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Abstract

In recent years, researchers have successfully recognised human activities using commer-

cially available WiFi (Wireless Fidelity) devices. The channel state information (CSI) can be

gathered at the access point with the help of a network interface controller (NIC card).

These CSI streams are sensitive to human body motions and produce abrupt changes (fluc-

tuations) in their magnitude and phase values when a moving object interacts with a trans-

mitter and receiver pair. This sensing methodology is gaining popularity compared to

traditional approaches involving wearable technology, as it is a contactless sensing strategy

with no cumbersome sensing equipments fitted on the target with preserved privacy since

no personal information of the subject is collected. In previous investigations, internal valida-

tion statistics have been promising. However, external validation results have been poor,

due to model application to varying subjects with remarkably different environments. To

address this problem, we propose an adversarial Artificial Intelligence AI model that learns

and utilises domain-invariant features. We analyse model results in terms of suitability for

inter-domain and intra-domain alignment techniques, to identify which is better at robustly

matching the source to target domain, and hence improve recognition accuracy in cross-

user conditions for HAR using wireless signals. We evaluate our model performance on dif-

ferent target training data percentages to assess model reliability on data scarcity. After

extensive evaluation, our architecture shows improved predictive performance across target

training data proportions when compared to a non-adversarial model for nine cross-user

conditions with comparatively less simulation time. We conclude that inter-domain align-

ment is preferable for HAR applications using wireless signals, and confirm that the dataset

used is suitable for investigations of this type. Our architecture can form the basis of future

studies using other datasets and/or investigating combined cross-environmental and cross-

user features.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0298888 April 18, 2024 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hassan M, Kelsey T, Rahman F (2024)

Adversarial AI applied to cross-user inter-domain

and intra-domain adaptation in human activity

recognition using wireless signals. PLoS ONE

19(4): e0298888. https://doi.org/10.1371/journal.

pone.0298888

Editor: Sunder Ali Khowaja, University of Sindh,

PAKISTAN

Received: October 18, 2023

Accepted: January 31, 2024

Published: April 18, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0298888

Copyright: © 2024 Hassan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data that

supports the findings of this study is openly

available in open access at: https://github.com/

parisafm/CSI-HAR-Dataset.

https://orcid.org/0000-0002-8091-1458
https://orcid.org/0000-0001-9093-8518
https://doi.org/10.1371/journal.pone.0298888
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298888&domain=pdf&date_stamp=2024-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298888&domain=pdf&date_stamp=2024-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298888&domain=pdf&date_stamp=2024-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298888&domain=pdf&date_stamp=2024-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298888&domain=pdf&date_stamp=2024-04-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0298888&domain=pdf&date_stamp=2024-04-18
https://doi.org/10.1371/journal.pone.0298888
https://doi.org/10.1371/journal.pone.0298888
https://doi.org/10.1371/journal.pone.0298888
http://creativecommons.org/licenses/by/4.0/
https://github.com/parisafm/CSI-HAR-Dataset
https://github.com/parisafm/CSI-HAR-Dataset


Introduction

Commercial-off-the-shelf (COTS) WiFi devices were initially invented for wireless communi-

cation and local area networking using wireless networking protocols. Owing to the ubiquitous

nature of WiFi technologies, there are tens of billions of devices connected together in a net-

work. Today, we are surrounded by various types of wireless signals such as WiFi, LoRa, and

LTE. Earlier research has shown that the radio signals travel through multiple paths and can

be used to identify the presence, location and movement of surrounding objects, via superposi-

tion at the receiver. The pervasive nature of the radio signals and their capability to demodu-

late the activities of the surrounding environment open the way for a new wireless sensing

technology. WiFi Sensing is hence the use of commercially available WiFi devices for carrying

information about users’ behavior.

The field of wireless sensing is involved with the key concepts of Multiple Input Multiple

Output (MIMO) [1] and Orthogonal Frequency Division Multiplexing (OFDM). MIMO is a

technology that creates multiple versions of the same signal using multiple antennas at both

the source and destination. These multiple versions of the same signal are helpful to both

increase the signal-to-noise-ratio and reduce signal fading, since multiple copies of same signal

increase the chances of the signal arriving at the receiving end successfully [1]. MIMO in WiFi

devices can supply diverse and rich data concerning how signals carry information related to

the surrounding environment, which we refer to as channel state information (CSI). OFDM is

a modulation technique that supports a large number of carriers, each separated from the

other orthogonally. It is less susceptible to selective fading, interference, and multi path effects

[2]. Modern WiFi devices with IEEE 802.11 n/ac standards utilize OFDM with MIMO sys-

tems. In OFDM, data is transmitted over multiple orthogonal sub-carriers with quite narrow

bandwidth. Therefore, it suffers from flat fading but this is not very severe, while co-channel

interference is also avoided to a great extent. CSI data has benefits compared to received signal

strength indicator (RSSI) [3]. RSSI measures the signal power on the receiver side and associ-

ates it with the distance either from the reflected object or the transmitter. This signal strength

is susceptible to multi-path fading. When the transmitted signal is emitted in the environment,

it gets obstructed with the surrounding objects such as buildings, vehicles and humans, which

takes multiple paths before reaching at the receiver. Different signals presume different path

lengths, thus suffering from fading and delay. This results in the reduction of the received sig-

nal power.

When radio signals emerge from a COTS WiFi device and spread out in the surrounding

environment, they follow a multi-path propagation which induces a pattern of channel

state information (CSI) at the receiving end. As a target (object or human) performs some

activity under the presence of wireless environment, it creates fluctuations which exhibit

distinct characteristics due to different movements in the CSI pattern. These distinct fluctu-

ating patterns are used to train a deep learning model to predict specific activities. Fig 1

illustrates the concept of wireless sensing along with the phasor representation of a target

moving from location A to a new location B covering a distance d. Target activity whilst

between A and B will be reflected by the dynamic movement of vectors in the I-Q plane at

the receiving end. When radio waves emerge from a device, they are broadly classified into

three main vectors in terms of a phasor diagram. The reflection and diffraction from static

objects such as walls or furniture and line of sight (LOS) contact between a transmitter and

a receiver forms a static vector. In the I-Q plane, Vs (in blue) is the static vector, whose

length represents the magnitude and angle from I-axis to Vs is its phase value. The direct

reflection from the target forms a dynamic vector. As the target moves, it causes changes in

the magnitude and phase of the dynamic vector. In the same I-Q plane, Vd (in red) is the
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dynamic vector appearing for two different target positions at A and B. The vector length

represents its magnitude and angles from I-axis to Vd at location A and location B are its

phase values for these two locations. Since this vector is dynamic in nature, the phase and

magnitude differences between the dynamic vectors at location A and B can be used to

track the target movement. The summation of a static and dynamic vector forms a compos-

ite vector [4].

Since the fluctuations in CSI data are dependent upon surrounding objects and in fact the

target characteristics can severely affects the model performance, its a challenging task to gen-

eralize a model for different cross-user conditions. Hence the work described of this study is

the proposal of an adversarial model and detailed evidence to support the use of such models

in this context. Our key contributions are:

• We apply inter-domain and intra-domain adaptation on an adversarial model for nine

cross-user conditions using a publicly available Wi-Fi data. We achieve this by using mean

discrepancy loss (MMD) and local mean discrepancy loss (LMMD).

• We evaluate the proposed model performance on different target training data proportions

and show that the model is less susceptible with reduced target training data samples.

• Model average F1-micro score for nine different cross-user conditions with varying target

training data proportions is 68.53% with MMD loss and 66.58% with LMMD loss.

• Model average F1-macro score for nine different cross-user conditions with varying target

training data proportions is 64.28% with MMD loss and 62.6% with LMMD loss.

• Model average simulation time for nine different cross-user conditions with varying target

training data proportions is not more than two to three minutes which indicates that it’s a

lightweight model with simple model configuration.

