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A B S T R A C T

Intense east–west winds called zonal jets are observed in the atmospheres of Jupiter and Saturn and extend
in their deep interior. We present experimental results from a fully three-dimensional laboratory analog of
deep gas giants zonal jets. We use a rapidly rotating deep cylindrical tank, filled with water, and forced by
a small-scale hydraulic circulation at the bottom. A topographic 𝛽-effect is naturally present because of the
curvature of the free surface. Instantaneous turbulent zonal jets spontaneously emerge from the small-scale
forcing, equilibrate at large scale, and can contain up to 70% of the total kinetic energy of the flow once
in a quasi-steady state. We show that the spectral properties of the experimental flows are consistent with
the theoretical predictions in the zonostrophic turbulence regime, argued to be relevant to gas giants. This
constitutes the first fully-experimental validation of the zonostrophic theory in a completely three-dimensional
framework. Complementary, quasi-geostrophic (QG) simulations show that this result is not sensitive to the
forcing scale. Next, we quantify the potential vorticity (PV) mixing. While PV staircasing should emerge in
the asymptotic regime of the gas giants, only a moderate PV mixing occurs because of the strong forcing and
dissipation, as confirmed by QG simulations at smaller Ekman number. We quantify the local PV mixing by
measuring the equivalent of a Thorpe scale, and confirm that it can be used to estimate the upscale energy
transfer rate of the flow, which otherwise needs to be estimated from a much more demanding spectral analysis.
1. Introduction

Zonal jets are east–west currents observed in a large variety of
geophysical flows, from the atmospheres of gas giants (Vasavada and
Showman, 2005) to terrestrial oceans (Williams, 1975; Galperin et al.,
2004; Maximenko et al., 2005; Cornillon et al., 2019) and atmo-
spheres (Mitchell et al., 2019). They are also expected to develop
in buried fluid layers such as the outer liquid cores of telluric plan-
ets (Guervilly and Cardin, 2017) or the subsurface oceans of icy
moons (Soderlund et al., 2020). The vast occurrence of zonal jets
underlines their generic nature, which relies on three basic physical
effects: the dominance of rotation on the flow, the presence of turbulent
motions forced by various processes, and a 𝛽-effect which represents
the variation of the Coriolis force with latitude. Apart from their
clear geophysical relevance, zonal jets are outstanding fluid dynamical
features where a turbulent flow self-organizes at large-scale. The prop-
erties of the associated statistically steady-state in terms of number,
width, intensity and stability of the jets are described by several the-
ories based on the phenomenology of turbulence (Vallis and Maltrud,
1993; Galperin et al., 2006), potential vorticity mixing (Dritschel and
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McIntyre, 2008), wave-mean flow interaction (Quinn et al., 2019) or
statistical physics (Bouchet and Venaille, 2012; Farrell and Ioannou,
2003), but a common and robust physical framework is still lacking.

In the present study, we specifically focus on the regime of turbulent
zonal jets observed on the gas giants, Jupiter and Saturn, where the jets’
dynamics is not complicated by topographic features or seasonal vari-
ations. Jupiter’s zonal jets are famous because they are responsible for
the banded appearance of the planet, through the spreading of clouds
of ammonia and water ices. Jupiter’s intense zonal winds have been
measured by various spacecrafts using cloud tracking, from Voyager
in 1979 to Juno, which is in orbit around Jupiter since 2016 (Bolton
et al., 2017). Direct measurements revealed the remarkable stability of
these strong winds over decades (Tollefson et al., 2017), and allowed
to demonstrate that they contain up to 90% of the kinetic energy of
the turbulent flow, at least at the level of the cloud layer (Galperin
et al., 2014b). Recently, the inversion of the gravity measurements of
the Juno spacecraft showed that the Jovian jets extend down to about
3000 kilometers beneath the clouds for Jupiter (Kaspi et al., 2018;
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Fig. 1. Location of previous zonal jets laboratory experiments in the non-dimensional parameter space (𝑅𝑒,𝐸,𝑅∗
𝛽 ) (Reynolds number, Ekman number, and zonostrophy index). For

the sake of comparison, we used similar definitions for all the experimental studies (first column of Table 1). The data used to plot this figure are provided in Appendix B. We
recall that 𝑅∗

𝛽 ≈ 0.5𝑅𝛽 and takes into account the spectral prefactor (𝐶𝑍∕𝐶𝐾 )3∕10 (see Section 4). The horizontal dashed lines represent the threshold in 𝑅∗
𝛽 between the different

regimes determined by Sukoriansky et al. (2007) and Galperin et al. (2010) .
Table 1
Non-dimensional parameters and typical values. The Ekman number, 𝐸, Reynolds number 𝑅𝑒 and zonostrophy index 𝑅𝛽 are independent, the
Rossby number 𝑅𝑜 is indicated for completeness but can be expressed as 𝑅𝑜 = 𝑅𝑒 × 𝐸. For the experiments and QG simulations, assuming
dissipation in the Ekman boundary layers (Eq. (7)), these parameters can be evaluated either using the fluid height ℎ0 (first column) or the
upscale energy transfer rate 𝜖 (second column). 𝑢rms is the total and time-averaged rms velocity measured once in statistically steady-state. This
is relevant only for the experiments and QG simulations, not the planetary flows. The planetary parameters used to compute the non-dimensional
parameters for the gas giants and Earth’s atmosphere and oceans are provided in Appendix B.

(𝑢rms , ℎ0 , 𝛺, 𝜈, 𝛽) (𝑢rms , 𝜖, 𝛺, 𝜈, 𝛽) Jupiter Saturn Earth’s atmosphere Earth’s oceans Experiment

𝐸 𝜈
𝛺ℎ20

4𝜖2

𝛺2𝑢4rms
4 × 10−16 4 × 10−17 2 × 10−9 1 × 10−8 3 × 10−7

𝑅𝑒
𝑢rmsℎ0
𝜈

𝑢3rms𝛺
1∕2

2𝜖𝜈1∕2
3 × 1014 9 × 1014 3 × 109 1 × 108 1 × 104

𝑅𝑜
𝑢rms
𝛺ℎ0

2𝜖
𝛺3∕2𝜈1∕2𝑢rms

1 × 10−1 4 × 10−2 6 1 3 × 10−3

𝑅∗
𝛽

(

𝐶𝑍
𝐶𝐾

)3∕10
(

27𝛽𝑢rmsℎ20
𝜈𝛺

)1∕10
(

𝐶𝑍
𝐶𝐾

)3∕10
(

25𝑢5rms𝛽
𝜖2

)1∕10

5a 5.3a 1.6a 1.4a ≳ 2.5

aSee Table 13.1 in Galperin and Read (2019).
Guillot et al., 2018), and 9000 kilometers for Saturn (Galanti et al.,
2019) based on Cassini measurements. This result is consistent with
independent constraints provided by the secular variation of Jupiter’s
magnetic field (Moore et al., 2019). Despite the wealth of new con-
straints provided by Juno, comprehensive idealized models still need
to be developed to complement observations and better understand the
jets origin, properties, and three-dimensional structure.

From the fluid dynamics point of view, gas giants exhibit very
intense flows, characterized by a very large Reynolds number (𝑅𝑒), a
vanishing Ekman number (𝐸) and a small Rossby number (𝑅𝑜). The
Reynolds number quantifies the ratio of inertial to viscous forces, the
Ekman number the ratio of viscous to Coriolis forces, and the Rossby
number the ratio of inertial to Coriolis forces. Denoting 𝑈 a typical
velocity scale, 𝐻 a typical flow length scale, 𝜈 the molecular viscosity
of the fluid and 𝛺 the planet’s rotation rate, these non-dimensional
parameters can be expressed as

𝑅𝑒 ∼ 𝑈𝐻
𝜈
, 𝐸 ∼ 𝜈

𝛺𝐻2
, 𝑅𝑜 ∼ 𝑈

𝛺𝐻
. (1)

The aforementioned conditions hence mean that Jupiter’s flows are
both highly turbulent and rotationally constrained (see Table 1 and
Fig. 1). Because rotation is dominant, the turbulent motions are quasi
two-dimensional (2D) and may bear an inverse cascade of kinetic
energy (Young and Read, 2017; Siegelman et al., 2022) feeding large-
scale features (vortices and jets). We denote 𝜖 the corresponding rate
of energy transfer. The zonation of Jupiter’s turbulence then arises
because of the so-called 𝛽-effect, representing either the latitudinal
variation of the projection of the planet’s rotation vector on the local
vertical (shallow, atmospheric 𝛽-effect), or the variation of the fluid
height when measured parallel to the rotation axis (deep, topographic
𝛽-effect). Because of the 𝛽-effect and associated Rossby waves, the
turbulent energy transfer to large scales becomes anisotropic and redi-
rected towards zonal currents. Ultimately, the large scale drag halts the
2

development of the inverse cascade (Sukoriansky et al., 2002, 2007).
A fourth non-dimensional parameter, known as the zonostrophy index
𝑅𝛽 (Sukoriansky et al., 2007), is used as an indicator of the strength
of the zonation of the turbulent flow. It is defined as the ratio between
the Rhines scale (Rhines, 1975) 𝐿𝑅,

𝐿𝑅 ∝
(

2𝑈
𝛽

)1∕2
, (2)

assumed to represent the scale of the jets, and the transitional scale
(Pelinovsky, 1978; Vallis and Maltrud, 1993) 𝐿𝛽 ,

𝐿𝛽 ∝
(

𝜖
𝛽3

)1∕5
, (3)

which is the scale at which a turbulent eddy turnover time equates a
Rossby wave period. The transitional scale is the smallest scale above
which the turbulent flow becomes anisotropic due to the 𝛽-effect. The
zonostrophy index is then

𝑅𝛽 ∼
𝐿𝑅
𝐿𝛽

∼ 21∕2
(

𝑈5𝛽
𝜖2

)1∕10

(4)

(Sukoriansky et al., 2007). The regime of strong and rectilinear jets
– so-called zonostrophic regime – is obtained when the scale at which
the eddies start being deformed by the 𝛽-effect is well separated from
the scale of the final jets, i.e. for a large zonostrophy index. From 2D
simulations on the sphere, Sukoriansky et al. (2007) and Galperin et al.
(2010) show that the zonostrophic regime is observed when 𝑅∗

𝛽 ≳ 2.5
whereas the regime is friction-dominated when 𝑅∗

𝛽 ≲ 1.5, as represented
in Fig. 1(b). Here, 𝑅∗

𝛽 = (𝐶𝑍∕𝐶𝐾 )3∕10𝑅𝛽 ≈ 0.5𝑅𝛽 , and 𝐶𝑍 and 𝐶𝐾 are
supposedly universal constants determined from spectral analysis (see
Section 4). Jovian mid-latitude jets have 𝑅∗

𝛽 ≈ 5 and are expected to
be in the regime of zonostrophic turbulence (Galperin et al., 2014b).
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On the contrary, Earth’s oceans are under the threshold with 𝑅∗
𝛽 ≈

1.5 (Galperin et al., 2019). Consistently, Jovian jets are strong, instan-
taneous and contain most of the kinetic energy of the flow (Galperin
et al., 2014b) whereas oceanic jets are weak and meandering, hence
a careful time-averaging is required to reveal them (Maximenko et al.,
2005).

