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The zero-divisor graph of a finite commutative ring with unity is the graph whose vertex 
set is the set of zero-divisors in the ring, with a and b adjacent if ab = 0. We show that the 
class of zero-divisor graphs is universal, in the sense that every finite graph is isomorphic 
to an induced subgraph of a zero-divisor graph. This remains true for various restricted 
classes of rings, including boolean rings, products of fields, and local rings. But in more 
restricted classes, the zero-divisor graphs do not form a universal family. For example, the 
zero-divisor graph of a local ring whose maximal ideal is principal is a threshold graph; 
and every threshold graph is embeddable in the zero-divisor graph of such a ring. More 
generally, we give necessary and sufficient conditions on a non-local ring for which its 
zero-divisor graph to be a threshold graph. In addition, we show that there is a countable 
local ring whose zero-divisor graph embeds the Rado graph, and hence every finite or 
countable graph, as induced subgraph. Finally, we consider embeddings in related graphs 
such as the 2-dimensional dot product graph.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In this paper, “ring” means “finite commutative ring with unity”, while “graph” means “finite simple undirected graph” 
(except in the penultimate section, where finiteness will be relaxed). The zero-divisor graph �(R) of a ring R has vertices the 
zero-divisors in R (the non-zero elements a for which there exists b �= 0 such that ab = 0), with an edge {a, b} whenever 
ab = 0. The zero-divisor graphs have been extensively studied in the past [1,3–7,9,10,20,22,25].

In this paper, we are interested in universal graphs. Let G be a graph. A graph H is said to be G-free if no subgraph 
of H is isomorphic to G . A countable G-free graph H is weakly universal if every countable G-free graph is isomorphic to 
a subgraph of H , and strongly universal if every such graph is isomorphic to an induced subgraph of H . Similarly, a class 
of graphs C is said to be universal if every graph is an induced subgraph of a graph in the class C . Universal graphs are 
well-studied and there is a vast literature spreading over the past few decades [24,18].

Universal graphs for collections of graphs satisfying certain forbidden conditions were also explored in the past [8,14,21]. 
In [15], the search for a graph G on n vertices with the minimum number of edges such that every tree on n vertices is 
isomorphic to a spanning tree of G is carried out.
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Here we address the question: Which finite graphs are induced subgraphs of the zero-divisor graph of some ring? The 
answer turns out to be “all of them”, but there are interesting questions still open when we restrict the class of rings or the 
class of graphs.

2. Zero divisor graphs are universal

In this section, we show that the zero divisor graphs associated to various classes of rings are universal.

2.1. The zero divisor graphs of Boolean rings are universal

In this subsection we show that intersection graphs are universal. Indeed we prove a stronger result: namely, every graph 
G can be identified as an intersection graph for a natural choice of sets associated to G . We need this result in a couple of 
proofs in later sections.

Definition 1. Let X be a family of subsets of a set A. The intersection graph on X , denoted by G(X), has as vertices the sets 
in the family, two vertices joined if they have non-empty intersection.

The following proposition is well known.

Proposition 2.1. Let G be a finite graph. Then G can be identified as an intersection graph for a natural choice of sets associated to G.

Proof. Let G be a finite graph with edge set E . Without loss of generality we assume that G has no isolated vertices or 
isolated edges (see Remark 1). The construction is simple. We represent a vertex v of G by the subset Av of E consisting of 
all edges of G containing v . Then

Av ∩ Aw =
{

{e} if v is adjacent to w by the edge e,

∅ otherwise.

Moreover, Av �= Aw for all v �= w , since (in the absence of isolated vertices and edges) two vertices cannot be adjacent 
with the same set of edges. Now, it is immediate that the graph G and the intersection graph G(X) are isomorphic where 
X = {Av : v ∈ V (G)}. �
Remark 1. If there are isolated vertices in G , they can be represented by non-empty sets disjoint from the graph obtained 
from the non-isolated vertices. If there are isolated edges in G we represent the vertices of such an edge by two distinct 
but intersecting sets disjoint from the sets representing the rest of the graph.

