located at xj on occasion t to be pjt

(
si;�

)
 , 

and this is typically modelled as �ijt ∣ si ∼ Bernoulli
(
pjt
(
si;�

))
. For 

detectors that record counts, we define the expected number of 
encounters at trap j located at xj for an individual i  with an activ-
ity centre at si to be �jt

(
si;�

)
. This is most commonly modelled as, 

�ijt ∣ si ∼ Poisson
(
�jt

(
si;�

))
. Other distributions such as the negative 

binomial may also be used to model count data. Here, � is the vector 
of observation process parameters; for readability, we omit the � 
term below.

The observation process for binary data modelled by a Bernoulli 
distribution can be reformulated in terms of the expected encounter 
rate of a Poisson distributed for a given T (Efford et al., 2013) vary-
ing. For a single occasion,

If the detection probability or the expected encounter rates do not  
depend on occasion, then the capture histories can be further collapsed 
across occasions and �ij⋅ ∣ si ∼ Binomial

(
T , pj

(
si

)) and �ij⋅ ∣ si ∼ Poisson
(
�j

(
si

)), 
where pj

(
si

)
= pjt

(
si

) and �j
�
si

�
=
∑T

t=1
�jt

�
si

�
= T�jt

�
si

�
. From Equation 1, 

we also have pj
(
si

)
= 1 − e−�j(si)∕T.

The expected number of encounters �j
(
si

)
 can be modelled 

by various functions based on how we expect the animal to move 
around its activity centre si. Most commonly, �j

(
si

)
 is modelled as 

a function of di,j, the distance between individual i's activity centre 
si and trap j, and the encounter parameters 

(
�0, �

)
∈ �, where �0 is 

the encounter rate at the individual's activity centre and � is the 
range parameter. The detection probability can be modelled with 
parameters 

(
g0, �

)
∈ �, where g0 is the detection probability at the 

individual's activity centre. In what follows, we work in terms of the 
expected encounter rate.

(1)pjt
(
si

)
= 1 − e−�jt(si).
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4  |    KODI et al.

The expected number of encounters across all J traps of an indi-
vidual with an activity centre at si is �

⋅

�
si

�
=
∑J

j=1
�j

�
si

�
. Via the ad-

ditive property of the Poisson distribution �i⋅ ∣ si ∼ Poisson
(
�
⋅

(
si

))
 . 

The probability of detecting animal i  with an activity centre at si at 
least K times is:

Based on our assumption that the number of detections follows 
a Poisson distribution, p(K)

⋅

�
si;�

�
= 1 −

∑K−1

k=0

�
⋅
(si)

k
exp[ − �

⋅
(si)]

k!
. This al-

lows us to compute the probability of the capture history of an indi-
vidual conditioned on at least K encounters.

Under our assumptions, the number of individuals detected at 
least K times, n(K), is a Poisson random variable with parameter:

Adapting the likelihood function of Borchers and Efford (2008) 
to deal only with animals that were detected at least K times, we 
have the likelihood function:

The likelihood function of Borchers and Efford (2008) is recov-
ered by setting K = 1. From the maximum likelihood estimate of the 
density, the expected abundance, E

[
N
]
 can be derived by

In common with other SCR inference methods, we discretise X 
into a mesh. Likelihood maximisation was performed using the R 
programming language (R Core Team, 2022). Standard SCR models 
were fit using the secr package (Efford, 2022). We also develop a 
hypothesis test that can be used to diagnose the presence of ‘ghosts’ 
within capture histories (Supporting Information S2).

2.2  |  Simulations

The performance of the methods was assessed using a simulation 
study. In particular, we investigated the impact of ghosts in the 
capture histories on the bias of the parameter estimates for both 
models. Reducing sample size by dropping single detections in the 
SCR- 2 method is bound to increase the variance of the estimated 
parameters. To understand the trade- off between bias and variance 
between the two models, we checked the mean squared errors of 
the parameter estimates to identify when using the SCR- 2 method 
would be advisable over using standard SCR.