Modeling turbulent zonal jets in regimes relevant to gas giants re-
quires to fulfill these four dynamical constraints simultaneously (𝑅𝑒 ≫
1, 𝐸 ≪ 1, 𝑅𝑜 ≲ 1, 𝑅∗

𝛽 ≳ 2.5). This is particularly challenging, both from
the numerical and experimental point of view because of computa-
tional and technical constraints. This regime can only be approached
by simplified models relying on physical approximations whose rele-
vance needs to be systematically addressed. For instance, current 3D
numerical models cannot reach the asymptotic Reynolds and Ekman
numbers of gas giants flows, and when trying to do so, it becomes
extremely costly to simulate the dynamics over the very long radiative
and frictional timescales, necessary for the system to equilibrate (see
e.g. Heimpel et al., 2016; Gastine and Wicht, 2021). On the contrary,
experiments usually allow to reach more extreme regimes than nu-
merical models, and study the dynamics of real, fully nonlinear and
developed flows in a statistically steady-state, even if they cannot
reproduce the very small viscous effects of Jovian flows. Of course, ex-
periments come with their own limitations, such as necessary physical
boundaries, partial measurements, and the difficulty in incorporating
magneto-hydrodynamical or compressibility effects.

In a previous paper (Lemasquerier et al., 2021), we described a
new experimental setup following on from Cabanes et al. (2017) where
zonal jets spontaneously emerge from a mechanically-forced turbulent
flow in a rapidly rotating water tank. This setup is a one layer system,
with a deep water height, and hence the zonal jets are deep and
barotropic. Here, we would like to stress out that a barotropic (one
layer) experimental setup is still relevant to model a priori strongly
baroclinic systems, such as oceans and atmospheres. Indeed, planetary,
quasi-geostrophic flows can undergo a phenomenon of barotropization,
and the barotropic modes can end up containing a significant fraction
of the energy, even if the energy feeding these modes initially comes
from baroclinic modes and instabilities (Charney, 1971; Rhines, 1977;
Salmon, 1978) (see Section 6.3 for further discussion). In the experi-
ment of Lemasquerier et al. (2021), the zonal jets emerge due to the
radiation of Rossby waves and the associated transport and deposition
of momentum. In addition, we observed a transition between two
regimes of multiple zonal jets. We showed that the transition arises
from a Rossby waves resonance due to their advection by the back-
ground zonal flow. We showed that the first regime (hereafter Regime
I), where the jets are individual and locally forced, may be relevant for
jets in the terrestrial oceans. The second regime (hereafter Regime II)
is accompanied by a coarsening and an intensification of the zonal jets,
and is relevant for the gas giants. In the present study, we focus on the
saturated turbulent and statistically steady state obtained in Regime II,
far from the transition, and we compare our experimental results with
two theories which aim to explain zonal jets properties at a global scale.

The first theory on which we focus is the so-called theory of zonos-
trophic turbulence (see Galperin et al., 2019). In this framework,
zonal jets are described as emerging from the anisotropisation of two-
dimensional turbulence in the presence of a 𝛽-effect. However, this
description may only be relevant when the four aforementioned dy-
namical constraints are fulfilled, and when sufficient scale separations
are achieved such that turbulent inertial ranges can exist. Following Ca-
banes et al. (2017), our experimental setup is specifically designed to
favor a large 𝑅𝛽 , fast flows (𝑅𝑒 ≫ 1), but still dominated by rotation
(𝑅𝑜 ≪ 1), and small viscous dissipation (𝐸 ≪ 1), thus getting closer
to the regime observed on gas giants. As shown in Fig. 1(b), previous
experimental studies lied in the range 𝑅∗

𝛽 ∈ [1, 2] and the observed flows
were not in the zonostrophic regime. Let us stress out that, because
of the definition of the zonostrophy index and the power 1/10 (see
3

Table 1), if all the other parameters are unchanged, a rms velocity ten
times larger (and hence a Reynolds ten times larger) only increases the
zonostrophy index by a factor 101∕10 ∼ 1.26! Here, we explore more
extreme regimes, including 𝑅∗

𝛽 ≳ 2.5. The experimental measurements
can hence be compared with predictions in the so-called zonostrophic
regime relevant to gas giants. The spectral analysis performed in Ca-
banes et al. (2017) on a previous version of the experiment supports
the idea that predictions from zonostrophic turbulence are retrieved
experimentally. Kinetic energy spectra were however computed for the
zonal flow only and not the fluctuations, due to the use of particle
tracking velocimetry. With the new setup (Lemasquerier et al., 2021),
the temporal and spatial resolution of our PIV measurements allows
us to quantify turbulence statistics for both the zonal and fluctuating
components of the flow, and to complete the analysis in the framework
of zonostrophic turbulence.

The second theoretical framework to which we compare our ex-
perimental results is potential vorticity (PV) mixing (Dunkerton and
Scott, 2008; McIntyre, 2008; Dritschel and McIntyre, 2008; Scott and
Tissier, 2012). In our case of a barotropic fluid with varying height,
the PV is 𝑞 = (𝜁 + 𝑓 )∕ℎ, where 𝜁 is the relative vorticity, 𝑓 = 2𝛺 is the
‘‘planetary’’ vorticity (𝛺 is the rotation rate), and ℎ is the fluid height.
In the framework of PV mixing, zonal jets are described as emerging
from the mixing of the scalar field 𝑞, which is materially conserved in
the absence of dissipation. Retrograde jets correspond to well-mixed re-
gions of PV, whereas prograde jets correspond to steep gradients of PV,
thus defining a staircase-like profile in the radial direction if multiple
jets are present. The mechanism of staircase formation was described
in Dritschel and McIntyre (2008) by analogy with the mixing of a
stratified fluid, the so-called ‘‘Phillips-effect’’ (Phillips, 1972). The idea
is that of a feedback mechanism: stratification is reduced in the mixed
regions, the restoring force at the origin of gravity waves (buoyancy)
is thus weakened, which allows for further mixing. On the contrary,
where interfaces are forming, steeper stratification locally develop, and
gravity waves are enhanced, thus inhibiting mixing across the interface.
For a PV gradient instead of a density gradient, the mechanism is
analogous but invokes Rossby waves whose propagation depends on
how steep the local PV gradient is. That being said, subtleties arise
from the fact that PV is different from density since there is a direct
relationship between the flow dynamics and PV through the vorticity.

Galperin et al. (2014a, 2016) proposed to use the analogy between
PV and density staircases to quantify PV mixing, through the method
of PV monotonizing. The idea is to use local and instantaneous PV
(or density) profiles to quantify the turbulent overturn by measuring
the equivalent of a Thorpe scale (Thorpe, 2005; Gargett and Garner,
2008). The initial PV (density) profile, due to background rotation and
𝛽-effect, is monotonous and decreasing with radius. Locally, turbulent
eddies can cause overturns and bring fluid parcels with higher PV
(higher density) outward (above) compared to a fluid parcel with
smaller PV (smaller density); an unstable configuration. By sorting the
non-monotonous PV profile into a monotonous one, one can define a
Thorpe scale 𝐿𝑇 , which is the root-mean-squared displacement of the
fluid parcels needed to bring them back to a stable position. Galperin
et al. (2014a, 2016) show experimentally that similarly to stratified
flows where 𝐿𝑇 is close to the Ozmidov scale (Ozmidov, 1965; Thorpe
and Deacon, 1977), which is the scale at which turbulent eddies feel
the stratification, 𝐿𝑇 is commensurate with the transitional scale, 𝐿𝛽 ,
at which turbulent eddies feel the 𝛽-effect. If a robust relationship
exists between the Thorpe and transitional scales, then sorting PV
would constitute a powerful tool to estimate 𝐿𝛽 and indirectly, the
turbulence intensity. The only requirement would then be to measure
instantaneous profiles of potential vorticity of the flow (see for instance
Cabanes et al., 2020, for an application to Jupiter and Saturn). How-
ever, the three experiments used in Galperin et al. (2014a, 2016) are far
from our configuration: the forcing, which is performed using magnets
and a saline solution, accelerates a westward zonal flow locally but
also directly (all the magnets are aligned and have the same polarity).

To what extent the scaling between the Thorpe and the transitional
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Fig. 2. Experimental set-up. (a) Schematic of the experimental setup. The forcing pattern is sketched at the bottom: each ring C1–C6 is controlled by an independent pump. (b)
Picture of the set-up once in solid body rotation. (c) Picture of the bottom forcing plate designed to achieve a uniform topographic 𝛽-effect.
scale holds in our experiments where the jets are strongly turbulent
and self-developed from a fluctuating forcing with no azimuthal mean,
thus remains to be addressed.