Let X be a finite set. The power set P (X) of X is the set of all subsets of X . The Boolean ring on X has as element set 
P (X); addition is symmetric difference, and multiplication is intersection. So the empty set is the zero element and ab = 0
if and only if a and b are disjoint.

Lemma 2.2. Let �(R) be the zero divisor graph of a Boolean ring R. A graph G is an induced subgraph of �(R) if, and only if, the 
complement graph of G is isomorphic to an intersection graph G(X) for some collection of sets X.

Proof. Suppose G is an induced subgraph of the zero divisor graph of a Boolean ring R . Now R is a subring of (P (X), �, ∩)

for some X . Therefore the vertices of G are elements of P (X) and two of them are adjacent if their intersection is empty. 
In other words, two of them are adjacent in the complement graph of G if their intersection is non-empty. This shows that 
the complement graph of G is an intersection graph.

Conversely, consider an arbitrary intersection graph G := G(X) for some collection of subsets X of a set A. Then the 
vertices of G are subsets of A and two of them are adjacent if their intersection is non-empty. In other words, two of them 
are adjacent in the complement graph of G if their intersection is empty. This shows that the complement graph of G is an 
induced subgraph of the zero divisor graph of the Boolean ring (P (A), �, ∩). �
Theorem 2.3. The zero divisor graphs of Boolean rings are universal. That is, every finite graph is an induced subgraph of the zero-
divisor graph of a Boolean ring.

Proof. By Lemma 2.2, it is enough to show that the complement graph of any finite graph is an intersection graph. But this 
claim follows from Proposition 2.1. �
Corollary 2.4. For every finite graph G, there exists a positive integer k such that G is an induced subgraph of the zero-divisor graph of 
the ring Z2 ×Z2 × . . . ×Z2 (k-times).
2
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Proof. Note that every finite Boolean ring is isomorphic to Z2 ×Z2 × . . . ×Z2 for some positive integer k, and hence the 
result follows from Theorem 2.3. �
2.2. The zero divisor graphs of ring of integers modulo n and the reduced rings are universal

Lemma 2.5. Let X = {1, 2, . . . , m}, and let P (X) denote its power set (the set of all its subsets). Then the zero divisor graph of 
the Boolean ring (P (X), �, ∩) is an induced subgraph of the zero divisor graph of the ring Zn, the integers modulo n, where 
n = p1 p2 · · · pm is a square-free integer with m prime divisors.

Proof. Let A and B be two proper subsets of X . Then the following statements are equivalent:

• A and B are adjacent in the zero divisor graph of the Boolean ring (P (X), �, ∩);
• A and B are disjoint;
• Ac ∪ Bc = X ;
• the product nAc nBc is divisible by n, where nA = ∏

i∈A pi .

Therefore the map which sends A to nAc defines an injective graph homomorphism of the zero divisor graph of the Boolean 
ring (P (X), �, ∩) and the zero divisor graph of the ring Zn , the integers modulo n. �
Theorem 2.6. Every finite graph is an induced subgraph of the zero-divisor graph of a product of distinct finite fields.

Proof. By the Chinese Remainder Theorem, if n = p1 p2 · · · pm where p1, p2, . . . , pm are distinct primes, the product of the 
fields Zpi is isomorphic to Zn , so the result follows from the preceding theorem. �
Corollary 2.7. The class of zero-divisor graphs of the rings of integers modulo n is universal. Further, we can even restrict the n to be 
squarefree.

2.3. The zero divisor graphs of local rings are universal

Further discussion of ring-theoretic concepts such as local, Noetherian and Artinian rings can be found in most ring-
theory books, for example [19,23].

A local ring is a ring R with a unique maximal ideal M . Any non-zero element of M is a zero-divisor, and every element 
of R \ M is a unit.

Lemma 2.8. Let R be a local ring with a unique maximal ideal M. Then there exists r such that Mr = {0}.

Proof. Since R is a finite local ring, it is a local Artinian ring and hence M is nilpotent. �
From the above lemma we observe that if a ∈ Ms and b ∈ Mt with s + t ≥ r, then ab = 0, and hence a and b are adjacent 

in the zero-divisor graph. This observation might suggest that the zero-divisor graph is a threshold graph (these graphs are 
defined in the next section), but we show that this is not so. The problem is complicated by the fact that the converse of 
this observation is false in general.