We simulated 100 survey regions as a 64 × 64 square grid with 
each grid cell having an area of 4307 m2. The surveys consisted of 25 
traps deployed in a grid layout with a spacing of 450 m. Each of the 
grid cells in a landscape was assigned a spatial covariate value drawn 

from a standard normal distribution and the entire grid was smoothed 
to introduce spatial correlation. To reduce any site- specific effects, 
each of the 100 landscapes was simulated with different realisations 
of the spatial covariate. One realisation of a landscape with the trap 
layout is shown in Figure 1.

Populations within each survey were simulated as an inhomoge-
neous Poisson point process, modelled with a log- linear relationship 
to the simulated spatial covariate: D(s) = exp

(
�0 + �1zs

)
; where zs is 

the value of the spatial covariate at point s and �0, �1 are the inter-
cept and slope of the log- linear model. A high abundance (�0 = 0.06 ) 
and a low abundance (�0 = 0.03) scenario were simulated for each of 
the landscapes. The slope was fixed at �1 = 0.1 in both cases. This 
generated a total of 200 populations. Sets of capture histories were 
simulated from these populations, assuming a Poisson detection pro-
cess, using a half normal encounter rate, �j

(
si

)
= �0e

−d2
i,j
∕2�2. �0 = 1 and 

�0 = 2 were used to generate capture histories with low and high en-
counter rates, respectively. � was fixed at 300. This resulted in 400 
sets of capture histories.

Ghosts were then introduced to each set of the simulated capture 
histories by randomly splitting detections of individuals encountered 
more than once and creating new single detection ghost capture 
histories. More than one detection of any individual could become a 
ghost as long as there remained at least one detection in the original 
individual's capture history. The number of ghosts introduced was 
proportional to the total number of individuals detected in each sim-
ulation. For each simulated set of capture histories, three new sets of 
capture histories were created with 10%, 20% and 30% of the total 
number of individuals truly detected introduced as ghosts.

This resulted in a total of 1600 sets of capture histories. The 
SCR and the SCR- 2 models were fit to each data set. Both models 
were fit assuming an inhomogenous point process, modelled to the 
simulated spatial covariate. We investigated relative bias, the stan-
dard error and the mean squared error (MSE) (Bias2 + Variance) of 
the estimated parameters �0, � and E

[
N
]
 for both models. To inves-

tigate computation costs, we measure the time taken, under our 

(2)p(K)
⋅

(
si;�

)
= 1 −

K−1∑

k=0

p
(
�i⋅ = k| si

)
.

(3)Λ(K) = ∫
X

D(s;�)p(K)
⋅

(s;�)ds.

(4)L
(
�,�|Ω(K)

, n(K)
)
=
e−Λ

(K)

n(K)!

n(K)∏

i=1
∫
X

J∏

j=1

p
(
�ij|s;�

)
D(s;�)ds.

(5)E
[
N
]
= ∫

X

D
(
s; �̂

)
ds.

F I G U R E  1  One realisation of the simulated survey landscape. 
The colour in each grid cell represents the value of the spatial 
covariate at that cell. Traps are shown by the red crosses.
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    |  5KODI et al.

naive implementation, to evaluate the likelihood once for 100 dif-
ferent simulated sets of capture histories using both models. We 
also run simulations under identical scenarios for binary detections 
(Supporting Information S1).

2.3  |  Case study: Snow leopards in Mongolia

The population assessment of the world's snow leopards (PAWS) is 
a multinational survey programme that aims to produce a robust es-
timate of the distribution and abundance of the world's snow leop-
ards. Mongolia has been one of the leaders in conducting surveys for 
this programme. Bayandonoi et al. (2021) obtained estimates of the 
distribution of snow leopards across the country using occupancy 
methods (MacKenzie et al., 2017) to bolster abundance estimates 
from existing camera trap surveys. These occupancy estimates were 
used to design further surveys that spanned the estimated distribu-
tion range of snow leopards in Mongolia. For this case study, we 
verify data from two of these sites: Munkhkhairkhan and Tost. Tost 
has been a long- term monitoring site for snow leopards, with an-
nual camera trap surveys being conducted for over a decade. Snow 
leopard individuals in Tost have been followed across years, with 
several cats that have been captured and collared. We expect fewer 
misidentification errors in the Tost capture histories compared to 
Munkhkhairkhan which was surveyed for the first time.