The present paper is organized as follows. In Section 2, we briefly re-
call the main characteristics of the experimental setup, and we present
the numerical quasi-geostrophic model which is used to complement
the experimental results. In Section 3, we describe the fully developed
flows obtained in both the experiments and simulations. In Section 4,
we compute kinetic energy spectra to compare with zonostrophic tur-
bulence predictions and we measure a turbulent energy dissipation rate
from the spectra. QG simulations are used to extend the experimental
results to smaller forcing scales and hence better scale separation. In
Section 5, we address the question of potential vorticity mixing. At a
global scale, we quantify PV staircaising and extend our experimental
results with simulations performed at a smaller Ekman number. At a
local scale, we compute the Thorpe scale associated with PV mixing,
which provides a second independent way of estimating the upscale
energy transfer rate. We conclude and discuss our results in Section 6.
4

2. Experimental and numerical methods

2.1. Experimental set-up

2.1.1. Description of the setup
The experimental set-up is sketched in Fig. 2(a) and is extensively

described in Lemasquerier et al. (2021) and Lemasquerier (2021). For
consistency, we summarize here its principal features. It consists in a
rotating cylindrical water tank, of radius 𝑅 = 0.49 m, filled with about
600 L of water. The fast rotation of the tank induces a centrifugal
force leading to a strongly deformed, paraboloidal free-surface. Since
the fluid height varies with radius, the relative vorticity of a fluid
column moving radially outward (stretching) or inward (squeezing) is
respectively increased or decreased. This effect is the so-called topo-
graphic 𝛽-effect and is responsible for introducing anisotropy in the
system in the form of zonation along the azimuthal direction. Here,
the topographic 𝛽 parameter can be written as

𝛽 = −
𝑓
ℎ
dℎ
d𝜌
, (5)

where 𝜌 is the cylindrical radius, ℎ(𝜌) is the total fluid height and 𝑓 =
2𝛺 is the Coriolis parameter with 𝛺 the rotation rate. The vast majority



Icarus 390 (2023) 115292D. Lemasquerier et al.

a

W
w
a
e
a
L
z

𝑅

of theoretical developments are performed in the 𝛽-plane approxima-
tion, where 𝛽 is spatially homogeneous — for planetary applications,
this amounts to a local approach where the global variations of 𝛽 are
neglected. Eq. (5) shows that for the topographic 𝛽-effect to be uniform
over the domain, the fluid height should vary exponentially with radius.
To achieve this, we compensate the unalterable paraboloidal shape
of the free surface using a curved bottom plate placed inside of the
tank (Fig. 2(c)). The total fluid height ℎ above the bottom plate is
the difference between the free-surface altitude ℎ𝑝 and the bottom
topography altitude ℎ𝑏. The bottom topography has been chosen such
that, in solid body rotation at a fixed rate 𝛺, the total water height as
a function of the cylindrical radius 𝜌 is

ℎ(𝜌) = ℎ0 +
𝛺2

2𝑔

(

𝜌2 − 𝑅2

2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ℎ𝑝(𝜌)

−ℎ𝑏(𝜌) = ℎmin exp
(

−
𝛽
2𝛺

𝜌
)

, (6)

where 𝑔 is the gravitational acceleration, 𝑅 is the tank radius, ℎ0 the
fluid height at rest, ℎmin the minimum fluid height once in rotation
nd 𝛽 < 0 the spatially uniform 𝛽-parameter (Eq. (5)). We worked with
𝛺 = 75 RPM (rotation frequency of 1.25 Hz), ℎ0 = 0.58 m, ℎmin = 0.20 m
and 𝛽 = −50.1 m−1s−1. Note that our experimental set-up was designed
to work at a single rotation rate of 75 RPM at which the 𝛽-effect is then
uniform across the tank. However, we performed few experiments at
rotation rates of 60 and 80 RPM to investigate the consequences of a
modified 𝛽-effect. At these rotation rates the 𝛽-effect is no more uniform
but nevertheless varies in a limited range (|𝛽80| ∈ [57, 73] m−1 s−1 with
a mean at 65.5 m−1 s−1 and |𝛽60| ∈ [20, 30] m−1 s−1 with a mean at
22.8 m−1 s−1).

Once solid-body rotation is reached, the flow is forced by circulating
the tank’s water through 128 holes drilled into the curved bottom
plate (see Fig. 2(a) and (c)). The holes are distributed on a polar
lattice composed of six rings each connected to a separate pump. Half
of the holes are inlets, and the other half are outlets, with as many
inlets as outlets along each ring. Because of the dominant rotation, this
forcing generates an array of cyclonic and anticyclonic vortices, which
subsequently break into turbulence. The zonal average of the forcing
is zero by construction, both along each ring and in total, meaning
that we do no directly accelerate the zonal flow. Additional details
on the experiment can be found in Lemasquerier et al. (2021) and D.
Lemasquerier’s thesis manuscript (Lemasquerier, 2021). Two different
sets of pumps were used to reach different forcing amplitudes. They are
described in Appendix B of Lemasquerier (2021).

To measure velocity fields, time-resolving particle image velocime-
try (PIV) measurements are performed on a horizontal plane. A green
horizontal laser sheet (532 nm) crosses the water layer 11 cm above the
bottom plate (9 cm below the center of the paraboloid). The water is
seeded with fluorescent red polyethylene particles and their motion is
tracked using a top-view camera placed above the tank and embarked
in solid-body rotation with the tank and the laser (Fig. 2(a)). The parti-
cles emit an orange light (607 nm) so that using a high-pass filter on the
lens allows to filter out the green laser reflections on the free-surface
and tank sides, leading to a better image quality and hence better
PIV measurements. The images are acquired using Dantec’s software
DynamicStudio. Optical distortion induced by the paraboloidal free-
surface is corrected on DynamicStudio using a preliminary calibration
performed by imaging a home-made calibration target with a precise
dot pattern (Lemasquerier, 2021). A movie of the particles motion
during a typical experiment is available as supplementary movie 1
in Lemasquerier et al. (2021). The velocity fields are deduced from
these images using the Matlab program DPIVSoft developed by Meunier
and Leweke (2003). We consider 32 × 32 pixels boxes on 1900 × 1900
pixels images and obtain 100 × 100 velocity vector fields (40% overlap
between the boxes). Note that due to the refraction of the laser plane
by the tank sides, there are two shadow zones where measurements are
5

not possible (see the gray areas in Fig. 5(a)).
Note that the present setup was built from scratch but inspired from
the setup used in Cabanes et al. (2017). In addition to the time-resolved
PIV measurements mentioned above, the main improvements of our
setup compared to the one of Cabanes et al. (2017) include:

– A spatially-uniform 𝛽-effect to be able to compare with theories
derived in the 𝛽-plane approximation.

– A control of the spatial distribution of the forcing. In Cabanes
et al. (2017), all the injection and suction points were linked to
the same pump. Here, the forcing pattern is polar such that we
can control independently the six forcing rings using six different
pumps and modulate the intensity of the forcing with radius.

– An increase in the number of forcing points from 64 to 128
in order to decrease the forcing scale and have a better scale
separation with the transitional scale 𝐿𝛽 .

2.1.2. Non-dimensional parameters
The experimental flows we consider are defined by five dimen-

sional parameters, the rotation rate, 𝛺, the mean fluid height, ℎ0, the
molecular viscosity, 𝜈, the initial gradient of potential vorticity 𝛽 and
the root-mean-squared (rms) velocity, 𝑢rms. Here, 𝑢rms is an output
parameter measured as the total rms velocity once in steady state. It is
linearly related to the forcing amplitude, which is an input parameter
set by choosing the power of the pumps (see Lemasquerier et al.,
2021). With two dimensions (length and time), our experiments can
be characterized by three independent non-dimensional parameters,
which we chose to be the Ekman number, 𝐸, the Reynolds number,
𝑅𝑒 and the zonostrophy index 𝑅𝛽 , defined in the introduction, where
we chose 𝑢rms and ℎ0 as the typical fluid velocity and length scales 𝑈
and 𝐻 , respectively.

In our laboratory experiments (but not in planetary flows), a con-
sequence of dominant rotation is that one can assume that dissipation
mainly occurs in the Ekman boundary layer forming along the frictional
bottom plate. In such case, the upscale energy transfer 𝜖 can be ex-
pressed as a function of the Ekman spin-down timescale 𝜏𝐸 = 𝛺−1𝐸−1∕2:

𝜖 ∼
𝑢2rms
2𝜏𝐸

=
𝑢2rms(𝜈𝛺)1∕2

2ℎ0
. (7)

e will see later that 𝜖 can actually be measured, and agree relatively
ell with this estimate (Section 4). In the remaining of the paper, and
s indicated in Table 2, we make the difference between the estimated
nergy transfer rate, 𝜖𝐸 , the transfer rate measured from the spectra, 𝜖𝑆 ,
nd the transfer rate measured from local potential vorticity mixing, 𝜖𝑇 .
et us define a frictional lengthscale 𝐿𝐸 as 𝐿𝐸 ∼ 2𝑢rms𝜏𝐸 = 𝑢3rms𝜖

−1. The
onostrophy index can then be alternatively expressed as:

𝛽 =
𝐿𝑅
𝐿𝛽

= 21∕2
(

𝐿𝐸
𝐿𝑅

)1∕5
= 21∕2

(

𝐿𝐸
𝐿𝛽

)1∕6
. (8)

These expressions show that 𝑅𝛽 simultaneously compares the transi-
tional scale, the Rhines scale, and the friction scale:

• if 𝑅𝛽 < 1 (𝐿𝐸 ≲ 𝐿𝑅 ≲ 𝐿𝛽), then the 𝛽-effect is weak and the
scale of the flow is defined by the frictional scale 𝐿𝐸 which is
then smaller than 𝐿𝑅 and 𝐿𝛽 . In other words, since the frictional
scale is smaller than the transitional scale, the energy is dissipated
before the flow is fully affected by the 𝛽-effect. In that case,
one would expect the flow to remain nearly isotropic and show
features of the classical Kolmogorov–Batchelor–Kraichnan (KBK)
turbulence (see Boffetta and Ecke, 2012, and references therein).

