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Abstract
1.	 The affordability, storage and power capacity of compact modern recording 

hardware have evolved passive acoustic monitoring (PAM) of animals and sound-
scapes into a non-invasive, cost-effective tool for research and ecological man-
agement particularly useful for bats and toothed whales that orient and forage 
using ultrasonic echolocation. The use of PAM at large scales hinges on effective 
automated detectors and species classifiers which, combined with distance sam-
pling approaches, have enabled species abundance estimation of toothed whales. 
But standardized, user-friendly and open access automated detection and clas-
sification workflows are in demand for this key conservation metric to be realized 
for bats.

2.	 We used the PAMGuard toolbox including its new deep learning classification 
module to test the performance of four open-source workflows for automated 
analyses of acoustic datasets from bats. Each workflow used a different initial 
detection algorithm followed by the same deep learning classification algorithm 
and was evaluated against the performance of an expert manual analyst.

3.	 Workflow performance depended strongly on the signal-to-noise ratio and de-
tection algorithm used: the full deep learning workflow had the best classifica-
tion accuracy (≤67%) but was computationally too slow for practical large-scale 
bat PAM. Workflows using PAMGuard's detection module or triggers onboard 
an SM4BAT or AudioMoth accurately classified up to 47%, 59% and 34%, re-
spectively, of calls to species. Not all workflows included noise sampling critical 
to estimating changes in detection probability over time, a vital parameter for 
abundance estimation. The workflow using PAMGuard's detection module was 
40 times faster than the full deep learning workflow and missed as few calls (re-
call for both ~0.6), thus balancing computational speed and performance.

4.	 We show that complete acoustic detection and classification workflows 
for bat PAM data can be efficiently automated using open-source software 
such as PAMGuard and exemplify how detection choices, whether pre- or 
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1  |  INTRODUC TION

Bats represent over a fifth of the global mammalian biodiversity 
(Burgin et al.,  2018), provide key ecosystem services (Ancillotto 
et al.,  2017; Ghanem & Voigt,  2012) and are prospective bio-
indicators for habitat quality and impacts of climate change (Jones 
et al., 2009; Russo et al., 2021). Susceptible to impact by their lon-
gevity, slow reproductive rates and sensitivity to ecological pres-
sures including habitat degradation and increased insect mortality 
(Sánchez-Bayo & Wyckhuys,  2019), many bat species are endan-
gered or declining in numbers, directly or indirectly due to human 
activity (Voigt & Kingston, 2016). The need to monitor bat popula-
tions is consequently urgent and globally acknowledged to inform 
their future management and conservation.

The affordability, capacity and endurance of modern recorders 
have substantiated their use as a non-invasive method for passive 
acoustic monitoring (PAM) of vocalizing animals in the wild, in-
cluding echolocating toothed whales and bats that actively sam-
ple their surroundings with high-amplitude ultrasound (McCordic 
et al.,  2021; Sugai et al.,  2020). However, with the upscaling of 
high-capacity recorders into multiple-device networks follows a 
need for efficient data processing and interpretation. While the 
performance of automated detection and classification algorithms 
is integral to large-scale PAM, the adoption of sophisticated and 
automated acoustic processing methods is only practical if they 
are accessible to a wide range of technical abilities through user-
friendly software. Freeware options such as BatScope (Obrist & 
Boesch,  2018), BatClassify (https://bitbu​cket.org/chris​scott/​batcl​
assify) and Tadarida (Bas et al., 2017) exist for bat classification, but 
most workflows still rely on a patchwork of commercial hardware 
and/or proprietary software (e.g. Kaleidoscope Pro [wildl​ifeac​ousti​
cs.com], SonoChiro [sonoc​hiro.bioto​pe.fr], SonoBat [sonob​at.com]), 
lack the accessibility and transparency needed for the broad user 
community or require coding experience. Despite consensus that 
a successful bat PAM program needs full transparency and stan-
dardized protocols for consistency (Mac Aodha et al., 2018; Russo 
& Voigt, 2016; Rydell et al., 2017), we are unaware of any such effi-
cient, commonly adopted and accessible acoustic workflow for ter-
restrial bioacoustics in general and echolocating bats in particular. 
In contrast, extensive software infrastructure exists for large-scale 
PAM of echolocating odontocetes (Gibb et al., 2019), such as the 

open-source PAMGuard toolbox (www.pamgu​ard.org, Gillespie 
et al., 2008).

We posit that the quality of downstream ecological information 
extracted from acoustic data depends critically on the type of au-
tomated analysis workflow used. Accordingly, we outline and test 
four extensible analysis workflows for bat PAM, based on the open-
source AudioMoth and the proprietary SM4BAT FS recorders. We 
review and show empirically how choices made before and at the 
detection stage impact the overall performance of acoustic analy-
ses workflows integrating a deep learning species classification al-
gorithm. We do so while demonstrating the potential of PAMGuard 
as an application for accessible and automated acoustic analyses 
workflows for bat PAM and consider the final accuracy of species 
classification and implications for the probability of detecting bat 
calls for each workflow. Lastly, we use our results to discuss recom-
mendations for acoustic workflows for bat PAM.

1.1  |  Call variation and signal-to-noise ratio

Any PAM workflow faces a two-level challenge including detection: 
extracting signals of interest, and classification: identification of de-
tected signals to species or species complex, all from the intricate 
and dynamic soundscape of acoustic field recordings. Two main fac-
tors affect the difficulty and effectiveness of these detection and 
classification tasks. The first factor is the signal-to-noise ratio (SNR). 
Noise, whether ambient or self-noise of the recording system, im-
pacts signal extraction by distorting spectral and temporal proper-
ties of received signals. Yet, noise is an inherent condition of PAM, as 
low amplitude and hence lower SNR calls tend to dominate in acous-
tic monitoring (Figure 1) because most of the volume monitored by a 
receiver is near its outer detection periphery.

