
1.  Introduction
The Earth's global geomagnetic field experiences an abundance of pulsations across a broad spectrum of 
frequencies. Electromagnetic pulsations with frequencies ranging from ∼1–10  mHz are categorized as Ultra 
Low Frequency (ULF) waves (Jacobs et  al.,  1964). These ULF waves play a key role in a range of magne-
tospheric phenomena, such as radiation belt energization and transport (Brautigam & Albert, 2000; Ozeke & 
Mann, 2008; Sandhu, Rae, Wygant, et al., 2021; Turner et al., 2012), auroral substorms (Liang et al., 2009; Smith 
et al., 2020, 2023), and particle precipitation (Rae et al., 2018).

Uniquely to the ULF wave frequency band, the wavelengths are comparable to the scale size of the magneto-
spheric cavity, and Alfvén waves can form standing waves on closed geomagnetic field lines. These are termed 
Field Line Resonances (FLRs) (Dungey, 1954; Chen & Hasegawa, 1974; D. Southwood, 1974). FLRs have a 
direct relationship to the spatial distribution of cold plasma within the magnetosphere. The plasmasphere with 
a sharp, well-defined plasmapause can act as an inner cavity boundary for ULF waves and controls where FLRs 
can form (D. Southwood,  1974; Kivelson & Southwood,  1986; Rae et  al.,  2019; Wharton et  al.,  2020; Lee 
et al., 2002; Sandhu, Rae, Staples, et al., 2021). During geomagnetic storms, an enhanced convection electric 
field in the inner magnetosphere can dramatically distort the plasmasphere and result in the formation of a 
plasmaspheric plume in the afternoon sector (Chappell,  1972; Goldstein et  al.,  2019; Nishida, 1966; Sandhu 
et al., 2017). The plume is a region of high density plasma (∼100 cm −3) that typically extends from the plasmas-
phere to the dayside magnetopause.

Abstract  Field Line Resonances (FLRs) are a critical component in Earth's magnetospheric dynamics, 
associated with the transfer of energy between Ultra Low Frequency waves and local plasma populations. 
In this study we investigate how the polarisation of FLRs are impacted by cold plasma density distributions 
during geomagnetic storms. We present an analysis of Van Allen Probe A observations, where the spacecraft 
traversed a storm time plasmaspheric plume. We show that the polarisation of the FLR is significantly altered 
at the sharp azimuthal density gradient of the plume boundary, where the polarisation is intermediate with 
significant poloidal and toroidal components. These signatures are consistent with magnetohydrodynamic 
modeling results, providing the first observational evidence of a 3D FLR associated with a plume in Earth's 
magnetosphere. These results demonstrate the importance of cold plasma in controlling wave dynamics in 
the  magnetosphere, and have important implications for wave-particle interactions at a range of energies.

Plain Language Summary  Earth's space environment is home to electrons and ions across a wide 
range of energies, trapped in the region by our global geomagnetic field. Energy can be transferred to and 
from the trapped particles through oscillations in the magnetic field, and these processes are responsible for 
the extreme energization of trapped electrons to hazardous levels for local spacecraft. In this paper we explore 
a type of magnetic field oscillation termed Field Line Resonances (FLRs): standing waves on a field line 
analogous to the oscillatory motion of guitar strings. We use spacecraft observations to show that the direction 
of the field line oscillations changes significantly depending on the density of the background plasma. The 
results confirm previous modeling work, and are the first observational evidence of 3D FLRs at a plume. The 
findings have important consequences for how FLRs transfer energy between the electrons and ions.
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Recent work indicates that the presence of a plasmaspheric plume has significant impacts on the propagation of 
ULF wave power through the inner magnetosphere (Degeling et al., 2018; Sandhu, Rae, Staples, et al., 2021). 
Elsden and Wright (2022) shows that the azimuthal asymmetries associated with the plume can have important 
consequences on the polarisation of a fast mode driven FLR across the plume boundary. Using a magnetohy-
drodynamic (MHD) simulation, Elsden and Wright (2022) observed that outside of a plume an FLR exhibited 
a predominantly toroidal polarisation (where the magnetic field perturbations were in the azimuthal direction). 
However, across the sharp density gradient at the plume boundary the FLR instead had an intermediate polarisa-
tion with perturbations both in the toroidal and poloidal (radial magnetic field perturbations) components. These 
FLRs are termed “3D FLRs,” due to the equilibrium in which they exist depending on all three directions (Elsden 
et al., 2022; Wright & Elsden, 2016). Previous theory (e.g., Wright & Thompson, 1994) had only considered the 
“2D” problem, treating the plasma as invariant in the azimuthal direction and these 2D FLRs have an exclusively 
toroidal polarisation.