Munkhkhairkhan was surveyed between May and September 
2017 where 102 traps were deployed over an area of 9841 km2. The 
Tost survey for PAWS was conducted between September 2019 and 

January 2020. Forty traps were set up over an area of 1902 km2 in 
Tost. Survey regions and trap layouts are shown in Figure 2.

We estimated abundance and related parameters in both sites 
using standard SCR methods (including singletons) and the SCR- 2 
model (removing the singletons). Density was modelled as a log- 
linear function of the estimated occupancy probability that was ob-
tained from Bayandonoi et al. (2021). The half normal encounter rate 
was used to model the counts of detections at the traps conditional 
on the activity centres.

3  |  RESULTS

3.1  |  Simulations

Summaries of the populations and capture histories simulated are 
shown in Table 1. Ten percent of the population introduced as ghosts 
resulted in an average of 1.86 (SD = 0.49) ghosts, for the low abun-
dance, low encounter scenario; 2.34 (SD = 0.57) ghosts, for the low 
abundance, high encounter scenario; 3.91 (SD = 0.77) ghosts, for the 
high abundance, low encounter scenario and 4.86 (SD = 0.89) ghosts, 
for the high abundance, high encounter scenario. This resulted in an 
average increase of around five single detection capture histories 
under the high abundance scenarios and two single detection cap-
ture histories under the low abundance scenarios irrespective of the 
encounter rates. Lower encounter rates result in capture histories 
with fewer recaptures, which are more prone to being turned to sin-
gle detection capture histories by misidentification errors.

F I G U R E  2  Survey regions of (a) Munkhkhairkhan and (b) Tost. Background colours show the occupancy probabilities estimated by 
Bayandonoi et al. (2021), used to model densities. Configurations of traps across the two survey sites are represented by red crosses. The 
survey regions are not to scale.
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6  |    KODI et al.

Relative bias (RB) for no- ghost scenarios was generally smaller for 
estimated parameters compared to scenarios with ghosts for both 
methods (Figure 3). The SCR model, however, consistently overesti-
mated abundance when ghosts were introduced and the RB of abun-
dance increased with the proportion of detected individuals introduced 
as ghosts. The RB was always higher for the estimated abundance and 
�0, in scenarios with lower detection rates when ghosts were intro-
duced. The variance of the parameters for all estimates from the SCR- 2 
model was higher than those from the SCR model due to lower sample 
sizes and MSE was therefore higher for all parameter estimates for the 
SCR- 2 models when no ghosts were introduced. Considering only ex-
pected abundance: For high encounter rate scenarios, SCR- 2 had com-
parable MSE to SCR at 10% of the detected individuals introduced as 
ghosts, the MSE for SCR- 2 is notably lower for higher proportions of 
ghosts introduced; for low encounter rate scenarios, SCR- 2 had higher 
MSE to SCR at 10% of the detected individuals introduced as ghosts, 
performed comparably to SCR at 20% of detected individuals intro-
duced as ghosts. The MSE of the estimates of the expected abundance 
from the SCR- 2 models outperformed SCR models at 30% of the de-
tected individuals being introduced as ghosts under all scenarios.

Estimates of � showed minimal bias for both models even when 
ghost capture histories were introduced. Furthermore, there was little 
loss in precision for � estimates using the SCR- 2 model as the MSE 
was similar to that of SCR models under all simulation scenarios. The 
SCR model underestimated �0 when ghosts were introduced and bias 
increased with the proportion of individuals detected as ghosts. Even 
in the SCR- 2 model, the increasing trend in bias of �0 with increasing 
number of ghosts is observable. Fewer recaptured individuals imply 
lower encounter rates. In the SCR model, ghosts misinform the model 

by falsely suggesting lower encounter rates. Ghosts are recaptured 
falsely made into singletons; in the SCR- 2 model, dropping all single-
tons translates to dropping all true single- capture individuals and some 
misidentified recaptures. Dropping misidentified recaptures is anal-
ogous to an exclusion error, which results in lower encounter rates. 
While they may increase the uncertainty of estimates due to fewer 
detections, random exclusions do not bias the abundance estimate.

Under our implementation of the models, evaluating the likeli-
hood once for 100 different simulated sets of capture histories took 
45.21 s for the SCR model and 34.99 s for the SCR- 2 model. While 
the SCR- 2 model requires the additional computation of the condi-
tional probability of detecting an animal once given an activity cen-
tre, the computation time was expected to be lower due to fewer 
individuals in the data.