The second factor affecting detection and classification is call 
variability. The ultrasonic calls recorded from echolocating bats are 
inherently affected by their directionality, the frequency-dependent 
absorption in air and interference from echoes, creating a strong de-
pendence on both the bat-receiver angle and range (Goerlitz, 2018; 
Pedersen et al., 2022). In concert, these factors introduce complex-
ity and variation into recorded acoustic data (Jakobsen et al., 2013; 
Madsen & Wahlberg, 2007), which is further confounded by context-
dependent intra- and interspecific call variation.

post-deployment, hardware or software-driven, affect the performance of deep 
learning classification and the downstream ecological information that can be 
extracted from acoustic recordings. In particular, understanding and quantifying 
detection/classification accuracy and the probability of detection are key to avoid 
introducing biases that may ultimately affect the quality of data for ecological 
management.

K E Y W O R D S
automated, bat, classification, deep learning, detection, echolocation, open source, passive 
acoustic monitoring
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Lower SNR calls also associate with distinct patterns of be-
haviour, including stealth echolocation (Goerlitz et al., 2010), buzz-
ing in the final stage of prey capture (Stidsholt et al.,  2021) and 
communication signals (Knörnschild et al., 2017) that may contribute 
important ecological information.

1.2  |  Probability of detection and SNR

The overall probability of detecting a call in a recording depends 
on the SNR (Darras et al., 2020). The average probability of detec-
tion (P̂) across all calls within the recorder detection range allows 
estimation of the fraction of calls missed by the PAM system and, 
in turn, the true number of calls inside a specified area (Buckland 
et al., 2001). If the average call rate is then known from independ-
ent data, the number of detected calls per time unit can be con-
verted into absolute density (number per km2) of bats (Marques 
et al., 2013). While behavioural and ecological parameters that con-
tribute to P̂ for a given species in each habitat must be measured by 

other means, P̂ usually scales inversely with noise (whether ambient 
or system noise is dominant); increasing noise → decreasing SNR of 
received calls → decrease in P̂. This means that P̂ is intrinsically linked 
to the overall soundscape in the habitat unless the self-noise of the 
recording chain is consistently above the ambient noise in the rel-
evant frequency band.

1.3  |  Automatic detection and classification

A skilled manual analyst offers excellent visual pattern recognition for 
extraction of lower SNR calls from PAM data and can deal with incon-
sistencies like unexpected noise sources and atypical call structure. By 
itself, however, the manual approach is slow, expensive and unfeasible 
in a large-scale PAM framework. Automated algorithms, in contrast, 
require extensive training to deal with data complexity and variabil-
ity, but add speed and consistency. Hybrid approaches allow results 
output by automated algorithms to be rapidly user-visualized and vali-
dated, exploiting the best of both (López-Baucells et al., 2019).

F I G U R E  1  (a) The signal-to-noise ratio (SNR) of the same bat call received on-axis by a recorder (green box) with added noise simulating 
different bat recorder ranges (assuming a source level at 10 cm of 121 dB re 20 μPa [rms] and an ambient noise level of 20 dB re 20 μPa above 
10 kHz, Merchant et al., 2015). See Supporting Information S3 for details on SNR estimation. (b) Typical SNR distribution of detected calls (N) 
with most produced at greater ranges from the recorder and, for geometric reasons, of lower SNR. With decreasing SNR, detection success 
drops as calls fade into background noise. Increasing the SNR threshold increases the number of correct detections for any detector, but at 
the expense of less detections overall, consequently increasing the uncertainty of abundance estimates.
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An automated workflow archiving and running on continuous, full-
bandwidth ultrasound recordings without information loss is rarely 
feasible as data management becomes prohibitively time and space 
consuming for larger scale surveys, even if duty cycling and compres-
sion algorithms (Johnson et al.,  2013) are used. Bat calls are short 
(often <25 ms) compared to the mean call interval and time between 
bat encounters, so only a small fraction of a continuous recording con-
tains bat calls, even in densely populated habitats. Consequently, anal-
ysis of bat PAM data is typically split into two stages: detection; often 
run onboard the recording device as a trigger algorithm prompted by 
default or user settings to save only signals or sequences of potential 
interest and reduce the data volume passed to the second stage; the 
classification of saved detections for species identification.

Thus, detection is an important stage for large-scale bat mon-
itoring as it supports data management. An efficient detection 
algorithm should extend effective recording time, reduce data 
volumes and transfer time, yet maintain data integrity, to yield 
high-quality non-biased outputs. This can be achieved by running 
the detector with a high sensitivity to avoid missing emitted calls1 
but potentially creating many false positives, a trade-off which 
should be considered in the context of purpose. Further offline 
analyses by automated classification algorithms are therefore re-
quired to identify false-positive detections and provide species 
identification from raw waveform information saved for each de-
tection. Crucially, noise affecting the probability of detecting tar-
get sounds should be stored or quantified continuously to allow a 
running quantification of P̂.

