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Abstract
The nonlinear Schrödinger equation is widely used as an approximate model for the
evolution in time of thewater wave envelope. In the context of simulating oceanwaves,
initial conditions are typically generated from a measured power spectrum using the
random-phase approximation, and periodized on an interval of length L . It is known
that most realistic ocean waves power spectra do not exhibit modulation instability,
but the most severe ones do; it is thus a natural question to ask whether the periodized
random-phase approximation has the correct stability properties. In this work, we
specify a random-phase approximation scaling, so that, in the limit of L → ∞, the
stability properties of the periodized problem are identical to those of the continuous
power spectrum on the infinite line. Moreover, it is seen through concrete examples
that using a too short computational domain can completely suppress the modulation
instability.

Keywords Stochastic sea state · Random-phase approximation · Nonlinear
Schrödinger equation · Modulation instability · Alber equation

1 Introduction

Ocean wave models can be classified as phase-resolved or phase-averaged. A phase-
resolved model aims to describe each individual wave crest and trough—for example,
the first principles, fully nonlinear, free-boundary problem for potential flow, or asymp-
totic approximations thereof (Boussinesq,KdV,Zakharov, nonlinear Schrödinger, etc.)
are all phase-resolved models. On the other hand, phase-averaged models (such as
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CSY, Alber, and Hasselmann equations) aim to describe a stochastic sea state on a
macroscopic and/or coarse-grained level. In that sense, any phase-averaged model
is a statistical model of waves, and typically uses some additional assumptions to
come up with closed equations for a phase-averaged representation. Phase-resolved
models can be very accurate in terms of hydrodynamics. However, they still have to
be initialized, and any prediction with them ultimately is as good as the initial con-
ditions used. Since the vast majority of data available for real-world ocean waves is
phase-averaged (typically power spectra/autocorrelations), the crisp exactness of ideal
hydrodynamics is out of reach anyway when modelling the ocean. On the other hand,
phase-averaged models have the advantage of being designed with real-world data
in mind. They are well suited for the large space and time scales required in ocean
engineering, and are known to provide valuable insights for the qualitative behaviour
of stochastic wavefields. Phase-resolved simulations can also be used in conjunction
with data to study stochastic sea states in a Monte Carlo sense, i.e., when used with
a large population of initial conditions (realizations of the sea state) generated from
phase-averaged measurements (Fig. 1). This is more accurate, but also much more
computationally expensive than phase-averaged models—and thus reserved for val-
idation or cases of special interest. Typically, a measured power spectrum (itself a
phase-averaged representation of the sea surface elevation) is used to generate a pop-
ulation of initial conditions on a finite computational domain of size L through the
random-phase approximation.

In this work, we study the convergence for the random-phase approximation in
terms of qualitative behaviour, i.e., whether it correctly captures the presence or not of
modulation instability in the original problem. We work in a regime where it is known
that both modulation instability and its absence are possible [1–3, 24, 31, 51].

1.1 Phase-AveragedModels and theModulation Instability

In 1962, Nobel-prize winner K. Hasselmann published what is now known as the Has-
selmann equation, a phase-averaged equation describing the energy transfer between
various wavenumbers [35]. The starting point of [35] is a stochastic sea state, where
both the background and perturbations are gaussian and homogeneous random pro-
cesses. Both gaussianity and homogeneity are widely considered to be fundamental
features of deep-water gravity waves [46]; this is largely consistent with empirical
observation, and is furthermore supported intuitively by an informal application of the
Central Limit Theorem. Today many state of the art approaches still use the Hassel-
mann equation, or similar moment equations (often collectively called “wave kinetic
equations”,WKE) to studydifferent aspects of real-world oceanwaves, including long-
distance propagation [36, 37, 52], extreme events [26–28] etc.Moreover, it has inspired
a number of rigorous mathematical studies not necessarily closely tied to real-world
ocean waves. These include the well-posedness theory of generalized wave kinetic
equations [30], wave turbulence [15, 16, 53], as well as the rigorous investigation of
the closure conditions involved in the derivation of the WKE [21–23].

A few years after the introduction of Hasselmann’s equation, what is now
called modulation instability (MI) entered the picture, in the study of the nonlinear



Modulation Instability and Convergence of the Random-Phase…

Schrödinger equation (NLS) as an approximate model for ocean waves [7, 56] (groups
working on different problems were also encountering aspects of the MI around the
same time, see [57] for a historical overview). The presence of MI in focusing dis-
persive waves means that plane waves are inherently unstable. It is now known that
the MI is a pretty universal feature of focusing, dispersive waves [12, 14]. Moreover,
[12, 14] point out that the MI can be seen as the tendency of inhomogeneities to ini-
tially grow, and subsequently settle in a particular pattern. It is natural to ask whether
stochastic wavefields with sufficiently narrow power spectra behave like plane waves
in that respect. The fact that ocean waves are in many cases narrowband makes this a
very natural question.

Afirst attempt to investigate how theMImight showup in a phase-averagedmoment
equation (analogous to Hasselmann’s equation) was made by Longuet-Higgins [42].
In that work Davey-Stewartson dynamics were used and it was found that the MI
for a plane wave would indeed shows up in the moment equations. The investigation
for a wavefield with a narrow but realistic power spectrum (not a delta-function)
was first performed in [1]. A sufficient condition for exponential growth of small
inhomogeneitieswas derived, in the formof a nonlinear systemof equations depending
on the power spectrum (what I. E. Alber called “the integral stability eigenvalue
relation” [1]). We will call this kind of instability of a stochastic sea state generalized
modulation instability (gMI), as opposed to the classical MI (MI) which is the growth
of inhomogeneities around a plane wave only. It turns out that the MI can be seen as a
special case of the gMI for a delta-function power spectrum (which practically amounts
to a plane wave) [4]. The notable feature of Alber’s analysis is that sufficiently narrow
and intense spectra can be seen to be unstable (meaning that inhomogeneities would
spontaneously grow), while sufficiently broad and low-intensity spectra are expected
to be stable (meaning that inhomogeneities do not grow; in fact later it was proved
that inhomogeneities disperse in the stable case [3]). The quantitative resolution of the
stability condition proved to require the development of novel numerical and analytical
techniques, and took several decades to mature [2, 3, 31, 51] – more on that below.