Related work

The field of human activity recognition has gained popularity due to it’s valuable usages in

the field of activity recognition, mobile health monitoring and patient rehabilitation. The

typical challenge is to concern about the model performance in cross-domain conditions

such as cross-user (a classifier is trained on known users and tested on some unknown

Fig 1. Left: Concept of wireless sensing. Right: Phasor representation.

https://doi.org/10.1371/journal.pone.0298888.g001
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users), cross-environment (a classifier is trained on a seen environment and tested on some

unseen environment) and a combination of both of them. Models proposed by the research-

ers in the past performed well when they were tested on the same conditions which were

used during the model training. Unfortunately, their performance suffers from acute degra-

dation when they are tested on different environments and subjects other than those used

for the model training. The activity patterns for new users and environments differ from

those in the training data which makes the model less efficient in predicting activities in

cross-domain conditions. Additionally, training a classifier for unseen users and environ-

ments is time consuming which also takes high computational resources [5]. Domain adap-

tation [6], a sub-field of transfer learning [7], is considered to be an appropriate solution for

adjusting a model’s parameters (weights and biases) to transfer them from one domain, refer

to as source domain, to another as target domain whereas both the domains consist of

domain variant features (source and target features are different from each other). Research-

ers in recent years resorted to unsupervised domain adaptation (UDA) [8] where adversarial

learning approaches are applied to transfer domain independent features from source

domain with labelled data to match with the target domain features, however, this new

unseen target domain has unlabelled data samples. Virtual sample generation via geometric

modelling [9], is the representation of drafting a translation function between source and

target configurations. Translation function is a mathematical modelling to generate virtual

samples for target movements in different locations and orientations, thus saves time to col-

lect new training data for user’s new locations and orientations. However, this method is not

very effective all the time because of it’s initial essential parameters estimation requirements

such as users’ moving speed and directions in both the configurations and their initial loca-

tions and orientations etc. Signals reflected by static objects in a specific environment are

considered to be domain dependent features. These components are removed through user’s

motion and velocity profile modelling across different domains so that the dynamic compo-

nents of the target movement can be retrieved. These dynamic components are domain

invariant features as velocity profiles of different users show unique kinetic characteristics

which cannot be changed with cross-environmental conditions. Also, users’ velocity profiles

of movements are different for different users. v = (fλ)/2 is the relation built between a user’s

velocity and frequency of movement that can estimate the velocity changes during the target

movement [10, 11]. Transfer learning [12–14], is a way to use transferable knowledge of one

domain already trained on a specific training condition (known user and environment) to

train a new domain with few data samples which saves computational cost. There are two

types of transfer learning as parameter transfer and feature-representation transfer. In

parameter transfer [15], pre-trained models are used to fine-tune new testing domain with-

out the need of training the entire network from scratch. These re-trained models are used to

fix initial learned parameters of new domain as these layers are responsible to generate fea-

tures only focused on model abstraction. They can not contribute to the model final output.

A few samples from new testing domain are used to fine-tune only particular layers of the

network. In feature representation [13, 14], a shared space is created between the extracted

features of training and testing domain by mitigating the distinct features between them.

Domain Adversarial Neural Network (DANN) [8], a type of feature representation, is one of

the pioneers in the field of domain adaptation that has been applied to many of the cross-

domain deep learning problems including device-free WiFi sensing. Its training works in an

adversarial fashion to mismatch a generator and a domain discriminator. The generator con-

verges to its optimal performance when discriminator fails to predict domain labels. EI [16]

made the use of DANN [8] architecture to extract subject and environment independent fea-

tures. They worked on three constraints to make the model effective and tolerant against
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over-fitting. Confidence Control Constraint is responsible to avoid the model getting stuck

on local optimum. Smoothing Constraint saves the model to be significantly different in it’s

predictions on neighbouring samples. Balance Constraint comes into play when model tends

to assign same labels to different but similar type of activities. They changed different source

domains and showed in all cases their model accuracy is higher than baseline models

(VADA [17], RF [18]). Few-shot learning, is a classification problem of identifying the simi-

larity and differences between training and testing domains using a very few labelled samples

from training data. Fidora [19] is a Wireless-based localization system which can locate an

objects’ location fingerprints without being subject to WiFi fingerprint inconsistency such as

body shapes of new users, objects in the background and daily changes in the environment.

Synthetic data fingerprints are generated from labelled data fingerprints and a data aug-

menter (Variational Auto-Encoder) is applied for this purpose. [20]. The precedence of

VAE’s over traditional Auto-Encoders is their capability to generate augmented data samples

from a Gaussian distribution N(0, γkI) of original data fingerprints. Baseline models consid-

ered in the original paper are AutoFi [21], VAE-only, and FiDo [22] which were tested on

cross-user and cross-environmental conditions against Fidora [19]. Evaluation results show

its average F1 score is 17.8% and 23.1% better than the benchmark in unlabeled user and var-

ied environment respectively. WiGR [23] is a lightweight few-shot learning based gesture

recognition system using WiFi devices. Network ability is its transferable domain shifting

learning in new domains. Few- shot learning [24, 25] uses supervised learning to generalize a

model for new tasks using only a few data samples. Model was tested against WiGeR [26],

WiCatch [27], SignFi [28] and Siamese-LSTM [29] for cross- user, cross-environment and

cross-location evaluations. It outperformed all of these conditions against the baseline mod-

els. They also analyzed the model complexity in terms of model’s parameters and calculation

required. It outperforms other few-shot learning models in model complexity such as [29–

32]. JADA [33] is an unsupervised domain adaptation scheme which is proposed to tackle

with the vulnerability of spatial dynamics. Evaluation results show that the model achieves

87.8% and 90.3% average recognition accuracy in cross-environmental conditions between

large and small conference rooms respectively. Model is also outperforming to 2 state-of-

the-art adversarial methods (DIFA [34] and ADDA [35]) under spatial dynamics. CrossGR

[36] is a low cost cross-target gesture recognition model which uses generative adversarial

network (GAN) for generating synthetic data samples from a small set of real-world data col-

lected on a specific number of users. After data augmentation, it uses those labelled and syn-

thetic data samples for eliminating out the user-related information in order to obtain

gesture related features. During the back propagation, these gesture related features help the

model to be trained for recognizing new users’ activities. Contrastive Supervision by consid-

ering “where” to contract is a novel approach to apply contrastive loss on a time series wear-

able sensor data on HAR. Their key contribution is to tackle the problem of data

augmentation introduced by information loss at different depth of a neural network. By

using contrastive loss on intermediate layers of a network, they pushed positive augmented

invariant pairs nearby and negative pairs far apart [37]. DSAN [38] is a non-adversarial

model which tries to minimize the local sub-domain discrepancies within the same class of

the source and target domains using local maximum mean discrepancy (LMMD) loss.

DASAN [39] is an adversarial variant of DSAN [38] which is presented to solve fault diagno-

sis problems in different rotationary parts of machines. It focuses on global adaptation by

using a discriminator for domain alignment and LMMD loss calculation between source and

target activations for sub-domain alignment. During the LMMD loss calculation, they intro-

duced pseudolabel learning [40] for generating pseudolabels for unlabelled target data.
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Preliminaries

Channel state information

Suppose there are MTx antennae and N Rx antennae in a MIMO system. Let H be a CSI

matrix, or called channel fading factor matrix,

H ¼

h1;1 h1;2 ::::: h1;M

h2;1 h2;2 ::::: h2;M

: : : :

: : : :

: : : :

hN;1 hN;2 ::::: hN;M
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6
6
6
6
6
6
6
6
6
4
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7
7
7
7
7
7
7
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Each term in H is a complex value representing the magnitude and phase shift of an OFDM

sub-carrier in CSI stream as [41],

hi;jð fkÞ ¼ hi;jð fkÞe jffhi;j fk ; ð1Þ

where hi,j( fk) and ∠hi,j( fk) are the magnitude and phase shift of individual OFDM sub-carrier

respectively. fk is the OFDM sub-carrier central frequency.

With H, the transmitted and received signals can be represented as

BðtÞ ¼ H ∗AðtÞ þ nðtÞ; ð2Þ

where A(t) and B(t) are the matrices of MIMO system transmitting and receiving antennae

respectively, and n(t) is the additive White Gaussian noise matrix.

CSI is effective in providing precise information of a channel state. CSI streams are gener-

ated by multiple antenna pairs of a transmitter with a receiver, working at different OFDM

sub-channels. These OFDM sub-channels operate at their own frequencies. Each sub-channel

is associated with CSI amplitude and phase measurements. The collected CSI information

over time is 4D matrix MT,C,N,M, where T is the number of WiFi signal packets, C is the num-

ber of subcarriers, and N and M are the number of antennae. From each packet, we can extract

CSI features into a magnitude and phase vector of dimension N �M � C. These sub-frequency

carriers make different patterns for different activities, thus forming a good foundation for

human activity recognition.

