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Temporal Bistability in the Dissipative Dicke-Bose-Hubbard
System

Tianyi Wu, Sayak Ray,* and Johann Kroha

A driven-dissipative system is considered, consisting of an atomic
Bose-Einstein condensates loaded into a 2D Hubbard lattice and coupled to a
single mode of an optical cavity. Due to the interplay between strong,
repulsive atomic interaction and the atom-cavity coupling, the system exhibits
several phases of atoms and photons including the atomic superfluid (SF) and
supersolid (SS). The dynamical behavior of the system, where dissipation is
included by means of Lindblad master equation formalism. Due to the
discontinuous nature of the Dicke transition for strong atomic repulsion,
extended co-existence region of different phases are found. The resulting
switching dynamics are investigated, particularly between the coexisting SF
and SS phases, which eventually becomes damped by the dissipation.

1. Introduction

Open quantum systems are inherent in nature since no sys-
tem can completely be isolated from the environment. They
are beyond the description by Schrödinger unitary time evolu-
tion and can give rise to various non-equilibrium phenomena
like decoherence, dissipation, relaxation dynamics towards equi-
librium, non-Markovian dynamics etc.[1] Ultracold atomic sys-
tems turn out to be a versatile platform to study such non-
equilibrium phenomena where dissipation can arise from the
atom-number loss, spontaneous decay of atomic excitations, or
coupling the condensate to cavity modes in an optical resonator,
and the system parameters can be engineered appropriately.[2]

This has generated an impetus to study the interplay of interac-
tion and dissipation in a generic quantum many-body system.
For example, the effects of non-equilibrium and dissipative dy-
namics have been studied in Bose-Josephson junctions,[3–5] in a
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spin-boson model where decoher-
ence leads to termination of quantum
tunneling,[6] in trapped-ion systems[7]

and in ultracold Rydberg atom gases
with spontaneous decay.[8–11] Recently,
even dynamical vibrational modes of
optical lattices via coupling to a dynami-
cal resonator have been realized,[12] and
it has opened up a new research line
of cavity-QED with quantum gases.[13]

A prominent case is the Dicke
model.[14] It exhibits a quantum phase
transition from a normal state to a super-
radiant state of the atoms,[15] which has
been realized in experiment by coupling
the atomic condensate to a singlemode of

an optical cavity.[16] The cavity photons can mediate an effec-
tive, long-range interaction between the atoms, which leads to
the realization of a supersolid phase of matter.[17–21] The effect of
non-coherent photon fluctuations has been taken into account in
ref. [22]. The Dicke system has often been regarded as an equilib-
rium model where the superradiant transition is induced by in-
creasing the atom-cavity coupling strength. However, taking into
account realistic, driven-dissipative effects even in a stationary
situation, where the atoms are excited by an external laser and
photons are lost due to cavity imperfections,[23] has started only
in the most recent works.[21,22,24–26]

In the present paper, we study a driven-dissipative, interacting,
atomic Bose gas loaded in a 2D optical lattice and coupled to a
single optical-cavity mode in the presence of cavity-photon loss.
We focus on the time-dependent dynamics after an initial non-
equilibrium excitation. We cover the entire atomic interaction
range from weak to strong repulsion U, which includes Bose-
Einstein condensation or Mott-Hubbard localization of the atom
system, respectively. The resulting interplay of these low-energy
phases with the cavity-photon system gives rise to a rich phase
diagram. It exhibits Mott insulator (MI) or homogeneous, super-
fluid (SF) states, respectively, coexisting with the normal-radiant
(NR) phase of the cavity-photon system, while the superradiant
(SR) photon phase induces self-organized spatial modulation of
the atom system, i.e., a normal density wave (DW) or a supersolid
(SS) phase, depending on pump as well as interaction strength.
We treat the cavity-photon field semi-classically, whereas the

atomic condensate phases and dynamics in the Hubbard lattice
are described using the Gutzwiller clustermean-field theory.[27,28]