The possibility of realistic sea states for which gMI is present (i.e. homogeneity is
not stable) has profound consequences in the modelling of ocean waves. This was first
articulated in the seminal paper [17], where a second moment equation is derived for
water waves with an assumption of gaussianity only – not homogeneity. This is called
the CSY equation, and it is a broadband, 2-dimensional two-space moment equation,
derived from the Zakharov equation using only a gaussian closure. It is the most accu-
rate moment equation for water waves in the literature. Assuming homogeneity is a
robust feature of the sea state, then one can go to sixth order effects for the homo-
geneous wavefield, and essentially reproduce Hasselmann’s equation [17]. When a
narrowband approximation is used in [17], it is found that the question of whether
homogeneity is preserved can be investigated quantitatively, and Alber’s condition is
essentially recovered. Crucially, if homogeneity is not stable, then the effects of the
gMI are second order. In [2] this point was further strengthened: assuming that the
initial sea state in the CSY equation consists of an O(1) homogeneous part and an
o(1) inhomogeneous part, a CSY stability condition was derived, controlling whether
the inhomogeneous part grows exponentially or not. This was done without any nar-
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rowband approximation, and it yields the broadband, 2-dimensional counterpart of
Alber’s “stability relation”.

So [1, 2, 17] collectively present a fundamental dichotomy: starting with the a priori
assumptions of gaussianity and quasi-homogeneity of a given sea state (meaning the
initial presence of a small inhomogeneity), an Alber-type stability condition for that
particular sea state can be produced. If it is found to be stable, then homogeneity is
robust, the inhomogeneity is going to disperse, and one can safely go to higher-order
effects in order to derive homogeneous kinetic wave equations - as in, e.g., [35, 38].
In that sense the Alber stability of the sea state is a compatibility condition, allowing
the self-consistent use of homogeneity.

If the spectrum is found to be unstable however, then any inhomogeneity (which
in the field could be due to wave breaking, gusts of wind, localized extreme events,
presence of ships etc)will be spontaneously amplified, and this is a leading order effect.
Thus homogeneity cannot be consistently used as a permanent structural feature of
an unstable sea state: the homogeneous sea state is basically an unstable equilibrium.
These sea states where gMI is present have to be studied with different methods, and
are expected to behave very differently from the stable ones. This pumping of energy
in inhomogeneities for unstable spectra has been reproduced inmanyworks, including
[6, 24, 25, 33, 44, 48, 49, 51]. In the presence of gMI, large localized extreme events
emerge which clearly break homogeneity. It is worth noting that working out the
fundamental scalings of the gMI can give a qualitative description of these localized
extreme events; see Figure 1 for a comparison of asymptotic analysis of the Alber
equation [4] with state of the art Monte Carlo results [20].

The remaining question is the quantitative resolution of the stability condition:
when is a given power spectrum expected to be stable or unstable? The papers [2, 3,
31, 51] all investigate the onset of gMI for JONSWAP parametric spectra. The relevant
parametrization here is in α, a parameter directly affecting the severity of the sea state,
and γ, a parameter primarily affecting how narrow the spectrum is. In practice, more
severe sea states (storms) also tend to have narrower spectra – i.e. both α and γ tend to
increase or decrease together. While different techniques (and in some cases different
equations) are used, the findings are broadly in agreement: the vast majority of realistic
ocean wave spectra are stable, but the most extreme sea states on record cross over
to the unstable region. On one hand, this is consistent with the widespread success
of homogeneous approaches and the absence of MI-like effects in mild and moderate
seas [27, 41]. On the other hand, it is consistent with large, dangerous rare events
requiring a separate investigation [39, 46, 47]. It is worth noting that investigation of
non-parametric spectra [5] is also possible, and yields similar results.

1.2 Onset of Instability andMonte Carlo Setup

Understanding these unstable sea states is crucial for several reasons: on one hand,
it is likely that they play a key role in real-world oceanic rogue waves; on the other
hand, they represent a mathematical regime that is very poorly understood, and in
fact, most of the time we simply assume them away. Because of the instability of
homogeneity, any phase-averagedmodel that assumes permanent homogeneity cannot
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Fig. 1 Left: inhomogeneity produced by the unstablemodes of theAlber equation for a JONSWAP spectrum
[4]. Right: average profile of extreme events for a JONSWAP spectrum; Monte Carlo simulation using
modified NLS dynamics (image provided by T. Grafke) [20]

be used as a first-principles model. For that, we should use Monte Carlo simulations
of the underlying phase-resolved problem.

That is, we have to use phase-averaged data (power spectra) to create a large number
of realizations of the sea surface elevation. These initial realizations will be evolved in
time over a finite computational (or experimental) domain of length L . Very often peri-
odic boundary conditions are used (although different kinds of boundary conditions
also exist in the literature, e.g., non-reflective absorbing, etc). It is standard practice
to do this with the random-phase approximation [40, 46], basically a superposition of
plane waves with random phases and amplitudes consistent with the power spectrum.