• if 𝑅𝛽 > 1 (𝐿𝛽 ≲ 𝐿𝑅 ≲ 𝐿𝐸), then the 𝛽-effect is strong, and the
turbulence is anisotropic since its equilibrium scale is larger than
the transitional scale 𝐿𝛽 . The large scales are then limited at a
value less than 𝐿 .
𝐸
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Table 2
Symbols and definitions used in the paper.
Symbol Expression Definition

𝑘𝑅
(

𝛽∕2𝑢rms
)1∕2 Rhines wavenumber

𝜖𝐸 (𝑢2rms∕2)𝛺𝐸
1∕2 Inverse energy transfer rate estimated a priori assuming Ekman friction only

𝜖𝑆 fit on residual spectra Inverse energy transfer rate measured on the spectra using Eq. (20)
𝜖𝑇 (𝑘𝑇𝛽 )

5𝛽3 Inverse energy transfer rate deduced from the Thorpe scale
𝑘𝐸𝛽

(

𝛽3∕𝜖𝐸
)1∕5 Transitional wavenumber estimated using 𝜖𝐸

𝑘𝜖𝛽
(

𝛽3∕𝜖𝑆
)1∕5 Transitional wavenumber estimated using 𝜖𝑆

𝑘𝑆𝛽
(

𝐶𝑍∕𝐶𝐾
)3∕10 (𝛽3∕𝜖𝑆

)1∕5 Transitional wavenumber estimated on the spectral slopes intersection
𝑅𝐸𝛽 𝑘𝐸𝛽 ∕𝑘𝑅 Zonostrophy index estimated using 𝑘𝐸𝛽
𝑅𝜖𝛽 𝑘𝜖𝛽∕𝑘𝑅 Zonostrophy index based on 𝑘𝜖𝛽
𝑅𝑆𝛽 𝑘𝑆𝛽 ∕𝑘𝑅 Zonostrophy index based on 𝑘𝑆𝛽
i
𝑡
b
t
s

Table 1 provides the expression of the non-dimensional parame-
ers of the problem (𝑅𝑒, 𝐸, 𝑅𝛽) as a function of (𝑢rms, ℎ0, 𝛺, 𝜈, 𝛽) or
lternatively (𝑢rms, 𝜖, 𝛺, 𝜈, 𝛽), where 𝜖 is approximated by Eq. (7). As
reviously mentioned, to model gas giants flows, both 𝑅𝑜 should be
mall and 𝑅𝑒 should be large, which can only be achieved with an
symptotically small 𝐸, hence the need for a large tank, rotating fast.
n our experiment, these constraints are fulfilled, as indicated by the
alues reported in Table 1. Note that our Ekman number is much
igher than that of Jupiter, and our Reynolds is much smaller, but
hese discrepancies compensate in the Rossby number which has the
ood order of magnitude. Physically, this means that we have the
ood ratio of inertial to Coriolis forces, but our experimental flow is
verly damped by bulk viscous effects which are vanishingly small on
upiter. We are nevertheless in the relevant regime, turbulent while still
ominated by rotation (𝑅𝑒 ≫ 1, 𝑅𝑜 ≪ 1).

.1.3. List of experiments
In Table 3, we report the physical and non-dimensional parameters

f the experiments that are used in the following of the paper. Because
f experimental constraints, it is not possible to vary independently the
hree non-dimensional parameters 𝐸, 𝑅𝑒 and 𝑅𝛽 . First, the essential
ontrol parameter that we have is the forcing intensity (i.e. indirectly
rms), which allows us to explore significantly different Reynolds num-
ers. However, increasing 𝑢rms also increases 𝑅𝛽 by decreasing the
elative importance of large-scale drag. Second, we cannot explore a
arge range of Ekman numbers because the rotation rate of the exper-
ment is fixed, as mentioned above. Third, for the three experiments
erformed at a different rotation rate, both 𝐸 and 𝑅𝛽 are modified since
hanging the rotation rate also modifies the 𝛽-effect by changing the
luid height.

.2. Quasi-geostrophic numerical model

To complement and strengthen the experimental results, we perform
umerical simulations. The goal is in particular to explore the sensitiv-
ty of the results to the forcing scale and pattern, which is difficult to
o experimentally. Indeed, it would require to design and build a new
ottom plate for each forcing pattern, and the numbers of inlets and
utlets (128) would be difficult to increase significantly. To numerically
odel the experiment, 3D direct numerical simulations (DNS) are not

dapted neither as they are very computationally demanding, in partic-
lar because the simulation has to resolve a turbulent flow with both
ery large scale structures (the jets) and thin Ekman boundary layers
hat are essential for the long term dynamics (see Cabanes et al., 2017).
nstead, we model the experiment using a quasi-geostrophic (QG), two-
imensional numerical model. QG models take advantage of the fast
ackground rotation, or equivalently the small Rossby number of the
ystem: since the geostrophic balance dominates the experimental flow,
he flow is quasi two-dimensional. The curvature of the free-surface as
ell as the friction over the bottom (Ekman pumping) induce three-
imensional effects, but their weakness allows their incorporation into
uasi-two-dimensional physical models. With a QG model, we can
6

Table 3
Parameters of the experiments and QG simulations used in the present paper. 𝑢rms
s averaged over the last 500 rotation times of each experiment (typically between
= 2500 𝑡𝑅 and 𝑡 = 3000 𝑡𝑅). 𝜖𝐸 is an estimate of the upscale energy transfer rate
ased on dissipation in the Ekman boundary layers (Eq. (7)). The Ekman number, 𝐸,
he Reynolds number 𝑅𝑒 and the zonostrophy index 𝑅𝛽 are defined in Table 1. The
uperscript ⋅𝐸 indicates that 𝑅𝐸𝛽 is estimated a priori using 𝜖𝐸 (see Table 2).

Label 𝛽 𝑢rms 𝜖𝐸 𝐸 𝑅𝑒 𝑅𝑜 𝑅𝐸𝛽
(m−1 s−1) (cm s−1) (m2 s−3) (× 10−7) (× 103) (× 10−3)

A 50.1 3.44 28.7 × 10−7 3.78 20.0 7.57 4.98
B 50.1 2.73 18.1 × 10−7 3.78 15.9 6.00 4.86
C 65.5 3.23 26.1 × 10−7 3.55 18.8 6.55 5.04
D 22.8 3.60 28.0 × 10−7 4.73 20.9 9.87 4.71
E 50.1 3.01 21.8 × 10−7 3.78 17.4 6.60 4.91
F 50.1 3.36 27.2 × 10−7 3.78 19.5 7.37 4.96
G 50.1 3.32 26.6 × 10−7 3.78 19.2 7.28 4.96
H 50.1 1.64 6.46 × 10−7 3.78 9.48 3.59 4.62
I 50.1 1.85 8.25 × 10−7 3.78 10.7 4.05 4.68
J 50.1 1.88 8.51 × 10−7 3.78 10.9 4.12 4.69
K 22.8 1.64 5.82 × 10−7 4.73 9.52 4.50 4.36
L 50.1 1.19 3.40 × 10−7 3.78 6.88 2.60 4.48
M 50.1 1.26 3.84 × 10−7 3.78 7.31 2.77 4.50
𝑁 50.1 0.92 2.07 × 10−7 3.78 5.36 2.03 4.37

QG1a 50.1 2.21 6.90 × 10−7 1.27 22.2 2.82 5.32
QG1b 50.1 3.06 9.00 × 10−7 0.60 44.5 2.67 4.93
QG1c 50.1 2.96 4.88 × 10−7 0.20 74.8 1.50 6.59
QG2 50.1 2.68 10.1 × 10−7 1.27 26.8 3.42 5.42
QG3 50.1 2.40 5.67 × 10−7 0.63 34.3 2.14 5.76
QG4 50.1 2.45 4.92 × 10−7 0.42 43.3 1.81 6.01

exactly match the experimental conditions in terms of Reynolds, Rossby
and Ekman numbers at a moderate computational cost, such that we
can run several simulations over time scales comparable with that of
the experiments (thousands of rotation times, or equivalently tens of
frictional time scales). This would have been inconceivable using 3D
direct numerical simulations.

In Appendix C, we derive the QG equations used in our numer-
ical code. The difference with the conventional QG model is that,
following Sansón and Van Heijst (2000, 2002) we retain higher order,
non-linear terms for the Ekman pumping and 𝛽-effect. We consider
a polar domain delimited by the outer and inner radii 𝑟𝑜 = 𝑅 and
𝑟𝑖 = 0.05𝑅, where 𝑅 is the total radius. The inner boundary, absent
in the experiment, is introduced to avoid the coordinate singularity
at the center of the domain. We use the polar coordinates (𝜌, 𝜙) and
denote (𝐞𝜌, 𝐞𝜙) the associated unit vectors (Fig. 2). We solve separately
the axisymmetric (zonal flow) and non-axisymmetric motions (see e.g.
Aubert et al., 2003). To this end, we perform a Reynolds decomposition
of the velocity field into an azimuthal average plus some fluctuations,
denoted with a prime:

⟨𝑋⟩𝜙 = 1
2𝜋 ∫

2𝜋

0
𝑋𝑑𝜙, (9)

𝑢𝜙 = ⟨𝑢𝜙⟩𝜙 + 𝑢′𝜙 = 𝑈𝜙(𝜌, 𝑡) + 𝑢′𝜙(𝜌, 𝜙, 𝑡) (10)