Interestingly, we find that the Dicke normal-to-superradiant tran-
sition, especially in the strong coupling limit, is associated with
a jump in the order parameters. This jump is also found in
equilibrium treatments using Bose dynamical mean field theory
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(B-DMFT)[29] or quantumMonte Carlo (QMC),[30] and is corrobo-
rated by a hysteretic behavior found in the experiments.[17,31] This
justifies our cluster mean-field treatment also in the presence of
dissipation. We determine the regions of coexistence associated
with the order-parameter discontinuities for the homogeneous
and self-organized atomic phases, namely the MI and DW, SF
and DW as well as the SF and SS phases. Hence, within the co-
existence region, the corresponding phases are bistable.
To investigate this bistability in more detail, we adiabatically

tune the atom-photon coupling 𝜆 (or, equivalently, the pump
rate) across the coexistence region and find hysteretic behavior,
a hallmark of the bistability. Furthermore, we study the time-
dependent out-of-equilibrium dynamics, particularly in the SF-
SS bistability region. We prepare the initial state away from any
of the bistable saddle points and observe persistent switching
behavior between the two coexisting atomic condensate phases.
Including cavity-photon loss, we investigate the resulting dissi-
pative dynamics using the Lindblad master-equation approach.
In the presence of cavity-photon loss, the coexistence region
is shifted to higher values of the coupling strength 𝜆, and the
switching dynamics are damped so that the system relaxes to one
of the two stable attractors characterized by different steady states
in the long-time limit.
The plan of the paper is as follows. We introduce the Dicke-

Bose-Hubbardmodel and describe the clustermean-fieldmethod
used to describe the atomic phases in Section 2.1. In Section 2.2,
we compute the ground-state phase diagram, followed by calcu-
lating the bistability regions in Section 2.3. We discuss the non-
equilibrium dynamics within the coexistence region, which in-
cludes hysteresis dynamics, as well as dynamically switching be-
tween the coexisting phases in Section 3.1 and in Section 3.2,
respectively. Finally, in Section 4, we study the dissipative dynam-
ics and discuss the steady states to which the system relaxes in
the long-time limit. We summarize our results and conclude in
Section 5.

2. The Dicke-Bose-Hubbard Model

2.1. The Model and Method

The dynamics of interacting bosons in a 2D optical lattice coupled
to a singlemode of an optical cavity can be described by theDicke-
Bose-Hubbard model,[17,21]

Ĥ = Ĥc + Ĥb + Ĥbc

Ĥc = 𝛿 â†â

Ĥb = −J
∑
⟨r⃗,r⃗′⟩ b̂

†
r⃗
b̂
r⃗′
− 𝜇

∑
r⃗

n̂r⃗ +
U
2

∑
r⃗

n̂r⃗
(
n̂r⃗ − 1

)
Ĥbc = − 𝜆√

L
(â + â†)

∑
r⃗

Vr⃗ n̂r⃗ (1)

where, Ĥc describes the cavity mode in the rotating frame with
detuning 𝛿 = Ω − ΩL with respect to the laser-pump frequency
ΩL, with â (â†) the annihilation (creation) operators of the pho-
ton field. The bosonic atoms in an optical lattice alone are de-
scribed by the Bose-Hubbard Hamiltonian Ĥb, where b̂r⃗ (b̂

†
r⃗
) and

Figure 1. Schematic of the model. 2D optical lattice with even (open cir-
cles) and odd (filled circles) sites, representing Vr⃗ = ±1, respectively. The
dynamical potential generated by the cavity-photon field is shown by the
blue curve. The Hubbard parameters J and U in the Hamiltonian in Equa-
tion (1) are schematically demonstrated.

n̂r⃗ = b̂†
r⃗
b̂
r⃗
represent the local annihilation (creation) and number

operators of bosonic atoms, respectively, at the 2D lattice coor-
dinates r⃗ ≡ (i, j). J is the hopping amplitude of atoms between
the nearest neighbor (NN) sites denoted by ⟨r⃗, r⃗′⟩, U is the on-
site interaction strength and 𝜇 is the chemical potential. Due to
the atom-cavity coupling, the cavity-mode amplitude acts as a po-
tential for the atoms. In the 2D Dicke model, the lattice spacing
of the optical lattice is engineered to be half the wavelength of
the optical cavity mode in both of the two spatial directions (see
Figure 1). This implies a staggered potential described by Ĥbc,
where Vr⃗ = (−1)(i+j) and 𝜆 denotes the potential strength, which
is directly controlled by the intensity of the external laser pump-
ing the atomic excitations. Since the photon number in the (ex-
tensive) cavity mode scales with the total number of sites L as
a†a ≈ L, the local coupling of the cavitymode to the atoms on site
r⃗ implies the factor 1∕

√
L in Ĥbc in order for the entire Hamilto-

nian to be an extensive quantity.
In the mean-field treatment of the photonic part of the Hamil-

tonian in Equation (1) it is assumed that all cavity photons are
in a phase-coherent state, so that the photon field operator â
can be replaced by its average value, neglecting non-coherent
photon fluctuations.[22] Then the coupling Hamiltonian Ĥbc con-
tains only atomic operators and, hence, the total density ma-
trix 𝜌̂T factorizes into density matrices acting only in the cavity-
photon or in the atomic Hilbert space, respectively, 𝜌̂T = 𝜌̂c ⊗