Let us assume nonlinear Schrödinger (NLS) dynamics governing the evolution in
time of a complex wave envelope u(x, t). The original physical problem is typically
framed in infinite space [43]

i∂tU + p

2
�U + q

2
|U |2U = 0, x ∈ R, sup

x∈R
|U (x, t)| < ∞, (1)

with initial data U0(x) being a realization of a homogeneous random process with
power spectrum S(k). On the other hand, the truncated problem that we can readily
simulate is the periodized NLS

i∂t u + p
2 �u + q

2 |u|2u = 0, x ∈ [− L
2 , L

2

]
,

u
(− L

2 , t
) = u

( L
2 , t

)
, ∂xu

(− L
2 , t

) = ∂xu
( L
2 , t

)
,

(2)

with initial data of the form u0(x) = ∑
A je2π i(k j x+φ j ) where the φ j are i.i.d. random

variables uniformly distributed in [0, 1).
The main question that we address in this paper is the following:

• Under what conditions can we guarantee that the presence or not of gMI in the
original problem (1) is accurately captured in the periodized problem (2)?

We answer this question by deriving a periodized Alber equation for the truncated
problem, along with its stability relation which contains explicitly the lengthscale L.

Then, we can see that the instability condition for the truncated problem converges
to that of the original problem if appropriate scalings are used (roughly speaking as
long as L is large enough and O(L) plane waves are used—see Theorem 2.1). More
specifically, we find a way to create realizations of the sea state that leads to the
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correct stability condition. To highlight the role of L in the qualitative behaviour of
the solution, we investigate its role in the fully nonlinear MI in Sect. 5.

Recent theoretical breakthroughs suggest that different preparation of the initial
phase-resolved sea state may lead to completely different regimes [16, 23]. Thus,
the preparation of the initial data deserves more detailed attention. This is already
underway on the engineering side, where initialization and calibration are now starting
to be seen as an iterative workflow in the context of high-quality data [34] rather than
a standard formula.

2 Main Results

Theorem 2.1 (Periodized Alber equation) Let S(k) be a smooth power spectrum with
supp S(k) ⊆ [0, kmax ], and consider Eq. (2) with stochastic initial data u(x, 0) =
u0(x) where

u0(x) =
M∑

j=1

A j e
2π i

(
j x
L +φ j

)

, A j =
√

1

L
S

(
j

L

)
, φ j ∼ i.i.d. U (0, 1), M = kmax · L. (3)

TheAlber equation for the evolution in time of inhomogeneityρ(x, y, t) of this problem
is

i∂tρ + p
2

(
�x − �y

)
ρ + q [	(x − y) + ρ(x, y, t)] [ρ(x, x, t) − ρ(y, y, t)] = 0,

x, y ∈ [ L
2 , L

2

]
,

equipped with periodic boundary conditions, where

	(x) =
∑

n

1

L
S

( n

L

)
e2π i

xn
L ,

and the linear instability condition for this problem is

∃ξ ∈ Z ∃ω ∈ {z ∈ C : Re(z) > 0} h̃L(ξ, ω) = 1, (4)

where

h̃L(ξ, ω) = iq

L

∑

k∈Z

S
(
k−ξ
L

)
− S

( k
L

)

ω + i p 2π2ξ(2k−ξ)

L2

. (5)

Moreover, in the limit L → ∞, ξ → ∞, ξ/L → X

lim
L→∞ hL(LX , ω) = iq

+∞∫

k=−∞

S
(
k − X

2

) − S
(
k + X

2

)

ω + 4π2i pkX
dk. (6)
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Corollary 2.2 (Convergence of the instability condition as L → ∞)Under the assump-
tions of Theorem 2.1, the linear instability condition (4) of the periodized problem
converges to the linear instability condition for the infinite line problem [1, 3]

∃X ∈ R ∃ω ∈ {z ∈ C : Re(z) > 0} iq

+∞∫

k=−∞

S(k − X
2 ) − S

(
k + X

2

)

ω + 4π2i pkX
dk = 1,

(7)
as L → ∞.

Remark 2.3 We do not claim that Eq. (3) is the only way to recover the correct stability
condition. Other random-phase-type strategies to create realizations of the sea state
are also used in the literature, and it seems likely that they can also be calibrated lead
to the same stability condition.

The rest of the paper is organized as follows: Sects. 3.1 and 3.2 go over the derivation
of the periodized Alber equation and its stability relation. They are written in an
accessibleway that helpsmotivate and frame the proof,which can be found in Sect. 3.3.
Methods to check the stability condition are recalled in Sect. 4. We explore the role
of L in the MI and gMI in Sect. 5— in particular, it is seen that a short computational
domain can completely stabilize theMI aswell as the gMI. Ramifications are discussed
in Sect. 6.

3 Stability Analysis for Periodized Stochastic Sea States

3.1 Derivation of the Stability Condition

Let us briefly recall the derivation of the Alber equation in the infinite space case.
Assuming NLS dynamics for the wave envelope on infinite space (1) and following
[1, 3], we can derive the second moment equation

i∂t R + p

2

(
�x − �y

)
R + qR(x, y, t) [R(x, x, t) − R(y, y, t)] = 0 (8)

for the two-space autocorrelation

R = R(x, y, t) = E[u(x, t)u(y, t)]. (9)

The standard Gaussian closure

E[u(x, t)ū(x, t)u(x, t)ū(y, t)] = 2E[u(x, t)ū(y, t)]E[u(x, t)ū(x, t)]

is used to arrive to Eq. (8), cf. Appendix B of [3] for more details. Moreover, by
separating the wavefield into a homogeneous and non-homogeneous part

R(x, y, t) = 	(x − y) + ρ(x, y, t), (10)
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we derive the standard (infinite space) Alber equation for the evolution of the inho-
mogeneous part

i∂tρ + p

2

(
�x − �y

)
ρ + q [	(x − y) + ρ(x, y, t)] [ρ(x, x, t) − ρ(y, y, t)] = 0.

(11)
Observe that if ρ = 0, Eq. (11) is automatically satisfied. In other words, any homo-
geneous autocorrelation R(x, y, t) = 	(x − y) is automatically a solution of Eq. (8);
the point is to investigate if a particular homogeneous solution is stable under inhomo-
geneous perturbations (in which case an initially small inhomogeneity ρ is guaranteed
to stay small and even disperses) or unstable (in which case any inhomogeneity is
expected to grow rapidly).