Classification algorithms are inevitably more complex than 
detection algorithms and frequently employ machine learning to 
achieve high accuracy. Random forest and convolutional neural 
networks (CNNs) have shown promising ability to detect and/
or classify bat calls (Bas et al., 2017; López-Baucells et al., 2019; 
Roemer et al., 2021; Walters et al., 2012). However, no common 
workflow is currently widely adopted, and the robustness of ma-
chine learning approaches applied across different workflows 
is sparsely documented. Hence, the performance of classifica-
tion models may sometimes be significantly affected by type of 
hardware and onboard trigger algorithms, noise fluctuations and/
or other parameters not included in training data. Accurate au-
tomated classification algorithms can be vital for effective PAM 
studies, especially for monitoring rare species (Caillat et al., 2013). 
Thus, understanding how they perform across different hardware 
and environmental domains is a critical step in creating practical 
and widely applicable acoustic workflows.

2  |  MATERIAL S AND METHODS

2.1  |  Hardware, recording sites and data

We used two common recorders to collect acoustic data at wood-
land edges in Denmark (coordinates and recording specifications in 
Table S1): the proprietary SM4BAT FS (Wildlife Acoustics Inc.) and 

the open-source AudioMoth (Hill et al., 2018, opena​coust​icdev​ices.
info).

To test how efficiently each workflow detected low SNR 
calls and classified species, we compared triggered and continu-
ous recordings per recorder type by pairwise deployment of two 
SM4BAT (16-bit recorder with external microphone) and two 
AudioMoths (12-bit recorder with integrated MEMs microphone), 
respectively. Within each recorder pair, one was in trigger mode 
while the other recorded continuously, with otherwise identical 
settings (Table S1).

To illustrate the importance of concurrent noise sampling to 
estimate how noise affects call detection probability over time, we 
also analysed an extended 40-night dataset of continuous (sunset–
sunrise), full-bandwidth recordings from an SM4BAT.

2.2  |  Acoustic analyses workflows

To explore how the choice of detection or trigger algorithm and hard-
ware affects both the detection and subsequent classification of bat 
echolocation calls, we tested four acoustic analysis workflows each 
based on a different detection stage (Figure 2). Two ran offline on con-
tinuous recordings, using a deep learning and PAMGuard's dynamic 
threshold detection algorithm respectively. The other two workflows 
used the detection algorithms integrated onboard the AudioMoth 
(static trigger), and the SM4BAT FS (adaptive trigger). Detections from 
each workflow were passed to the same deep learning classification 
stage for species identification and workflow performance evaluated 
against manually annotated data from an hour of continuous and trig-
gered recordings from both AudioMoth and SM4BAT recorder pairs. 
Manual detection and classification were performed by an expert 
bat bioacoustics analyst (SB) based on visual inspection of raw wave-
forms, spectrograms and spectra in Raven Lite 2.0.1 (K. Lisa Yang 
Center for Conservation Bioacoustics, 2016).

2.2.1  |  Full deep learning workflow

The full deep learning workflow used a deep learning detection model 
based on ANIMAL-SPOT (Bergler et al., 2022), a ResNet-18 CNN for 
binary and multi-species classification. We trained the binary CNN 
(bat or no bat) on manually annotated noise clips (n = 17,964) and 
call clips (n = 6933) from five focal species for which we had reli-
able audio files: Pipistrellus pygmaeus (n = 1570), Nyctalus noctula 
(n = 1052), Eptesicus serotinus (n = 1502), Myotis nattereri (n = 1528) 
and Myotis daubentonii (n = 1280). All audio clips were recorded by 
SM4BAT recorders (Table S1).

This workflow processed sequential overlapping segments of 
raw acoustic data (5 ms window, 2.5 ms overlap), converting each 
into a noise reduced spectrogram image passed to the CNN and as-
signed a probability of containing a bat call. Any segment assigned 
a probability >0.7 was considered a bat detection. Immediately sur-
rounding segments above the prediction threshold were merged 
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into one detection and passed to a downstream CNN multi-species 
classifier in ANIMAL-SPOT for species identification. Supporting 
Information S4.2 provides details on the full deep learning workflow, 
including training parameters.

2.2.2  |  PAMGuard click detector workflow

The PAMGuard workflow processed continuous recordings using 
PAMGuard's click detector module (Supporting Information  S1 in-
cludes user guide and settings); a simple energy detector, which 
saves any transients within a specified frequency band with zero-
to-peak amplitude at a set above noise threshold of 7 dB (equivalent 
to a bat call zero-to-peak level being 13 dB above background/self-
noise: see Supporting Information  S5.2), to reduce the number of 
missed calls. Each detection was split into 5 ms segments, passed 
to the CNN classifier. Calls <5 ms were zero-padded and each 5 ms 
chunk of calls >5 ms was classified.

2.2.3  |  AudioMoth workflow

The AudioMoth workflow imported AudioMoth triggered de-
tections into PAMGuard and segmented them into 5 ms chunks, 
passed to the deep learning classifier. The AudioMoth (firmware 

v1.4.4) trigger algorithm uses a static detection threshold at a 
defined amplitude level set here at 0.00323 (normalized ampli-
tude = −50 dB relative to full-scale of the recording), filters and 
splits data into 32 kB chunks, saving only those above the thresh-
old level to the μSD card. The AudioMoth also stores an ~64 ms 
data chunk every 10 s.

2.2.4  |  SM4BAT workflow

The SM4BAT workflow ran in PAMGuard on SM4BAT triggered 
detections. The detection algorithm (firmware v2.2.7) used by this 
proprietary hardware is unpublished but quoted as using an adap-
tive threshold that tracks background noise across frequency bands 
above a specified minimum frequency and per default saves detec-
tions with SNR (as opposed to absolute received level) above a trigger 
threshold of 12 dB (https://www.wildl​ifeac​ousti​cs.com/user-guides).