The FLRs considered by Elsden and Wright (2022) arise through the resonant coupling of externally driven fast 
mode waves to Alfvén waves. In contrast, high-m (where m refers to azimuthal wavenumber) poloidal FLRs 
are typically excited through resonant interactions with non-equilibrium particle distributions (D. J. Southwood 
& Hughes,  1983; Baddeley et  al.,  2005; James et  al.,  2016). Although the particle-driven waves are associ-
ated with different drivers and polarizations, they can also experience polarisation rotations similarly to the 3D 
FLRs proposed by Elsden and Wright (2022). In particular, analysis by Klimushkin et al. (1995) shows how the 
FLRs can rotate from a poloidal toward a toroidal polarisation (see also Leonovich & Mazur, 1993; Mager & 
Klimushkin, 2021). This phenomenon has also been demonstrated in simulations by Mann and Wright (1995) 
and observationally by Sarris et al. (2009) amongst many others, where the time-dependent phase mixing of a 
poloidal FLR is reported, although it is key that the polarisation change can be observed in an axisymmetric (2D) 
system. The 3D FLRs discussed in the remainder of this manuscript are distinct from these particle-driven waves. 
They are (a) FLRs driven by fast mode waves and (b) 3D FLRs generated through a non-axisymmetric density 
distribution (i.e., plasmaspheric plume). The externally driven waves play significant roles in magnetospheric 
dynamics during periods of enhanced solar wind coupling, and observationally have been assumed to be exclu-
sively toroidal. The key idea of the new theory is that modes with a significant radial magnetic field component 
(azimuthal electric field) can be driven by the solar wind, allowing these azimuthal electric field components 
to accelerate/decelerate radiation belt electrons along their drift paths. We refer readers particularly to Elsden 
et al. (2022) for a relevant discussion of the differences between the particle-driven and fast mode driven FLRs.

The consequences of ULF wave polarisation variations are significant, where the polarisation is intimately linked 
to how ULF waves interact and resonate with local plasma (e.g., Degeling et al., 2008; Elkington et al., 2003). 
In this paper, we present the first observational evidence of a fast mode driven 3D FLR across a plume bound-
ary,  thus confirming the predictions of Elsden and Wright (2022) and asserting the importance of cold plasma in 
controlling the dynamics and polarisation of ULF waves.

2.  Data and Methods
This study presents an analysis of observations between 16:10–19:25 on 26 August 2015. Magnetic field meas-
urements are obtained by the Van Allen Probes A spacecraft (Mauk et al., 2013) using the Electric and Magnetic 
Field Instrument Suite and Integrated Science (EMFISIS) instrument (Kletzing et al., 2013, 2023). In order to 
determine the ULF wave field perturbations, the background field is taken as the running average over a 20 min 
sliding window (incremented by 1 min) and subtracted from the field measurements. The residual field is then 
transformed to a magnetic field-aligned coordinate system. The parallel component is defined to be aligned with 
the background field, the toroidal component is eastwards and perpendicular to the geocentric position vector, 
and the poloidal component completes the Cartesian system. For each component, the power spectral density in 
the ULF wave band (1–15 mHz) is also required. We use magnetic field power spectral density as derived by 
Murphy et al. (2023), which uses a Fourier Transform over a 20 min sliding (by 5 min) window. We note that 
azimuthal electric field observations of the ULF wave activity were not viable for this event, due to high errors in 
the spin axis electric field from the Electric Fields and Waves instrument (Wygant et al., 2013).

EMFISIS field observations are also used to infer concurrent measurements of the local total electron density. 
High frequency (10–500  kHz) electric field measurements are used to identify the upper hybrid resonance 
frequency, which is then used to infer the local electron density (Kurth et al., 2015). Traversals through different 
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plasma regimes, including crossings of the plasmapause and plasmaspheric 
plumes, are identified from timeseries of the electron density. For this event, 
the plume was identified from a plume crossing database (Hartley, 2022).