Maximum mean discrepancy (MMD) loss

The maximum mean discrepancy (MMD) loss [39] measures the global distribution discrep-

ancy between the source mean embedding and target mean embedding in the reproducing

kernel Hilbert space (RKHS) provided that the source and target probability distribution is

marginal. It takes two inputs, feature representations of source and target domain generated

by the classifier layers as shown in Fig 2. It can be calculated as,

LMMDðps; pqÞ � jjEp½�ðxsÞ� � Eq½�ðxtÞ�jj
2

H ð3Þ

where ps is the source marginal probability distribution, pq is the target marginal probability

distribution, H is the reproducing kernel Hillbert space (RKHS) endowed with a characteristic

kernel k, and ϕ(.) is a mapping function which maps the features into the RKHS. ϕ(.) is associ-

ated with characteristic kernel k(xs, xt) =< ϕ(xs), ϕ(xt)>, where (., .) represents the standard

inner product of vectors. According to the theoretical results in [42], the source marginal
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probability distribution is equal to the target marginal probability distribution if, and only if,

LMMD(ps, pq) = 0.

Local maximum mean discrepancy (LMMD) loss

The local maximum mean discrepancy (LMMD) [38] is a variant of MDD loss, measuring the

relevant sub-domains distribution discrepancies between the source mean embedding and tar-

get mean embedding in the reproducing kernel Hilbert space (RKHS). Unlike MMD loss, it

focuses on the alignment of two sub-domains’ relevant features within the same class of an

activity. According to a particular class to which samples belong, it introduces weighted sam-

ples for each class of the activity. It takes four inputs, feature representations of source and tar-

get domain generated by the classifier layers, source true labels and target predicted labels as

shown in Fig 3. Mathematically, it can be calculated as,

LLMMDðpðcÞ; qðcÞÞ � EcjjEðcÞp ½�ðx
sÞ� � EðcÞq ½�ðx

tÞ�jj
2

H ð4Þ

Fig 2. MMD loss requires two inputs: Zsl source activation, and Ztl target activation.

https://doi.org/10.1371/journal.pone.0298888.g002

Fig 3. LMMD loss requires four inputs: Zsl source activation, Ztl target activation, Ys source true labels and Y 0t
target predicted labels.

https://doi.org/10.1371/journal.pone.0298888.g003
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where p(c) and q(c) are distributions of subdomains DðcÞs and DðcÞt , and xs and xt are samples

from source and target domains Ds and Dt, respectively.

Problem definition

Key challenges remain for the widespread deployment of WiFi-based sensing systems, in par-

ticular real-world environments involving users with different age, gender, height, body move-

ment speed, location and orientation with respect to the WiFi transmitter and receiver. These

aspects can severely impact the WiFi signals features and characteristics such as amplitude,

phase and Doppler Frequency Shift (DFS). Consequently, if any of these factors changes from

training to the testing of a model there is an inevitable degradation in the system performance

caused by varying fluctuations in CSI measurements from training to the testing data samples

of same activities. This creates a need to re-train the model for each new domain, requiring the

extra burdens of new data collection and re-learning of model parameters and hyperpara-

meters. Moreover, data annotation is cumbersome and time consuming because each domain

carries its own specific information related to multi-path wireless propagation. Therefore, re-

training a model every time for a new domain is neither feasible nor practical [15]. In order to

tackle with the aforementioned problem, researchers have relied on global and sub-domain

alignments on an adversarial/non-adversarial model as shown in Fig 4. These models converge

easily for inter-domain alignment tasks by matching a source and target domain globally.

Unfortunately, global domain adaptation neglects fine-grained information of sub-domains

within the same group of different domains. Whereas, it is a time consuming process to con-

verge these models for intra-domain alignment tasks using several loss functions. This leads to

a poor transfer learning performance [38]. Cross-user transfer learning in HAR using wireless

signals is a sub-domain alignment task within the same class of different activities, yet it is still

unknown which type of alignment is best suitable for CSI-image based Wi-Fi data. A global

alignment would be a better idea for learning domain-invariant features, by minimizing the

distribution discrepancy between the source domain and target domain since CSI data for dif-

ferent activities appears to be quite similar without much significant domain shifting within

the data. Thus, it is likely not to align perfectly on relevant sub-domain distributions. In this

study we adapt an existing adversarial AI architecture in order to analyze the suitability of

global and intra-class alignments for HAR domain shifting applications using wireless signals.

Materials and methods

Proposed method

We accessed a public dataset available at [43] on 8th June 2023. We have not had access to

information that could identify individual participants during or after data collection.

Fig 4. Left: domain adaptation with global alignment. Right: sub-domain adaptation with intra-class alignment [38,

39].

https://doi.org/10.1371/journal.pone.0298888.g004
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Available dataset has CSI magnitude values obtained from 52 sub-carriers. From these raw

measurements high frequency content is filtered out as noise. Based on the nature of processed

data, architecture of the feature generator can play a crucial role. Researchers have focused

more on recurrent neural networks to process CSI data as a time series input with memory

cells to keep track of the past inputs. This is because of the nature of CSI data which is continu-

ous and sequential. Recurrent Neural Networks (RNNs) are supposed to be very functional in

handling temporal data. These RNNs are a good option to extract key features from input CSI

measurements but they need high memory requirements and their processing time is pretty

long. For fully exploit the functionality of CNN with time series models in extracting shift

invariant features along with the temporal information, there are plenty of 1D-CNN variants.

However, these CNNs are merged with RNNs to achieve high precision but model convexity is

increased thus simulation time. Our input to a 2D-CNN is a three channel RGB 64×64 CSI-

image representation array of colored cells varying in intensity depending upon the magnitude

values. Convolutional Neural Networks have widely been used for many applications and rev-

olutionized the field of computer vision because of their low pre-processing requirements and

remarkable results for image recognition task. Such networks can adjust filter parameters, thus

useful in finding spatial and temporal dependencies in an image. ConvNets are also capable to

deal with huge datasets due to their ability to reduce data dimensions. Our proposed model

does not depend upon any memory cell to keep track of past inputs and its a very simple yet

robust adversarial model which is suitable for applying the global and sub-domain alignments

for a multi-class problem. Model is particularly chosen to investigate the impact of different

alignments on cross-user domain shifting tasks using wireless sensing.

Our proposed architecture is inspired by the work presented in [39]. The main idea is to

examine the effects of global as well as subdomain adaptation on HAR using device free sens-

ing. The proposed model, Deep Adversarial Sub-Domain Adaptation (DASAN), works in

three adversarial training steps. Our model architecture is shown in Fig 5 with its simulation

parameters represented in Table 1. The domain shared feature extractor is a 2-D CNN. This

module is responsible to extract high-level features from the raw source and target domain data

samples. Since this module is shared between source and target, it maps source samples xs and

target samples xt using mapping function Ff with mapping parameter θf in such a way that Zs =

Ff (xs; θf) and Zt = Ff (xt; θf)(Zs, Zt 2 RM×D) where Zs, Zt are corresponding source and target out-

put features with M is the mini-batch size and D is the feature dimensional length. Next comes

a label classifier and a domain discriminator. Input to these modules is the extracted features

from the previous module. The domain discriminator is responsible for predicting the corre-

sponding domains from source and target data features. The label classifier predicts the labels’

category of the extracted source and target domain features. Classifier is a mapping function Cc
with mapping parameter θc which maps the generated features to the predicted label ŷ in such

a way that ŷ ¼ CcðZs; ycÞ. Finally, the LMMD and MMD loss functions are calculated to isolate

the distribution discrepancy between the source and target activations. The LMMD loss mea-

sures the distribution discrepancy among relevant sub-domains, whereas the MMD loss mea-

sures the distribution discrepancy between the source and target distribution globally.

The label classifier is trained using the source domain labelled samples and cross entropy

loss is measured between the real and predicted source labels to maximize the activity recogni-

tion accuracy on source domain that can be defined as,

Lcls ¼ �
1

M
½
XM

i¼1

XC

c¼1

I½ yis ¼ c�logðCcðFf ðxis ; yf ; ycÞÞ� ð5Þ

It also leverages pseudolabel learning for reducing the prediction uncertainty of target data
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unlabelled samples. Pseudolabel learning loss can be calculated as,

LPseudo ¼ �
1

M
½
XM

j¼1

XC

m¼1

p½ ŷjt ¼ mjxjt �logðp½ ŷjt ¼ mjxjt Þ� ð6Þ

Fig 5. Three training steps of proposed model. The network is constructed of three modules: feature extractor, label

classifier and domain discriminator. Step 1 is the training of feature extractor and classifier to obtain discriminative

features. Target unlabelled samples are also used to generate pseudolabels. Step 2 is the training of feature extractor,

classifier and discriminator using gradient reversal layer. Step 3 is the classification of activities on new target data

samples.

https://doi.org/10.1371/journal.pone.0298888.g005

Table 1. Structure parameters.

