
Silbido profundo: An open source package for the use of deep learning to detect
odontocete whistles
Peter C. Conant, Pu Li, Xiaobai Liu, et al.

Citation: The Journal of the Acoustical Society of America 152, 3800 (2022); doi: 10.1121/10.0016631
View online: https://doi.org/10.1121/10.0016631
View Table of Contents: https://asa.scitation.org/toc/jas/152/6
Published by the Acoustical Society of America

ARTICLES YOU MAY BE INTERESTED IN

Detection probability and density estimation of fin whales by a Seaglider
The Journal of the Acoustical Society of America 152, 2277 (2022); https://doi.org/10.1121/10.0014793

Comparison of the marine soundscape before and during the COVID-19 pandemic in dolphin habitat in Sarasota
Bay, FL
The Journal of the Acoustical Society of America 152, 3170 (2022); https://doi.org/10.1121/10.0015366

Resolution of matched field processing for a single hydrophone in a rigid waveguide
The Journal of the Acoustical Society of America 152, 3186 (2022); https://doi.org/10.1121/10.0015403

Walking on snow-covered Arctic sea ice to infer ice thickness
The Journal of the Acoustical Society of America 152, 3809 (2022); https://doi.org/10.1121/10.0016632

Potential and kinetic energy of underwater noise measured below a passing ship and response to sub-bottom
layering
The Journal of the Acoustical Society of America 152, 3648 (2022); https://doi.org/10.1121/10.0016510

Time machine in ocean acoustics
The Journal of the Acoustical Society of America 153, R1 (2023); https://doi.org/10.1121/10.0016719

https://images.scitation.org/redirect.spark?MID=176720&plid=1833171&setID=407059&channelID=0&CID=674947&banID=520718119&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=2e7728a3888af7aacd8ce46a17ba71a472d0dea9&location=
https://asa.scitation.org/author/Conant%2C+Peter+C
https://asa.scitation.org/author/Li%2C+Pu
https://asa.scitation.org/author/Liu%2C+Xiaobai
/loi/jas
https://doi.org/10.1121/10.0016631
https://asa.scitation.org/toc/jas/152/6
https://asa.scitation.org/publisher/
https://asa.scitation.org/doi/10.1121/10.0014793
https://doi.org/10.1121/10.0014793
https://asa.scitation.org/doi/10.1121/10.0015366
https://asa.scitation.org/doi/10.1121/10.0015366
https://doi.org/10.1121/10.0015366
https://asa.scitation.org/doi/10.1121/10.0015403
https://doi.org/10.1121/10.0015403
https://asa.scitation.org/doi/10.1121/10.0016632
https://doi.org/10.1121/10.0016632
https://asa.scitation.org/doi/10.1121/10.0016510
https://asa.scitation.org/doi/10.1121/10.0016510
https://doi.org/10.1121/10.0016510
https://asa.scitation.org/doi/10.1121/10.0016719
https://doi.org/10.1121/10.0016719


Silbido profundo: An open source package for the use
of deep learning to detect odontocete whistles

Peter C. Conant,1 Pu Li,1 Xiaobai Liu,1 Holger Klinck,2 Erica Fleishman,3 Douglas Gillespie,4

Eva-Marie Nosal,5 and Marie A. Roch1,a)

1Department of Computer Science, San Diego State University, San Diego, California 92182, USA
2K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, New York, New York 14850, USA
3College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA
4Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, KY16 9AJ, United Kingdom
5Department of Ocean and Resources Engineering, University of Hawai’i at M�anoa, Honolulu, Hawaii 96822, USA

ABSTRACT:
This work presents an open-source MATLAB software package for exploiting recent advances in extracting tonal signals

from large acoustic data sets. A whistle extraction algorithm published by Li, Liu, Palmer, Fleishman, Gillespie,