3.  Results
We present evidence of a 3D FLR situated on the edge of a plasmaspheric 
plume, as observed by the Van Allen Probes A spacecraft. Figure 1 shows 
observations between 16:10–19:10 on 26 August 2015, where Figure  1a 
shows the solar wind dynamic pressure, P [nPa], (indigo) and the interplane-
tary magnetic field (IMF) north-south component, BZ [nT] (pink) as observed 
by the ACE spacecraft. At ∼16:55, an impulsive peak in the solar wind 
dynamic pressure is observed where the pressure increases from approxi-
mately 2 to 4 nPa. This enhancement in P is accompanied by a decrease in the 
magnitude of southward BZ from 8.5 to 5 nT. Following the solar wind struc-
ture, the conditions remain relatively steady for the remainder of the interval.

Figure  1b shows the Sym H index (Iyemori,  1990) remained steady at 
approximately −50  nT throughout the event. The Sym H variation over a 
wider time period (not shown) indicates the observations are taken during 
the main phase of a geomagnetic storm where the Sym H index reached a 
minimum value of −101 nT.

Figure 1c displays the location of the spacecraft in L (indigo) and Magnetic 
Local Time (MLT, pink) coordinates. The probe was passing into apogee 
with L increasing from approximately 5 to 7, with MLT increasing from 15 
to 18, and firmly in the afternoon sector where plumes are most commonly 
observed (Darrouzet et  al.,  2008; K.-C. Kim & Shprits,  2019; Hartley 
et al., 2022). Figure 1d shows the local electron density, n [cm −3] (indigo). 
The probe crosses from the plasmasphere to the low density plasmatrough at 
14:25 (not shown), allowing us to be confident that the subsequent density 
gradients are not plasmapause boundary crossings. At 16:45, the probe 
crosses into a plasmaspheric plume with the density increasing from 20 to 
80  cm −3. The probe moves duskwards, exits the plume at 18:10 with the 
density reducing to 2 cm −3, and the probe remains in the plasmatrough for 
the remainder of the event. We also show the estimated Alfvén speed, vA [km 
s −1] (pink), calculated from the local magnetic field strength and electron 
density from EMFISIS and the ion composition from the Helium, Oxygen, 
Proton, and Electron (HOPE) ion spectrometer onboard the Van Allen Probes 
(Funsten et al., 2013). The density (and hence Alfvén speed) gradients asso-
ciated with the plume crossings are sharp, and the gradient is particularly 
significant for the duskward crossing (18:10). Due to the elevated convec-
tion electric field associated with the strongly negative IMF BZ, the plume 
is dynamic and has significantly thinned and diffused in the following hours 
when the plume is next sampled by Van Allen Probe B (not shown here) 
(Borovsky & Denton, 2008; Goldstein & Sandel, 2005).

Figures 1e and 1f shows the radial, Br [nT], azimuthal, Bϕ [nT], and compressional, B‖ [nT] magnetic field compo-
nents, and Figures 1h–1j shows the corresponding power spectral density, P [nT 2 Hz −1], for each component 
as a function of time and frequency, f [mHz]. The frequency bin corresponding to the maximum power at each 
timestep is marked (pink profile, Figures 1h–1j) to guide the eye to features in the spectrograms. Enhancements in 
wave activity across all components are observed following the solar wind impulse, including a patch of elevated 
compressional wave power at ∼17:40, denoting that the ULF waves are driven externally (K.-H. Kim et al., 2002; 
Oliveira et al., 2020). A lack of any “bump-on-tail” features in particle data (not shown) provide further evidence 
that the perturbations arise from solar wind driving. Clear continuous waveforms are apparent in the radial and 
azimuthal components (Figures 1e and 1f). Enhanced wave power at f ∼ 6 mHz can be identified from the radial 

Figure 1.  Observations between 16:10–19:10 on 26 August 2015. Timeseries 
are shown for (a) the solar wind dynamic pressure, P [nPa], (indigo) and the 
north-south interplanetary magnetic field component, BZ, (pink); (b) the Sym 
H index [nT]; (c) the Van Allen Probes A L value (indigo) and magnetic local 
time (pink); (d) the electron density, n [cm −3] (indigo) and the Alfvén speed, 
VA [km s −1] (pink); (e) the radial magnetic field component, Br [nT]; (f) the 
azimuthal magnetic field component, Bϕ [nT]; and (g) the compressional 
magnetic field component, B‖ [nT]. Panels (h–j) show the power spectral 
density, P [nT 2 Hz −1], for the radial, azimuthal, and compressional magnetic 
field components. The value of P is indicated by color, and the power is 
plotted as a function of time on the x-axis, with frequency, f [mHz], on the y 
axis. For each time step, the frequency at the maximum in P (for frequencies 
between 2 and 12 mHz) is marked by the pink profile.
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and azimuthal components at roughly 18:10 (Figures 1h and 1i) when the probe exits the plume, suggesting the 
presence of a FLR at and around the plume boundary. A comparison of the radial and azimuthal components also 
show that the fluctuations are roughly in phase. The quadrature in time of the magnetic field with the electric field 
provides further evidence of a standing wave structure (see Supporting Information S1 for details).