𝑢 = ⟨𝑢 ⟩ + 𝑢′ = 𝑈 (𝜌, 𝑡) + 𝑢′ (𝜌, 𝜙, 𝑡), (11)
𝜌 𝜌 𝜙 𝜌 𝜌 𝜌
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𝜁 = ⟨𝜁⟩𝜙 + 𝜁 ′ = 𝜕𝜌(𝜌𝑈𝜙)∕𝜌 + (𝜕𝜌(𝜌𝑢′𝜙) − 𝜕𝜙𝑢
′
𝜌)∕𝜌 (12)

In the following, all the variables denoted with a tilde are non-
dimensional using 1∕𝑓 as the time-scale, and the radius of the domain
𝑅 as the length-scale. For the fluctuations (non-axisymmetric modes),
we solve the 2D barotropic vorticity equation and associated Poisson
equation for the streamfunction:

𝜕𝜁
𝜕𝑡

+  (𝑞, 𝜓̃) −
𝐸1∕2
𝑅

2ℎ̃
𝛁̃𝜓̃ ⋅ 𝛁̃𝑞 =

𝐸𝑅
2

∇̃2𝜁 −
𝐸1∕2
𝑅

2ℎ̃
𝜁 (𝜁 + 1) + 𝐹 , (13)

𝜁 = − 1
ℎ̃
∇̃2𝜓̃ + 1

ℎ̃2
𝛁̃ℎ̃ ⋅ 𝛁̃𝜓̃ +

𝐸1∕2
𝑅

ℎ̃2
̃ (ℎ̃, 𝜓̃), (14)

where 𝑞 = (𝜁+1)∕ℎ̃ is the potential vorticity, 𝜓̃ is a modified streamfunc-
tion defined in Appendix C, 𝐸𝑅 = 𝜈∕(𝛺𝑅2) = (ℎ0∕𝑅)2𝐸 is the Ekman
number based on the radius, and 𝐹 is a forcing term described below.
̃ is the non-dimensional Jacobian operator in cylindrical coordinates

 (𝑎, 𝑏) = 1
𝜌̃

(

𝜕𝑎
𝜕𝜌̃

𝜕𝑏
𝜕𝜑

− 𝜕𝑏
𝜕𝜌̃

𝜕𝑎
𝜕𝜑

)

. (15)

qs. (13)–(14) are solved for all the non-axisymmetric modes on the
olar domain with free-slip boundary conditions for the outer and inner
oundaries. The free-slip boundary conditions are employed to avoid
igh computational costs due to the accumulation of strong vorticity
ear the boundaries, particularly for the lowest 𝐸 cases. We verified
hat a no-slip boundary condition on the outer boundary leads to
ualitatively similar results. For the axisymmetric mode (𝑈̃𝜌, 𝑈̃𝜙), we
irectly solve for the zonal flow evolution equation obtained by per-
orming a zonal average of the zonal component of the Navier–Stokes
quations (Aubert et al., 2003):

𝜕𝑈̃𝜙
𝜕𝑡

+ 𝑈̃𝜌
𝜕𝑈̃𝜙
𝜕𝜌̃

−
𝑈̃𝜙𝑈̃𝜌
𝜌̃

+ 𝑈̃𝜌 = −
⟨

𝑢̃′𝜌
𝜕𝑢̃′𝜙
𝜕𝜌̃

−
𝑢̃′𝜙𝑢̃

′
𝜌

𝜌̃

⟩

𝜙

+
𝐸𝑅
2

(

∇̃2𝑈̃𝜙 −
𝑈̃2
𝜙

𝜌̃2

)

, (16)

𝑈̃𝜌 =
𝐸1∕2
𝑅

2ℎ̃
𝑈̃𝜙. (17)

he derivation of the previous equations as well as the numerical
ethods employed to solve them can be found in Appendix C.

Note that the simulations are performed with the same fluid height
rofile as in the experiment, ℎ̃(𝜌̃) = ℎ̃min exp((|𝛽|𝑅∕𝑓 )𝜌̃), i.e. with the
ame topographic 𝛽-effect. However, we use the expression of the
kman pumping over a flat surface, and thereby neglect the bottom
oundary curvature. This is justified by the fact that the experimental
arameters were carefully chosen such that the bottom topography
s as small as possible in amplitude (resulting in a maximum height
ifference of 5.36 cm and a mean absolute slope of 22%). Furthermore,
he greatest slope is located at the center of the bottom plate, which is
ot resolved numerically. If the curvature of the bottom plate were to
e considered, the Ekman pumping term would contain a geometrical
actor involving the local slope of the bottom topography (Greenspan,
968; Gillet et al., 2007).

For now, we have introduced the forcing as an additional source of
orticity (term 𝐹 in Eq. (13)). The goal is to reproduce the experimental
orcing such that the QG numerical model can be used as a guide and
omplement the experimental exploration. In the experiment, because
f the Coriolis effect, each inlet or outlet generates respectively a small
yclone or anticyclone right above it. This process can be modeled
s a stationary source of vorticity in the form of positive or negative
aussian sources of vorticity of radius 𝓁𝑓 distributed on a prescribed
rray. We thus define 𝑁 forcing points distributed over the numerical
omain, and at each point, we place a Gaussian source of vorticity such
hat

̃ (𝑥̃, 𝑦̃) = 𝐹0
𝑁
∑

(−1)𝑖 exp
⎛

⎜

⎜

−

[

𝑥̃ − 𝑥̃𝑖
𝓁

]2

−

[

𝑦̃ − 𝑦̃𝑖
𝓁

]2
⎞

⎟

⎟

, (18)
7

𝑖=1
⎝

𝑓 𝑓
⎠

where (𝑥̃, 𝑦̃) are non-dimensional Cartesian coordinates, the pairs
𝑥̃𝑖, 𝑦̃𝑖), 𝑖 ∈ [[1, 𝑁]] are the center of each forcing vortex, 𝓁𝑓 is their
adius and 𝐹0 is the forcing amplitude. These vorticity sources are
istributed over a prescribed stationary array. Both polar and Cartesian
orcing arrays were tested. For the polar array, we chose the number of
orcing rings arbitrarily, then, the vorticity sources are distributed such
hat the distance between two rings and between two adjacent vortices
s approximately the same (this condition cannot be rigorously verified
ecause of the periodicity of the domain in the azimuthal direction).
here are as many positive as negative sources on each ring such that
he zonally-averaged forcing term is zero by construction (no direct
cceleration of the zonal flow). For the Cartesian forcing, we define the
rray on the square which encloses the circular domain. The number
f lines of the Cartesian array is chosen a priori and the sign of the
orticity sources alternates along lines and columns. The array is then
ropped to keep only sources fully within the circular domain. In any
ase, there is the same number of positive or negative vorticity sources
uch that there is no net angular momentum introduced by our forcing.
n terms of amplitude, in the simulations, we work with a uniform
mplitude over the domain. Experimentally, a uniform forcing requires
o force more strongly at higher radii because the fluid height increases,
hich is why being able to control each forcing ring independently is

mportant.
The parameters of the simulations discussed in the present paper

re summarized in Table 4. We discuss one simulation with a polar
orcing (QG1a) designed to match the experiment, two complementary
imulations at smaller Ekman (QG1b,c) and three simulations with a
artesian forcing and a progressively reduced distance between the
orticity sources to decrease the forcing scale compared to the experi-
ent (QG2,3,4). In the following, all the numerical results are shown

n dimensional form using the experimental parameters to allow for a
irect comparison with the experimental measurements.

. Qualitative observations

.1. Experimental flows

After reaching solid-body rotation, the forcing is turned on to reach
niform rms velocity fluctuations over the domain. We work with
orcing amplitudes above the threshold of the transition identified
n Lemasquerier et al. (2021). In this regime, zonal jets progressively
merge from the forced turbulent flow, with a transient lasting about
000 rotation periods (800 s), as seen on the space–time diagram of
ig. 12(a). During this transient, the jets, which initially emerge at
he scale of the forcing rings, drift and merge to self-organize at a
arger scale. A statistically-steady state is then achieved where three
o one prograde jets are observed depending on the forcing amplitude.
ig. 3(a, c) show two instantaneous velocity fields as measured by PIV
nce the statistically steady state is achieved. Both experiments are
n Regime II but correspond to different forcing amplitude, leading
o 𝑅𝑒 = 10.8 × 103 and 19.7 × 103 respectively (experiments J and

A of Table 3). Qualitatively, our experiments performed at higher
Reynolds number lead to broader and intensified zonal jets, as can be
seen in Fig. 3(b, d) which shows the zonal flow profile for the same
experiments. Since the prograde jets width increase with the forcing
amplitude, for our most extreme experiments, only one prograde jet
can fit in the experimental domain, whereas two to three prograde jets
can be obtained for the smallest 𝑅𝑒. As the forcing is increased, we
also notice that the prograde jets become less ‘‘wavy’’. Our hypothesis
is that for moderate 𝑅𝑒, the flow is close to the transition threshold and
thus quasi-resonant, as described in Lemasquerier et al. (2021). Farther
from the transition threshold, the resonant Rossby waves are less prone
to develop and interact with the jet.