Nosal, Shiu, Klinck, Cholewiak, Helble, and Roch [(2020). Proceedings of the International Joint Conference on
Neural Networks, July 19–24, Glasgow, Scotland, p. 10] is incorporated into silbido, an established software package

for extraction of cetacean tonal calls. The precision and recall of the new system were over 96% and nearly 80%,

respectively, when applied to a whistle extraction task on a challenging two-species subset of a conference-benchmark

data set. A second data set was examined to assess whether the algorithm generalized to data that were collected across

different recording devices and locations. These data included 487 h of weakly labeled, towed array data collected in

the Pacific Ocean on two National Oceanographic and Atmospheric Administration (NOAA) cruises. Labels for these

data consisted of regions of toothed whale presence for at least 15 species that were based on visual and acoustic obser-

vations and not limited to whistles. Although the lack of per whistle-level annotations prevented measurement of preci-

sion and recall, there was strong concurrence of automatic detections and the NOAA annotations, suggesting that the

algorithm generalizes well to new data. VC 2022 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1121/10.0016631
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I. INTRODUCTION

Cetaceans, or members of the order that includes baleen

and toothed whales, make a variety of sounds that are used

extensively for navigation, foraging, and communication

(Au and Hastings, 2008). The ability to reliably detect their

calls enables passive acoustic monitoring (PAM) studies to

address many research and management objectives (Van

Parijs et al., 2009). Examples of such objectives include

localizing and tracking animals (e.g., Helble et al., 2015),

species identification (e.g., Gillespie et al., 2013), potential

identification of individuals (Gridley et al., 2014; McCordic

et al., 2016), characterizing distributions and behavior (e.g.,

Baumann-Pickering et al., 2014; �Sirović et al., 2015), and

estimating density (e.g., Marques et al., 2011).

Many cetaceans produce tonal calls in which a narrow-

band signal varies in frequency over time (Au and Hastings,

2008). In toothed whales, these frequency-modulated calls,

which are known as whistles, can carry information such as

the identity of individuals (e.g., Caldwell and Caldwell,

1971; Janik and Sayigh, 2013) or populations (e.g., Bonato

et al., 2015; Van Cise et al., 2017), and are believed to play

a role in communication (e.g., King et al., 2021). Many sys-

tems for detecting cetacean tonal calls report call presence

in a certain frequency band but without extracting informa-

tion about the fluctuating frequency itself (e.g., Thomas

et al., 2019; Kirsebom et al., 2020; Shiu et al., 2020). In

some applications, such as identification of individuals or

analysis of impacts of anthropogenic activities (e.g., Janik

and Sayigh, 2013; Heiler et al., 2016; Antichi et al., 2022),

analysis of detailed information about the time-varying fre-

quency, such as conducted by Buck and Tyack (1993) or

Deecke and Janik (2006), becomes critical. In addition,

some forms of density estimation rely on call production

rates, which can then be used to estimate density on the

basis of the number of detected calls (Marques et al., 2013).

When systems only report presence, multiple calls within

the same detection period may be undercounted, leading to

a bias in the estimate. In this paper, we discuss an open-

source, deep learning system for extracting time-frequency

information on tonal calls in passive acoustic data. Although

we focus on the example of toothed whales and hereaftera)Electronic mail: marie.roch@sdsu.edu
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use the toothed whale-specific term “whistle,” we expect the

methods to be applicable to tonal calls produced by other

taxa (e.g., baleen whale “moans”).

Most methods for automating whistle extraction are per-

formed over a time � frequency representation of a signal

and attempt to extract contour ridges. Some methods connect

peaks into fragments and then connect the fragments by

searching along a predicted polynomial path to track the fre-

quency of whistles over time (e.g., Mellinger et al., 2011;

Roch et al., 2011; Gillespie et al., 2013). Statistical filtering

processes such as Kalman (Mallawaarachchi et al., 2008),

particle (White and Hadley, 2008; Roch et al., 2011), and

variants of particle hypothesis density filters (Gruden and

White, 2016; Gruden and White, 2020) also are effective.

Other methods include utilizing the instantaneous frequency

of tonal signals to identify local maxima (Ioana et al., 2010;

Lin et al., 2013), ridge detection (Serra et al., 2020), and

ridge regression (Kershenbaum and Roch, 2013).