Networks Layers Operations

Feature extractor Conv-Pool-1 Kernel 64-5×5, Stride 1, Padding 0; BN; ReLU; Max-Pool 3×3, Stride 2; Dropout

Conv-Pool-2 Kernel 64-5×5, Stride 1, Padding 0; BN; ReLU; Max-Pool 3×3, Stride 2; Dropout

Conv-Pool-3 Kernel 128-5×5, Stride 1, Padding 0; BN; ReLU; Max-Pool 3×3, Stride 2; Dropout

Conv-Pool-4 Kernel 256-3×3, Stride 1, Padding 0; ReLU

Flatten Nodes 256

Label classifier Linear-1 Node 3072; ReLU

Linear-2 Node 2048; ReLU

Linear-3 Node 7; Softmax

Domain classifier Linear-1 Node 1024; ReLU

Linear-2 Node 1024; ReLU

Linear-3 Node 1; Sigmoid

https://doi.org/10.1371/journal.pone.0298888.t001
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Also, the predicted labels of the label classifier for the target domain unlabelled data samples

are used to calculate the LMMD and MMD losses. Thus, the objective function of label classi-

fier can be defined as,

Lc ¼ Lcls þ aLPseudo þ bðLMMD=LLMMDÞ ð7Þ

where α, and β are the tradeoff parameters.

The purpose of domain discriminator is to minimize the global distribution discrepancy by

learning domain invariant features. This adversarial role of domain discriminator is played by

a two-player minmax game. The domain discriminator itself is liable to differentiate between

the source and target domains as first player. The feature extractor is trained to fool the

domain discriminator as second player of the game. Domain Discriminator is a mapping func-

tion Dd with mapping parameter θd which maps the generated features in domain d such as

d = Dd( f, θd)(xi 2 Ds if di = 1 otherwise xj 2 Dt if dj = 0. Its adversarial loss can be defined as,

Ladv ¼ �
1

M

XM

i¼1

dilog½DdðFf ðxis ; yf Þ; ydÞ� �
1

M

XM

i¼1

ð1 � diÞlog½DdðFf ðxjt ; yf Þ; ydÞ� ð8Þ

The total loss of the model can be calculated as,

Ltotal ¼ Lcls � gLadv þ bLLMMD þ aLPseudo ðin case of LMMD LossÞ ð9Þ

Ltotal ¼ Lcls � gLadv þ bLMMD þ aLPseudo ðin case of MMD LossÞ ð10Þ

where Lcls is the classifier loss, Ladv is the discriminator adversarial loss, α, β and γ are the trade-

off parameters.

Experimental results

Dataset

We use a public dataset available at [43] to assess model performance, named as the Parisafm

dataset. The dataset was collected with the involvement of 3 volunteers, thus suitable for cross-

user domain adaptation. The participants performed 7 different activities including walk, run,

fall, lie down, sit down, stand up, and bend in an experimental environment. Each activity was

repeated for 20 trials. In total, there are 420 labelled data samples which are equally divided

among three different subjects. For adversarial training the source domain is always equipped

with labeled samples for a particular subject/combination of subjects, while the target domain

is treated as unlabeled data samples coming from the other subject/combination of subjects

during model training. The Raspberry Pi was used as a WiFi-enabled platform for packet

reception and a Nexmon Tool [44] was employed for data collection process. Each subcarrier

has a complex representation of CSI values. These complex values have magnitude and phase

information about a specific activity. For mode simulation, only CSI magnitude values are

being employed. A low pass filter is used for the reduction of high-frequency content which is

treated as noise. These values are normalized between 0 and 255 for a colored image represen-

tation. These RGB colored images are then generated as a MATLAB pseudocolor plot, shown

in Fig 6. This results in an array of colored cells also known as a face. Each image is resized to

64×64 scale.

Model evaluation

To evaluate the inter- and intra-domain adaptation on HAR using wireless sensor data com-

prehensively, we have two different variations of the proposed model, with their transfer
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results being compared to another model, Deep Subdomain Adaptation Network (DSAN)

[38]. DSAN [38] is a non-adversarial model with a simple architecture of a shared feature

extractor and a classifier. Features generated by the extractor for source labelled data and target

unlabelled data are fed to the classifier layers one at a time. Thereafter, maximum mean dis-

crepancy (MMD) and local maximum mean discrepancy (LMMD) losses are calculated

between these source and target activations for examining the effects of global and subdomain

alignments respectively. The proposed model is also tested for global and local sub-domain

adaptations using the same loss minimization functions that is DASAN-LMMD and

DASAN-MMD. Finally, these two variations of proposed model are compared with

DSAN-MMD and DSAN-LMMD against the measuring parameters of model activity recogni-

tion micro- and macro-F1 scores, the harmonic mean of precision and recall, on cross-user

domain shifting tasks. Micro-F1 score aggregates the contributions of all instances, and the

macro-F1 score computes the metric independently for each class and then takes the average

[45]. Since we have an imbalanced dataset, we also report macro-F1 score, which takes equal

contribution from majority and minority classes to achieve objective results. Simulation time

for each model is additionally measured for comparison.

The dataset used for model evaluation has three different subjects involved for performing

seven different activities. We have tested each model for nine different domain shifting tasks

with subject 1, 2 and 3 are interchangeably used for source to target domains. In order to

report our model simulation results, we are following evaluation approach mentioned in [45].

Each case is run ten times and their average is calculated for an unbiased models comparison.

We also compute and report 95% confidence intervals for each performance metric. The

cross-user domain shifting task measures the accuracy of adopting an activity model trained

on one user (male/female) with some physical appearance (e.g., weight, height, age) to another

with different physical appearance.

Models comparison of micro- and macro-F1 scores. Tables 2–9, report the micro- and

macro-F1 scores of DASAN and baseline technique with MMD and LMMD losses on nine

cross-user experiments with different target data training samples varying from 100% to 10%.

These are averaged F1 scores over 10 runs of the nine cross-user experiments reported in the

table. DASAN-MMD obtains the highest average of averaged micro- and macro-F1 scores of

nine cross-user domain-shifting tasks on varying target data training samples: 0.69 and 0.64,

which is 0.019 and 0.017 higher than DASAN-LMMD, the second best performing technique.

In addition, DASAN-MMD outperforms DSAN-MMD with 0.094 and 0.105 in micro- and

macro-F1 scores, whereas it is 0.118 and 0.14 higher in micro- and macro-F1 scores than

DSAN-LMMD, the least performing technique among all. We can also observe the

DASAN-MMD model reliability with reduced target data training samples that is no less than

0.62 and 0.57 for averaged micro- and macro-F1 scores even for the worst case of only 10% of

target data training samples. This concludes that global adaptation is a better option for HAR

using wireless signals in terms of achieving higher model micro- and macro-F1 scores. Looking

more closely at different cross-user tasks on the Parisafm dataset, we have plotted the averaged

micro- and macro-F1 scores on varying target data training samples depicted in Figs 7 and 8.

Fig 6. CSI RGB images for different activities.

https://doi.org/10.1371/journal.pone.0298888.g006
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Table 3. Average micro-F1 scores of DSAN-MMD on CSI image dataset across all training percentages.