𝜌̂b. Atom-photon correlations thus factorize as ⟨ân̂r⃗⟩ = ⟨â⟩⟨n̂r⃗⟩,
where ⟨(… )⟩ = Tr[𝜌̂c,b(… )] denote the thermal average in the cav-
ity and the atomic Hilbert subspace, respectively. In particular,
the SR order parameter is defined as the photon amplitude per
site, 𝛼 = Tr(𝜌̂câ)∕

√
L in the thermodynamic limit, L → ∞ and the

average occupation imbalance per site as,Δ =
∑

r⃗ Vr⃗⟨n̂r⃗⟩∕Lwhich
will appear in the SR phase, see below.
The mean-field solution of the atom-cavity system at zero tem-

perature is then obtained by minimizing the average cavity en-
ergy per site

E(𝛼,Δ) = ⟨Ĥc+bc⟩∕L = 𝛿|𝛼|2 − 2𝜆Re[𝛼]Δ (2)
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with respect to 𝛼 for given Δ, where the cavity-photon Hamil-
tonian is Ĥc+bc = Ĥc −

𝜆√
L
(â + â†)LΔ, and solving the atomic

Hamiltonian

Ĥb+bc = Ĥb − 2𝜆Re[𝛼]
∑
r⃗

Vr⃗ n̂r⃗ (3)

for given SR field 𝛼. This process is iterated selfconsistently to-
ward convergence.
Solving Ĥb+bc for the matter fields, we apply the Gutzwiller

clustermean-field theory (CMF) on a 2D, bipartite Bose-Hubbard
lattice.[27,28] Here, the entire lattice is decomposed into smaller
m × n-sized clusters. For any cluster l, the atomic field opera-
tor b̂r⃗ , r⃗ ∉ l, in the neighboring cluster is approximated by its
average value ⟨b̂r⃗⟩, i.e., the local condensate amplitude. The to-
tal Hamiltonian in Equation (3) can, thus, be written as a sum
of cluster Hamiltonians, ̂b+ac =

∑
l ̂l

, where the lth cluster
Hamiltonian reads,

̂l
= −J

[ ∑
⟨r⃗,r⃗′∈l⟩

b̂†
r⃗
b̂
r⃗′
+

∑
⟨r⃗∈l ,r⃗′∉l⟩

b̂†
r⃗
⟨b̂

r⃗′
⟩ + h.c.

]

+
∑
r⃗∈l

[U
2
n̂r⃗(n̂r⃗ − 1) − 𝜇n̂r⃗ − 2𝜆Re[𝛼]Vr⃗n̂r⃗

]
(4)

Accordingly, the total atomic density matrix factorizes as, 𝜌̂b =∏
l 𝜌̂l . The cluster Hamiltonian ̂l

includes the local conden-
sate amplitudes on the neighboring cluster sites which, due to
translation invariance, can be computed as zero-temperature ex-
pectation values on the respective sites within the cluster l.
Hence, the cluster Hamiltonian in Equation (4) is diagonalized
selfconsistently with the neighboring clusters, and the resulting
atomic density imbalance Δ is inserted into the selfconsistency
loop of Equations (2) and (3).

2.2. Zero-Temperature Phase Diagram

We first review the zero-temperature phase diagram for this
atom-photon coupled system in the 𝜆∕U − J∕U plane in the limit
of zero dissipation, analogous to previous theoretical studies for
systems in equilibrium with the cavity-field.[29,30,32–36]

In the normal-radiant (NR) phase of the cavity mode, defined
by the cavity-photon density vanishing in the limit of infinite sys-

tem size as an order parameter (OP), nP = |𝛼|2 L→∞
←→ 0, the atom

system can be in theMott insulating (MI) or a Bose-Einstein con-
densed superfluid (SF) phase, depending on the lattice tunneling
strength J. At the Dicke transition, i.e., when the cavity-mode be-
comes superradiant (SR) with increasing pump strength 𝜆∕U,|𝛼|2 > 0, the atomic density becomes spatially modulated due to
the staggered potential in Ĥbc. Consequently, the phase transi-
tions occur from MI to an insulating density wave (DW), from
the SF to a simultaneously Bose-Einstein condensed and spa-
tially modulated state, i.e., a supersolid (SS). The combination of
these photonic and atomic states yields the four phases shown in
the phase diagram in Figure 2. The atomic subsystem is solved
using cluster mean-field theory for different cluster sizes. This
yields phase boundaries between the atomic phases (MI-SF, SS-
DW) depending on the cluster size as seen in Figure 2, where