Icarus 390 (2023) 115292D. Lemasquerier et al.
Table 4
Parameters of the quasi-geostrophic simulations used to complement the experimental results. 𝑁 is the number of vorticity sources, 𝛥𝑓 is the
average spacing between vorticity sources, 𝓁𝑓 is their radius, 𝐹0 is the forcing amplitude (Eq. (18)) and 𝐸𝑅 the Ekman number based on the
radius. For the Cartesian cases, 𝑁 is the number of sources on the square in which the disk in inscribed, and the number in parenthesis gives
the exact number of sources on the disk. The experimental parameters are given as a reference, 𝛥𝑓 and 𝓁𝑓 have been estimated by measuring
the vorticity above forcing injection and suction points at the very beginning of an experiment (see Figure 9 in Lemasquerier et al., 2021).
Label Forcing pattern 𝑁 𝛥𝑓 (𝛥𝑓 ) 𝓁𝑓 (𝓁𝑓 ) 𝐹0 (𝐹0) 𝐸𝑅
Exp Polar 128 (6 rings) 1.4 × 10−1 (7 cm) 5.6 × 10−2 (2.8 cm) 2 × 10−3 (0.5 s−2) 5.3 × 10−7

QG1a Polar 540 (12 rings) 6.9 × 10−2 (3.4 cm) 1.1 × 10−2 (5.4 mm) 5 × 10−3 (1.2 s−2) 1.2 × 10−7

QG1b Polar 540 (12 rings) 6.9 × 10−2 (3.4 cm) 1.1 × 10−2 (5.4 mm) 5 × 10−3 (1.2 s−2) 6 × 10−8

QG1c Polar 540 (12 rings) 6.9 × 10−2 (3.4 cm) 1.1 × 10−2 (5.4 mm) 5 × 10−3 (1.2 s−2) 2 × 10−8

QG2 Cartesian 242 (408) 8.3 × 10−2 (4.2 cm) 1.1 × 10−2 (5.4 mm) 5 × 10−3 (1.2 s−2) 1.2 × 10−7

QG3 Cartesian 482 (1716) 4.2 × 10−2 (2.1 cm) 1.1 × 10−2 (5.4 mm) 5 × 10−3 (1.2 s−2) 6.1 × 10−8

QG4 Cartesian 722 (4404) 2.8 × 10−2 (1.4 cm) 1.1 × 10−2 (5.4 mm) 5 × 10−3 (1.2 s−2) 4.1 × 10−8
Fig. 3. (a, c) Instantaneous velocity fields measured from PIV in the statistically steady state of (a) experiment J and (c) experiment A of Table 3. The vectors magnitude scale
is the same for the two plots. (b, d) Time-averaged zonally-averaged zonal flow in (b) experiment J and (d) experiment A of Table 3. The shaded area represents the envelope of
all the instantaneous profiles. Dashed lines represent the radii of the forcing rings.
8
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Fig. 4. Comparison between the zonal flow (black line) and the Reynolds stresses or eddy momentum fluxes (colored line) in the experiment J (a) and the simulation QG1a (b).
The left 𝑦-axis corresponds to the zonal flow velocity, and the right 𝑦-axis is for the Reynolds stresses. The color of the line represents the divergence of the Reynolds stresses.
When it is positive (red), it indicates a convergence of prograde momentum, and a divergence when it is negative (blue). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
In Lemasquerier et al. (2021), we show that in a classical quasi-
geostrophic model of the experiment, the zonal flow evolution equation
(16) reduces to

𝜕𝑈𝜙
𝜕𝑡

= − 1
𝜌2
𝜕⟨𝜌2𝑢′𝜌𝑢

′
𝜙⟩𝜙

𝜕𝜌
+. (19)

Here,  represents both bulk and parietal viscous dissipation. The first
term on the right-hand-side is the Reynolds stresses divergence, and
is responsible for accelerating the zonal flow. In Lemasquerier et al.
(2021), we show that at the very beginning of an experiment, the
zonal jets emerge following convergence of prograde momentum at
the location of the forcing rings because of the radiation of Rossby
waves (see Fig. 9(d) in Lemasquerier et al., 2021). Once in a fully
turbulent, quasi-steady state, we loose this very regular pattern seen
in the transient and the associated velocity correlations. However, the
zonal jets remain eddy-driven, as illustrated on Figure 4, where we
represent the time-averaged radial profile of the Reynolds stresses,
for experiment J and the reference simulation QG1a. It is clear that
the Reynolds stresses decrease in a prograde jet (prograde momentum
convergence), and increase in retrograde flows (prograde momentum
divergence).

3.2. Independence on the forcing scale

The QG numerical simulations can be used to verify that the zonal
flow in Regime II is not sensitive to the detail of the forcing pattern in
terms of length scale and distribution (polar versus Cartesian).

The first step was to find a numerical setup for which the obtained
solution reproduces well the experimental observations. With this in
mind, we performed simulations with a polar forcing pattern. The
first important result is that in our QG numerical simulations, we
are able to retrieve the transition between the two regimes identified
experimentally in Lemasquerier et al. (2021), with a transition between
locally and globally forced jets (not shown). As this transition is not
the focus of the present paper, we focus only on simulations in Regime
II. By slightly tuning the forcing scale and amplitude, we define a
reference simulation which reproduces best the experimental flow,
labeled QG1a in Table 4. The corresponding space–time diagram is
shown in Appendix A, Fig. 12(c), and shows the emergence of zonal
jets with properties very close to the experimental ones. Fig. 5 shows
the vorticity and azimuthal velocity fields for experiment J and four
QG simulations, once in the statistically steady state. Comparing panels
(a) and (b) of Fig. 5 shows that the simulation QG1a exhibits three
prograde jets of similar amplitude and width compared to the experi-
ment. This reference simulation shows that for the QG simulations to
best reproduce the experimental results, we should use forcing patterns
with a typical scale smaller than the experimental pattern (540 inlets
and outlets arranged on 12 forcing rings in the present case). This is
not surprising given that the QG model imposes a purely barotropic
and stationary forcing, whereas in the experiment, three-dimensional
9

effects affect the forcing injections and suctions which are not perfect
gaussian sources of vorticity aligned along the rotation axis, and which
are very likely to generate smaller and more fluctuating structures.

Fig. 5(c) shows the results of simulation QG2 performed with a
Cartesian forcing pattern, of approximately the same length scale as in
the polar case discussed above, QG1a. The resulting statistically steady
state is similar to what is obtained with a polar array. This demonstrates
that the polar distribution of the forcing does not significantly influence
the late-time jet profile. We note however that whereas the jets do not
drift in the experiments and the polar simulation QG1a, the cartesian
forcing seems to allow for a slow radial drift of the prograde jets
(Fig. 12(e)). This is probably because the forcing cannot be strictly
equal on both sides of each jet given its Cartesian distribution. This
might also explain the drift reported in Cabanes et al. (2017) where
a Cartesian forcing pattern was used in the experiment. We wish
to underline that in our cartesian forcing simulations, the jets drift
even if the 𝛽-effect is uniform. Hence, the drift mechanism should be
captured with models in the 𝛽-plane approximation (see e.g., Cope,
2021). Second, while useful experimentally, it appears that the polar
forcing pattern artificially locks the jets at a fixed radial position. Note
that we performed experiments where the power of each forcing ring
fluctuates randomly around a prescribed mean, and experiments where
the forcing alternates between two groups of three rings, but we never
observed a long-term drift.

Finally, Fig. 5(d, e) show the result of simulations performed with
a Cartesian pattern of smaller forcing scale (QG3 and QG4). We recall
that for these simulations, we decrease the forcing scale by dividing
the distance between vorticity sources by a factor 2 (see Table 4).
The decrease in the forcing scale is evident on the vorticity maps
which exhibit finer structures, however, qualitatively, the late-time jets
amplitude and width do not vary significantly. Note that comparing the
number and position of the prograde jets is not robust, given that the
system is multistable: as illustrated in Fig. 6, the number and position of
the jets can vary for different realizations of the exact same simulation.
This multistability is also observed in the experiment. Hence, we argue
that the fact that simulation QG4 loses the most central prograde jet
is not significant. More generic, idealized simulations and systematics
should be performed to make this result more robust. Notably, Scott
and Dritschel (2019) demonstrated in the framework of potential vor-
ticity mixing that the late-time resulting zonal jets profile is the same
whether the forcing is performed at large scale or at small scale, the
important parameter being the zonostrophy index 𝑅𝛽 only. This study
could be extended to our geometry, but this is beyond the scope of the
present work. Here, our point is that modifying the experimental setup
to perform a forcing at smaller scale does not seem to be extremely
valuable, since the jets dynamics appears to be unaffected by changes
to the forcing scale.
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Fig. 5. Instantaneous maps of vorticity 𝜁 (left side of each panel) and azimuthal velocity 𝑢𝜙 (right side of each panel). (a) Experiment J. (b) References simulation QG1a with a
polar forcing. (c, d, e) Cartesian forcing simulations (QG2, QG3 and QG4) with a progressively reduced forcing scale.
4. Spectral analysis

4.1. Spectral properties and signature of the zonostrophic regime

We now turn to a spectral analysis of the flow observed experi-
mentally and numerically. The goal of this section is to assess whether
Regime II is consistent with the predictions in the regime of zonos-
trophic turbulence (Galperin et al., 2010), and hence relevant to the
regimes of turbulent zonal jets observed on Jupiter (Choi and Show-
man, 2011; Galperin et al., 2014b). This is not evident a priori given
that zonostrophic turbulence was described from simulations of two-
dimensional turbulence on the sphere. Whether such regime can be
achieved in a fully three-dimensional flow – yet constrained by rotation
– still remains to be addressed.