2.3  |  Automated species classification

We ran the same classification stage in all workflows, using 
ANIMAL-SPOT to train a multi-class bat species model (Bergler 
et al., 2022) on the same data as the binary deep learning detector 
but supplemented with manually annotated AudioMoth (n = 1786) 

F I G U R E  2  The four automated 
workflows tested and compared against 
manually annotated data. Data were 
sampled at 384 kHz (SM4BAT) and 
256 kHz (the highest sample rate available 
for the AudioMoth at the time of data 
collection) and all resampled to 256 kHz 
before entering the deep learning 
classification step. Each workflow used 
the same deep learning classification 
module in PAMGuard but different 
detection approaches; Full deep learning 
workflow—deep learning detector on 
continuous recordings; PAMGuard 
workflow—PAMGuard click detector 
module on continuous recordings; 
SM4BAT workflow—on-device adaptive 
threshold trigger; AudioMoth workflow—
on-device static threshold trigger.
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and SM4BAT (n = 11,150) random noise clips. Training data were 
augmented by adding simulated clipping and aliasing (Supporting 
Information S4.1). Adding AudioMoth noise clips and augmenting 
training significantly improved accuracy compared to an early ver-
sion of the classifier based only on SM4BAT data. While adding 
manually annotated calls from an AudioMoth may have further 
improved accuracy, we intentionally did not do so to demonstrate 
the practical implementation of deep learning using different re-
corders and in different environments, that is, it is far more feasi-
ble to retrain a classifier using random noise clips than to manually 
annotate many additional bat calls.

2.4  |  Long-term dataset and estimation of 
detection probability

Common goals of automated PAM workflows are to extract ecologi-
cal information of importance to the monitoring objective, for exam-
ple, presence/absence, activity indices, call types reflecting specific 
behaviours, spatio-temporal trends and abundance estimates. For 
many of these parameters, the average probability of detecting bat 
calls (P̂) is vital to reduce spatial and temporal bias in acoustic data. 
Over a single deployment, P̂ will scale with changes in background/
system noise (see Section 1.2); we quantified the potential magni-
tude of these changes in P̂ over the course of a 40-day extended 
dataset to demonstrate the potential downstream implications of 
the ambient/system noise logging capabilities of each workflow.

The average probability of detecting bat calls (P̂) over time could 
not be calculated without information about distance to the call-
ing bats.2 Instead, we estimated P̂ using a Monte Carlo simulation 
(Frasier et al., 2016; Küsel et al., 2011), randomly distributing N sim-
ulated bats in horizontal space around a recorder with the height, 
orientation, source level and beam profile of each bat parameterized 
from predefined distributions derived from literature (see Table S2). 
The received level on the recorder was determined per simulated 
bat assuming spherical spreading propagation with appropriate 
absorption. The received SNR was then calculated as the received 
level minus a predefined noise level; a simulated bat was considered 
detected or not by sampling a probability density function of SNR 
(based on results in Figures 4 and 6). Overall P̂ was then calculated 
as the number of simulated calls successfully detected, divided by 
the total number of simulated bats, N. Each simulation was repeated 
20 times and mean P̂ calculated. We ran simulations to estimate P̂ 
as a function of detection thresholds (P̂(n)) between 33 and 73 dB 
re 20 μPa pp (assuming background/self-noise limits of 20–60 dB re 
20 μPa rms + 13 dB detector threshold within the 23–90 kHz detec-
tor trigger band; see Supporting Information S5.2). These were the 
minimum and maximum expected detection thresholds based on the 
noise levels in the extended continuous dataset and settings of the 
PAMGuard click detector module (Supporting Information S1).

The extended dataset of continuous recordings was analysed 
using the PAMGuard workflow to balance speed and accuracy. The 
PAMGuard click detector module continually measures ambient/

system noise in the detector filter band. This was converted to an 
equivalent detection threshold by adding the threshold of the click 
detector (see Supporting Information S5.2). The detection threshold 
was then calculated every second and mapped to the simulated P̂(n) , 
providing a continuous time series of the probability of detecting a 
bat call. Combined with the number of detected calls, we could then 
estimate call density (calls per km2 per hour).

2.5  |  Software

We used PAMGuard as the primary analysis tool for each workflow 
and primed it for terrestrial analysis with new data display options 
and a comprehensive deep learning module for species classification 
(https://github.com/PAMGu​ard/PAMGu​ard/tree/main/src/rawDe​
epLea​rning​Class​ifier). All workflows can be implemented fully in 
PAMGuard, or the output exported for further analyses. We used the 
PG-MATLAB library (http://www.pamgu​ard.org/48_MATLA​BRcode.
html) to extract data from PAMGuard for further analysis and plot-
ting, but the same features are available through R (open-source, 
PAMGuard-R library, https://github.com/Taiki​San21/​PamBi​naries).

3  |  RESULTS

We evaluated the detection performance of each workflow by com-
paring the number of automatic detections to manual annotation of 
an hour-long continuous recording from the AudioMoth recorder 
pair and the SM4BAT recorder pair. Performance was quantified by 
calculating recall (the number of true automatic detections divided 
by the number of manually annotated calls) and precision (the num-
ber of true automatic detections divided by the total number of au-
tomatic detections) for each workflow using discrete detections (dd) 
and total duration of detections (td; see Supporting Information S6).