3.2  |  Case study: Snow leopards in Mongolia

Across the 102 traps in Munkhkhairkhan, 54 detections of snow 
leopards were made. Of these detections, 19 unique individuals 
were identified, of which eight were detected just once. In Tost, 177 
detections of 22 uniquely identified individuals were made at the 40 
traps. Three of the 22 were singletons. Estimates from both models 
are given in Table 2.

E
[
N
]
, the expected number of individuals, estimated by the 

SCR- 2 method was lower in both sites as compared to SCR. The 
SCR estimate was around 8% higher in Tost and over 24% higher 
in Munkhkhairkhan. The higher estimates in abundance is reflected 
inversely in lower encounter rates (�0) estimated by the SCR method. 

TA B L E  1  Summaries of the simulated populations and sets of capture histories under the various scenarios. �1 and � were both fixed 
under all scenarios at 0.1 and 300, respectively.

Density intercept (�0)
Encounter 
rate (�0)

Proportion of ghosts 
introduced

Mean (SD) values across simulations

Population 
size Total detections

Individuals 
detected

Single 
detections

High (0.06) High (2) 0% 107.3 (11.4) 177.2 (33.9) 48.4 (7.9) 11.8 (3.5)

10% 107.3 (11.4) 177.2 (33.9) 53.2 (8.8) 17.2 (4.2)

20% 107.3 (11.4) 177.2 (33.9) 58 (9.5) 22.4 (4.7)

30% 107.3 (11.4) 177.2 (33.9) 62.9 (10.2) 27.8 (5.6)

Low (1) 0% 107.3 (11.4) 87.1 (17.2) 39.3 (7.1) 15.8 (4.5)

10% 107.3 (11.4) 87.1 (17.2) 43.2 (7.8) 20.9 (5.2)

20% 107.3 (11.4) 87.1 (17.2) 47.1 (8.5) 25.8 (6)

30% 107.3 (11.4) 87.1 (17.2) 50.8 (9.2) 31.1 (7)

Low (0.03) High (2) 0% 53.5 (6.7) 81.4 (20.9) 23.5 (5) 6.1 (2.5)

10% 53.5 (6.7) 81.4 (20.9) 25.8 (5.5) 8.6 (2.8)

20% 53.5 (6.7) 81.4 (20.9) 28.1 (6) 11.3 (3.3)

30% 53.5 (6.7) 81.4 (20.9) 30.5 (6.5) 14 (3.8)

Low (1) 0% 53.5 (6.7) 41.8 (11.9) 18.3 (4.4) 7 (2.9)

10% 53.5 (6.7) 41.8 (11.9) 20.2 (4.8) 9.4 (3.3)

20% 53.5 (6.7) 41.8 (11.9) 22 (5.3) 11.7 (3.8)

30% 53.5 (6.7) 41.8 (11.9) 23.6 (5.8) 14 (4.4)
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    |  7KODI et al.

F I G U R E  3  Results from the simulation study. Red circles represent the mean of simulation estimates from the SCR model and the blue 
triangles represent the mean of simulation estimates from the SCR- 2 model. 95% error bars for the mean of the simulation estimates are also 
provided. (a) Relative bias computed as the ratio between the difference of the estimate from the true value and the true value. (b) Standard 
errors summarising the precision of the simulation estimates. (c) Log of the mean squared error of the simulation estimates from the true value. 
Each panel column represents one of the four scenarios for combinations of high and low abundance and encounter rates. Each panel row 
shows results for the estimates of expected abundance: E

[
N
]
 , expected encounter rate at the activity centre: �0, and the range parameter: �.
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Estimated � from both models were similar, with the absolute dif-
ference between both models being < 5. With the exception of 
the � estimate in Tost, dropping individuals with a single detection 
resulted in higher coefficients of variation for the estimates in the 
SCR- 2 model. There was no loss in the precision on � in Tost.