Although there is notable ULF wave activity and evidence of FLRs observed during the duskward plume crossing 
at ∼18:10, there are limited features of interest seen in the noonside crossing at ∼16:45. This is attributed to the 
noonside crossing occurring prior to the solar wind impulse, such that the ULF wave activity is comparatively 
minimal. As such, we will focus only on the duskward plume crossing in the analysis that follows.

3.1.  A Change in FLR Polarisation

Figure 2 shows how the polarisation of the FLR changes as the probe crosses the duskside plume boundary at 
18:10, showing observations from 17:25 to 19:25. Figure 2a shows the magnetic field vector as a function of 
time, using a cadence of 5 min. The x-component corresponds to the radial direction and the y-component corre-
sponds to the azimuthal direction. The color coding at the top of the panel provides a rough guide on the polari-
sation. Time stamps are colored according to polarisation, with pink and green representing dominant radial and 
azimuthal components, respectively. If the angle between the field vector and the x-axis is within 22.5° of 45°, 
then the radial and azimuthal components are comparable and the timestamp is colored indigo. The polarisation 
can then be described as intermediate and the FLR is a 3D FLR. Figure 2b shows the electron density, n [cm −3], 
for context. We can see that very close to and at the crossing (18:10), the polarisation is intermediate and the 
timestamps are colored indigo. At earlier times, the vector magnitudes are reduced and there are no obviously 
consistent features in the polarisation. At later times (18:20–19:00), the polarisation is much more azimuthally 
aligned, also indicated by the recurrent green patches in the colored time stamps. From 19:00, the polarisation is 
unclear and the vectors dramatically shrink in magnitude.

We suggest that the external source of fast mode ULF wave power propagated from the dayside magnetosphere, 
accumulated around the plasmapause boundary (Degeling et al., 2018), and then coupled to drive FLRs in the 
vicinity of the boundary. Strong amplitude fluctuations in the transverse magnetic field are observed in this 

Figure 2.  Magnetic field and electron density observations between 17:25–19:25 on 26 August 2015. Panel (a) shows the 
magnetic field vectors in the radial (x-direction) and azimuthal (y-direction) as a function of time, using a 5 min sampling 
interval. The magnitude of the vectors correspond to the scale shown on the right of the panel. Color coding above the 
panel describes the angle of the vector measured from the y-axis. Green for 0 ± 22.5°; indigo for 45 ± 22.5°; and pink for 
90 ± 22.5°. Panel (b) shows the electron density, n [cm −3], as a function of time. Panels (c–f) show hodograms, where the 
radial and azimuthal field components, Br and Bϕ [nT], respectively, are plotted for a 30 min interval. The midpoint time of 
the interval is labeled at the top of each panel. The color of the trace indicates the time from the start (light blue) to the end 
(dark purple) of the interval. The dashed lines in each panel show the major axis.
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region (∼18:10–19:00). Deep within the plume comparatively minimal field oscillations and low wave power are 
observed, which may be due to the sharp density gradients at the plume boundaries acting to reflect/redirect any 
externally propagating compressional ULF waves and prevent access to the high density plume region (Degeling 
et al., 2018; Lee et al., 2002).