Now, let us consider the periodization of the NLS on a torus of length L. Starting
from Eq. (2) and performing the same steps as before, the same Alber Eq. (11) can still
be derived—now equipped with periodic boundary conditions instead of non-growth
at infinity. Moreover, the periodicity of u is inherited by its second moments, and thus,
we can express moments in terms of Fourier series on the interval [− L

2 , L
2 ]

	(y) =
∑

n∈Z
Pne

2π i nyL , ρ(x, y, t) =
∑

k,l∈Z
rk,l(t)e

2π i kx+ly
L . (12)

For now,we treat the Fourier coefficients Pn as known.Wewill revisit their relationship
to the continuous power spectrum S(k) in the next subsection. Now, assuming quasi-
homogeneity, that is

ρ(x, y, 0) = o(1), (13)

we linearise around homogeneity (i.e., drop O(ρ2) terms) and express everything in
terms of the Fourier coefficients introduced in (12)

i
∑

k,l∈Z
∂t rk,l(t)e2π i

kx+ly
L + p

2

∑

k,l∈Z
rk,l(t)

(
(2π i kL )2 − (2π i l

L )2
)
e2π i

kx+ly
L +

+q

(
∑

n∈Z
Pne2π i

n(x−y)
L

)(
∑

k,l∈Z
rk,l(t)

[
e2π i

k+l
L x − e2π i

k+l
L y

])

= 0.
(14)

By taking the inner product with e2π i
k′x+l′ y

L (and suppressing the primes), we obtain

∂t rk,l(t) + i
2π2 p

L2 rk,l(t)(k − l)(k + l) − iq
[
P−l − Pk

] ∑

K∈Z
rK ,k+l−K (t) = 0.

(15)

Denote for brevity
	r(t) := {rk,l(t)}k,l∈Z; (16)

now, Eq. (15) is linear and can be summarised as

d

dt
	r(t) = A	r(t); (17)
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in other words, the growth of |r(t)| in time can be inferred by the eigenvalues of
the matrix A. This can provide a powerful black-box method (see [2] for a similar
approach in the CSY equation), but would not allow us, e.g., to show convergence as
L → ∞. Thus, we will proceed to work with the Laplace transform as in [3].

To help understand better what affects the eigenvalues, first of all, we bring Eq.
(15) to mild form

rk,l(t) = e−i p 2π2(k+l)(k−l)
L2

t rk,l(0) +
t∫

τ=0

e−i p 2π2(k+l)(k−l)
L2

(t−τ)iq

[
P−l − Pk

] ∑

K∈Z
rK ,k+l−K (τ )dτ, (18)

and proceed to define

f (ξ, t) =
∑

K∈Z
rK ,ξ−K (t), ξ ∈ Z; (19)

this corresponds to the ξ ’th Fourier coefficients of the inhomogeneous part of the
position density |u(x, t)|2. (The point is that f (ξ, t) really drives the problem, in the
sense that if we now f (ξ, t) then rk,l(t) can be computed by substitution in Eq. (18).)

Now set

k + l = ξ 
⇒ l = ξ − k, k − l = 2k − ξ ;

thus, Eq. (18) becomes

rk,ξ−k(t) = e−i p 2π2ξ(2k−ξ)

L2
t rk,ξ−k(0) +

t∫

τ=0

e−i p 2π2ξ(2k−ξ)

L2
(t−τ)iq

[
Pk−ξ − Pk

] ∑

K∈Z
rK ,ξ−K (τ )dτ. (20)

By summing Eq. (20) in k, it follows that:

f (ξ, t) = φL(ξ, t) +
t∫

τ=0

hL(ξ, t − τ) f (ξ, τ )dτ, (21)

where

φL(ξ, t) =
∑

k

e−i p 2π2ξ(2k−ξ)

L2
t rk,ξ−k(0), hL(ξ, t − τ)

=
∑

k

e−i p 2π2ξ(2k−ξ)

L2
(t−τ)iq

(
Pk−ξ − Pk

)
. (22)
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This is a simplified form of (15) in the sense that we have one discrete variable ξ in
the new unknown function f instead of two, k, l in the old variable 	r , while we still
can recover the full 	r(t) through

rk,l(t) = e−i p 2π2(k+l)(k−l)
L2

t rk,l(0)+
t∫

τ=0

e−i p 2π2(k+l)(k−l)
L2

(t−τ)iq
[
P−l − Pk

]
f (k+l, τ )dτ

(23)
(in particular, if f (t) does not grow exponentially, neither does 	r(t)).

By Laplace transform Eq. (21) becomes

f̃ (ξ, ω) = φ̃L(ξ, ω) + h̃L(ξ, ω) f̃ (ξ, ω) 
⇒ f̃ (ξ, ω) = φ̃L(ξ, ω)

1 − h̃L(ξ, ω)
. (24)

Thus, the existence of poles in the right half plane

∃ω∗ : Re(ω∗) > 0 and h̃L(ξ, ω∗) = 1

means that f (ξ, t) exhibits exponential growth. In terms of working out explicitly the
function h̃L , observe that for any ω with Reω > 0, we have

h̃L (ξ, ω) =
∞∫

t=0

e−ωt

[
∑

k∈Z
e−i p 2π2ξ(2k−ξ)

L2
t iq

(
Pk−ξ − Pk

)
]

dt = iq
∑

k∈Z

Pk−ξ − Pk

ω + i p 2π2ξ(2k−ξ)

L2

,

(25)
and similarly

φ̃L(ξ, ω) =
∑

k∈Z

rk,ξ−k(0)

ω + i p 2π2ξ(2k−ξ)