4  |  DISCUSSION

Non- invasive methods used in surveys for abundance estimation by 
SCR generate raw data such as photographs or genetic samples that 
have to be converted into capture histories for the model. The step 
of converting the raw data to capture histories is seldom error- free, 
irrespective of whether it is done manually or is automated. Errors in 
data processing leading to single detection ‘ghost’ individuals are the 
most common in capture histories derived from both genetic as well 
as camera trap data (Johansson et al., 2020; Yoshizaki, 2007). We 
propose the SCR- 2 method which we have demonstrated reduces 
the bias resulting from this common misidentification error across 
a number of sampling scenarios. The SCR- 2 likelihood disregards all 
single captures (and therefore, it is assumed, all ghosts) and is param-
eterised in terms of the probability of being detected at least twice, 
rather than at least once.

Our simulation study shows the effect of ghosts in the capture 
history on parameter estimates. Johansson et al. (2020) reported a 
splitting error probability of 0.11 for each detection that led to up to 
four ghosts (25% of detected individuals) by experts in their experi-
ment. However, they did not investigate whether this probability was 
affected by the total number of detections or individuals detected. 
More detections could lead to more ghosts or alternatively provide 
more reference images to reduce splitting errors. We therefore 
chose a conservative approach of introducing ghosts as a proportion 
of the number of individuals detected rather than a proportion of the 
total number of detections. Even at 10% of the detected individuals 
introduced as ghosts, there was a significant bias in the SCR abun-
dance estimate. In contrast, estimates from the SCR- 2 method were 
less biased under all scenarios of introduced ghosts.

Dropping single detections and fitting the SCR- 2 model lead to 
a loss in precision of the parameter estimates. With regards to MSE, 

SCR- 2 outperformed the SCR method at 10% of the detected indi-
viduals being introduced as ghosts under the high encounter rate 
scenarios suggesting that the reduction in bias outweighed the loss 
in precision. Under the low encounter rate scenarios, SCR- 2 had 
comparable MSE to that of SCR only at 20% of the detected indi-
viduals being introduced as ghosts. If error rates are expected to 
generate 10% or more ghost capture histories, we recommend using 
the SCR- 2 method over SCR for abundance estimation. In cases of 
low encounter rates, the modeller can choose between prioritising 
reduction in bias or variance, or alternatively given low sample sizes 
revisit the identification of the individuals from raw data. Within our 
case study, where the rates and types of misidentifications are not 
known, we show that there is a relative difference of 24% in abun-
dance estimates in the site we suspected to be prone to identifica-
tion errors. Based on the results from the simulation study, at 24% 
difference in the abundance estimates between the SCR and SCR- 2 
methods, it is likely that Munkhkhairkhan has identification errors 
that bias the abundance estimates from SCR.

Apart from camera trap surveys and genetic sampling, ghost re-
captures have been shown to be the most common misidentification 
error in other non- invasive sampling methods (Stevick et al., 2001), 
making the SCR- 2 method applicable in a larger range of surveys. 
Furthermore, SCR conditioned on at least K detections can also be 
used to deal with transient animals in a similar way to the CR method 
used by Conn et al. (2011). In cases where transients are expected to 
be detected more than once, given enough detections, higher numbers 
of detections can be dropped to estimate the resident population. The 
specific SCR- 2 model, where K = 2, has been independently developed 
and used to deal with potential false- positive detections of bowhead 
whale (Baleana mysticetus) calls in an acoustic spatial capture–recap-
ture study (Petersma et al., 2023). The Petersma et al. (2023) model is 
specified for a binomial detection process and the conditional proba-
bility of an individual being detected at least twice is computed numer-
ically, making it hard to scale for larger values of K.

It is straightforward to address heterogeneity in how ghosts 
are introduced. If individuals that are difficult to identify are more 
likely to generate ghosts, this heterogeneity can be modelled by 
adding individual- based covariates to �0 to model encounter rates. 
This could be the case in species where identifying individuals of 

TA B L E  2  Estimates and standard errors (SE ) from the SCR and SCR- 2 models for both the sites. CV, the coefficient of variation, is SE/
Estimate. ΔEst and ΔCV are the relative differences in the parameter estimates and CVs of the SCR and SCR- 2 models with respect to the 
SCR- 2 model.