Figure 2. Equilibrium phase-diagram. Phase diagram for average atomic
density per site, n̄ = 1, for vanishing dissipation 𝜅∕U = 0. The red line rep-
resents the Dicke transition from the normal-radiant (NR) to superradi-
ant (SR) state of photons. The blue lines represent the atomic condensa-
tion transitions from MI and DW to SF and SS phases, respectively. The
solid lines are obtained using the single-site mean-field (MF) theory on a
bipartite lattice. The phase boundaries obtained using the cluster mean-
field theory for various cluster sizes are shown by dashed (1 × 2) and dot-
ted (2 × 2) lines. The extrapolation to infinite cluster size is depicted by
the dashed-dotted line. Examples of this extrapolation, Λ → 1,[27,28] are
shown in the inset for the SF-SS (red squares) and the SS-DW (blue cir-
cles) phase boundaries. The Dicke transition line is nearly independent of
the cluster size used.

the extrapolation to infinite cluster size is shown in the inset
(see refs. [27, 28] for details) and corresponds to the dashed-dotted
lines in Figure 2. Note that, since the cluster mean-field theory
is applied to the atomic subsystem, not to the photon subsys-
tem, it does practically not affect the Dicke superradiant transi-
tion line, while it does change the transition lines in the atomic
subsystem. We find that the zero-temperature Dicke transition,
shown as the red line in Figure 2, is discontinuous for J∕U be-
low the critical point (Jc∕U, 𝜆c∕U) ≈ (0.105, 0.77) marked by the
red dot, see Figure 3. This is consistent with previous studies in
equilibrium,[29,30,32–36] including B-DMFT[29] and QMC.[30] Note
also that the phase diagram exhibits a tricritical point where the
SF+NR, DW+SR, and SS+SR phases meet. Representative cuts
through the phase diagram for several values of J∕U, display-
ing the photonic OP nP and the atomic OPs, normal density ne,o
and condensate density |Φ|2e,o as functions of 𝜆∕U, are shown
in Figure 3. The subscripts e and o denote the densities on even
and odd sites, respectively. Themodulated DW and SS phases are
characterized by ne ≠ no and |Φ|2e ≠ |Φ|2o, respectively. These re-
sults show the OP discontinuities at the Dicke superradiant tran-
sition below the critical point (Jc∕U, 𝜆c∕U), i.e., at the MI-DW,
SF-DW, and SF-SS transitions, while the atomic condensation
transitions, DW-SS and MI-SF, are continuous.

2.3. Bistability and Co-Existence

At a discontinuous phase transition, one expects a coexis-
tence region of the neighboring phases, corresponding to two
minima of the (free) energy as function of the order
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Figure 3. Characterization of phases from orderparameters. The photon number density np = |𝛼|2 (solid black line) and the atomic normal and con-
densate densities, ne(o) (dotted lines) and |Φ|2e(o) (dashed lines), respectively, for the even (odd) sites are plotted as a function of atom-cavity coupling
strength 𝜆∕U for J∕U = 0.02 (a), 0.05 (b), 0.09 (c), and 0.15 (d). Here and in the subsequent figures, the even (odd) sites are marked by blue (red) colors.
Below the critical point (Jc∕U, 𝜆c∕U) ≈ (0.105, 0.77), the Dicke transition is accompanied by a jump in all the orderparameters.

parameters.[37–39] Our goal is to explore this discontinuous
behavior in the mean-field Dicke transition, occurring due to
an interplay between the strong atomic interaction and the
atom-cavity coupling, from the time-dependent dynamics. In
this section, we investigate the coexisting phases of atoms,
as well as of photons. In order to converge to a specific one
of the coexisting phases, we choose as the initial state of the
selfconsistent iterations (c.f., Section 2.1) a solution deep inside
that phase.
In Figure 4, the equilibrium transition lines are shown by the

dashed lines as in Figure 2, for reference. While, the bound-
aries of the resulting coexistence regions are shown by the solid
lines. With increasing hopping, we observe three different co-
existence regions, namely the MI+DW, SF+DW and SF+SS, as
shown by the arrows. The continuous MI-SF transition, which to
the left of the Dicke transition (red dashed line) is the ground-
state transition, extends into the superradiant side as a transi-
tion betweenmetastable states. The dotted lines in Figure 4mark
thesemetastable transitions. The two bistability boundariesmeet
the Dicke transition line at the critical point (Jc∕U, 𝜆c∕U), above
which the Dicke transition becomes continuous [cf. Figure 3 d].
As an example, the coexistence between the SF and the SS

phases is demonstrated for J∕U = 0.09 by plotting the corre-

sponding OPs in Figure 5a–c. In Figure 5 d, we have also plotted
the average energy-density per site of the coupled atom-photon
system E = ⟨̂l

⟩∕N + 𝛿|𝛼|2. Outside of the bistability bound-
aries (thin, vertical lines in Figure 5), the OPs and the energy
density E converge to the unique solution, however, within the
bistability region they lead to different solution with different en-
ergies. The two energy curves cross each other at 𝜆c∕U = 0.758,
as indicated by the arrowhead in Figure 5 d, representing the
ground-state Dicke transition.