4.1.1. Zonal and residual kinetic energy spectra
In the zonostrophic turbulence regime, the turbulent flow shows

profound anisotropy, and the kinetic energy spectra computed from the
10
axisymmetric component of the flow 𝐸𝑧 (hereafter, zonal spectrum) and
from the residual non-axisymmetric component 𝐸𝑟 (residual spectrum)
follow different scalings similar to those in 𝛽-plane turbulence (Huang
et al., 2000; Sukoriansky et al., 2002; Galperin et al., 2006; Sukoriansky
et al., 2007). Assuming isotropy for intermediate wave number modes
(scales smaller than the transitional scale but larger than the forcing
scale), the residual spectrum is expected to be compatible with the
inverse cascade branch of the Kolmogorov–Batchelor–Kraichnan theory
of two-dimensional turbulence:

𝐸theo
𝑟 (𝑘) ∼ 𝐶𝐾𝜖

2∕3𝑘−5∕3, (20)

where 𝑘 is the total wavenumber, and 𝐶𝐾 ≈ 6 is the universal
Kolmogorov–Kraichnan constant (Boffetta and Ecke, 2012). On the
contrary, the zonal spectrum follows a steeper slope:

𝐸theo
𝑧 (𝑘𝑟) ∼ 𝐶𝑍𝛽

2𝑘−5𝑟 , (21)

with 𝑘𝑟 the wavenumber in the direction orthogonal to the zonal flow,
i.e. the radial wavenumber in our case. 𝐶 is a constant of order
𝑍
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Fig. 6. Maps of azimuthal velocity once in steady state, illustrating the multistability. (a–c) Experiments: three realizations with the same forcing as Exp.J. (d–f) QG simulations:
three realizations with the parameters of simulation QG1a. The initial condition of the simulations is a fluid at rest, plus a random noise of non-dimensional amplitude 1 × 10−3

added to the vorticity field. For each realization, the seed of the initial noise was changed. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
unity (Chekhlov et al., 1996; Huang et al., 2000), whose value was
shown to lie around 0.5 by numerical simulations on the sphere (Suko-
riansky et al., 2002), around 2 for Jupiter (Galperin et al., 2014b) and
from 1.7 to 3.7 in the experiments of Cabanes et al. (2017). The theory
of zonostrophic turbulence shows that the kinetic energy spectra can
provide a useful insight on the exchange of energy between scales as
well as a diagnostic tool to determine to what extent a given flow is
in the regime of zonostrophic turbulence. In this section, we compare
the predictions from this theory with our experimental measurements,
complemented by QG simulations.

Given the rotational symmetry of the experimental 2D velocity
fields obtained from PIV, we perform a Bessel–Fourier decomposition
relevant to the polar system of coordinates (Wang et al., 2008), for
which details can be found in Appendix D. Owing to the periodicity
in 𝜙, the finite domain in radius, 𝜌 ≤ 𝑅, and the zero-value boundary
condition at 𝜌 = 𝑅, the relevant basis functions 𝛹𝑛𝑚 to decompose
our fields are separable in polar coordinates and consist in a complex
exponential for the angular part, and normalized Bessel functions for
the radial part:

𝛹𝑛𝑚(𝜌, 𝜙) = 1
√

2𝜋𝑁𝑛𝑚
𝐽𝑚(𝑘𝑛𝑚𝜌)𝑒𝑖𝑚𝜙, (22)

with 𝑁𝑛𝑚 = 𝑅2

2
𝐽 2
𝑚+1(𝛼𝑛𝑚). (23)

𝐽𝑚 is the Bessel function of the first kind of order 𝑚, 𝛼𝑛𝑚 is the 𝑛th
positive zero of 𝐽𝑚, and the radial wavenumber 𝑘𝑛𝑚 = 𝛼𝑛𝑚∕𝑅 takes
discrete values since the domain is bounded. For each 𝛹𝑛𝑚, 𝑚 is the
number of periods in the angular direction, and 𝑛 − 1 corresponds to
the number of zero crossings in the radial direction. The value of 𝑘𝑛𝑚
is thus an indication of the scale of the basic patterns, similarly to the
normal Fourier transform. Any function, including our velocity fields
𝒖 = (𝑢𝜌, 𝑢𝜙) can be decomposed on this basis such that

𝒖(𝜌, 𝜙) =
∞
∑

𝑛=1

+∞
∑

𝑚=−∞

̂̂𝒖𝑛𝑚𝛹𝑛𝑚(𝜌, 𝜙), (24)

where the double hat indicates the double transform. The Bessel–
Fourier transform coefficients are

̂̂𝒖𝑛𝑚 =
𝑅 2𝜋

𝒖(𝜌, 𝜙)𝛹∗ (𝜌, 𝜙)𝜌𝑑𝜌𝑑𝜙, (25)
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∫0 ∫0 𝑛𝑚
where the star denotes the complex conjugate. For our experimental
results, the PIV fields are obtained on a regular Cartesian grid. To
evaluate the coefficients ̂̂𝒖𝑛𝑚 = ( ̂̂𝑢𝜌,𝑛𝑚, ̂̂𝑢𝜙,𝑛𝑚), we perform a spline
interpolation of the velocity field on a polar grid where the radial
and azimuthal parts of the transform are separable. Since the velocity
field is discrete, the coefficients (25) are computed using fast Fourier
transform and discrete Hankel transform algorithms. The angular part
is done using the Matlab fft function, and the radial part is per-
formed using the Matlab algorithm provided by Guizar-Sicairos and
Gutiérrez-Vega (2004). Using the Parseval relation which arises from
the orthogonality of the basis functions, kinetic energy spectra can be
computed directly in the spectral space, and are proportional to ̂̂𝒖𝑛𝑚 ̂̂𝒖∗𝑛𝑚
(see Appendix D). We denote 𝐸𝑛𝑚 the kinetic energy contained at the
wavenumber 𝑘𝑛𝑚. We distinguish the kinetic energy contained in the
zonal mode characterized by 𝑚 = 0 and denoted 𝐸𝑧, and the residual
kinetic energy spectra 𝐸𝑟, which is the sum of the contribution of all
the non-zonal modes, 𝑚 ≠ 0.

Fig. 7(a, b) show the zonal and residual kinetic energy spectra
for experiments M and B of Table 3. The spectra are computed once
the statistically steady state is achieved and time-averaged over 50
statistically-independent spectra spanning 600 rotation times. Exp.
B has a Reynolds number about twice higher compared to Exp. M
(𝑅𝑒 ∼15,900 versus 7310). The energy spectra provide different infor-
mation depending whether we are looking at scales smaller or larger
than the forcing scale. Experimentally, the forcing scale should lie
around the mean distance between two injections on the bottom plate,
i.e. 𝛥𝑓 ≈ 7 cm (𝑘𝑓 ∼ 90 radm−1). At scales smaller than the forcing
scale (shaded area, 𝑘 > 𝑘𝑓 ), the residual spectra exhibit a slope close
to 𝑘−4. This slope is steeper than the −3 slope expected from the direct
cascade of enstrophy, but this behavior is commonly observed in both
numerical simulations and experiments of 2D turbulence, and may be
due either to friction effects, or to the fact that we do not use any
logarithmic correction (see Boffetta and Ecke, 2012, for a review). At
scales larger than the forcing scale (𝑘 < 𝑘𝑓 ). We observe that the
residual energy spectra are compatible with a −5∕3 slope consistent
with the presence of an inverse cascade of energy. This slope stops as
soon as 𝑘𝛽 is reached, meaning that the isotropic inverse cascade does
not continue past the anisotropisation threshold. The dark green and
blue lines in Fig. 7(a, b) show the zonal energy spectra. During the
transient (thin dark blue line in panel (b)), the zonal energy first peaks
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Fig. 7. Kinetic energy spectra for two different experiments and three QG numerical simulations. We separate the zonal (𝐸𝑧) and residual (𝐸𝑟) contributions. The dashed–dotted
lines correspond to the theoretical predictions given by Eqs. (20) and (21). The shaded area correspond to scales smaller than the forcing scale, 𝑘 > 𝑘𝑓 . (a) Experiment M of

able 3. (b) Experiment B of Table 3. The thin dark blue lines correspond to 𝐸𝑧 computed during the transient of the experiment. For 𝐸theo
𝑟 , we take 𝐶𝐾 = 6 and find 𝜖 that best

its the experimental spectra. For 𝐸theo
𝑧 , since 𝛽 is known, we find 𝐶𝑍 that best fits the data. (c–e) Spectra derived from QG numerical simulations with decreasing forcing scale

ompared to the experiment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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lose to the forcing scale, meaning that the zonal flow is first locally
orced. Once in the statistically steady state and for both experiments

and B, the zonal spectra peak at a larger scale meaning that there
s a progressive energy transfer towards scales larger than the forcing
cale. As predicted in the zonostrophic regime, the spectrum follows a
teep 𝑘−5 slope. This means that the zonal flow profile is extremely
mooth with localized sharp features leading to a rapidly decaying
pectral slope. We note that the 𝑘−5 slope seems to continue below the
orcing scale. Even if this was also observed in previous studies (Zhang
nd Afanasyev, 2014; Cabanes et al., 2017, 2018), we argue that it is
ot a robust feature given that it corresponds to scales smaller than
he energy injection scale. For experiments M and B, the zonal energy
eaks at 𝑘 ∼ 30 rad m−1 and 24 rad m−1 respectively, corresponding
o wavelengths of 21 cm and 26 cm which represent the large radial
avelength of the zonal jets. At the largest scales, the zonal 𝑚 = 0 mode

ontains more energy than all the residual modes. More precisely, the
ime-averaged total kinetic energy in the flow is of 7.94 × 10−5 m2 s−2 in
xp. M and the zonal mode contains 58% of it, whereas for Exp. B, the

−4 2 −2
12

otal kinetic energy is of 3.73 × 10 m s and the zonal mode contains
8% of it. This is significantly larger than our experiments in Regime I,
here the zonal flow contains at most ∼ 20% of the total kinetic energy

not shown, see Lemasquerier et al., 2021 for more details).