To further understand changes in the polarisation we include hodogram analysis in Figures  2c–2f. The time 
period from 17:25 to 19:25 is subdivided into 4 intervals of 30 min duration (capturing multiple wave periods), 
where each interval corresponds to a different panel. The magnetic field is plotted as a function of the radial and 
azimuthal components, and higher frequency oscillations (≥8 mHz) are removed to focus on ULF wave frequen-
cies where high wave power is seen (Figures 1h and 1i). The resulting ellipses illustrate key features. Narrow 
ellipses are present when the radial and azimuthal oscillations are in phase or anti-phase, whereas broad ellipses 
indicate the components are in lagging/leading quadrature. The orientation/tilt of the ellipses represent the polar-
isation, showing which component(s) that the field perturbations occur in. To describe the polarisation, the major 
axis is shown by the dashed lines in each hodogram. The major axis is defined here as the angle that the largest 
magnitude field vector in the 30 min interval makes with the y-axis. A line with this angle is extrapolated, giving 
the dashed lines in each panel. Although Figures 2c–2f show that the polarisation is sometimes unclear or vari-
able throughout the interval, the major axis is useful for roughly quantifying the polarisation when appropriate.

Figure  2c shows that well within the plume the amplitude of the field perturbations is small, as previously 
discussed. The polarisation angle is ∼37°, indicating the field oscillations occur in both components. At the 
plume boundary, the polarisation angle is increased to 68°, where Figure 2d shows the perturbation has both 
strong radial and azimuthal components that is characteristic of a 3D FLR. The intermediate polarisation is seen 
throughout the 30 min interval, indicating that the width of the 3D FLR region is broad compared to the density 
gradient (also evident in Figure 2a). Beyond the plume boundary and firmly in the low density plasmatrough, the 
polarisation angle is markedly reduced to 31° and the field perturbations are strongly dominant in the azimuthal 
direction (Figure 2e). Figure 2f shows that moving even further away from the plume region, and further in time 
from the solar wind impulse, that the perturbations are no longer linear and there is no clear polarisation of 
FLRs. Figure 1j also shows that the compressional magnetic field component fluctuations increase in amplitude 
from approximately 18:50, such that fast mode waves may be distorting and broadening the hodogram shown in 
Figure 2f (Elsden & Wright, 2022).

The approximately linear polarisation (i.e., narrow ellipses) and orientation of the hodograms in Figure 2c indi-
cate that the radial and azimuthal field components are roughly in phase in the 3D FLR region. This is also 
apparent from the timeseries shown in Figures 1e and 1f, and confirms the modeling predictions of Elsden and 
Wright (2022) (see Figures 3 and 6 of Elsden and Wright (2022)). In brief, the Elsden and Wright (2022) model 
results show that on the dusk-side plume edge the contour of a fixed Alfvén frequency is orientated in the positive 
radial and positive azimuthal direction due to the negative density gradient in the azimuthal direction. Therefore, 
the transverse field and velocity components will be directed positively in both the radial and azimuthal directions 
when crossing the plume, and hence will be in phase. In contrast, the different Alfvén frequency contour for a 
dawn-side plume crossing indicates the radial and azimuthal field components would be out of phase in that case.

3.2.  Variations in FLR Frequency

A key component of FLR theory is that a given field line can support a standing Alfvén wave at a frequency that 
depends on the polarisation angle. Therefore, the field line can host FLRs at a range of frequencies corresponding 
to a minimum and maximum polarisation angle. The analysis of Elsden and Wright (2022) showed that field lines 
at an azimuthal density gradient (and hence Alfvén speed gradient) can adopt an intermediate polarisation, such 
that it can support an FLR at the driving frequency.

To establish how the observed FLRs vary in frequency-space, we estimate the range of possible frequencies of the 
traversed field lines using a model for shear Alfvén wave (SAW) eigenmodes in an arbitrary background magnetic 
field by combining the approaches of Wright et al. (2022) and Degeling et al. (2018). This model assumes infinite 
conductivity ionospheres, and requires the background magnetic field (and field line geometry) and plasma 
density profile along field lines in the vicinity of the satellite location to be specified. The former is given by the 
T96 magnetic field model (Tsyganenko, 1995; Tsyganenko & Stern, 1996), and the latter is assumed to have a 
power-law scaling with geocentric radius along the magnetic field, which is normalized by the observed density 
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value at the satellite location. The maximum and minimum Alfvén frequen-
cies are found by solving the eigenvalue equation resulting from Equation 3 
in Degeling et al. (2018), by setting the external driver current and fast mode 
parallel magnetic field component equal to zero, then finding the two lowest 
frequency eigenmodes. These correspond to half-wavelength solutions with 
“poloidal-like” and “toroidal-like” polarizations, and their frequencies agree 
with the maximum and minimum Alfvén frequencies, as found in Wright 
et al. (2022) (see Elsden et al. (2022)).