L2

, (26)

so that finally

f̃ (ξ, ω) =
∑

k∈Z
rk,ξ−k (0)

ω+i p 2π
2ξ(2k−ξ)

L2

1−iq
∑

k∈Z
Pk−ξ −Pk

ω+i p 2π
2ξ(2k−ξ)

L2

. (27)

3.2 Discretizing Continuous Power Spectra

In the previous subsection, we took the Fourier coefficients Pn for granted. Here, we
consider how they are related to the original continuous power spectrum S(k). Given
a spectrum S(k), a standard (periodic) realization of the envelope corresponding to it
can be generated through

u0(x) =
M∑

j=1

A je
2π i(k j x+φ j ), A j =

√
δk S(k j ), φ j ∼ U (0, 1), k j = j ·δk,

(28)
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so that A2
j ≈

∫ k j

k j−1

S(k)dk [46]. Observe that, in general, there is some flexibility in

the wavenumber discretization

k j = j · δk, j = 1, 2, . . . , M, δk = m

L
, m, M ∈ N. (29)

Now, the autocorrelation of the random-phase process (28) is

	(x − y) = E[u(x)u(y)] =
M∑

j, j ′=1

E[A j Ā j ′e
2π i[k j x−k j ′ y+φ j−φ j ′ ]]

=
M∑

j, j ′=1

A j Ā j ′e
2π i[k j x−k j ′ y]E[e2π i(φ j−φ j ′ )] =

=
M∑

j, j ′=1

A j Ā j ′e
2π i[k j x−k j ′ y]δ j, j ′ =

M∑

j=1

|A j |2e2π ik j (x−y).

Therefore

Pn = 1
L

L
2∫

y=− L
2

e−2π i nyL

M∑

j=1

|A j |2e2π ik j ydy

= 1
L

∑

j
|A j |2

L
2∫

y=− L
2

e2π i(k j−
n
L )ydy =

∑

j

|A j |2δk j , nL =

= ∑

j

m
L P( jδk)δ jδk, nL =

{ m
L P

( n
L

)
, n = mj for some j

0, n mod m �= 0.

(30)

Now, let us go back to the parameters m, M : the parameter M controls how
many distinct frequencies/wavenumbers are used, while m controls how close these
wavenumbers are taken. Thus, the largest wavenumber included is

kmax = M · δk = Mm

L
.

Since we are interested in gravity waves, it is reasonable to select a fixed maximum
wavenumber, e.g., kmax ≈ 10. Thus, if kmax = O(1) and L � 1, this leads to

M · m = O(L), (31)

which in principle could allow for different wavenumber discretization strategies.
Now, if we return to the choice

m = 1, M = kmax · L, (32)
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that was made in the statement of Theorem 2.1, Eq. (30) implies that

Pn = 1
L S

( n
L

)
. (33)

3.3 Proof of Theorem 2.1

In Sect. 3.1, the expression for h̃L(ξ, ω)was derived in terms of the Fourier coefficients
Pn, cf. Eq. (25). In Sect. 3.2, it was shown how the scaling of Eq. (3) for the initial
data leads to the Fourier coefficients Pn, cf. Eq. (33). Combining Eqs. (25) and (33)
leads to Eq. (5).

Now, observe that with the change of variables k′ = 2k − ξ (which means that
k′ ∈ 2Z − ξ, k = k′+ξ

2 , k − ξ = k′−ξ
2 ), we have

h̃L(ξ, ω) = iq

L

∑

k∈Z

S
(
k−ξ
L

)
− S

( k
L

)

ω + i p k2π2ξ(2k−ξ)

L2

= iq

2

∑

k′∈2Z−ξ

S
(
k′−ξ
2L

)
− S

(
k′+ξ
2L

)

ω + 4π2i p k′
2L

ξ
L

2

L
.

(34)
Now denote X ∈ R a fixed number independent from L and take the joint limit

L → ∞, ξ → ∞ so that
ξ

L
→ X .

In that regime, h̃L(ξ, ω) can be seen as a Riemann sum converging to

lim h̃L = iq
2

+∞∫

s=−∞

S
( s
2 − X

2

) − S
( s
2 + X

2

)

ω + 4π2i p s
2 X

ds, (35)

where k′/L → s and 2/L → ds. This double-spacing is because k′ in Eq. (34) spans
the odd or even numbers only, depending on ξ ; that is why 2/L → ds. Equation (6)
follows with the change of variables k = s/2 in Eq. (35).

With regard to the convergence of the Riemann integral in Eq. (35), note that as
along as Re(ω) �= 0, the denominator does not become zero, and the integrand inherits
the smoothness and decay properties of the power spectrum S(k). ��

4 Resolving the Stability Condition

The instability conditions both for the periodized problem and the infinite line problem
(Eqs. (4) and (7), respectively) are of the form
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∃ξ ∃ω ∈ {z ∈ C : Re(z) > 0} h̃(ξ, ω) = 1 (36)

for some known function h̃(ξ, ω) which is by construction analytic in ω as long as
Re(ω) > 0. This is a system of two equations (the real and imaginary part of h̃) in
three unknowns (ξ, Re(ω), Im(ω)) and as such determining the existence or not of
solutions is not trivial.

A technique that can be used to determine the existence or not of solutions is based
on the argument principle, and was analyzed in detail in [3]. In a nutshell, it is based on
the idea that, given a closed subset D ⊆ {z ∈ C : Re(z) > 0} with piecewise smooth
boundary	 = ∂D ⊆ {z ∈ C : Re(z) > 0}, the curve h̃(ξ, 	) = {̃h(ξ, s) ∈ C, s ∈ 	}
circumscribes h̃(ξ, D) = {̃h(ξ, s) ∈ C, s ∈ D}. A natural choice for D is a right
semicircle of radius R 1

ε
with the strip {Re(Z) < ε} excluded. As ε → 0, this set

exhausts the open right half plane. Therefore, now,wehave	 being aD-shaped contour

consisting of the straight line {ε + is}
1
ε

s=− 1
ε

and the arc { 1
ε
(cosθ + i sin θ)}− arccos ε2

θ=arccos ε2
.