3.1  |  AudioMoth detection performance

For the hour-long AudioMoth recording analysed (Figure  3), the 
PAMGuard workflow had the highest false-positive call detection 
rate (Recall dd = 0.60, td = 0.18, Precision dd = 0.08, td = 0.11). The 
deep learning detector had a substantially lower false alarm rate and 
a slightly improved recall rate (Figure 4) but needed 20 times longer 
processing time even with the use of a graphics processing unit 
(GPU; Recall dd = 0.63, td = 0.17, Precision dd = 0.22, td = 0.32). The 
AudioMoth missed many lower SNR calls, resulting in the lowest over-
all recall (Recall dd = 0.33, td = 0.16, Precision dd = 0.71, td = 0.13).

3.2  |  SM4BAT detection performance

The SM4BAT dataset was recorded on a different date and location 
than the AudioMoth dataset, with fewer bat calls overall (Figure 5) 
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and a higher proportion of low SNR calls (compare Figures 4 and 
6).

For this recorder, the background/self-noise was generally lower 
and more consistent, resulting in a lower false-positive rate for all 
detectors. The detection performance of the SM4BAT workflow 
was less consistent above 10 dB SNR (Recall dd = 0.53, td = 0.54, 
Precision dd = 34.3, td = 0.05) than the PAMGuard (Recall dd = 0.56, 

td = 0.31, Precision dd = 0.12, td = 0.12) and deep learning (Recall 
dd = 0.60, td = 0.37, Precision dd = 0.81, td = 0.73) workflows, but all 
three had similar overall detection (dd) recall rates (Figure 6). Note 
that the SM4BAT default trigger results in comparatively long (3 s) 
recordings, each including multiple calls, causing precision to be >1 
on a single detection basis, but very low on a time duration basis be-
cause continuous recordings occurred between multiple calls.

F I G U R E  3  (a) Long-term spectrogram (Hann window, FFT size: 1024 samples, no overlap) of a continuous 1-h AudioMoth recording. 
Green lines: call sequences from three species, enlarged in spectrograms (Hann window, FFT size: 512 samples, 128 sample overlap) below 
(b–d). Green boxes: frequency range of the target calls among artefacts and other species' calls. (e) Ribbon plots showing detections from 
the full deep learning, AudioMoth and PAMGuard workflow plus manual annotations. Each vertical line on the ribbon plots represents the 
total number of detections per 2-s period.
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3.3  |  Call Classification

The deep learning detector balanced high recall with a moder-
ate false-positive rate (Figures  4 and 6). However, the aim of the 

detection stage is simply to record all sounds of interest allowing a 
secondary classification stage to remove false positives and assign 
to species level. The classification performance of each workflow 
depended on both the initial detection stage, including the size and 

F I G U R E  4  Recall versus SNR (a) and SNR distribution of manually annotated calls (b) for the 1-h AudioMoth recording in Figure 3 (see 
Supporting Information S3 for details on SNR estimation). At SNR >15 dB, the PAMGuard and deep learning detection algorithms perform 
well (recall >0.8). At lower SNR (<15 dB), where most calls occur (>75%), all three detectors decline in performance. Total duration of raw 
data and number of detections saved by each algorithm.
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SNR of the raw waveform snippets saved for upstream processing, 
and on the classifier itself. Compared against the manual annota-
tions from an AudioMoth and SM4BAT, the classifier, respectively, 
discarded 22% and 25% overall of the manually identified calls as 
noise (Figure  7), while correctly identifying 82% and 93% of the 
remaining calls. The most common call misclassification was of N. 
noctula as E. serotinus (12% and 40%), species known to emit similar 
calls that may overlap in frequency. Notably, most misclassified calls 

had a lower SNR. If only calls with SNR >15 dB (above which most 
detectors perform well, Figures 4 and 6) were considered, the classi-
fication performance significantly improved with ~0.5% of calls mis-
classified as noise and (except for N. noctula) 97% of calls correctly 
identified (see Supporting Information S7).

With the classifier integrated, the full deep learning workflow 
outperformed the three other workflows, accurately classifying 
39%–67% of calls per species, except for N. noctula in the SM4BAT 

F I G U R E  5  (a) Long-term spectrogram (Hann window, FFT size: 1024 samples, no overlap) of a continuous 1-h SM4BAT recording. Green 
lines: call sequences from three species, enlarged in spectrograms (Hann window, FFT size: 512 samples, 128 sample overlap) below (b–d). (e) 
Ribbon plots showing detections from the full deep learning, SM4BAT and PAMGuard workflow plus manual annotations. Each vertical line 
on the ribbon plots represents the total number of detections per 2-s period.
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dataset, for which classification accuracy across workflows was 
≤20% (Figure 8). The PAMGuard and SM4BAT workflows had clas-
sification accuracies of 20%–47% and 11%–59%, respectively, with 
the AudioMoth workflow lagging (classification accuracy 14%–34%) 
as expected from its detection performance.

3.4  |  Long-term dataset

The PAMGuard workflow was used to analyse the long-term dataset 
and assess the impact of background noise levels on call detection 
probability (P̂). PAMGuard analysed the 423-h dataset of continuous 

F I G U R E  6  Recall as a function of SNR (a) and SNR distribution of manually annotated calls (b) for the 1-h SM4BAT recording in Figure 5. 
At SNRs above 10 dB (<25% of detections), the PAMGuard and deep learning detection algorithms performed consistently well (recall >0.9). 
Total duration of raw data and number of detections saved by each algorithm.
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recording in 35.3 h (detection: 14.3 h, classification: 21 h), ×12 faster 
than real-time.

Figure 9, which summarizes estimates of P̂ and call density of P. 
pygmaeus over time, demonstrates a major impact of noise levels on 
call detection probability; P̂ changes between ~0.0025 and 0.015 
(over ×6 variation) over the entire recording period. See Supporting 
Information S5.2 for more information on how P̂ maps to noise.