Figure 3 shows the results, where the electron density, n [cm −3], is shown 
in Figure  3a for context. Figure  3b shows the estimated model frequency 
range, f [mHz], of the field lines for this interval, as indicated by the shaded 
region. The frequency range extends from the most poloidal FLR (minimum 
frequency) to the most toroidal FLR (maximum frequency) for the space-
craft's position. This shaded region can be considered a resonant band, show-
ing where the field lines can resonate at in spectral space. Figure 3c shows the 
observed power spectral density, P [nT 2 Hz −1], for the transverse component 
(both the radial and azimuthal components) of the observed magnetic field. 
The power spectral density was determined using a wavelet transform and 
is plotted as a function of frequency, f [mHz], and time. The time interval 
shown in Figure  3 corresponds to the period encompassed by Figures  2d 
and 2e where the polarization change is observed.

The modeling results show that the resonant band experiences significant 
variations during the plume boundary crossing. Inside the plume (before 

18:10), the frequencies range from approximately 3 to 4 mHz. Outside the plume (after 18:10) the density drops 
by an order of magnitude, forcing a jump in the band such that it spans frequencies from approximately 6 to 
12 mHz.

The corresponding observational frequency dependences are shown in Figure 3c. We note a band of high power 
at low frequencies (∼2  mHz) throughout the interval, which is below the expected fundamental mode FLR 
frequency for this event, and is posited to potentially be quarter mode resonances located close to the dusk termi-
nator (e.g., Obana et al., 2008). Therefore, the low frequency region has been excluded in this analysis to focus 
on the higher harmonic FLR fluctuations. The FLR frequency manifests in Figure 3c as a high power band that 
increases in frequency with time, apparent from ∼18:00 to 18:30 (see pink profile). The FLR frequency increases 
from approximately 3 mHz at the plume boundary to approximately 8 mHz outside of the plume. We note that, 
qualitatively, the observations in Figure 3c agree with the model outputs (Figure 3b), such that the FLR frequency 
increases in the low density plasmatrough compared to the high density plume. However, it is also noted that the 
observed frequencies are lower than the model estimates outside of the plume, where the quasi-toroidal wave 
frequency should be toward the upper bound of the band and close to 12 mHz. We suggest the model-observations 
difference may arise from model inputs (e.g., oversimplified ion composition description). Overall, we show 
that the observations exhibit both the expected change in polarisation and frequency when traversing the density 
gradient as a 3D FLR, with similarities and differences to the modeled estimates.

4.  Conclusions
We present observations of a clear and broad 3D FLR at the edge of a plasmaspheric plume, supported by a sharp 
density gradient. This event study directly confirms predictions made by Elsden and Wright (2022), and is the first 
observational evidence of a 3D FLR associated with a plume. This 3D FLR has a polarisation that is between the 
extremes of purely toroidal and poloidal, and is driven by a fast mode wave (rather than driven by particle interactions).

As well as further emphasizing the capabilities of MHD simulations to predict and characterize key properties of 
magnetospheric ULF waves (e.g., Archer et al., 2022; Claudepierre et al., 2016; Degeling et al., 2018; Wright & 
Elsden, 2020), these results highlight key open questions in inner magnetospheric science.

1. What are the implications of 3D FLRs on the local plasma? Both toroidal and poloidal mode FLRs can resonantly 
interact with local plasma populations across a range of energies. Drift or drift-bounce resonances are implicated in 

Figure 3.  Data and model timeseries between 17:55 and 18:55 on 26 August 
2015. Panel (a) shows electron density, n [cm −3]. Panel (b) shows the range 
of polarisation dependent modeled frequencies on the spacecraft's field line, 
and panel (c) shows the power spectral density P [nT 2 Hz −1] of the transverse 
magnetic field component. For each time step, the frequency at the maximum 
in P is marked in pink (for frequencies between 2 and 12 mHz).
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radiation belt transport and energization (Elkington et al., 2003), acceleration of plasmaspheric ions and electrons 
(Ren et al., 2017; Zong et al., 2012), and drift-bounce resonance with ring current plasma (James et al., 2016; Yang 
et al., 2010; Yeoman & Wright, 2001). However, these interactions are sensitively dependent on the polarisation 
and frequency of the FLRs (Elkington et al., 2003). The presence of 3D FLRs alters the resonance contours and the 
resonant energies of the local plasma population (Elsden & Wright, 2022; Wright et al., 2022). Understanding the 
implications of these changes in a realistic storm time environment is a fundamental question, that will have conse-
quences for multiple inner magnetospheric phenomenon (e.g., radiation belt energization and ring current decay).