Task Deep subdomain adaptation network (DSAN) with MMD loss

Micro-F1 score with different target data training samples percentages

100% with (95% CI) 80% with (95% CI) 60% with (95% CI) 40% with (95% CI) 20% with (95% CI) 10% with (95% CI)

(S1+S2)−>S3 79.30 (80.10-78.52) 82.80 (83.53-81.87) 80.90 (81.68-80.06) 81.90 (82.68-81.04) 85.00 (85.68-83.98) 76.30 (76.93-75.40)

(S1+S3)−>S2 65.00 (65.87-64.57) 63.40 (64.41-63.14) 55.80 (56.94-55.82) 57.50 (58.37-57.22) 61.80 (62.86-61.63) 63.10 (63.87-62.61)

(S2+S3)−>S1 59.00 (59.79-58.61) 60.70 (61.47-60.25) 57.30 (58.14-57.00) 60.80 (61.67-60.46) 61.40 (62.17-60.94) 59.40 (60.31-59.13)

S1–>S2 53.60 (54.58-53.51) 45.60 (46.67-45.76) 54.40 (55.21-54.12) 46.10 (47.26-46.34) 52.30 (53.20-52.15) 40.30 (41.14-40.33)

S1–>S3 63.10 (63.71-62.45) 66.10 (66.73-65.40) 59.30 (59.87-58.69) 59.00 (59.76-58.58) 62.80 (63.42-62.17) 51.50 (52.06-51.03)

S2–>S1 52.30 (53.02-51.98) 52.20 (52.92-51.88) 49.30 (49.92-48.94) 50.90 (51.59-50.58) 52.30 (52.90-51.86) 54.10 (54.76-53.68)

S2–>S3 69.80 (70.59-69.19) 71.40 (72.16-70.73) 72.10 (72.86-71.42) 71.70 (72.52-71.08) 71.40 (72.16-70.73) 74.10 (74.84-73.35)

S3–>S1 49.60 (50.30-49.30) 50.40 (51.11-50.10) 50.30 (50.94-49.93) 50.20 (50.87-49.86) 52.30 (52.92-51.87) 47.40 (48.11-47.17)

S3–>S2 46.80 (47.49-46.55) 47.00 (47.59-46.65) 46.70 (47.29-46.36) 46.40 (46.90-45.97) 49.00 (49.73-48.75) 49.50 (50.21-49.22)

Average 59.83 59.96 58.46 58.28 60.92 57.3

Note: S1 means subject 1, S2 means subject 2, S3 means subject 3, CI means confidence level

https://doi.org/10.1371/journal.pone.0298888.t003

Table 4. Average micro-F1 scores of DASAN-LMMD on CSI image dataset across all training percentages.

Task Deep Adversarial subdomain adaptation network (DASAN) with LMMD loss

Micro-F1 score with different target data training samples percentages

100% with (95% CI) 80% with (95% CI) 60% with (95% CI) 40% with (95% CI) 20% with (95% CI) 10% with (95% CI)

(S1+S2)−>S3 80.70 (81.50-79.89) 80.90 (81.73-80.12) 79.50 (80.31-78.72) 81.90 (82.71-81.07) 76.50 (77.37-75.84) 70.70 (71.44-70.02)

(S1+S3)−>S2 74.60 (75.41-73.92) 77.90 (78.71-77.15) 78.10 (78.90-77.34) 72.60 (73.40-71.94) 78.50 (79.21-77.64) 67.70 (68.36-67.00)

(S2+S3)−>S1 71.80 (72.60-71.16) 70.70 (71.50-70.08) 70.60 (71.31-69.90) 71.10 (71.86-70.44) 67.80 (68.60-67.25) 69.30 (69.99-68.61)

S1–>S2 71.20 (72.06-70.64) 72.90 (73.76-72.30) 72.50 (73.19-71.74) 72.10 (72.77-71.33) 70.70 (71.41-69.99) 63.30 (63.76-62.49)

S1–>S3 64.60 (65.28-63.99) 65.90 (66.48-65.16) 63.10 (63.79-62.53) 66.80 (67.60-66.27) 64.90 (65.70-64.40) 56.10 (56.65-55.52)

S2–>S1 60.00 (60.52-59.32) 62.90 (63.44-62.18) 57.30 (57.97-56.82) 58.80 (59.46-58.28) 55.50 (56.06-54.95) 57.80 (58.40-57.24)

S2–>S3 73.10 (73.85-72.39) 76.10 (76.86-75.34) 76.80 (77.59-76.05) 76.40 (77.20-75.68) 73.90 (74.69-73.22) 74.00 (74.74-73.26)

S3–>S1 57.40 (58.04-56.89) 55.80 (56.50-55.38) 55.70 (56.31-55.20) 56.00 (56.61-55.49) 53.90 (54.53-53.46) 53.00 (53.50-52.44)

S3–>S2 55.50 (56.05-54.94) 52.60 (53.20-52.15) 52.30 (52.95-51.90) 48.50 (49.07-48.10) 53.90 (54.37-53.29) 53.00 (53.39-52.33)

Average 67.66 68.41 67.32 67.13 66.18 62.77

Note: S1 means subject 1, S2 means subject 2, S3 means subject 3, CI means confidence level

https://doi.org/10.1371/journal.pone.0298888.t004

Table 2. Average micro-F1 scores of DSAN-LMMD on CSI image dataset across all training percentages.

Task Deep subdomain adaptation network (DSAN) with LMMD loss

Micro-F1 score with different target data training samples percentages

100% with (95% CI) 80% with (95% CI) 60% with (95% CI) 40% with (95% CI) 20% with (95% CI) 10% with (95% CI)

(S1+S2)−>S3 75.00 (75.88-74.38) 74.70 (75.54-74.04) 75.80 (76.64-75.13) 76.60 (77.46-75.93) 77.30 (78.08-76.53) 78.40 (79.02-77.45)

(S1+S3)−>S2 55.00 (55.94-54.84) 59.80 (60.72-59.53) 57.30 (58.60-57.46) 58.60 (59.40-58.23) 59.40 (60.39-59.20) 62.20 (62.88-61.64)

(S2+S3)−>S1 58.20 (59.03-57.87) 61.00 (61.81-60.59) 57.20 (58.03-56.89) 57.20 (58.16-57.02) 57.10 (58.06-56.92) 56.70 (57.73-56.59)

S1–>S2 53.10 (54.10-53.04) 54.30 (55.19-54.10) 50.00 (51.00-50.00) 55.00 (55.90-54.80) 58.40 (59.25-58.08) 51.50 (52.27-51.24)

S1–>S3 53.90 (54.63-53.55) 50.20 (50.97-49.96) 56.50 (57.11-55.98) 52.60 (53.49-52.44) 54.30 (55.03-53.94) 49.60 (50.20-49.21)

S2–>S1 49.60 (50.35-49.36) 48.90 (49.67-48.69) 48.20 (48.92-47.96) 51.20 (51.93-50.91) 50.20 (50.86-49.86) 48.90 (49.64-48.66)

S2–>S3 66.40 (67.29-65.96) 66.70 (67.59-66.26) 67.90 (68.69-67.33) 70.80 (71.60-70.18) 67.50 (68.33-66.98) 67.40 (68.17-66.82)

S3–>S1 48.60 (49.30-48.33) 49.20 (49.88-48.90) 46.40 (47.01-46.08) 48.50 (49.16-48.19) 48.50 (49.08-48.11) 47.10 (47.77-46.82)

S3–>S2 48.10 (48.74-47.78) 44.70 (45.30-44.41) 45.80 (46.37-45.45) 43.80 (44.31-43.44) 46.20 (46.86-45.94) 47.40 (48.15-47.21)

Average 56.43 56.61 56.12 57.14 57.66 56.58

Note: S1 means subject 1, S2 means subject 2, S3 means subject 3, CI means confidence level

https://doi.org/10.1371/journal.pone.0298888.t002
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Table 5. Average micro-F1 scores of DASAN-MMD on CSI image dataset across all training percentages.

Task Deep adversarial subdomain adaptation network (DASAN) with MMD loss

Micro-F1 score (%) with different target data training samples percentages

100% with (95% CI) 80% with (95% CI) 60% with (95% CI) 40% with (95% CI) 20% with (95% CI) 10% with (95% CI)

(S1+S2)−>S3 81.20 (82.02-80.40) 80.10 (80.88-79.28) 81.00 (81.85-80.23) 81.60 (82.41-80.78) 81.50 (82.40-80.77) 70.60 (71.30-69.89)

(S1+S3)−>S2 79.40 (80.29-78.71) 81.50 (82.39-80.76) 80.10 (80.94-79.34) 78.60 (79.49-77.91) 79.00 (79.80-78.22) 66.50 (67.14-65.81)

(S2+S3)−>S1 74.60 (75.41-73.91) 74.30 (75.10-73.62) 71.30 (72.02-70.60) 73.50 (74.28-72.81) 73.50 (74.34-72.87) 70.80 (71.54-70.13)

S1–>S2 75.70 (76.53-75.01) 78.70 (79.58-78.01) 71.10 (71.78-70.36) 69.90 (70.54-69.15) 71.10 (71.82-70.40) 55.90 (56.31-55.19)

S1–>S3 67.90 (68.66-67.30) 64.70 (65.32-64.03) 65.50 (66.19-64.88) 72.80 (73.65-72.20) 71.60 (72.43-70.99) 55.50 (56.04-54.93)