4  |  DISCUSSION

Each step of an automated workflow for acoustic analyses can be 
approached in myriad ways, with the optimal detection and classi-
fication choices depending on the research questions asked. Here, 
we show that species classification accuracy and the quality of 
downstream ecological information extracted from acoustic data 
by automated workflows incorporating a deep learning classifier 
depend critically on the recorder type and pre-deployment setup 
choices.

The initial detection stage increases monitoring time, reduces the 
data load, post-processing time and storage requirements and is key 
to both the species classification accuracy and call detection prob-
ability. No perfect detector, able to identify and save raw acoustic 
clips of every call, exists as performance of any system is ultimately 
limited by the SNR set by ambient noise or electronic self-noise, 
distance, propagation conditions, orientation and source level of a 
calling bat. Detector and settings choices pose an inevitable trade-
off between false positives (non-bat detection) and missed true de-
tections, representing a question of managing, rather than avoiding, 
errors. Lowering the detection threshold reduces the proportion of 
missed calls but yields more false detections. Particularly for low 
duty cycle bats, a detection stage running at a high false-positive 
rate still greatly reduces data volumes while minimizing missed calls. 
How detection performs across changing noise and soundscape 
conditions is also vital. Thus, a workflow must continuously record 
and quantify noise to estimate the relative or absolute probability 
of detection and allow recordings to be compared across space and 
time without bias.

F I G U R E  7  Deep learning classifier performance on manually annotated data from an AudioMoth (left) and SM4BAT (right). Top: 
confusion matrices stating true versus predicted class per species. Blue and red shading: correct and incorrect classification respectively. 
Numbers increase with colour shading. Right-hand column summaries indicate percent overall of correctly (left) and incorrectly (right) 
classified detections per species. Blank rows reflect no manual identifications of Mnat in the AudioMoth dataset and of Mnat and Eser in 
the SM4BAT dataset. Bottom: bar plots of total number of manually annotated calls per species. Eser, Eptesicus serotinus; Mdaub, Myotis 
daubentonii; Mnat, Myotis nattereri; Nnoc, Nyctalus noctula; Ppyg, Pipistrellus pygmaeus.
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Post detection, automated classification then must trade-off 
false positives with the number of missed calls depending on the 
study objectives. Relaxed settings are permissible if the target spe-
cies is common and species prone to misclassification as the target 
species are absent or rare in the monitored area, that is, most calls 
are likely from the target species. The opposite applies for rare 
species; even low false-positive rates can lead to substantial over-
estimations of their abundance (Caillat et al.,  2013), necessitating 
more restrictive settings (e.g. a higher detection threshold—see 
Supporting Information S7) at the expense of a lower overall detec-
tion probability.

The quality of downstream ecological information extracted 
from acoustic recordings is therefore intrinsically linked to the 
choice of workflow. Understanding changes in the probability of 
detecting a call is key to many acoustic surveys because it reduces 
bias in data collected across time and space. However, modelling 
changes in the probability of detection over a recording period 
usually requires continuous measurements of ambient/system 

noise and quantification of how detection recall relates to SNR. 
Species classification performance is then also dependent on 
the output detection stage, not just the type of classifier used. 
Chasing lower SNR calls might result in more detected calls, but 
at the expense of more unstable automated detection and sub-
sequent classification performance between workflows (Figures 4 
and 6). An automated acoustic workflow therefore requires a bal-
ance between performance and the lower bound SNR of detected 
calls in addition to quantification of detector performance with 
SNR, classifier performance and continuous noise sampling so 
that relative differences in workflow performance across noise 
conditions and between target species do not introduce bias into 
downstream data.

Each of the four workflows we compared was based on a 
different detection algorithm, including two on-board triggers 
(SM4BAT: adaptive trigger, AudioMoth: static trigger) and two 
post-processing detectors (deep learning and PAMGuard detec-
tion module). We found clear differences in performance: The 

F I G U R E  8  Confusion matrices of the final species classification stating the true versus predicted class per species from each automated 
workflow. Blue and red shading: % correct and incorrect classification respectively. Numbers increase with colour shading. Top panel: 
performance of the full deep Learning, PAMGuard and AudioMoth workflows on the AudioMoth dataset. Bottom panel: performance of 
the full deep learning, PAMGuard and SM4BAT workflows on the SM4BAT dataset. The full deep learning workflow performed best overall, 
followed by the PAMGuard workflow. Eser, Eptesicus serotinus; Mdaub, Myotis daubentonii; Mnat, Myotis nattereri; Nnoc, Nyctalus noctula; 
Ppyg, Pipistrellus pygmaeus.
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full deep learning workflow performed with best accuracy but 
at the slowest processing speed. The SM4BAT and AudioMoth 
workflows emphasized data reduction at the detection stage, 
causing particularly the AudioMoth to miss many detections, and 
the PAMGuard workflow balanced the two, yielding many false-
positive detections, yet with better classification accuracy than 
the two workflows depending on onboard triggers (Figures 3–6). 
These differences reflect the relative emphasis on data reduction 
and integrity and demonstrate how detection settings influence 
the performance of the entire acoustic workflow, including final 
call classification (Figure  8). While manual analyses in our case 
outperformed all automated workflows, annotation was roughly 
×10 slower than real time. Notably, most misclassified calls were 
of lower SNR and classified as noise, resulting in a lower over-
all detection probability of calls which can be compensated for in 
subsequent analysis.