However, the single event study presented here raises the question of how common these 3D FLRs are? Although 
it is outside the scope of this report to perform a detailed statistical analysis of when and where 3D FLRs occur 
during storms (which will form future studies), it is expected that the occurrence of 3D FLRs is highly dependent 
on the presence of solar wind driven fast mode waves to couple to the FLR but also without distorting the hodo-
gram signatures (Elsden & Wright, 2022). Veritably, initial surveys confirm that whilst 3D FLRs occur under 
certain conditions, they are not present for all plume crossings. Future studies will also benefit from concurrent 
simulation work to fully understand how plume properties (e.g., density gradients and plume locations) will affect 
the likelihood of 3D FLRs forming and being observable.

2. How do plumes impact other wave processes? These results illustrate one aspect of how plumes can have signif-
icant ramifications for the propagation and coupling of ULF waves. This highlights the importance of continued 
active research into understanding how other wave modes can also be affected by cold density structures. For 
example, Hartley et al. (2022) observed changes in the obliquity of chorus waves close to plume boundaries with 
implications for the chorus-to-hiss mechanism (Hartley et al., 2019). Fully understanding how plumes alter the 
behavior of the range of wave processes in the inner magnetosphere (e.g., ULF waves, chorus waves, hiss waves, 
ion cyclotron waves, magnetosonic waves) will significantly reshape our knowledge of radiation belt dynamics, 
where variations in the radiation belt result from multiple different wave processes acting in tandem (Baker, 2021). 
Furthermore, including plumes in models of wave diffusion coefficients that are used in radiation belt modeling, 
will allow us to evaluate the role they play in wider radiation belt dynamics and improve modeling capabilities.

3. Improved characterization of the storm-time cold plasma density distribution. Although plumes are a rela-
tively common feature during geomagnetic storms (Li et al., 2022) and play a significant role in a range of 
inner magnetospheric phenomena, they are often omitted from cold plasma distribution models (e.g., Gallagher 
et al., 2000; Hartley et al., 2023; Sandhu et al., 2017; Sheeley et al., 2001). Current advances include work 
by Goldstein et al. (2014), where test particle simulations reproduce the shape of the plasmapause and plume 
boundaries to within 0.4 RE, although descriptions of densities within the plumes, plasmasphere, and plasma-
trough are not included yet. Empirical modeling using neural networks shows promising progress in this area 
(James et al., 2021; Zhelavskaya et al., 2017, 2021). The SPICED model by James et al. (2021) and the PINE 
model by Zhelavskaya et al. (2017) are able to describe density distributions for the plasmasphere and plasma-
trough as well as detailing the broad shape of the plume during storms. Future work to extend these models, 
quantify accuracy during disturbed periods, and focus on fully capturing the storm time plume structure would 
be highly beneficial. Accurate density models that realistically describe plume shape, size, and density gradients 
would allow step-change advancements in the empirical diffusion coefficients used in radiation belt modeling, 
by including these unique wave-particle interactions in and around plasmaspheric plumes. A key route for 
improved density modeling is improved cold plasma measurements. Propositions for in situ and imaging obser-
vations of cold plasma in the inner magnetosphere, such as the PILOT mission concept (Malaspina et al., 2022), 
would be invaluable in better understanding the dynamics of cold plasma, as well as supporting existing data 
sets (e.g., Van Allen Probes and Arase (Miyoshi et al., 2017)) in investigating impacts of cold plasma on wave 
processes.

To conclude, we have presented the first direct observations of a 3D FLR at a plume. The observations demon-
strate that plumes play a critical role in the propagation and coupling of ULF waves in the inner magnetosphere. 
The results reaffirm the importance of accurately characterizing storm time cold plasma distribution for more 
realistic empirical models, as well as highlighting questions around the impacts of 3D FLRs on our current under-
standing of ULF waves and their interactions with local plasma populations.
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Data Availability Statement
Van Allen Probes and Sym H data is available from Coordinated Data Analysis Web (CDAWeb) [Dataset] (2023). 
The solar wind data is publicly available from NASA/GSFC's Space Physics Data Facility's OMNIWeb service 
(Papitashvili & King, 2020). The Van Allen Probes plume crossing list is provided by Hartley (2022).
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