In the following theorem, we show that in fact the zero-divisor graphs of local rings are universal.

Theorem 2.9. For every finite graph G, there is a finite commutative local ring R with unity such that G is an induced subgraph of the 
zero-divisor graph of R.

Proof. Let the vertex set of G be {v1, . . . , vn}. Take R to be the quotient of F [x1, . . . , xn] by the ideal I generated by all 
homogeneous polynomials of degree 3 in x1, . . . , xn together with all products xi x j for which {vi, v j} is an edge of G , where 
F is a finite prime field of order p and x1, . . . , xn are indeterminates.

Let M be the ideal of R generated by the elements x1, . . . , xn (We abuse notation by identifying polynomials in x1, . . . , xn

with their images in R .) Thus M is the set of elements represented by polynomials with zero constant term. So M is 
nilpotent and every element of R \ M is a unit, so M is the unique maximal ideal, and R is a local ring.

Now the elements x1, . . . , xm of M satisfy xi x j = 0 if and only if {vi, v j} is an edge of G . To see this, note that the set

{1, x1, . . . , xn} ∪ {xi x j : {vi, v j} /∈ E(G)}
is an F -basis for R . This completes the proof. �
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3. When is the zero-divisor graph threshold?

In preparation for the next section, we need some background on threshold graphs. These were introduced by Chvátal 
and Hammer [16] in 1977.

Definition 2. A graph G is a threshold graph if there exists t ∈R and for each vertex v a weight w(v) ∈R such that uv is 
an edge in G if, and only if, w(u) + w(v) > t .

Definition 3. A split graph is a graph whose vertex set is the disjoint union of an independent set and a clique, with 
arbitrary edges between them. A nested split graph (or NSG for short) is a split graph in which we add cross edges in 
accordance with partitions of U (the independent set) and V (the clique) into h cells (namely, U = U1 ∪ U2 ∪ . . . ∪ Uh and 
V = V 1 ∪ V 2 ∪ . . . ∪ Vh) in the following way: each vertex u ∈ Ui is adjacent to all vertices v ∈ V 1 ∪ V 2 ∪ . . . ∪ V i . The 
vertices Ui ∪ V i form the i-th level of the NSG, and h is the number of levels. The NSG as described can be denoted by 
NSG(m1, m2, . . . , mh; n1, n2, . . . , nh), where mi = |Ui | and ni = |V i| (i = 1, 2, . . . , h).

The following theorem is well-known.

Theorem 3.1 ([16]). For a finite graph G, the following three properties are equivalent:

(a) G is a threshold graph;
(b) G has no four-vertex induced subgraph isomorphic to C4 (the cycle), P4 (the path), or 2K2 (the matching);
(c) G can be built from the empty set by repeatedly adding vertices joined either to nothing or to all other vertices;
(d) G is a nested split graph.

The reverse of the building-up procedure of part (d) of the theorem (that is, removing the vertices one at a time so that 
each removed vertex is joined to all or none of the remaining vertices) will be called “dismantling” the graph.

We thought originally that the zero-divisor graph of a local ring might be a threshold graph. This is not true in general, 
as shown by part (b) of the above theorem together with Theorem 2.9; Example 1 also demonstrates this (it was the first 
example we discovered).

Example 1. Let A = Z4[x, y, z]/M , where M is the ideal generated by {x2 − 2, y2 − 2, z2, 2x, 2y, 2z, xy, xz, yz − 2}. In the 
zero-divisor graph of A, the induced subgraph on the vertices {x, z, x + y, x + y + 2} is 2K2 and the induced subgraph of the 
vertices {x, z + 2, x + z, x + y} is P4.

But there is one class of local rings whose zero-divisor graphs are threshold, those whose maximal ideal is principal. If 
p is a generator of M as an ideal, then every element of M has the form psu where u is a unit and s > 0. If u and v are 
units, then psu.pt v = 0 if and only if s + t ≥ r, where r is the nilpotent index of the ideal M (the smallest positive integer 
k such that Mk = {0}).