4.1  |  SM4BAT workflow

The SM4BAT workflow had similar detection and classification accu-
racy to the other workflows tested (Figures 5, 6 and 8). The propri-
etary detection algorithm records a 3-s data window for transients 
above a default 12 dB adaptive threshold even if no other transients 
pass the threshold within this window. The algorithm continuously 
measures but, to our knowledge, does not log in-band ambient/
system noise although this could be done onboard the device using 
minimal additional storage and processing power. Consequently, it 
is impossible to directly estimate changes in the probability of de-
tecting a bat call (P̂), which in our example dataset (Figure 9) is sig-
nificantly affected by ambient noise. In addition, most bat calls are 
short (<100 ms), suggesting the use of a recording window much 
shorter than the SM4BAT default (3 s) to save memory. The long 
windows capture ensuing low SNR calls but create an unfortunate 

F I G U R E  9  Visualization of the dataset recorded continuously every night for 40 days. (a) Long-term spectrogram showing changes in 
background noise and bat call levels. (b) The probability of detection (P̂) of a single bat call within a 40-m recorder radius. (c) Calendar plot of 
the density of calls classified as Pipistrellus pygmaeus, calculated by dividing the number of calls every hour by P̂. P̂ is highly variable and can 
change by up to ×6 depending on noise levels, consequently, altering ecological inferences from acoustic data.
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dependency between the recorded calls within each window, that is, 
the probability of detecting a low SNR call is based on whether other 
calls of higher SNR immediately precede or follow it. Consequently, 
noise cannot be continuously quantified and related to each de-
tected call, making it difficult to relate detection probability to SNR. 
Encouragingly, the SM4BAT compares favourably to other work-
flows and using non-default settings and/or alterations to the detec-
tion firmware could solve the issues above, but we still emphasize 
the value of implementing open-source algorithms to improve trans-
parency, user understanding and reduce the risk of errors.

4.2  |  AudioMoth workflow

The AudioMoth onboard static trigger workflow had the lowest 
recall (0.33, Figure 4) and subsequent inferior classification perfor-
mance (Figure 8) but presented certain advantages over the SM4BAT 
workflow. The AudioMoth trigger uses a static threshold that does 
not adapt to background noise levels and records any 64 ms sound 
window (on the order of bat call intervals) in which a single bin 
passes a user-specified number of amplitude bins (here: 1024). Thus, 
the probability of detection equals the probability that a single call 
passes above threshold and because it is static, P̂ does not change 
with noise levels if the detection threshold is set high enough. This 
simplifies data interpretation, but the threshold must be set sig-
nificantly above the expected noise level to prevent continuous re-
cordings. Furthermore, the AudioMoth uses an analogue-to-digital 
converter of much lower dynamic range (12-bit) than the standard 
16-bit, leading to a relatively insensitive detector and low recall 
(Figures 3 and 4). This effectively means that a triggered AudioMoth 
monitors a lower habitat volume (Darras et al., 2020), but allows es-
timation of detection probability. Importantly, the ambient/system 
noise can be extracted, and the SNR quantified for each detection 
from the parts of each 64 ms snippet without bat calls.

4.3  |  Full deep learning workflow

Our full deep learning detection and classification workflow was 
the most accurate in final species classification (Figure 8) but over 
×40 slower than real time using a standard CPU and just under real-
time speeds using a mid-range graphical processing unit, making 
it presently impractical for bat PAM (greater than ×10 real time is 
usually practical for post-processing large datasets). The short du-
ration, high-frequency calls of bats require a small segment size to 
adequately represent call features on a spectrogram, resulting in 
hundreds of segments to process per second. Longer vocalizations 
(e.g. killer whale whistles, Bergler et al., 2019) yield far fewer seg-
ments per second resulting in workflow speeds orders of magnitude 
faster. However, with ongoing optimisation of CNN networks and 
the rapidly increasing speed of hardware, we predict that the full 
deep learning workflow on continuous recordings has practical po-
tential for future large-scale bat monitoring.

4.4  |  PAMGuard workflow

The PAMGuard workflow used PAMGuard's dynamic minimum 
threshold detector module with bat call-specific input param-
eters to detect transients at a high false-positive rate (Supporting 
Information S1). At the detection stage, PAMGuard recall was almost 
identical to that of the deep learning workflow (Figures  4 and 6). 
Overall, the PAMGuard workflow also performed well, but misclas-
sified more calls as noise than the deep learning workflow, and with 
reduced recall for N. noctula (Figure 8). To improve classification ac-
curacy of this workflow further without compromising processing 
speed, the PAMGuard detector could be run initially to significantly 
reduce data yet maintain the high false-positive rate to ensure data 
integrity, followed by an additional, deep learning, detection stage 
before deep learning classification.

Despite having a higher false-positive rate than the deep learn-
ing workflow, the PAMGuard detection stage was ×25 faster than 
real-time analysis and subsequent species classification compara-
ble to real time (a 1-h recording took 1 h to classify) on a standard 
CPU and ×12 faster than real time with a consumer graphics card. 
Additionally, the PAMGuard workflow continuously sampled noise, 
consequently offering a practical approach for large-scale analysis, 
especially if lossless compression algorithms (Johnson et al., 2013) 
are used on the recording device. For upscaled acoustic surveys, 
the PAMGuard (or similar) algorithm running at a high false-positive 
rate could be integrated on a low power processor on-board the 
recorder to minimize information loss while maintaining significant 
data reduction. Combined with computationally efficient methods, 
many device types could continuously measure ambient noise, for 
example, octave band levels (ANSI S1.11-2004; American National 
Standards Institute, 2004), to optimize long-term PAM.