Computing h̃(ξ, s) for s ∈ 	 is straightforward; moreover, for small enough epsilon,
the values of h̃ on the arc are going to be very close to zero; hence, the nontrivial part
is the images of the straight line—this is analogous to Nyquist plots in control theory.

Amore elementary technique is just plotting all the values attained on a fine enough
grid in the domain D. Finally, when the existence of an unstable mode is detected,
plotting the distance |̃h−1| can help locate its approximate location andwork locally if
necessary. Indeed, a number of numerical choices are required (numerical tolerances,
etc), it is often helpful to use several different methods in conjunction.

5 MI and gMI Can Be Completely Suppressed on a Short Interval

In this section, we go over in some more detail the role of L, the length of the com-
putational domain, in the MI and gMI. We start by recalling in detail the MI for the
real line in Sect. 5.1, and for the interval of length L in Sect. 5.2. Then, we investigate
numerically the nonlinear phase of the MI in Sect. 5.3. We plot the inhomogeneity (in
this case the difference from the plane wave background) and discuss its qualitative
behaviour for various values of L. In Sect. 5.4, we investigate numerically the nonlin-
ear evolution of a small inhomogeneity added to a homogeneous background solution
which serves as a simple model realization of a sea state with a very narrow spectrum.
By plotting the inhomogeneity, we see a picture completely analogous to the MI: a
short computational domain L can completely stabilize the problem, i.e., make the
inhomogeneity stay small—while on larger computational domains, the inhomogene-
ity grows by two orders of magnitude. In all cases, the inhomogeneity is numerically
zero at the endpoints of the interval, while the background solution satisfies periodic
boundary conditions.

5.1 MI on the Real Line

We briefly go through the standard MI calculation on the real line, for Eq. (1). This
will prepare the ground for the subsequent analysis on a bounded interval. Equation
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Fig. 2 Space–time plot of the modulus of the inhomogeneity, |δ2(x, t)|, when propagated on intervals of
different length L according to Eqs. (51)–(53). Growth of the inhomogeneity to O(1) is evidence of MI.
The bifurcation length Lc is reported in Eq. (49). Top left: L = 0.98Lc. Top right: L = 1.3Lc. Bottom
left: L = 3Lc. Bottom right: L = 10Lc

Table 1 Maximum value of the
inhomogeneity max

x,t
|δ(x, t)| for

x ∈ [−L/2, L/2] and
t ∈ [0, 10], with L = NLc (cf.
Eq. (49)) and initial
inhomogeneity δ j (x, 0) (cf. Eq.
(52))

N = 0.98 N = 1.3 N = 3 N = 10

j = 1 0.0359 2.59 3.08 3.03

j = 2 0.0393 2.59 3.09 3.03

j = 3 0.149 2.65 3.17 3.12

j = 4 0.25 2.69 3.22 3.18

j = 5 0.03 2.57 3.05 2.96

(1) is known to be well-posed in Zhidkov spaces [29, 58]; this is the natural framework
for this discussion. Also, since we are dealing with the focusing NLS, we will assume
without loss of generality that p, q > 0. Moreover, Eq. (1) admits the exact solution

w(x, t) := Aeiq A
2t , (37)

which is the simplest plane wave solution with amplitude A > 0. To study the stability
of this plane wave solution one can consider whether small perturbations grow. This
leads to the perturbed initial value problem

i∂t u + p�u + q|u|2u = 0, u(x, 0) = A(1 + δ0(x)) (38)
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for some initial perturbation δ0(x) which is small in an appropriate sense, δ0 = o(1).
Using the substitution

u(x, t) = Aeiq A
2t (1 + δ(x, t)), (39)

one readily computes that problem (38) is equivalent to

iδt + p�δ + q A2(δ + δ̄) + q A2(δ + δ̄)δ + q A2|δ|2(1 + δ), δ(x, 0) = δ0(x).
(40)

Dropping higher order terms, we obtain the linearized problem for the perturbation,
namely

iδt + p�δ + q A2(δ + δ̄), δ(x, 0) = δ0(x). (41)

By expanding Eq. (41) into its real and imaginary parts, and denoting

δ(x, t) = α(x, t) + iβ(x, t), (42)

we eventually obtain the system

∂t tβ + (
p2�� + 2pq A2�

)
β = 0, ∂tα + p�β = 0. (43)

This now can be solved explicitly with separation of variables, leading to the construc-
tion of the modes

ζ ∈ R, βζ (x, t) = ei[ζ x+ω(ζ )t] + c.c., ω2(ζ ) = ζ 2[p2ζ 2 − 2pq A2]. (44)

(Here c.c. stands for complex conjugate.) More general solutions can be formed by
superpositions of these modes, β(x, t) = ∫

M(ζ )βζ (x, t)dζ. The instability is due to
the fact that

|ζ | < A
√
2 q
p 
⇒ ω(ζ ) = ±i |ω(ζ )|, (45)

and thus, the correspondingmodes βζ (x, t) of Eq. (44) contain an exponentially grow-
ing component. Therefore, the solution δ of the linearized Eq. (41) generally grows
exponentially in time, i.e., the plane wave solution of the NLS is linearly unstable.
Moreover, the unstablewavenumbers and their rate of growth follow from this analysis.

In this problem, there are three parameters, p, q, A. However, by rescaling the

problem according to τ = q A2 t, χ = A
√

q
p x, U (χ, τ ) = 1

A u(x, t), the equation is

mapped to the “canonical” NLS i∂τU+∂χχU+|U |2U = 0,which has the planewave
solution W (χ, τ ) = eiτ . That is, the exact values of p, q, A do not play an important
role and the nature of the modulation instability is the same for any p, q, A > 0.
This widely understood universality of the MI may have contributed to an implicit
expectation that the periodized problem automatically enjoys similar properties.