Definition 4. A collection C of graphs is said to be threshold-universal (for short, t-universal) if every threshold graph is an 
induced subgraph of a graph from C .

Theorem 3.2. Let R be a local ring whose maximal ideal M is principal.

(a) The zero-divisor graph of R is a threshold graph.
(b) Any threshold graph is an induced subgraph of some local ring whose maximal ideal is principal. In other words the set of all zero 

divisor graphs of local rings with principal maximal ideal form a t-universal collection of graphs.

Proof. (a) For the first part, let R be a local ring with maximal ideal M . Let r be the smallest integer such that Mr = {0}. 
Take threshold t = r, and set w(a) = i if a ∈ Mi \ Mi+1. By the remarks above, ab = 0 if and only if w(a) + w(b) ≥ r, so the 
zero-divisor graph is a threshold graph.

(b) Let G be an arbitrary threshold graph. Choose a prime which is sufficiently large (larger than the number of vertices 
of G is certainly enough). Let m be the number of stages required to dismantle G; embed the vertices of G in R =Z/(p2m+1)

as follows: if a is removed as an isolated vertex in round i, map it to an element of pi R \ pi+1 R; if it is removed as a vertex 
joined to all others in round i, map it to an element of p2m−i+1 R \ p2m−i+2 R . (Each of these differences contains at least 
p − 1 elements, enough to embed all required vertices.) �

The next result is a necessary condition for the zero divisor graph of a ring to be threshold. Here Ann(x) = {y ∈ R : xy =
0} is the annihilator of x: it is a non-zero ideal if x is a zero-divisor.
4
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Theorem 3.3. If R is a ring whose zero divisor graph is threshold, then for any two distinct zero-divisors x, y ∈ R, the following 
statements hold:

(a) Ann(x) ∩ Ann(y) �= {0};
(b) either Ann(x) ⊆ Ann(y) or Ann(y) ⊆ Ann(x);
(c) if Ann(x) � Ann(y) and xy �= 0, then 〈Ann(x)〉 is a clique;
(d) if Ann(x) � Ann(y) and xy �= 0, then for any a ∈ Ann(x) and for any b ∈ Ann(y)\ Ann(x), ab = 0.

Proof. (a) Suppose Ann(x) ∩ Ann(y) = {0}, for some zero-divisors x, y ∈ R . Then there exist 0 �= a ∈ Ann(x) and 0 �= b ∈
Ann(y) such that a /∈ Ann(y) and b /∈ Ann(x). Hence, the subgraph induced by {x, a, y, b} is isomorphic to 2K2, P4 or C4, a 
contradiction.

(b) Suppose that there exist non-zero elements x, y ∈ R (necessarily zero-divisors) such that Ann(x) � Ann(y) and 
Ann(y) � Ann(x). Then again there exist 0 �= a ∈ Ann(x) and 0 �= b ∈ Ann(y) such that a /∈ Ann(y) and b /∈ Ann(x). Hence we 
get a similar contradiction in (a).

(c) If Ann(x) � Ann(y) and 〈Ann(x)〉 is not a clique, then there exist a, b ∈ Ann(x) such that ab �= 0 and hence the 
subgraph induced by {x, a, y, b} is isomorphic to C4, a contradiction.

(d) Similar to (c). �
The following theorem is a characterization of non-local rings R whose zero-divisor graph is threshold. We use the fact 

that any finite ring is a direct sum of local rings, see [19, p.430], [13, p.110].

Theorem 3.4. Let R be a non-local ring. Then �(R) is threshold if and only if R ∼= F2 × Fq, where q ≥ 3 and Fq is the field with q
elements.