Deep learning neural networks have been used to

extract tonal information in human speech and musical tasks

(Han and Wang, 2014; Bittner et al., 2017), and have been

used for detection of calls or identification of species in

many other bioacousitc monitoring projects (see Stowell,

2022, for a recent review). These methods have demon-

strated good performance on bioacoustic detection and clas-

sification tasks across a wide variety of taxonomic groups,

including birds, mammals, and insects (Mac Aodha et al.,
2018; Bermant et al., 2019; Oikarinen et al., 2019; Stowell

et al., 2019; Frasier, 2021; Hoye et al., 2021). Li et al.
(2020) used deep learning-predicted peaks of odontocete

whistles in conjunction with the graph search algorithm of

Roch et al. (2011) to extract whistle annotations from the

set of time-frequency predictions. Their method, deep whis-
tle, is the focus of this paper.

Silbido is an open-source software package that uses a

graph search algorithm to annotate cetacean tonal vocaliza-

tions (Roch et al., 2011). The graphical user interface per-

mits audition and spectrogram visualization of recordings

and can invoke a graph search algorithm to generate annota-

tions automatically. In addition, it supports analyst annota-

tion of whistles by permitting users to specify control points

(knots) that are joined via a cubic spline. Our goal was to

improve the automated annotation performance of silbido
by incorporating the Li et al. (2020) deep whistle model into

software that can easily be used by the biology community.

Throughout this paper, we refer to this implementation as

silbido profundo (Spanish for deep whistle) to distinguish it

from the original deep whistle implementation (Li et al.,
2020).

II. METHODS

A. Data sets

We used two data sets to examine the performance of sil-
bido profundo; a smaller data set that provided detailed whis-

tle annotations and a second with less-detailed labels over

long-duration recordings. The first data set was a subset of

time� frequency annotated dolphin whistles from the 2011

Detection, Classification, Localization and Density Estimation

(DCLDE 2011) workshop data (DCLDE Organizing

Committee, 2011). These data were recorded with ITC 1042

(International Trandsucer Corp., Santa Barabara, CA) and HS

150 (Sonar Research and Development Ltd., Beverly, UK)

hydrophones that were sampled at 192 kHz with 16 or 24-bit

quantization. Recordings were typically made from 10 to 30 m

below the surface from a variety of platforms that were either

towed or stationary. Each whistle was annotated by a trained

analyst with time-varying frequency information. See Roch

et al. (2011) for further details on data collection and analyst

annotation protocols.

A subset of 7161 whistle contours produced by common

(Delphinus spp.) and bottlenose (Tursiops truncatus) dol-

phins from the DCLDE 2011 data were used by Li et al.
(2020) to train the deep whistle model. They sampled por-

tions of spectrograms with and without whistle energy, cre-

ating 148 224 training patches that were used to train the

model as summarized in the next section. To evaluate our

implementation of their model, we used the same 911 bottle-

nose and common dolphin (Tursiops truncatus and

Delphinus capensis) whistles1 that Li et al. (2020) used for

their test set. This is a challenging subset of the data that

were reported by Roch et al. (2011).

A larger data set was used to gather evidence as to

whether the silbido profundo methods are transferrable to sig-

nals that are from other species or regions or recorded with

different equipment. The DCLDE 2022 data set from the

National Oceanographic and Atmospheric Administration

(NOAA) (NOAA Pacific Islands Fisheries Science Center,

2022) consisted of over 432 h of recordings from 47 days of

effort during two towed-array expeditions aboard the R/V

Lasker and R/V Sette. The cruises were conducted from July

through November 2017 offshore of the Hawaiian Islands

during the Hawaiian Islands Cetacean and Ecosystem

Assessment Survey (HICEAS). The cruises towed multi-

channel arrays of HTI-96-min hydrophones (High Tech Inc.,

Long Beach, MS) and custom preamplifiers. Data were sam-

pled at 500 kHz with 16-bit quantization, and only the first

channel of data was used in our experiments.

Toothed whale presence in these data were reported by

NOAA visual and acoustic teams. The acoustic teams used

PAMGuard (Gillespie et al., 2008). The teams produced

toothed whale annotations at the encounter level, noting the

time, duration, and, when possible, species for each period of

time during which a visual sighting occurred or acoustic cues

(clicks or whistles) were present. Annotations for 276

encounters of at least 15 species of toothed whales were

reported. Because the annotations are based on a combination

of visual and acoustic cues and are not reported on a per-

whistle basis, the cruise annotations are insufficient for com-

puting the precision and recall of a whistle annotation task.