S2–>S1 56.60 (57.11-55.98) 57.30 (57.74-56.60) 62.10 (62.82-61.58) 62.80 (63.53-62.27) 55.40 (55.95-54.84) 58.70 (59.31-58.13)

S2–>S3 74.50 (75.28-73.79) 76.00 (76.76-75.24) 76.50 (77.26-75.73) 77.40 (78.20-76.65) 77.50 (78.35-76.80) 72.00 (72.67-71.23)

S3–>S1 62.10 (62.83-61.59) 57.40 (58.04-56.89) 58.40 (59.04-57.87) 57.90 (58.51-57.36) 56.80 (57.42-56.28) 53.30 (53.84-52.77)

S3–>S2 52.80 (53.26-52.21) 54.60 (55.18-54.09) 58.60 (59.33-58.16) 56.70 (57.50-56.36) 59.70 (60.42-59.23) 58.00 (58.67-57.51)

Average 69.42 70.31 69.4 70.13 69.57 62.37

Note: S1 means subject 1, S2 means subject 2, S3 means subject 3, CI means confidence level

https://doi.org/10.1371/journal.pone.0298888.t005

Table 6. Average macro-F1 scores of DSAN-LMMD on CSI image dataset across all training percentages.

Task Deep subdomain adaptation network (DSAN) with LMMD loss

Macro-F1 score with different target data training samples percentages

100% with (95% CI) 80% with (95% CI) 60% with (95% CI) 40% with (95% CI) 20% with (95% CI) 10% with (95% CI)

(S1+S2)−>S3 68.20 (69.01-67.65) 68.30 (69.15-67.79) 70.30 (71.12-69.71) 70.60 (71.45-70.04) 71.00 (71.72-70.30) 72.50 (72.99-71.54)

(S1+S3)−>S2 47.40 (48.29-47.34) 52.00 (52.96-51.92) 48.80 (49.91-48.93) 50.70 (51.51-50.50) 50.70 (51.53-50.52) 56.10 (56.79-55.66)

(S2+S3)−>S1 55.90 (56.85-55.73) 59.20 (60.08-58.89) 53.10 (54.05-52.99) 52.40 (53.40-52.35) 49.80 (50.74-49.74) 48.30 (49.44-48.48)

S1–>S2 46.90 (47.90-46.96) 47.20 (48.07-47.13) 44.80 (45.76-44.86) 50.70 (51.58-50.57) 51.60 (52.50-51.47) 46.50 (47.18-46.25)

S1–>S3 50.20 (50.92-49.92) 48.90 (49.66-48.69) 54.60 (55.19-54.10) 49.70 (50.53-49.54) 51.10 (51.79-50.76) 46.60 (47.18-46.25)

S2–>S1 44.70 (45.45-44.56) 43.70 (44.53-43.65) 43.60 (44.34-43.47) 46.40 (47.11-46.18) 45.20 (45.83-44.92) 44.50 (45.27-44.38)

S2–>S3 53.90 (54.69-53.61) 55.30 (56.11-55.00) 55.40 (56.09-54.98) 58.20 (58.91-57.75) 55.50 (56.24-55.13) 55.80 (56.48-55.37)

S3–>S1 43.70 (44.42-43.55) 41.80 (42.49-41.65) 39.00 (39.64-38.86) 42.70 (43.33-42.47) 42.50 (43.04-42.19) 39.50 (40.20-39.41)

S3–>S2 37.90 (38.45-37.69) 34.30 (34.79-34.10) 34.80 (35.29-34.59) 33.50 (33.95-33.28) 36.90 (37.50-36.76) 36.60 (37.22-36.49)

Average 49.87 50.08 49.38 50.54 50.48 49.6

Note: S1 means subject 1, S2 means subject 2, S3 means subject 3, CI means confidence level

https://doi.org/10.1371/journal.pone.0298888.t006

Table 7. Average macro-F1 scores of DSAN-MMD on CSI image dataset across all training percentages.

Task Deep subdomain aadaptation network (DSAN) with MMD loss

Macro-F1 score with different target data training samples percentages

100% with (95% CI) 80% with (95% CI) 60% with (95% CI) 40% with (95% CI) 20% with (95% CI) 10% with (95% CI)

(S1+S2)−>S3 76.60 (77.38-75.84) 80.00 (80.69-79.09) 76.50 (77.22-75.69) 79.00 (79.74-78.16) 82.00 (82.59-80.95) 69.80 (70.31-68.92)

(S1+S3)−>S2 57.40 (58.21-57.06) 57.30 (58.23-57.09) 47.50 (48.60-47.65) 49.90 (50.74-49.74) 52.70 (53.66-52.60) 56.60 (57.29-56.16)

(S2+S3)−>S1 58.60 (59.42-58.25) 60.80 (61.67-60.45) 54.70 (55.59-54.50) 60.30 (61.19-59.98) 61.60 (62.40-61.17) 56.30 (57.24-56.11)

S1–>S2 48.10 (49.06-48.10) 41.70 (42.77-41.93) 49.30 (50.14-49.16) 40.40 (41.38-40.57) 49.60 (50.52-49.52) 35.90 (36.65-35.93)

S1–>S3 59.50 (60.08-58.89) 63.40 (63.99-62.72) 57.80 (58.36-57.20) 56.10 (56.81-55.69) 59.50 (60.09-58.90) 49.00 (49.54-48.56)

S2–>S1 49.50 (50.23-49.24) 49.20 (50.00-49.01) 45.30 (45.96-45.05) 47.70 (48.42-47.47) 48.60 (49.20-48.22) 52.20 (52.86-51.82)

S2–>S3 58.00 (58.73-57.57) 61.80 (62.51-61.27) 63.00 (63.70-62.44) 59.50 (60.22-59.03) 60.30 (60.96-59.76) 62.50 (63.12-61.87)

S3–>S1 44.30 (44.98-44.10) 44.80 (45.46-44.56) 45.40 (46.04-45.14) 41.60 (42.26-41.43) 45.80 (46.37-45.45) 39.00 (39.68-38.90)

S3–>S2 36.60 (37.17-36.44) 36.70 (37.18-36.45) 36.00 (36.49-35.77) 37.80 (38.22-37.46) 37.60 (38.24-37.49) 40.20 (40.79-39.99)

Average 54.29 55.08 52.83 52.48 55.3 51.28

Note: S1 means subject 1, S2 means subject 2, S3 means subject 3, CI means confidence level

https://doi.org/10.1371/journal.pone.0298888.t007
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Models comparison of training time. Tables 10–13, report the training times of DASAN

and baseline technique with MMD and LMMD losses on nine cross-user experiments with dif-

ferent target data training samples varying from 100% to 10%. These are averaged training

times over 10 runs of the nine cross-user experiments reported in the table. DASAN-MMD

obtains a moderate average of averaged training times of nine cross-user domain-shifting tasks

on varying target data training samples: 130.36 sec, which is 22.16 sec shorter than that of

DASAN-LMMD, taking the longest training time among all. However, DASAN-MMD takes

31.22 sec more than DSAN-LMMD in model training time, whereas it takes 41.38 sec longer

than DSAN-MMD, taking the shortest training time among all. There is a trade-off between

higher model accuracy and shorter training time. However, DASAN-MMD still has the high-

est recognition accuracy with shorter training time as compared to DASAN-LMMD and mod-

erate among all. Fig 9 shows the comparison of average training times of all the models for

different target data training samples in a histogram plot.

Table 8. Average macro-F1 scores of DASAN-LMMD on CSI image dataset across all training percentages.