4.5  |  Importance of ambient noise logging

While speed and classification accuracy are key in automated analysis, 
so is ambient noise logging to allow changes in detection probability (P̂
) to be quantified, as many monitoring metrics extracted from acoustic 
data, such as abundance estimates, temporal trends, etc., scale directly 
with ̂P(n). If we had assumed a static ̂P rather than calculating ambient/
system noise for the dataset in Figure 9, genuine changes in detection 
rates and thereby estimates of bat abundance and/or activity would 
be confounded with changes in detection probability due to fluctu-
ating noise in the recording, highlighting the importance of retain-
ing this information. In our Monte Carlo simulation of call detection 
in the extended dataset (Figure 9), the detection probability changed 
with ambient noise level between ~0.0025 and 0.015 within a 40-m 
radius of the recorder, meaning that 0.25%–1.5% of all calls emitted 
within this space were detected, and reflecting a sixfold variation in 
call detection probability. Our absolute values of P̂(n) were simulated 
based on a range of assumptions but provide a ballpark estimate of 
typical changes in call detection probability due to fluctuating noise 
levels (Darras et al., 2020). Empirical data on actual call rates are now 
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obtainable with miniature acoustic tags that record echolocation activ-
ity on-board animals in the wild (Stidsholt et al., 2021).

While rarely reported above 20 kHz (Darras et al.,  2020; 
Merchant et al., 2015), ambient noise is likely low in the ultrasonic 
range away from turbulent water, rain and biological sound sources 
such as insects or vocalizing rodents. Importantly, however, we show 
that noise levels, whether ambient or within the recording system, 
may vary considerably over time.

4.6  |  Importance of software

Most detected calls had low SNR because most animals were de-
tected within the larger area covered at the outer detection range of 
the recorder; thus, our results reflect realistic workflow performance, 
rather than emphasizing high SNR calls to boost performance. Even 
the best-performing deep learning workflow showed a precipitous 
fall in detection performance below 10–15 dB SNR compared to our 
manual analyst (Figures 4 and 6), but manual analyses by itself work 
in a timeframe that is increasingly unrealistic for large-scale acoustic 
monitoring.

Our primary focus was not on optimizing the classification al-
gorithm (Figure 7) and our deep learning models were trained only 
with SM4BAT data (plus AudioMoth noise clips for the classifier). 
Although our results indicate (Figures 3–9) that the models are ro-
bust when applied to AudioMoth data, we analysed AudioMoth re-
cordings separated in space and time and differing in bat activity 
from the SM4BAT recordings and the transferability of deep learn-
ing between devices, locations and times should be a focus of future 
research. A general classifier may improve by adding training data 
from more species, with more intraspecific variation, noise and/or 
calls of varying quality and data from different recorders.

A fully automated workflow has the advantage of speed and al-
though it requires higher call SNR and thus provides less data for sub-
sequent analysis, this loss in statistical power can be compensated for 
by increasing the number of recorders, and/or increasing recording 
time (Buckland et al., 2001). Software like PAMGuard provides visual 
and navigation interfaces integrated with signal processing and auto-
mated detection and classification tools without prerequisite coding. 
It is an available open source and can be used to exploit rapid auto-
mated analysis of large-scale datasets in flexible workflows combined 
with the accuracy and ability of a manual analyst to recognize pat-
terns and handle inconsistencies. We predict that such a software-
assisted human-in-the-loop approach (López-Baucells et al.,  2019) 
will be the most reliable for acoustic detection and classification of 
large-scale bat PAM data for the foreseeable future, especially for 
rare species and species difficult to classify correctly.

5  |  CONCLUSION

The performance of the four tested workflows varied significantly, 
stressing the importance of knowing in detail the frequency response, 

directionality, clip level and self-noise of recording systems and the 
detection algorithms, that is, trigger settings, used to make informed 
choices (Perea & Tena, 2020). We advocate that all parts of an analy-
sis workflow should be open source, that onboard trigger algorithms 
are thoroughly documented, that appropriate system/ambient noise 
is logged, and that the source code is fully disclosed to promote un-
derstanding of the performance and caveats of automated detection 
and classification algorithms. This, in turn, helps to quantify important 
metrics such as the probability of detection and allows better biological 
inferences to be made from acoustic data. Open source further allows 
fast and qualified feedback to developers on improvements to those 
algorithms and promotes user interaction and knowledge exchange.

Here, we demonstrate PAMGuard as an effective open-source 
tool for automated bat call extraction, implementable within a vari-
ety of analysis workflows and show why these should carefully con-
sider detection and hardware choices prior to deployment. Helped 
by sufficiently documented and tested hardware and software, such 
choices allow PAM data to be used for quantitative measures of an-
imal distribution (Tena & Tellería, 2021) and abundance, rather than 
occurrence or activity indices. In marine PAM, this approach has 
recently opened a whole new field within monitoring of wild ani-
mals and could likewise provide the bat research community with 
an unprecedented tool for processing and yielding high-quality data 
over extended time and space, conferring significant benefits for bat 
conservation and management.
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ENDNOTE S
	1	 The proportion of calls missed by the detector is sometimes referred 

to as the false-negative rate, a term which we prefer to avoid as it is 
often unknown and poorly defined for field recordings, because it is 
difficult to know how many calls were emitted by the bats. To evaluate 
automated workflow performance, a false-negative rate can be esti-
mated through comparison with exhaustive manual annotation of re-
cordings, but this approach still misses many calls (Figure 1b: leftmost 
orange rectangle).

	2	 If the distance between bat and recorder can be accurately estimated 
for each call, P̂ can be determined through application of tools from 
radial distance sampling (Buckland et al., 2001).
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