However, the encounter-level annotations permit qualitative

analysis of how well silbido profundo concurs with less-

detailed analyst annotations of data that are substantially dif-

ferent than those used to train the system. Complete details
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on the HICEAS equipment, collection, and annotation proto-

cols are in Yano et al. (2018).

B. Deep whistle

We used the deep whistle model proposed by Li et al.
(2020). This neural network model used local convolutional

kernels to learn contextual cues about whistle energy pat-

terns from multiple fixed-duration spectrograms derived

from a recording. The network produced confidence maps

for whistle energy that could then be used by a traditional

whistle extraction method to provide annotations for whis-

tles (Fig. 1).

The network consists of ten convolutional layers that

were trained on 100 ms by 6.25 kHz spectrogram patches

with binary labels indicating the presence or absence of

whistle energy. The first and last layers are standard convo-

lutional layers that surround four residual blocks (He et al.,
2016) with two layers each. Hidden layers have 32 channels.

Convolutional layers of the residual blocks are all followed

by batch normalization (Ioffe and Szegedy, 2015), with a

parametric rectified linear unit (He et al., 2015) following

the batch normalization of the first convolution in each

residual block. The first and last convolutional layers had

5� 5 convolutional kernels and the residual blocks had

3� 3 kernels, resulting in a receptive field of 25� 25, or

56 ms� 3.125 kHz. The network was initialized with

Kaiming normalization (He et al., 2015) and applied a

Charbonnier loss (Charbonnier et al., 1994) for the gradient

calculation

Loss ŷ � yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kŷ � yk2

2 þ e
q

; (1)

where y was a vector of ground truth labels for spectrogram

nodes (0! background, 1! foreground whistle), ŷ the net-

work prediction, and e a small constant. The learning rate

was initially set to 0.001 and was decayed by a factor of 0.1

every 250 000 iterations. Additional details about the net-

work architecture are in Li et al. (2020), and we use the net-

work weights from the experiment of Li et al. (2020) that

did not use synthetic data or labels (experiment “WGT”).

C. Integrating the deep whistle method into silbido

The original deep whistle algorithm was not designed to

be easily accessible to people outside of the machine learning

community. The system relies on code written in Python, Java,

and MATLAB (Mathworks, Natick, MA) with dependencies on

PyTorch (Paszke et al., 2019) and MATLAB toolboxes, each of

which requires a separate download and installation. This sys-

tem requires knowledge of multiple programming languages,

and the manual steps necessary to move files and change code

can slow processing and discourage the average user.

To make our software more usable by a diverse commu-

nity, we sought to integrate deep whistle functionality within

silbido and reduce dependencies to a few MATLAB tool-

boxes.2 To achieve this goal, we reimplemented the original

Python signal processing chain in MATLAB and migrated the

PyTorch neural network into a form usable with the MATLAB

deep learning toolbox. The processing chain uses discrete

Fourier transforms with Hamming windowed frames of 8 ms

(125 Hz resolution) advanced every 2 ms to create a log

magnitude spectrogram. We restricted the dynamic range to

0 through 6 based on empirical results. As these are log

magnitude values, one can multiply by 20 to recognize that

the values correspond to the relative intensity range of 0 to

FIG. 1. (Color online) The spectrogram

is processed with a deep convolutional

neural network that has learned how to

recognize whistle energy. This produ-

ces a confidence map that is processed

with an existing graph search algorithm

to extract whistles. State is maintained

across consecutive confidence maps to

reduce artificial breaks in whistles simi-

lar to Roch et al. (2011).
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120 dB. The log magnitude values are normalized to the

interval [0,1] by dividing by 6.

We converted the PyTorch model to an intermediate neu-

ral network description language, the Open Neural Network

Exchange (ONNX) (Bai et al., 2019). We used the MATLAB

Deep Learning Toolbox Converter for ONNX model Format to

convert the model to the directed acyclic graph (DAG) net-

work format used by the MATLAB deep neural network toolbox.