Task Deep adversarial subdomain adaptation network (DASAN) with LMMD loss

Macro-F1 score with different target data training samples percentages

100% with (95% CI) 80% with (95% CI) 60% with (95% CI) 40% with (95% CI) 20% with (95% CI) 10% with (95% CI)

(S1+S2)−>S3 77.00 (77.77-76.23) 74.90 (75.68-74.18) 74.30 (75.07-73.58) 76.80 (77.56-76.02) 71.40 (72.23-70.81) 61.90 (62.55-61.31)

(S1+S3)−>S2 69.89 (70.68-69.28) 73.80 (74.58-73.10) 74.20 (74.97-73.48) 67.00 (67.76-66.42) 73.60 (74.23-72.76) 62.40 (63.00-61.75)

(S2+S3)−>S1 73.70 (74.55-73.07) 73.60 (74.43-72.96) 73.10 (73.84-72.38) 73.10 (73.89-72.43) 69.60 (70.46-69.06) 71.60 (72.32-70.88)

S1–>S2 68.50 (69.33-67.96) 69.30 (70.16-68.77) 68.70 (69.35-67.98) 69.00 (69.63-68.25) 66.70 (67.37-66.03) 59.80 (60.19-59.00)

S1–>S3 58.60 (59.23-58.06) 61.00 (61.51-60.29) 56.80 (57.43-56.30) 61.80 (62.54-61.30) 59.30 (60.05-58.86) 50.60 (51.09-50.08)

S2–>S1 61.10 (61.61-60.39) 63.10 (63.61-62.35) 56.70 (57.41-56.28) 58.40 (59.09-57.92) 53.20 (53.74-52.67) 59.00 (59.62-58.44)

S2–>S3 63.60 (64.27-63.00) 66.40 (67.07-65.74) 67.20 (67.91-66.56) 66.80 (67.53-66.20) 63.50 (64.21-62.94) 62.20 (62.83-61.58)

S3–>S1 56.30 (56.95-55.82) 53.70 (54.43-53.35) 52.90 (53.50-52.44) 54.00 (54.61-53.53) 51.50 (52.15-51.12) 53.10 (53.59-52.53)

S3–>S2 45.90 (46.35-45.43) 42.90 (43.41-42.55) 42.80 (43.36-42.50) 39.40 (39.89-39.10) 51.50 (51.92-50.89) 53.10 (53.45-52.38)

Average 63.84 64.3 62.97 62.92 62.26 59.3

Note: S1 means subject 1, S2 means subject 2, S3 means subject 3, CI means confidence level

https://doi.org/10.1371/journal.pone.0298888.t008

Table 9. Average macro-F1 scores of DASAN-MMD on CSI image dataset across all training percentages.

Task Deep adversarial subdomain adaptation network (DASAN) with MMD loss

Macro-F1 score with different target data training samples percentages

100% with (95% CI) 80% with (95% CI) 60% with (95% CI) 40% with (95% CI) 20% with (95% CI) 10% with (95% CI)

(S1+S3)−>S2 61.90 (62.55-61.31) 75.60 (76.46-74.95) 75.40 (76.21-74.70) 70.90 (71.76-70.34) 69.40 (70.10-68.72) 60.90 (61.47-60.25)

(S2+S3)−>S1 78.30 (79.15-77.58) 77.30 (78.13-76.58) 73.50 (74.25-72.78) 75.90 (76.72-75.20) 76.20 (77.08-75.56) 71.60 (72.36-70.92)

S1–>S2 74.50 (75.33-73.84) 76.30 (77.21-75.68) 67.10 (67.74-66.40) 66.10 (66.71-65.39) 66.60 (67.28-65.94) 51.20 (51.57-50.54)

S1–>S3 61.40 (62.12-60.89) 56.20 (56.73-55.60) 59.40 (60.04-58.85) 68.20 (69.03-67.66) 65.70 (66.48-65.17) 49.30 (49.77-48.79)

S2–>S1 57.20 (57.71-56.56) 57.60 (58.03-56.88) 63.80 (64.60-63.33) 64.40 (65.18-63.89) 53.40 (53.93-52.86) 60.30 (60.93-59.72)

S2–>S3 65.50 (66.20-64.89) 66.50 (67.16-65.83) 68.50 (69.18-67.81) 69.80 (70.53-69.13) 67.20 (67.99-66.65) 62.50 (63.06-61.81)

S3–>S1 60.50 (61.24-60.03) 65.10 (66.04-64.74) 55.60 (56.21-55.10) 57.00 (57.62-56.48) 56.70 (57.33-56.20) 51.00 (51.52-50.50)

S3–>S2 45.30 (45.67-44.76) 46.60 (47.12-46.19) 50.20 (50.88-49.87) 47.90 (48.65-47.69) 47.10 (47.74-46.80) 45.30 (45.87-44.97)

Average 65.93 66.43 65.47 66.27 64.31 57.26

Note: S1 means subject 1, S2 means subject 2, S3 means subject 3, CI means confidence level

https://doi.org/10.1371/journal.pone.0298888.t009
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Conclusion

In this study we both propose the use of adversarial models and supply detailed evidence to

support the proposal. We have shown that our model has utility for finding the impacts of

global and sub-domain adaptation on cross-user domain transferring tasks on HAR using

Fig 7. Comparison of average Micro-F1 scores of DASAN-MMD, DASAN-LMMD, DSAN-MMD, &

DSAN-LMMD.

https://doi.org/10.1371/journal.pone.0298888.g007

Fig 8. Comparison of average Macro-F1 scores of DASAN-MMD, DASAN-LMMD, DSAN-MMD, &

DSAN-LMMD.

https://doi.org/10.1371/journal.pone.0298888.g008
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Table 10. Average training times of DSAN-LMMD on CSI image dataset across all training percentages.

Task Deep subdomain adaptation network (DSAN) with LMMD loss

Training Time in seconds with different target data training samples percentages

100% with (95% CI) 80% with (95% CI) 60% with (95% CI) 40% with (95% CI) 20% with (95% CI) 10% with (95% CI)

(S1+S2)−>S3 153.36 (155.08-149.96) 131.10 (136.95-132.58) 129.42 (134.88-130.57) 173.52 (177.66-171.88) 153.48 (158.20-153.08) 160.98 (164.84-159.47)

(S1+S3)−>S2 169.50 (174.52-168.87) 174.06 (178.64-172.84) 151.86 (156.99-151.93) 142.68 (148.70-143.95) 153.42 (157.25-152.14) 172.68 (177.52-171.76)

(S2+S3)−>S1 158.58 (163.33-158.05) 172.26 (177.02-171.28) 130.32 (134.13-129.79) 151.20 (155.74-150.70) 135.54 (140.39-135.88) 151.62 (155.40-150.34)

S1–>S2 68.28 (70.86-68.58) 80.64 (83.08-80.39) 78.36 (81.32-78.71) 74.76 (77.45-74.96) 74.94 (77.02-74.53) 71.82 (74.51-72.12)

S1–>S3 82.02 (85.42-82.69) 77.10 (79.78-77.21) 78.18 (81.43-78.83) 73.20 (76.35-73.91) 74.04 (76.38-73.91) 81.96 (84.72-81.99)

S2–>S1 77.70 (80.44-77.85) 64.62 (68.21-66.06) 73.86 (76.40-73.94) 63.36 (65.57-63.46) 64.80 (66.58-64.42) 67.92 (70.27-68.00)

S2–>S3 81.18 (84.22-81.51) 74.40 (77.62-75.14) 72.12 (74.58-72.17) 74.34 (76.97-74.49) 66.60 (68.60-66.38) 64.68 (67.39-65.23)

S3–>S1 65.76 (68.20-66.01) 73.02 (74.89-72.45) 69.72 (72.49-70.17) 65.88 (68.95-66.75) 62.88 (64.39-62.30) 64.02 (66.22-64.09)

S3–>S2 77.16 (79.75-77.18) 73.38 (75.80-73.35) 77.94 (80.40-77.81) 65.52 (68.21-66.03) 65.76 (67.24-65.05) 65.88 (68.18-65.99)

Average 103.73 102.29 95.75 98.27 94.61 100.17

Note: S1 means subject 1, S2 means subject 2, S3 means subject 3, CI means confidence level

https://doi.org/10.1371/journal.pone.0298888.t010

Table 11. Average training times of DSAN-MMD on CSI image dataset across all training percentages.