5.2 MI on an Interval of Length L

Now, let us consider the NLS equation on an interval of length L equipped with
periodic boundary conditions, namely (2). The steps described above in Eqs. (37)–
(43) were carried out with boundary conditions of boundedness at infinity; however,
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one readily checks that each step is equally validwith the periodic boundary conditions
on [−L/2, L/2]. Indeed, the plane wave is still a solution, the algebra leading to (40)
is the same, and finally, the linearization and separation of real and imaginary parts
are the same. So now, we have to solve the problem

∂t tβ + (
p2�� + 2pq A2�

)
β = 0, β

(− L
2 , t

) = β
( L
2 , t

)
, ∂xβ

(− L
2 , t

) = ∂xβ
( L
2 , t

)
.

(46)
This is the first time that the parameter L really comes into play, and separation of
variables now leads to the discrete modes

βn(x, t) = e2π i(
nx
L +ωn t) + c.c., (2πωn)

2 =
(
2πn

L

)2
[

p2
(
2πn

L

)2

− 2pq A2

]

.

(47)
While this is analogous to Eq. (44), there is a very important difference: depending on
the values of p, q, A, L, there may not be even one unstable mode. Indeed, ω0 = 0,
and for any 0 �= n ∈ Z, we have

ω2
n < 0 ⇐⇒ L >

2π |n|
A

√
p

2q
. (48)

That is, the computational domain L has to be larger than

Lc := 2π
√
p

A
√
2q

; (49)

otherwise, the MI is completely suppressed. Observe moreover that the lengthscale
Lc does not depend on the initial inhomogeneity δ0(x), and becomes larger when the
nonlinearity becomes weaker (i.e., when q, A > 0 decrease). For water waves with
typical wavenumber k0 (equivalently typical wavelength λ0 = 2π/k0), the coefficients
are p = √

g/(8k3/20 ), q = √
gk5/20 /2 [43] leading to

Lc = 1

4π
√
2

λ20

A
. (50)

Note that the waves that would be dangerous for ships in the ocean and carry most of
the surface wave energy have wavelengths in the hundreds of meters.

5.3 Numerical Investigation of the Fully Nonlinear MI

In what follows we present numerical solutions of the problem

i∂t u + p�u + q|u|2u = 0, u(x, 0) = A(1 + δ j (x))
u

(− L
2 , t

) = u( L2 , t), ∂xu
(− L

2 , t
) = ∂xu

( L
2 , t

)
,

(51)
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Fig. 3 Space–time plot of the modulus of the inhomogeneity, |δ(x, t)|, when propagated on intervals of
different length L according to Eqs. (54)–(58). The reference length L0 is reported in Eq. (54). Top left:
L = L0. Top right: L = 2L0. Bottom left: L = 3L0. Bottom right: L = 10L0

for the initial inhomogeneities

δ1(x) = 0.03 · A · sech(15x) cos(5x), δ2(x) = 0.03 · A · sech(15x),
δ3(x) = 0.03 · A · e−3x2 , δ4(x) = 0.03 · A · e−x4 , δ5(x) = 0.06 · A · x · e−x4 ,

(52)
and p = q = A = 1.The bifurcation length in this case is Lc ≈ 4.45; the solutions are
computed for L = 0.98Lc, L = 1.3Lc, L = 3Lc, and L = 10Lc. The computation
time is t ∈ [0, 10]. The numerical scheme used is a relaxation in time with the second-
order finite differences in space, and it satisfies mass and energy conservation on the
discrete level [9, 10]. The inhomogeneity δ(x, t) for t ∈ [0, 10] is defined as

δ(x, t) := (u(x, t) − Aeiq A
2t )

1

A
e−iq A2t (53)

consistently with Eq. (39). Numerical results can be found in Fig. 2 as well as in Table
1.

The initial inhomogeneities δ1 and δ2 are localized sech bumps, and are quite
similar to each other. δ3 and δ4 are also bumps with different profiles, and δ5 is a
localised wave. In Table 1, the maximum moduli of the inhomogeneities are recorded
when propagated on intervals of different lengths. There is a clear confirmation of
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the abrupt bifurcation, namely an abrupt change in behaviour from L = 0.98Lc to
L = 1.3Lc.

On the larger intervals L = 3Lc, L = 10Lc, coherent structures emerge. These are
a sign that the MI has been resolved in a manner qualitatively similar to what would
happen on the real line (that is, until the structures reach close to the boundary of
the computational domain). These structures all involve localised maxima supported
on neighbourhoods of size roughly Lc each. In the larger domain, the well-known
space–time cone [12–14] is clearly visible.

The presence of a space–time cone in the nonlinear phase of the MI, reported for
a wide array of dispersive problems [12–14], which means that there is generically
a finite speed of propagation of the boundary between the plane wave region (for
|x | � 1) and the “inhomogeneous” region. Moreover, the “inhomogeneous” region
seems to settle in a pattern determined by the equation and not by the specific initial
condition (see also Figures 1 and A1 of [6]). These patterns that appear within the
cone seem to be related to the so-called dispersive shock solutions [11].

Crucially, when the length of the domain becomes L < Lc, we do not merely see
a periodised or slightly off version of the cone, but something completely different:
the amplification is small or non-existent and there is no spatial pattern at all; see
left graph in Fig. 2. Indeed, for all initial data, when L = 0.98Lc, the inhomogeneity
initially disperses rapidly and then slowly grows in homogeneous way over the whole
computational domain.