In general, convolutional networks can operate on spec-

trograms of arbitrary sizes. The MATLAB DAG networks are

restricted to a static input size of the network implementer’s

choice. This limitation would prevent users from changing

spectrogram parameters such as the frequency analysis

range. To enable more flexible analysis within the MATLAB

DAG networks, we implemented code to dynamically gen-

erate DAG networks containing the deep whistle weights.

We generated input and output layers sized appropriately to

the audio sample rate and the current user-specified spectro-

gram analysis parameters. We then programmatically

inserted the deep whistle network hidden layers. This pro-

cess allows the analysis window to be changed to cover sig-

nals that occur in different frequency bands or that were

sampled at different rates. Although the size of the input

spectrogram changes, the time� frequency resolution

remains constant as long as the spectrogram frame advance

and length are of the same duration. Changing the temporal

and frequency resolution is permitted, but more-than-minor

deviations are likely to degrade performance of the deep
whistle neural network unless the weights are adapted for the

new resolution with additional training data. Figure 2 shows

a sample input spectrogram, the intermediate stage of predict-

ing a confidence map containing probabilities that time� fre-

quency cells contain whistle energy, and the resulting

whistles when the confidence map is incorporated into a tra-

ditional trajectory-tracking whistle algorithm. Incorporating

this process into an established software package resulted in

an automated whistle annotation system with the potential for

broad use within the bioacoustics community.

III. TESTS AND RESULTS

A. Quantitative performance metrics

We measured the performance of silbido profundo on

the basis of precision, recall, and F-1 score. Precision mea-

sures the percentage of detections that are correct and pro-

vides insight into the false positive rate. Recall, the fraction

of expected detections that were retrieved provides insight

into the rate of ground truth detections missed by the sys-

tem. The F-1 score, the harmonic mean between precision

and recall, can be used to summarize performance.

Ground truth data are required to measure precision and

recall. The DLCDE 2011 data set provides analyst annota-

tions that yield time � frequency data. We used the perfor-

mance metrics outlined in Roch et al. (2011). We limited

our measurements to whistles with durations �150 ms and a

signal to noise ratio �10 dB relative over at least a third of

their duration to remain consistent with the metrics of Li

et al. (2020). When detections overlapped with ground truth

FIG. 2. (Color online) The silbido pro-
fundo whistle extraction system. Upper

panel: Spectrogram illustrating whis-

tles in the presence of echolocation

clicks and a ship echosounder. Middle

panel: Confidence map of neural net-

work predictions of whistle energy.

Lower panel: Whistles extracted (ran-

domly colored) by the system.
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annotations, we examined them to ensure that the detected

tonal contour matched the whistle annotated by the analyst.

This was accomplished by calculating the frequency devia-

tion between each overlapping time � frequency bin of the

ground truth and detected tonal. We computed a coverage

metric (Roch et al., 2011) that indicates the percentage of

the matching overlap between the ground-truth whistle and

detection. Detected tonal calls were marked as valid only if

the mean deviation was �350 Hz.

Comparison results are reported with the default parame-

ters of each algorithm, but variation in the threshold used in

silbido profundo’s confidence map produces varying precision

and recall (Fig. 3). On these data, the highest F-1 score of 87.2

results from a confidence threshold of 0.5 units, with reason-

ably stable performance in a region around the confidence

metric, suggesting that the system is not overly sensitive to the

confidence threshold. This performance is measured under the

assumption that a maximum harmonic mean of the precision

and recall is the goal. If either precision or recall is a higher

priority, the confidence threshold can be adjusted.

We compared silbido profundo with three other detec-

tors (Table I): silbido (the baseline method), the sequential

Monte-Carlo probability hypothesis density (SMC-PHD) fil-

ter using the radial basis function motion model (Gruden

and White, 2020), and the original implementation of deep
whistle by Li et al. (2020). The silbido graph search results

reflect that the test subset was more challenging than the full

data set used in Roch et al. (2011). We used default parame-

ters for all algorithms (Roch et al., 2011; Gruden and White,

2020 Table I; Li et al., 2020), with silbido profundo sharing

the same defaults as deep whistle. All of the algorithms used

DCLDE 2011 data in their development, but any of the algo-

rithms might perform better if they were carefully tuned for

this subset of DCLDE 2011 data.