Task Deep subdomain adaptation network (DSAN) with MMD loss

Training Time in seconds with different target data training samples percentages

100% with (95% CI) 80% with (95% CI) 60% with (95% CI) 40% with (95% CI) 20% with (95% CI) 10% with (95% CI)

(S1+S2)−>S3 136.32 (138.48-133.93) 147.30 (152.75-147.84) 150.42 (155.06-150.04) 146.76 (151.96-147.06) 152.16 (157.11-152.04) 150.00 (154.52-149.52)

(S1+S3)−>S2 147.66 (152.65-147.72) 136.56 (141.08-136.52) 155.88 (160.52-155.32) 134.04 (140.22-135.76) 135.42 (139.82-135.31) 156.36 (161.46-156.25)

(S2+S3)−>S1 131.22 (135.22-130.85) 130.56 (135.16-130.81) 128.88 (132.51-128.21) 124.56 (129.15-125.00) 141.96 (146.91-142.17) 144.54 (149.22-144.41)

S1–>S2 70.32 (73.40-71.06) 67.86 (70.65-68.39) 74.22 (76.89-74.41) 55.56 (57.56-55.71) 63.78 (66.27-64.14) 67.86 (70.91-68.65)

S1–>S3 58.32 (61.18-59.24) 71.58 (74.26-71.88) 65.28 (68.57-66.39) 65.10 (68.35-66.18) 76.50 (78.30-75.75) 70.08 (72.84-70.51)

S2–>S1 56.04 (58.59-56.72) 57.72 (61.32-59.40) 63.42 (65.52-63.41) 65.58 (67.81-65.63) 55.86 (57.90-56.04) 71.64 (74.32-71.93)

S2–>S3 59.94 (62.28-60.29) 57.00 (59.76-57.86) 60.96 (63.52-61.48) 70.86 (73.14-70.78) 59.58 (61.77-59.78) 63.60 (66.68-64.56)

S3–>S1 60.90 (63.02-60.99) 60.36 (62.27-60.26) 58.68 (61.56-59.61) 56.94 (59.90-58.00) 56.58 (58.39-56.51) 57.54 (59.99-58.07)

S3–>S2 57.78 (60.29-58.37) 65.52 (68.17-65.98) 61.68 (63.90-61.84) 56.82 (59.64-57.75) 57.84 (59.70-57.78) 54.72 (56.69-54.87)

Average 86.5 88.27 91.05 86.25 88.85 92.93

Note: S1 means subject 1, S2 means subject 2, S3 means subject 3, CI means confidence level

https://doi.org/10.1371/journal.pone.0298888.t011

Table 12. Average training times of DASAN-LMMD on CSI image dataset across all training percentages.

Task Deep adversarial subdomain adaptation aetwork (DASAN) with LMMD loss

Training Time in seconds with different target data training samples percentages

100% with (95% CI) 80% with (95% CI) 60% with (95% CI) 40% with (95% CI) 20% with (95% CI) 10% with (95% CI)

(S1+S2)−>S3 133.20 (137.63-133.19) 243.48 (246.60-238.48) 228.00 (230.64-223.04) 243.12 (244.92-236.81) 233.34 (234.45-226.67) 199.68 (202.58-195.92)

(S1+S3)−>S2 235.08 (237.55-229.71) 224.28 (227.30-219.82) 241.50 (244.19-236.14) 245.16 (247.47-239.29) 183.36 (186.66-180.55) 228.30 (230.85-223.24)

(S2+S3)−>S1 224.64 (227.94-220.45) 235.86 (239.21-231.35) 240.96 (242.70-234.66) 245.16 (246.65-238.48) 216.60 (219.44-212.22) 237.54 (237.95-230.03)

S1–>S2 120.06 (121.70-117.69) 117.06 (118.88-114.98) 122.34 (124.14-120.06) 118.14 (119.37-115.43) 105.90 (107.40-103.87) 112.14 (113.68-109.94)

S1–>S3 137.82 (138.88-134.29) 113.58 (115.06-111.27) 140.16 (140.63-135.95) 131.16 (132.15-127.78) 98.52 (100.29-97.00) 121.92 (123.39-119.33)

S2–>S1 133.38 (134.03-129.58) 135.42 (136.12-131.60) 114.84 (115.46-111.63) 115.62 (116.81-112.95) 97.80 (99.15-95.89) 112.68 (114.25-110.50)

S2–>S3 130.56 (131.42-127.07) 134.70 (135.64-131.15) 127.26 (128.23-123.99) 121.08 (122.41-118.38) 108.24 (109.58-105.97) 130.92 (131.49-127.13)

S3–>S1 114.24 (115.20-111.40) 111.24 (112.76-109.05) 105.00 (106.18-102.68) 119.10 (120.48-116.51) 89.10 (90.96-87.99) 109.86 (110.75-107.09)

S3–>S2 120.84 (121.67-117.64) 113.16 (114.03-110.26) 110.82 (112.08-108.38) 103.08 (104.76-101.33) 89.10 (90.63-87.66) 109.86 (110.96-107.30)

Average 149.98 158.75 158.99 160.18 135.77 151.43

Note: S1 means subject 1, S2 means subject 2, S3 means subject 3, CI means confidence level

https://doi.org/10.1371/journal.pone.0298888.t012
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wireless signals. Even though sub-domain adaptation is usually considered to be a more signif-

icant method for cross-domain alignments because it fulfils the need of fine-grained informa-

tion from the relevant classes of different domain, our simulations provide initial evidence that

it is an inferior choice for human activity recognition (HAR) using device-free sensing.

Table 13. Average training times of DASAN-MMD on CSI image dataset across all training percentages.

Task Deep adversarial subdomain adaptation network (DASAN) with MMD loss

Training Time (seconds) with different target data training samples percentages

100% with (95% CI) 80% with (95% CI) 60% with (95% CI) 40% with (95% CI) 20% with (95% CI) 10% with (95% CI)

(S1+S2)−>S3 193.74 (199.04-192.58) 210.60 (212.76-205.74) 195.00 (197.07-190.57) 194.28 (196.58-190.11) 170.16 (171.50-165.82) 189.18 (192.03-185.72)

(S1+S3)−>S2 196.50 (198.50-191.95) 206.46 (209.37-202.49) 210.00 (212.67-205.67) 195.72 (197.27-190.74) 194.10 (197.81-191.34) 200.10 (202.80-196.13)

(S2+S3)−>S1 212.34 (215.45-208.37) 220.02 (223.15-215.82) 193.02 (195.50-189.07) 184.86 (186.40-180.24) 196.20 (198.80-192.26) 157.62 (158.41-153.15)

S1–>S2 111.78 (113.45-109.72) 113.40 (115.16-111.38) 116.22 (117.97-114.09) 100.20 (101.36-98.02) 99.24 (100.70-97.39) 101.10 (102.34-98.97)

S1–>S3 104.46 (105.08-101.60) 102.12 (103.43-100.02) 98.34 (99.04-95.76) 100.74 (101.48-98.12) 103.08 (104.99-101.55) 104.52 (105.60-102.11)

S2–>S1 95.82 (96.39-93.20) 90.72 (90.63-87.61) 85.98 (86.78-83.91) 97.92 (99.07-95.80) 88.68 (89.80-86.84) 104.10 (105.53-102.06)

S2–>S3 101.04 (102.06-98.69) 95.70 (95.85-92.66) 101.22 (102.30-98.92) 101.58 (102.58-99.19) 97.62 (98.99-95.74) 93.06 (93.62-90.52)

S3–>S1 88.08 (88.64-85.70) 102.12 (103.51-100.11) 84.36 (84.91-82.10) 95.52 (96.10-92.92) 98.34 (100.25-96.97) 86.64 (87.41-84.52)

S3–>S2 89.94 (90.45-87.45) 87.12 (87.75-84.85) 94.20 (95.19-92.05) 101.34 (102.95-99.57) 90.24 (91.77-88.76) 92.82 (93.93-90.84)

Average 132.63 136.47 130.93 130.24 126.41 125.46

Note: S1 means subject 1, S2 means subject 2, S3 means subject 3, CI means confidence level

https://doi.org/10.1371/journal.pone.0298888.t013

Fig 9. Comparison of average training time of DASAN-MMD, DASAN-LMMD, DSAN-MMD, & DSAN-LMMD.

https://doi.org/10.1371/journal.pone.0298888.g009
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Wireless signals show quite similar CSI patterns for different activities and it is not easy to

align these sub-domains properly for better recognition accuracy. In other words, the distance

between positive (samples belong to the same class) and negative (samples other than the posi-

tive class) samples is not reasonably large enough to align target sub-domains to their source

counterparts using sub-domain alignment techniques such as LMMD. The adversarial AI

model developed in this study shows improved predictive performance at all levels of test data

proportion when compared to a non-adversarial model. We demonstrated the superiority of

DASAN-MMD in terms of higher model recognition accuracy by comparing its transfer

results with those of DASAN-LMMD, DSAN-LMMD, and DSAN-MMD. The experimental

results further illustrate that we have developed a lightweight model with comparable simula-

tion time to existing baseline methods. Our results show that MMD loss with an adversarial

model aligns the source domain to the target domain globally, providing further evidence that

inter-domain alignment is more effective for HAR using wireless signals and the dataset along

with the preprocessing steps followed are suitable for such type of examinations.
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