3. Out-of-Equilibrium Dynamics

To this end, we study the non-equilibrium dynamics of this atom-
photon interacting system. The dissipative dynamics of the sys-
tem in the presence of cavity-photon loss with rate 𝜅 can be
described within the Markovian approximation by the Lindblad
master equation,

i ̇̂𝜌T(t) =
[
Ĥ, 𝜌̂T(t)

]
+ 𝜅

(
â𝜌̂T(t)â

† − 1
2

{
â†â, 𝜌̂T(t)

})
(5)

where, 𝜌̂T(t) is the time-evolved total density matrix. Within the
mean-field treatment of atom-photon coupling (cf. Section 2.1),
𝜌̂T(t) is factorized into density matrices, 𝜌̂c(t) and 𝜌̂b(t), of the
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Figure 4. Bistability and coexistence of phases. Coexistence regions be-
tween homogeneous (MI and SF) and self-organized (DW and SS)
atomic phases, which appear with normal-radiant and superradiant pho-
ton phases, respectively, are depicted in the 𝜆∕U − J∕U plane. The equi-
librium transitions in Figure 2 are plotted as dashed lines for guidance.
The solid lines mark the boundaries of the coexistence regions. The dotted
lines represent the extensions of equilibrium transitions (shown as dashed
lines) to the regions where the respective phases are metastable. The blue
(red) lines indicate continuous (discontinuous) nature of the transitions
at the boundaries. The red filled circle and the red arrowhead represent
the region of phase diagram explored during dynamics in Figures 6 and 7,
respectively.

cavity-photon and bosonic atoms, i.e. 𝜌̂T(t) = 𝜌̂c(t)⊗ 𝜌̂b(t). Ac-
cordingly, time evolution of 𝜌̂c(t) and 𝜌̂b(t) are, respectively, gov-
erned by,

i ̇̂𝜌c(t) =
[
Ĥc+bc, 𝜌̂c(t)

]
+ 𝜅

(
â𝜌̂c(t)â

† − 1
2
{â†â, 𝜌̂c(t)}

)
i ̇̂𝜌b(t) =

[
Ĥb+bc, 𝜌̂b(t)

]
(6)

where, Ĥc+bc and Ĥb+bc are the cavity-photon and atomic Hamil-
tonian in Equations (2) and (3), respectively. The semiclassi-
cal equation of motion of the photon-amplitude, namely 𝛼̇(t) =⟨â ̇̂𝜌c(t)⟩∕√L, leads to

𝛼̇(t) = −(i𝛿 + 𝜅∕2)𝛼(t) − i𝜆Δ(t) (7)

where, Δ(t) is obtained from the atomic dynamics. We perform
CMF method in the atomic Hamiltonian (cf. Section 2.1) lead-
ing to ̂b+ac =

∑
l ̂l

and 𝜌̂b =
∏

l 𝜌̂l . Thus, in a cluster, 𝜌̂l (t) is
evolved under ̂l

(t) as,

̇̂𝜌l (t) = −i[̂l
(t), 𝜌̂l (t)] (8)

It can be noted that ̂l
(t) depends on the mean-fields, namely

time-evolved cavity field 𝛼(t) and the condensate amplitude on
neighboring cluster ⟨b̂r⃗⟩ = Tr(𝜌̂l (t)b̂r⃗) (cf. Equation (4)). Thus, the
coupled Equations (7) and (8) are time-evolved to study the dy-
namics of the system.
We first investigated the time evolution for vanishing dissipa-

tion leading to unitary dynamics with 𝜅∕U = 0. In particular, we
study the hysteresis as well as the switching dynamics between
the two co-existing phases when the initial state is chosen away

from one of the saddle points, especially in the ‘SF+SS’ bistabil-
ity region.