By design, silbido discards detections that are shorter

than 150 ms, which frequently are unreliable. To engender

appropriate comparison, we reported SMC-PHD both with

all detections and with those that are 150 ms or longer. Due

to its stochastic nature, ten trials of SMC-PHD were con-

ducted and the 80th decile F1 score was reported to provide

a favorable but realistic expectation of the algorithm’s per-

formance. There are minor differences between the original

deep whistle results and those of the MATLAB silbido pro-
fundo implementation, most likely attributable to the differ-

ence between neural network libraries and to numerical

stability across different implementations of the underlying

mathematics libraries.

B. Qualitative analysis of large data sets

To test silbido profundo’s performance over a large

data set, we used a Linux machine with an Intel i7–9700

processor (Intel Inc., Santa Clara, CA) and an NVIDIA RTX

2080 Ti (NVIDIA Inc., Santa Clara, CA) graphics process-

ing unit (GPU). We processed the first channel of towed

array data from the 439 h of the 500 kHz DCLDE 2022 data

set (NOAA Pacific Islands Fisheries Science Center, 2022).

On average, detections were processed 5.5 times faster than

real time, although the rate varied depending on the com-

plexity of the soundscape. We applied the same rules for

duration and signal-to-noise ratio (SNR) described above to

this test.

Next, 462 053 time-frequency contours were extracted

from these audio data and stored in Tethys (Roch et al.,
2016), a database for organizing acoustic metadata. We arbi-

trarily grouped detections into blocks of 2 h and report the

location and number of whistles within these periods (Fig.

4). It was not possible to compute per-call precision and

recall with respect to these data because analyst annotations

only reported the start and end times of groups of detections;

annotating these data was beyond the scope of this work.

We visually compared our results to the encounter periods

reported by the teams of visual observers and acousticians

onboard the R/V Lasker and R/V Sette cruises and observed

good concurrence (subset of data shown in Fig. 5). We

detected whistle signals in 186 of the 276 encounters.

FIG. 3. Precision and recall based on silbido profundo confidence map

thresholds of 0.1 through 0.9 for a subset of the DCLDE 2011 data.

Comparison metrics are computed with the default threshold of 0.5, but the

F1 score is optimized at 0.4.

TABLE I. A comparison of silbido profundo to other whistle extraction

methods and the original deep whistle implementation using a subset of

DCLDE 2011 data. All algorithms used default parameters and SMC-PHD

used the radial basis function motion model. Silbido profundo maintained

the level of performance of the original deep whistle implementation and

outperformed other methods.

Method Precision Recall F-1 Score Coverage

Silbido Graph Search

(Roch et al., 2011)

63.4 63.3 63.4 79.5 6 22.5

SMC-PHD

(Gruden and White, 2020)

70.5 92.6 80.1 70.5 6 24.3

SMC-PHD

(det > 150 ms)

96.1 61.4 74.9 73.6 6 22.1

Deep Whistle

(Li et al., 2020)

95.6 82.2 88.4 86.6 6 18.3

Silbido profundo 96.3 79.7 87.2 85.2 6 19.1
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Analyst inspection of the remaining 90 encounters showed

that they contained echolocation clicks without whistles,

which silbido profundo is not designed to detect. Our system

detected whistles outside of the NOAA labels, which we

were able to verify as good detections. Due to the differ-

ences in annotation tasks, we did not compute a union over

intersection statistic.

Most of the false positives observed in the DLCDE

2022 data set fell into three categories: spectral lines, rhyth-

mic signals, and burst pulses. Spectral lines are recording

artifacts where the energy level is stronger in a narrow band,

and some are incorrectly detected as whistles. The graph

search algorithm is designed to bridge small gaps in energy

due to missed peaks; when there are series of short duration

narrow-band energy, these signals can be incorrectly recog-

nized as whistles. Burst pulses, rapid trains of echolocation

clicks, can produce banding artifacts in a spectrogram (see

Watkins, 1967, for a discussion of pulse trains and their

impact on spectrograms), and it is not uncommon to detect

portions of these as whistles.