5.4 An Instance of gMI on an Interval of Length L

We set
L0 = 4.4518, p = q = 1 (54)

and consider an initial condition

u0(x) = 0.018e
−2π i x

L0 + 0.899 + 0.1252e
2π i x

L0 . (55)

This u0 can be thought of as a perturbation of the plane wave solution (37) at t = 0,
and the lengthscale L0 is numerically close to the Lc of problem (51) – (53). The goal
of this computation is to see whether a phenomenology analogous to what was seen
in Sect. 5.3 arises beyond plane wave backgrounds. Thus, the initial condition u0(x)
plays the role of a realization of a very narrow spectrum.

In this setting, the “homogeneous background solution” u(x, t) is the solution of

i∂t u + p�u + q|u|2u = 0, u(x, 0) = u0(x)
u

(− L
2 , t

) = u
( L
2 , t

)
, ∂xu

(− L
2 , t

) = ∂xu
( L
2 , t

)
,

(56)

and the inhomogeneously perturbed solution V (x, t) is the solution of

i∂tv + p�v + q|v|2v = 0, v(x, 0) = u0(x) + 0.07sech(15x) cos(5x)
v

(− L
2 , t

) = v
( L
2 , t

)
, ∂xv

(− L
2 , t

) = ∂xv
( L
2 , t

)
.

(57)



Modulation Instability and Convergence of the Random-Phase…

Fig. 4 Plots of the real part (blue) and imaginary part (red) of the background solution u, as in Eq. (56), on
the interval with length L = 10L0. Left: for t = 0. Right: for t = T

The inhomogeneity δ(x, t) is thus defined as

δ(x, t) = v(x, t) − u(x, t), (58)

and the main question is whether δ(x, t) grows significantly or not for different values
of L.

Immediately when we consider background solutions other than plane waves, we
observe that the length L and the initial conditions u0, δ have to be compatible:
the homogeneous u0 has to satisfy periodic BCs on L; hence, in this case, we will
consider only integer multiples of L0. On the other hand, the localized δ(x, 0) has to
be numerically zero at the ends of the domain, up to satisfactory accuracy. By taking
L = NL0, for N ∈ {1, 2, 3, 10} both of these requirements are satisfied. The final
time is taken to be T = 10.3.

The numerical scheme used is the same as in Sect. 5.3 (a relaxation in time with the
second-order finite differences in space, and it satisfies mass and energy conservation
on the discrete level [9, 10]). The time step used is dt = 4 · 10−3 and the space mesh
size is dx = 4 · 10−3. The modulus |δ(x, t)| can be found in Fig. 3, and it is clear that
for the short enough computational domain L = L0, the growth of the inhomogeneity
is completely suppressed (in particular, the inhomogeneity in the L∞ norm is not even
doubled). On the other hand, the space–time cone, inside which the inhomogeneity
grows by more than an order of magnitude is very clearly visible when L = 10L0.

To provide some more context, the background solution and the inhomogeneity
are plotted in the initial and final time in Figs. 4 and 5. Observe how the background
solution qualitatively behaves similarly to the plane wave solution.

6 Conclusions

In this paper, we presented for the first time a construction of the random-phase
approximation in the NLS equation that comes with a convergence result: using the
scaling of equation (3), for large enough L, the instability condition of the truncated
problem (2) converges to that of the original problem (1).
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Fig. 5 Plots of the real part (blue) and imaginary part (red) of the perturbed solution v, as in Eq. (57), on
the interval with length L = 10L0. Left: for t = 0. Right: for t = T

In the proof, it is clear that Eq. (3) is not the only way to prepare initial data that
would have this property. There are other ways to prepare initial data in the literature,
e.g., with randomized amplitudes as well as phases of the modes [5], and it is possible
that these could also lead to a consistent stability condition. On the other hand, recent
results in different regimes [15, 16, 23] highlight that different ways to prepare the
initial conditions may lead to genuinely different outcomes.

The importance of using large enough computational domains is well understood
for the classical MI. This was further elaborated in Sect. 5, where a lengthscale of
Lc = O(λ20) was found to be necessary for the MI to be present even for plane waves.
If λ0 is in the hundreds of meters, as in ocean waves, this could mean Lc hundreds of
wavelengths long.

The role of L in the gMI is less well understood. In works where the onset of gMI
was actively investigated, it has been reported that long computational domains are
needed; indeed, in [51], it was reported that a computational domain of 15Lc was
needed for a JONSWAP sea state (where Lc is the corresponding critical length for
the plane wave with the same wavelength and wave height as the peak values for
the sea state). Around 130 wavelengths were found to be required in [6], while in
[48], the computational domain is about 100 wavelengths. On the other hand, in many
papers, the question of the length of computational domain seems to not be addressed
in any detail. While more work is needed to conclusively resolve this question for
realistic ocean wave spectra, we have demonstrated here (in Sect. 5.3 and Fig. 3) that
the capacity of short computational domains to suppress the growth of inhomogeneities
extends beyond plane wave backgrounds.

This work was carried out assuming NLS dynamics. This is of course an approxi-
mation for ocean waves, but it should be noted that recent rigorous works have shown
that the MI for the fully nonlinear water waves problem is accurately captured by the
nonlinear Schrödinger equation [8, 45]. Furthermore, the analysis carried out here for
the truncated NLS problem can be carried out for the truncated Zakharov problem in
the spirit of [2], thus producing a stability relation for the periodized CSY equation
(which is two-dimensional and broadband, since it assumes Zakharov dynamics). This
would also allow the investigation of crossing seas scenarios, either in fully 2D through
the aforementioned CSY equation, or using an Alber system for the interaction of two
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unidirectional wavetrains at an angle [5, 32]. Crossing seas are very important with
regard to real-world marine safety, and much more can be done to investigate them
[19, 50, 54]. More broadly, incorporating more physics into the model, such as wind
input [4, 55] and vorticity [18] seems to be a very promising direction with regard to
real-world ocean waves.
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