Proof. If R ∼= F2 × Fq , then �(R) ∼= K1, q−1 (a star graph) and hence it is threshold. Suppose �(R) is threshold and R =
R1 × R2 × . . .× Rn , where n ≥ 2. If n ≥ 3, then Ann((1, 1, 0, 0, . . . , 0)) = {0} ×{0} × R3 × . . .× Rn and Ann((0, 0, 1, 0, . . . , 0)) =
R1 × R2 × {0} × R4 × . . . × Rn . By Theorem 3.3(b), we have �(R) is not threshold. So n = 2. If one of the Ri is not a field, 
say R1, then there exist non-zero elements x, y ∈ R1 such that xy = 0. Hence Ann((x, 0)) = Ann(x) × R2 and Ann((0, 1)) =
R1 × {0} and thus we have �(R) is not threshold by Theorem 3.3(b). Therefore, both R1 and R2 are fields. If |Ri | > 2, 
for i = 1, 2 then, by the same argument, Ann((1, 0)) is not a subset of Ann((0, 1)) and Ann((0, 1)) is not a subset of 
Ann((1, 0)). �

Next, we ask the following question about local rings.

Problem 1. For which local rings (R, M) is the zero-divisor graph threshold?

For the rest of this section, we consider a local ring (R, M), where M is the maximal ideal.
Since every finite commutative ring R with unity is Noetherian, every ideal of R is finitely generated. In particular, the 

maximal ideal M in a local ring (R, M) is finitely generated.

Proposition 3.5. Let M be the maximal ideal of R, and let M be generated by {x1, x2, . . . , xk}, where k ≥ 2. If x2
i = 0 for 1 ≤ i ≤ k and 

xi x j = 0 for 1 ≤ i < j ≤ k, then the zero-divisor graph of R is threshold.

Proof. Let X = ∑k
i=1 ai xi ∈ V (�(R)) and Y = ∑k

i=1 bi xi ∈ V (�(R)). Then XY = 0 and hence �(R) is complete. Therefore it is 
threshold. �
Proposition 3.6. Let M be the maximal ideal of R, and let M be generated by {x1, x2, . . . , xk}, where k ≥ 2, such that xix j = 0 for 
1 ≤ i < j ≤ k. If xn−1

1 �= 0, xn
1 = 0 where n ≥ 3 and x2

i = 0 for 2 ≤ i ≤ k, then �(R) is threshold.

Proof. Using the definition of nested split graph, we prove the result. Set the level h = n
2 if n is even and h = n−1

2 otherwise.
First we define, for 1 ≤ i ≤ h − 1,

Ui =
{

ai,1xi
1 + ai,2x2 + . . . + ai,nxn | ai,1 is unit element of R, and
ai, j is either zero or a unit element of R, for 2 ≤ j ≤ n

}
and if n is odd, define

Uh =
{

ah,1xh
1 + ah,2x2 + . . . + ah,nxn | ah,1 is unit element of R, and

a is either zero or a unit element of R, for 2 ≤ j ≤ n

}

h, j

5
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and if n is even, define Uh = ∅.
Next we define,

V 1 =
{

b1,1xn−1
1 + b1,2x2 + . . . + b1,nxn | b1, j is either zero or unit

element of R, for 1 ≤ j ≤ n

}
,

and for 2 ≤ i ≤ h,

V i =
{

bi,1xn−i
1 + bi,2x2 + . . . + bi,nxn | bi,1 is unit element of R, and
bi, j is either zero or unit element of R, for 2 ≤ j ≤ n

}
.

Then clearly, 
h⋃

i=1
Ui is an independent set and 

h⋃
i=1

V i is a complete subgraph of �(R). Also they satisfy the definition of 

nested split graph and hence the graph is threshold. �
Proposition 3.7. If M is the maximal ideal generated by {x1, x2, . . . , xk}, where k ≥ 2 such that x1x2 = 0, x2

1 �= 0 �= x2
2 , then �(R) is 

not threshold.

Proof. Clearly, x1 ∈ Ann(x2)\ Ann(x1) and x2 ∈ Ann(x1)\ Ann(x2) and hence Ann(x1) is not a subset of Ann(x2) and Ann(x2)

is not a subset of Ann(x1). Thus �(R) is not threshold, by Theorem 3.3. �
4. The zero-divisor graphs of local rings with countable cardinality are universal

It is natural to wonder about embedding infinite graphs in zero-divisor graphs of infinite rings. Here we consider the 
countable case.