IV. DISCUSSION

Deep learning outperforms other methods in a wide

variety of contexts (LeCun et al., 2015), and deep learning

is being applied in many bioacoustics projects (see Stowell,

2022). Integration of deep whistle algorithm of Li et al.
(2020) into silbido profundo provides access to an algorithm

that substantially outperforms the graph search algorithm

with heuristic peak identification (Roch et al., 2011). Silbido
profundo yields a stronger F-1 score than the SMC-PHD

detector (Gruden and White, 2020), and detects greater

portions of whistles (improved coverage metric). Application

of the SMC-PHD filter on short whistles (<150 ms) that

silbido profundo discards retrieves many more whistles, but

with reduced precision.

The power of the neural network can likely be attributed

to the convolutional kernel’s ability to consider multiple

peaks in context to their surroundings. Most of the methods

discussed in the introduction detect whistle energy by

searching for peaks within the spectrum of a single spectro-

gram frame. Consequently, these algorithms are sensitive to

false positives created by transient signals or noise that may

not be characteristic of narrow-band frequency modulated

signals such as whistles. The deep whistle convolutional

neural network has a receptive field of 56 ms� 3.125 kHz (Li

et al., 2020). As a result, the network can learn contexts that

are relevant to predicting when an individual time� frequency

node is attributable to whistle energy. Replacing the peak

selection algorithm of the graph-search algorithm of Roch

et al. (2011) with a deep neural network that provides more

reliable peak selection offers large performance gains and is

likely to provide benefits to other tonal extraction algorithms

that replace their heuristic peak selection with deep whistle
confidence maps.

Across the large DCLDE 2022 data set, silbido pro-
fundo and the NOAA annotations were, for the most part, in

agreement. Detections by silbido profundo aligned closely

with the temporal bounds of the analyst-specified encounter

records and were processed in less than a fifth of the record-

ing time. Differences between analyst annotations and peri-

ods of time in which silbido profundo detected whistles are

attributable to multiple causes. In addition to whistle detec-

tions, the NOAA analysts reported visual and echolocation

FIG. 4. (Color online) Regions of effort and reported whistle detections on the R/V Lasker and R/V Sette cruises around the Hawaiian Islands. Bubbles are

overlayed on 2 h track segments with the number of whistles detected indicated by size (logarithmic scale) and color.
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detections, neither of which can be reported by tonal contour

extractors. Silbido profundo had over 96% precision, but

this means that about 4 in 100 detections were false posi-

tives, and the false positives occasionally occurred in

regions without whistle activity. With the exception of burst

pulses labeled as whistles, the false positives were rarely

more frequent than 10 detections within 15 min. In some

instances, silbido profundo made valid detections 5 to

10 min outside of the analyst-reported times (Fig. 5, bottom

panel, September 30).

The application of silbido profundo has potential to

detect a range of mammal vocalizations beyond the odonto-

cete whistle. The neural network was trained to recognize

frequency-modulated shapes at a specific temporal and spec-

tral resolution. Although the neural network would likely

need to be retrained to obtain optimal results, application to

other narrow-band tonal signals, such as mysticete moans and

tonal bird calls, shows potential. Figure 6 shows the results

for a Speckled Warbler (Pyrrholaemus sagittatus) song. The

neural network was not retrained to account for differences in

frequency range or spectral resolution. Application to mysti-

cete moans had similar results (not shown).

V. CONCLUSIONS

We have developed an open-source implementation of

a recently proposed whistle extraction system that is easy

for bioacousticians to use. This implementation increases

access to deep learning technology for non-computer scien-

tists. We tested our methods on a fully annotated data set of

1025 whistles and a larger, weakly annotated data set, and

our results indicated substantial improvements to an existing

FIG. 5. (Color online) Representative counts of whistles detected over time by application of silbido profundo to large data sets. Rectangles at top of the fig-

ure show periods where analysts reported visual sightings or acoustic detections (whistles or echolocation clicks). Periods of no recording are represented by

gray shading with a dotted pattern used to denote extended gaps between recordings. Upper and middle panels: Data from the DCLDE 2022 R/V Lasker and

R/V Sette cruises with detection counts binned into 6 h periods. Bottom panel: A detailed subset of data from the R/V Lasker cruise (15 min bins).
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framework for extracting toothed whale whistles. The sil-
bido profundo software is publicly available at https://

github.com/MarineBioAcousticsRC/silbido.
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