3.1. Hysteretic Dynamics

We fix the hopping strength at J∕U = 0.09 and prepare the ini-
tial state for dynamics as the ground state at 𝜆∕U = 𝜆i∕U = 0.74.
The coupling is then ramped up linearly from 𝜆i∕U = 0.74 to
𝜆f ∕U = 0.8 over a time durationU𝜏Q , followed by ramped down
again to 𝜆i∕U = 0.74 in the same time duration. The ramp time,
U𝜏Q , is chosen sufficiently large such that the corresponding
rate of change in coupling is much smaller than the energy dif-
ference of the co-existing phases near the bistability boundaries
(cf. Figure 5 d). The resulting dynamics of the photon number,
nP(t), is shown in Figure 6 a. We clearly see a hysteretic behav-
ior, a footprint of bistability. Since the SF-SS coexistence region
lies in the interval of 𝜆∕U ∈ [0.75, 0.78] (dotted lines), the sys-
tem follows the SF saddle point during ramp up (blue curve)
with nP ≈ 0 until near the upper bistability boundary 𝜆∕U ≈ 0.78,
where the system moves to oscillate around the unique SS sad-
dle point with finite values of nP. The oscillation continues on
ramping down (red curve) until it hits the lower SF-SS bistability
boundary, where the system becomes SF again. For comparison,
we have plotted the photon number in the equilibrium as a func-
tion of 𝜆∕U as in Figure 3 c, which exhibits a jump at the Dicke-
transition, 𝜆c∕U ≈ 0.757. The other OPs, such as condensate and
atomic densities (not shown here), also exhibit similar hysteretic
behavior as in Figure 6 a.
The dependence of the dynamical transition, particularly the

upper bistability boundary, on ramp-time U𝜏Q is demonstrated
in Figure 6 b,c. The onset of finite nP during ramp-up is shown
in Figure 6 b for several values of U𝜏Q . With increasing ramp
time, the growth of nP occurs at a smaller coupling, which in
the adiabatic limit, that is, 1∕U𝜏Q → 0, corresponds to the up-
per bistability boundary as in Figure 5. This is clearly shown in
Figure 6 c, where the coupling strength 𝜆(𝜏Q )∕U corresponding
to the onset of finite nP is plotted with 1∕U𝜏Q . The numerical data
are fitted with a linear function, 𝜆(𝜏Q )∕U = a∕U𝜏Q + b, with the
fitting parameters, a and b. The fitted value b = 0.784 represents
the coupling strength, where the transition occurs in the limit
1∕U𝜏Q → 0. This agrees with the upper bistability boundary as
marked by arrowhead in Figure 6 c.

3.2. Switching Dynamics Between Coexisting Phases

In this section, we aim to demonstrate the coexistence of phases
from an out-of-equilibrium dynamics. We fix the parameters at
J = 0.08 and 𝜆 = 0.76, where the system has bistability between
SF and SS phases with SS the ground state of the system.
Out-of-equilibrium dynamics is performed by preparing the
initial state at time t = 0 in the SS state, however, the corre-
sponding superradiant-photon field is set away from the saddle
point 𝛼̄ by 𝛿𝛼, that is, 𝛼(t = 0) = 𝛼̄ + 𝛿𝛼. Thus, the system is
driven out-of-equilibrium by providing additional energy larger
than the energy difference between the co-existing phases,
such that the system can also switch to the other metastable
phase.

Ann. Phys. (Berlin) 2024, 2300505 2300505 (5 of 9) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 5. Orderparameters in SF-SS bistability. The photon number density np (a), the atom densities ne,o (b) and atomic-condensate densities |Φ|2e,o
(c) in the even (blue) and odd (red) sites, and the average energy per site E∕U (d) are plotted as a function of the atom-cavity coupling strength 𝜆∕U
for J∕U = 0.09. The solid and dashed lines are obtained after convergence in the MF self-consistency starting from two different initial states, see the
text for details. The vertical dotted lines denote the bistability boundaries as in Figure 4. In (d), the two energy lines cross each other at 𝜆c∕U = 0.758
(marked by the arrowhead), indicating the Dicke transition as shown in Figures 2 and 3.

The resulting dynamics is elucidated in Figure 7. In
Figure 7a,b, we plot time-evolution of the photon-number den-
sity nP(t) and the local atomic and condensate densities, ne,o(t)
and |Φ|2e,o(t), respectively, at even and odd sites. The photon num-
ber exhibits oscillations around a finite value for certain time,
while, the atomic and condensate densities in the even and odd
sites oscillate around different values indicating the SS phase.
Whereas, for some time-window, photon number goes down to
zero, and correspondingly, the atomic densities in both sites oscil-
late around the uniform average density, n̄ = 1. Thus, the system
dynamically switches between SS and SF phases. Due to the 2
symmetry of the Hamiltonian, the photon phase can change dy-
namically from 0 to 𝜋. As a result, the atomic OPs switch between
the even and odd sites as clear from time domains ‘1’ and ‘3’.
In order to investigate the time-evolved atomic phase in de-