Our tool will be the Rado graph, or countable random graph R: this was first explicitly constructed by Rado, but about the 
same time Erdős and Rényi proved that if a countable graph was selected by choosing edges independently with probability 
1
2 from the 2-subsets of a countably infinite set, the resulting graph is isomorphic to R with probability 1. Among many 
beautiful properties of this graph (for which we refer to [11]), we require the following:

• R is the unique countable graph having the property that, given any two finite disjoint sets U and V of vertices, there 
is a vertex z joined to every vertex in U and to none in V .

• Every finite or countable graph is embeddable in R as an induced subgraph.

We refer to [17] for terminology and results on Model Theory, in particular the Compactness and Löwenheim–Skolem 
theorems.

Theorem 4.1. There is a countable local ring with unity having the property that every finite or countable graph is an induced subgraph 
of its zero-divisor graph.

Proof. It suffices to show that the Rado graph R can be embedded in the zero-divisor graph of a countable ring, since 
every finite or countable graph is an induced subgraph of the Rado graph.

We give two proofs of this. The first is simple and direct, using the method we used in Theorem 2.9. The second is 
non-constructive but shows a technique which we hope will be of wider use.

First proof. Let F be a field (for simplicity the field with two elements). Let R = F [X]/S , where the set X of indeterminates 
is bijective with the vertex set of R (with xi corresponding to vertex i), and S is the ideal generated by all homogeneous 
polynomials of degree 3 in these variables together with all products xi x j for which {i, j} is an edge of R. Just as in the 
proof of Theorem 2.9, the set {xi + S : i ∈ V (R)} induces a subgraph isomorphic to R of the zero-divisor graph of R .

The ring R has the properties that it is a local ring (though its maximal ideal is not finitely generated) and its automor-
phism group contains the automorphism group of R.

Second proof. We use basic results from model theory. We take the first-order language of rings with unity together with 
an additional unary relation S . Now consider the following set � of first-order sentences:

(a) the axioms for a commutative ring with unity;
(b) the statement that every element of S is a (non-zero) zero-divisor;
(c) for each pair (m, n) of non-negative integers, the sentence stating that for any given m + n elements x1, . . . , xm, y1, . . . ,

yn , all satisfying S , there exists an element z such that z satisfies S , that xi z = 0 for i = 1, . . . , m, and that y j z �= 0 for 
j = 1, . . . , n.
6
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We claim that any finite set of these sentences has a model. Any finite subset of the sentences in (c) are satisfied in some 
finite graph (taking “product zero” to mean “adjacent”), with S satisfied by the vertices used in the embedding: indeed, a 
sufficiently large finite random graph will have this property. By our earlier results, this finite graph is embeddable as an 
induced subgraph in the zero-divisor graph of some finite commutative ring with unity.

By the First-Order Compactness Theorem, the entire set � has a model R . This says that the set of ring elements 
satisfying S induces a subgraph isomorphic to Rado’s graph R in the zero-divisor graph of R . (The sentences under (c) are 
first-order axioms for R.) But R contains every finite or countable graph as an induced subgraph.

Now the downward Löwenheim–Skolem theorem guarantees that there is a countable ring whose zero-divisor graph 
contains R, and hence all finite and countable graphs, as induced subgraphs. �
Problem 2. Is there a local ring whose maximal ideal is finitely generated as an ideal and whose zero-divisor graph embeds 
the Rado graph as an induced subgraph?

Problem 3. Find the smallest number N (in terms of n and m) such that, if G is a graph with n vertices and m edges, then 
G is an induced subgraph of the zero divisor graph of a ring (commutative with unity) of order at most N .

Let f (n, m) be this number. Our construction using Boolean rings shows that N ≤ 2p , where p is the least number 
of points in a representation of G as an intersection graph. Moreover, we constructed an intersection representation with 
p = m + a + b, where a and b are the numbers of isolated vertices and edges in G . This gives an upper bound for f (n, m).

Problem 4. Is this best possible?

We can ask similar questions for subclasses of rings (such as local rings), or for variants of the zero-divisor graph.