Site Parameter

Estimate (SE) CV

�Est(%) �CV(%)SCR SCR- 2 SCR SCR- 2

Munkhkhairkhan E
[
N
]

33.06 (8.76) 26.58 (10.49) 0.26 0.39 24.38 −32.86

�0 0.011 (0.0024) 0.013 (0.0031) 0.23 0.24 −16.67 −6.56

� 5491.24 (575.79) 5758.48 (657.8) 0.10 0.11 −4.64 −8.21

Tost E
[
N
]

23.99 (5.13) 22.15 (5.11) 0.21 0.23 8.34 −7.47

�0 0.016 (0.0018) 0.017 (0.002) 0.12 0.12 −7.44 −0.91

� 7826.52 (431.34) 7684.95 (421.48) 0.06 0.05 1.84 0.49
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one sex is harder than the other, or if juveniles have less distinct 
markings than adults. The SCR- 2 method can be used to avoid bias 
from ghosts in other common SCR extensions such as the Mt model 
where detection probability depends on trapping occasion and Mh 
models where there is heterogeneity in capture probabilities of dif-
ferent individuals (Borchers & Efford, 2008). While it is unbiased 
in the absence of misidentifications, the SCR- 2 method, however, 
cannot be used to remove bias caused by ghost capture histories for 
Mb models where detection probability changes with repeated de-
tections. Baiting to lure animals to detectors such as camera traps 
or hair snares is common in surveys (Gardner et al., 2010; Green 
et al., 2020). This can elicit a behavioural response in individuals 
resulting in them being ‘trap- happy’, more likely to be recaptured, 
or ‘trap- shy’, less likely to be recaptured. If misidentification has led 
to ghost individuals, the SCR- 2 method cannot resolve the order of 
detections to model their appropriate detection probabilities. The 
ghost detection split from the true capture history may have been 
the first capture or one of the many recaptures, and estimates in 
this scenario may therefore be biased.

The hypothesis test we developed (Supporting Information S2), 
had low power and was different under each of the simulation sce-
narios. Running the hypothesis test to check for presence of ghosts 
would need to be accompanied by a power analysis of the test under 
the specific survey design and estimated parameters to interpret the 
results of the hypothesis test appropriately.

While ghosts are the result of the most common misidentifi-
cation errors, other misidentification errors also occur and further 
investigation is required to understand how they affect SCR and 
SCR- 2 estimates. Choo et al. (2020) review common errors in iden-
tifying camera trap images and outline best practices for teams to 
avoid them. Meanwhile, machine learning and deep learning meth-
ods for individual identification are areas of active research (Petso 
et al., 2022; Wang et al., 2022) and are becoming more accessible 
to practitioners. Similarly, model- based approaches to incorporate 
uncertainty in individual identities by leveraging partial identity 
(Augustine, 2018) and spatial information (Augustine et al., 2020) of 
detection illustrate effective frameworks for bypassing determin-
istic identification of individuals and the associated identification 
errors. Alongside these advances, there is a need to develop end- to- 
end integrated workflows which are able to take detections as input, 
classify individuals and incorporate the uncertainty of individual 
identities into the abundance estimates.

Conversely, a large number of single detection individuals need 
not indicate large number of identification errors or the presence of 
ghosts. The expected number of single captures is a function of the 
encounter function parameters, the trap layout and the state space. 
Low encounter rates yield lower detections and fewer recaptures. 
Small home ranges relative to the distance between traps can lead 
to greater numbers of single detections and traps placed further 
away from suitable habitats are likely to have fewer detections. SCR 
survey design and the trade- off between maximising the number of 
individuals detected or the number of recaptures is an active area of 
research (Efford & Boulanger, 2019; Durbach et al., 2021).

In summary, we extend the standard SCR model to condition 
on at least K detections. The new likelihood can be used to esti-
mate abundance and detection parameters on a subset of the cap-
ture histories if there may be ghosts in the data. Our work shows 
that despite the loss in precision, it may be preferable to use the 
SCR- 2 method rather than the SCR method when ghosts may be 
present. The standard SCR model is a special case of the more 
general method developed, the spatial capture–recapture condi-
tioned on at least K detections, where K = 1. SCR conditioned on 
at least K detections lends itself to many extensions of SCR, is 
easily implementable in existing software and adds little additional 
computation time, making it accessible to both researchers and 
practitioners.
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