tail at different time-windows, we compute the number-state dis-
tribution P(n) of atoms locally at each site of the 1 × 2 cluster.
From the time-evolved density matrix of the cluster 𝜌̂l (t), we con-
struct the reduced density matrix for each of the sites, namely
𝜌̂e(o) = Tro(e)𝜌̂l (t). The number-state distribution for any of the
sites is then given by, P(n) = ⟨n|𝜌̂e,o|n⟩. In Figure 7c–e, we have
plotted P(n) for the even and odd sites in different time-windows

marked in Figure 7 a. For comparison, we have also plotted P(n)
corresponding to the SS and SF phases of the bistability obtained
in the self-consistent calculation in equilibrium. In the time-
windows marked as ‘1’ and ‘3’, the P(n) distribution is in close
resemblance to the SS phase up to the phase of the photon field
leading to the switching of P(n) distribution between the even
(blue) and odd (red) lattice sites in Figure 7c,e, respectively. On
the other hand, in the time window marked as ‘2’, the P(n) dis-
tribution resembles the homogeneous SF phase, see Figure 7 d.

4. Dissipative Dynamics

Finally, we study the dissipative dynamics of the system by time-
evolving the coupled equations, Equations (7) and (8), for a finite
rate of photon loss 𝜅∕U. Apart from characterizing the steady
states emerging in the long-time limit, we investigate fate of the
observed bistability in the presence of dissipation. For this pur-
pose, we prepare two different initial states, namely, a homoge-
neous SF and a self-organized DW at t = 0 in the dynamics.
A typical time-evolution of the orderparameters, namely the

photon-number density nP as well as the condensate-atom den-
sities, |Φ|2e,o, in the even and odd sites are depicted in Figure 8

Ann. Phys. (Berlin) 2024, 2300505 2300505 (6 of 9) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 6. Hysteretic dynamics. a) Time evolution of photon number nP(t) is shown as a function of 𝜆(t)∕U, which is linearly ramped up from 𝜆i∕U = 0.74
to 𝜆f ∕U = 0.8 (marked by the arrowheads) with a ramp time of U𝜏Q = 1000 and then ramped down with the same rate (see inset). The vertical dotted
lines indicate the boundary of the bistability region for J = 0.09, see Figure 4. The photon number obtained from the equilibrium calculation is plotted
as the dashed line and has a discontinuous jump at the Dicke transition. In (a) and in Figure 6 (a,b), we plot the temporal envelope of the dynamical
quantities averaged over the time-period T = 2𝜋∕𝛿 corresponding to fast 𝛿-oscillations. b) The onset of finite nP(t) near upper bistability boundary is
shown for several ramp times U𝜏Q and the corresponding critical couplings 𝜆(𝜏Q)∕U are plotted in (c) as a function of 1∕U𝜏Q. The linear fitting of the
numerical data (see the text for details) shown as solid red line yields the upper bistability boundary in the limit of 1∕U𝜏Q → 0 (marked by the arrowhead).

for two different coupling strengths. Contrary to the time evo-
lution shown in Figure 7, the system, in the presence of dis-
sipation, relaxes to a steady-state in the long-time limit. In
Figure 8, we have compared the time-evolution of nP and |Φ|2e,o
for the two aforementioned different initial choices. Accordingly,
in the region of co-existence, the two initial states relax to the
SF and SS fixed points, respectively (cf. Figure 8a,b), indicat-
ing the presence of bistability between the SF and SS phases
for the chosen coupling strength, 𝜆∕U = 0.88. However, for a
larger coupling, 𝜆∕U = 0.91, the two initial states relax to the
unique SS fixed point indicating the absence of bistability, see
Figure 8 c,d.
To determine the coexistence region, the values of the orderpa-

rameters in the steady states obtained in the long-time limit are
plotted in Figure 9. In particular, we have demonstrated the SF-
SS and SF-DW, or correspondingly NR-SR, phase coexistences in

the presence of dissipation. In comparison to Figures 4 and 5, the
coexistence regions are shifted toward a larger coupling strength
in the presence of dissipation, however, width of the bistability
window remains finite.
In Figure 10, we have plotted the boundaries of the SF+SS or

the NR+SR coexistence region computed at J∕U = 0.09 for var-
ious decay rates, 𝜅∕U. In the inset of Figure 10 we have shown
width of the bistability region in terms of the coupling strength,
namely Δ𝜆∕U, as a function of 𝜅∕U. Clearly, the bistability re-
gion occurs at a higher coupling in the presence of dissipation,
however, Δ𝜆∕U remains less sensitive to the dissipation rate.