5. Other graphs from rings

There are several natural classes of graphs containing the threshold graphs. These include split graphs (defined earlier), 
chordal graphs (containing no induced cycle of length greater than 3), cographs (containing no induced path on four ver-
tices) and perfect graphs (containing no induced odd cycle of length at least 5 or complement of one). For each of these 
classes C , we can ask:

Problem 5. For which commutative rings with unity does the zero-divisor graph belong to C?

Another very general problem is to examine the induced subgraphs of various generalizations of zero-divisor graphs, 
such as the extended zero-divisor graphs and the trace graphs [2,26–29].

As a contribution to this problem, here is an example of a kind of universality question that can be asked when we have 
graphs defined from algebraic structures where one is a subgraph of the other. The pattern for this theorem is [12, Theorem 
5.9], the analogous result for the enhanced power graph and commuting graph of a group.

Let A be a commutative ring with unity. We define the zero-divisor graph of A to have as vertices all the non-zero 
elements of A, two vertices a and b joined if ab = 0. (This is not the usual definition since we don’t restrict just to 
zero-divisors: vertices which are not zero-divisors are isolated. This doesn’t affect our conclusion.) Given a positive integer 
m, we define the m-dimensional dot product graph to have vertices all the non-zero elements of Am with two vertices 
(a1, a2, . . . , am) and (b1, b2, . . . , bm) joined if a.b = 0, where

a · b = a1b1 + a2b2 + · · · + ambm.

Note that Am is a ring, with the product ∗ given by

a ∗ b = (a1b2,a2b2, . . . ,ambm).

It is clear that a ∗ b = 0 implies a.b = 0, so the zero-divisor graph of Am is a spanning subgraph of the m-dimensional dot 
product graph of A.

We prove the following:

Theorem 5.1. Take the complete graph on a finite set X, with the edges coloured red, green and blue in any manner whatever. Then 
there is a ring A and an embedding of X into A2 such that

• the red edges are edges of the zero-divisor graph of A2;
• the green edges are edges of the 2-dimensional dot product graph of A but not of the zero-divisor graph of A2;
• the blue edges are not edges of the 2-dimensional dot product graph of A.
7
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Proof. First, by enlarging X by at most four points joined to all others with blue or green edges, we can assume that neither 
the blue nor the green subgraphs have isolated vertices or edges.

Let P be the set of blue or green edges. For each vertex v ∈ X , define a pair (S(v), T (v)) of subsets of P by the rule that 
S(v) is the set of green edges containing v , while T (v) is the set of blue or green edges containing v . The assumption in 
the previous paragraph shows that the map θ : v �→ (S(v), T (v)) is one-to-one.

Now let A denote the Boolean ring on P . Then θ is an embedding of X into A × A \ {0}. We claim that this has the 
required property.

• Suppose that e = {v, w} is a red edge. Then S(v) ∩ S(w) = ∅ and T (v) ∩ T (w) = ∅; so θ(v) ∗ θ(w) = 0, whence θ(v)

and θ(w) are joined in the zero divisor graph of A2.
• Suppose that e = {v, w} is green. Then S(v) ∩ S(w) = {e} and T (v) ∩ T (w) = {e}; so θ(v) ∗ θ(w) �= 0 but θ(v).θ(w) = 0. 

Thus θ(v) and θ(w) are joined in the dot product graph but not the zero divisor graph.
• Suppose that e = {v, w} is blue. Then S(v) ∩ S(w) = ∅ and T (v) ∩ T (w) = {e}, so θ(v).θ(w) = {e} �= 0. So θ(v) and θ(w)

are not joined in the dot product graph.

The theorem is proved. �
Remark 2. This theorem has several consequences:

• By ignoring the distinction between green and blue, we have another construction showing the universality of the 
zero-divisor graphs of rings.

• By ignoring the distinction between red and green, we have shown the universality of the 2-dimensional dot product 
graphs of rings.

• By ignoring the distinction between red and blue, we have shown that the graphs obtained from the 2-dimensional dot 
product graph of A by deleting the edges of the zero-divisor graph of A2 are universal.

The theorem suggests several questions:

Problem 6.

• Can we restrict the ring A to a special class such as local rings?
• Can we prove similar results for other pairs of graphs?
• Can we prove similar results for more than two graphs?
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