5. Conclusion

In summary, we have investigated the phases and non-
equilibrium dynamics of an atomic Bose gas in a 2D optical lat-

Ann. Phys. (Berlin) 2024, 2300505 2300505 (7 of 9) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 7. Switching dynamics. The time dependence of the physical ob-
servables (a) photon number nP(t) (black line) and atom densities ne,o(t),
as well as (b) the condensate densities |Φe,o(t)|2 (blue and red lines) is
shown for 𝜆∕U = 0.76 and J∕U = 0.08. It is seen that the system stochasti-
cally alternates between superradiant, modulated and normal-radiant, ho-
mogeneous states. c–e) Occupation number distributions P(n) of atoms
in even (blue) and odd (red) sites at the three different times marked as
1, 2, 3 in (a,b). The distributions are time-averaged over the time window
shown as the vertical bars in (a,b). The error bars indicate the variance
corresponding to the temporal fluctuations. The dashed lines represent
the P(n) distributions obtained from the self-consistent minimization in
equilibrium (see Section 2.3 for details).

Figure 8. Dissipative dynamics. The photon number nP(t) (black lines)
and condensate-atom densities in the even (blue) and odd (red) sites,|Φ|2e,o(t) are plotted as a function of time for atom-cavity coupling strength
𝜆∕U = 0.88 (a,b) and 𝜆∕U = 0.91 (c,d) with J∕U = 0.09 and 𝜅∕U = 1.08.
The time evolution obtained from the initial SF and DW are depicted by
dashed and solid lines, respectively.

Figure 9. Steady-states in the long-time limit. The order parameters in the
steady states, in particular, (a) the photon number, nP, and (b,c) the atom
and condensate-atom densities, ne,o and |Φ|2e,o, respectively, in the even
(blue) and odd (red) sites are plotted as a function of 𝜆∕U for J∕U = 0.09
(left panel) and J∕U = 0.075 (right panel) with 𝜅∕U = 1.08 demonstrating
the bistability between SF-SS (NR-SR) and SF-DW (NR-SR) phases, respec-
tively. The solid and dashed lines represent the steady states obtained by
starting from two different initial choices of states as explained in Figure 8.

Figure 10. Bistability in the presence of dissipation. The SF-SS (NR-SR)
coexistence boundaries are plotted in the 𝜆∕U − 𝜅∕U plane for J∕U = 0.09.
Note that the data at 𝜅∕U = 0 corresponds to the coexistence boundaries
in Figure 4. The inset shows the width of the bistability region, Δ𝜆∕U, as a
function of 𝜅∕U. For comparison, the bistability boundary at 𝜅∕U = 1.08
is computed for different cluster sizes, as indicated in the inset.

tice coupled to a single mode of an optical cavity described by
the Dicke-Bose-Hubbard model. The zero-temperature equilib-
rium phase diagram exhibits four distinct phases, the homoge-
neous Mott insulator and the Bose-Einstein condensed atomic
phases in the photonic normal-radiant state, while in the su-
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perradiant state the atomic density is spatially modulated, lead-
ing to a density-wave or a supersolid phase, depending on the
atomic tunneling strength J∕U. We find within mean-field the-
ory that the Dicke normal-to-superradiant transition is discon-
tinuous below a critical tunneling strength Jc∕U, consistent with
experiments[17,31] and with Bose dynamical mean-field theory[29]

and quantum Monte Carlo[30] studies. We mapped out the coex-
istence regions of normal- and superradiant phases or, equiva-
lently, of homogeneous and modulated atomic phases on both
sides of the Dicke transition and found hysteretic behavior upon
adiabatically ramping the pump parameter 𝜆∕U through these
coexistence regions. Within the coexistence regions, the time-
dependent non-equilibrium dynamics shows stochastic switch-
ing behavior between the bistable phases. Upon introducing dis-
sipation described by the Lindblad master equation, this switch-
ing dynamics becomes damped and relaxes into the stable state
for the given initial parameters of the system.
We note that non-condensed density fluctuations[22] in both,

the cavity-mode and the atomic systems, beyond mean-field the-
ory may lift the discontinuity at the Dicke transition. It is, how-
ever, to be expected that this critical fluctuation region is more
narrow than the coexistence regionmapped out in our work. This
means that away from the transition line two minima of the free
energy with different minimal values should exist on both sides
of the transition, so that the temporal switching behavior will
persist and should be experimentally observable outside of the
fluctuation-dominated, critical region.
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