.1.2. Rate of upscale energy transfer
Previously, we estimated the upscale energy transfer of the inverse

ascade, 𝜖𝐸 , by assuming that dissipation consists in Ekman friction
nly (Eq. (7)). The amplitude of the theoretical residual spectra can
e used to actually measure 𝜖 (Eq. (20)) which is otherwise difficult
o do experimentally. To do so, we take the commonly accepted value
𝐾 ≈ 6 for the Kolmogorov–Kraichnan constant (Boffetta and Ecke,
012) and deduce 𝜖 from the fit of the −5∕3 slope on the spectra. The
educed values, denoted 𝜖𝑆 , are reported in Table 5, and have the
orrect order of magnitude compared to the estimated 𝜖𝐸 (Table 3).
he precise comparison between the two, shown in Fig. 8(a), shows
small deviation from a pure proportionality relationship. For the

onal spectra, since 𝛽 is known, we report in Table 5 the values of 𝐶𝑍
corresponding to our fits (Eq. (21)). 𝐶𝑍 is supposedly universal in the

zonostrophic regime. According to the numerical simulations reported
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Table 5
Parameters measured from the spectral analysis. We use 𝐶𝐾 = 6 and deduce 𝜖𝑆 from Eq. (20) using a fit of the residual spectra for wavenumbers
between the forcing wavenumber and the peak energy wavenumber. The −5∕3 slope of the fit is imposed, and the prefactor is determined
using Matlab’s fit functiona with least squares fit type. The confidence interval corresponds to the 95% confidence bounds. The constant 𝐶𝑍
is determined by a fit on the −5 slope of the zonal spectra, since 𝛽 is known (Eq. (21)). The transitional wavenumber based on the spectral
slopes intersection is denoted 𝑘𝑆𝛽 whereas the transitional wavenumber based on 𝜖 only is denoted 𝑘𝜖𝛽 (Eq. (26)). 𝑘𝑅 is the Rhines wavenumber
(Eq. (2)), 𝑅𝑆𝛽 = 𝑘𝑆𝛽 ∕𝑘𝑅 and 𝑅𝜖𝛽 = 𝑘𝜖𝛽∕𝑘𝑅. 𝐿𝑇 is the Thorpe scale measured experimentally and discussed in Section 5.

Label 𝜖𝑆 𝐶𝑍 𝑘𝑆𝛽 𝑘𝜖𝛽 𝑘𝑅 𝑅𝑆𝛽 𝑅𝜖𝛽 𝐿𝑇
(× 10−7m2 s−3) (radm−1) (radm−1) (radm−1) (cm)

A 70.8 ∈ [61.3, 81.7] 0.32 46.3 112.2 27.2 1.72 4.16 2.61
B 30.3 ∈ [26.5, 34.7] 0.27 52.6 132.9 30.5 1.73 4.39 2.11
C 55.6 ∈ [43.8, 70.5] 0.13 43.9 138.3 32.1 1.38 4.35 2.11
D 96.4 ∈ [78.9, 117] 0.86 36.7 65.7 18.2 2.06 3.69 3.51
E 47.0 ∈ [42.2, 52.4] 0.27 48.3 121.7 29.1 1.67 4.22 2.23
F 66.3 ∈ [58.2, 75.5] 0.27 44.6 113.7 27.6 1.63 4.16 2.72
G 49.0 ∈ [41.6, 57.7] 0.25 46.5 120.7 27.6 1.69 4.39 2.60
H 7.69 ∈ [6.87, 8.61] 0.13 56.5 174.8 39.3 1.44 4.47 1.99
I 8.73 ∈ [5.78, 13.2] 0.21 62.7 170.5 36.9 1.70 4.63 1.57
J 8.37 ∈ [5.66, 12.4] 0.18 60.4 171.9 36.6 1.65 4.71 1.80
K 5.09 ∈ [4.24, 6.13] 0.38 51.8 118.4 26.7 1.96 4.49 2.56
L 4.44 ∈ [4.03, 4.90] 0.11 59.3 195.1 46.1 1.29 4.24 1.38
M 4.78 ∈ [4.17, 5.47] 0.10 56.2 192.3 45.0 1.26 4.32 1.35
𝑁 1.70 ∈ [1.12, 5.83] 0.06 59.6 236.4 52.2 1.15 4.54 0.98

QG1a 25.4 ∈ [20.7, 31.1] 0.25 53.3 137.7 30.6 1.61 3.55 1.89
QG1b 49.8 ∈ [36.1, 68.8] 0.57 59.6 120.4 32.3 1.69 3.78 2.53
QG1c 20.0 ∈ [16.2, 24.9] 0.37 62.5 144.4 31.80 2.02 3.91 1.99
QG2 84.1 ∈ [69.3, 102] 0.43 49.2 108.4 33.6 1.58 4.09 2.38
QG3 46.2 ∈ [41.8, 51.1] 0.41 54.5 122.2 28.6 2.08 4.21 2.94
QG4 42.3 ∈ [38.0, 47.1] 0.67 64.3 124.4 29.07 2.15 4.97 2.74

ahttps://mathworks.com/help/curvefit/fit.html.
Fig. 8. Comparison between estimates of the upscale energy transfer rates. Circles: experiments. Diamonds: QG simulations. (a) Upscale energy transfer rate measured on the
spectra, 𝜖𝑆 , versus the one estimated assuming pure dissipation by Ekman friction, 𝜖𝐸 (Eq. (7)). (b) 𝜖𝑆 versus the transfer rate deduced from the Thorpe scale, 𝜖𝑇 , assuming that
𝐿𝑇𝛽 = 𝐿𝑇 ∕0.47 (Fig. 11(b)) and 𝜖𝑇 = (𝐿𝑇𝛽 ∕2𝜋)

5𝛽3. Vertical error bars account for the uncertainty in 𝜖𝑆 due to the uncertainty in the slope measured on the spectra (see Table 5).
Horizontal error bars account for the standard deviation when measuring the Thorpe scale.
in Sukoriansky et al. (2002), Galperin et al. (2006) and Sukoriansky
et al. (2007), it should lie around 0.5. Our experimental measurements
show that 𝐶𝑍 ∼ 0.1–0.3 for all of our experiments despite very different
upscale energy transfer rate, which confirms the idea of a universal
constant. Its value is smaller for our weakest experiments (L, M, N),
probably because these experiments are only slightly super-critical with
respect to the transition from Regime I to II described in Lemasquerier
et al. (2021). We also note that our value for 𝐶𝑍 is smaller than that
of Cabanes et al. (2017) who found 𝐶𝑍 ∼ 1.7–3.7. This difference may
come from the fact that the experiments of Cabanes et al. (2017) are
not in the 𝛽-plane framework since 𝛽 is strongly varying with radius.
The 𝛽 parameter to use in Eq. (21) is thus uncertain, whereas in our
case 𝛽 is uniform and uniquely defined. In addition, the forcing scale
in Cabanes et al. (2017) is twice larger than the present one, and
close to the transitional scale as we discuss later. Consistently, Galperin
et al. (2006) report that in the case of a too small scale separation
between the forcing scale and the transitional scale, the spectra exhibit
non-universal behaviors.
13
To complement the experiments, we performed the same spectral
analysis on the QG simulations. The results are reported in Table 5.
The parameters measured on the reference simulation, QG1a, are quan-
titatively consistent with the spectral parameters measured from the
experimental results, for both 𝜖𝑆 and 𝐶𝑍 .

4.1.3. Zonostrophy index
The intersection of the theoretical −5∕3 (Eq. (20)) and −5 (Eq. (21))

slopes defines a spectral transitional wavenumber 𝑘𝑆𝛽 , which can be
expressed as

𝑘𝑆𝛽 =
(

𝐶𝑍
𝐶𝐾

)3∕10 ( 𝛽3

𝜖𝑆

)1∕5

⏟⏞⏞⏟⏞⏞⏟
𝑘𝜖𝛽

. (26)

This scale thus defines the threshold of spectral anisotropy. In our
case, since 𝐶𝐾 = 6 and 𝐶𝑍 ∼ 0.1–0.3, the prefactor (𝐶𝑍∕𝐶𝐾 )3∕10 is
of about 0.29–0.41. The spectral transitional wavenumber, 𝑘𝑆𝛽 is thus
less than half that based on the values of 𝜖𝑆 and 𝛽 only, denoted 𝑘𝜖 .
𝛽

https://mathworks.com/help/curvefit/fit.html
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Both 𝑘𝑆𝛽 and 𝑘𝜖𝛽 are reported in Table 5 for our selected experiments.
We additionally report the values of the Rhines wavenumber 𝑘𝑅, based
n the total rms velocity. The Rhines and transitional scales are also
ndicated on the experimental spectra, Fig. 7(a, b). Finally, the last
wo columns of Table 5 report the zonostrophy index with or without
sing the prefactor on the transitional wavenumber: 𝑅𝑆𝛽 = 𝑘𝑆𝛽 ∕𝑘𝑅 and
𝜖
𝛽 = 𝑘𝜖𝛽∕𝑘𝑅. The spectral zonostrophy index of our experiments lies
etween 1.15 and 2.06, whereas without the prefactor on 𝑘𝛽 , we obtain
alues between 3.69 and 4.71. The QG simulations again support this
esult, with 𝑅𝑆𝛽 ∼ 1.61 and 𝑅𝜖𝛽 ∼ 3.55 for the reference simulation QG1a.

The moderate values of 𝑅𝑆𝛽 deduced from our spectral analysis
uestion the extent to which our experiments are in the zonostrophic
egime. Using 2D barotropic simulations on the sphere, Galperin et al.
2006) and Sukoriansky et al. (2007) found 𝐶𝑍 ∼ 0.5 and 𝐶𝐾 ∼ 6

(prefactor (𝐶𝑍∕𝐶𝐾 )3∕10 ∼ 0.5), and a lower bound for the zonostrophic
regime 𝑅𝑆𝛽 ≳ 2.5. With values below 2.5, we would then be in the
transitional regime between the dissipation-dominated regime and the
zonostrophic turbulence. But since we measure 𝐶𝑍 ∼ 0.1–0.3, the
prefactor is reduced, and the threshold should be rescaled as 𝑅𝑆𝛽 ≳ 1.8.
n addition, the 2.5 threshold in 𝑅𝛽 is only indicative (the boundary
etween the regimes is not a strict proportionality relationship, and
mplies an offset, see Fig. 13.2 in Galperin et al., 2019). We also
ecall that the boundaries between zonostrophic and friction-dominated
egimes have been obtained in the very specific case of a purely two-
imensional flow on the sphere, which significantly differs from our
etup. That being said, in Galperin et al. (2006) and Sukoriansky et al.
2007), the authors in fact use the spectra as a diagnostic tool to
etermine the flow regime. In other words, the simulations considered
n the zonostrophic regime are those where the predicted spectra
re recovered, with a universal behavior and a 𝐶𝑍 ∼ 0.5 constant.
onsistently, we argue that one should rather look at the spectra to
etermine in which regime we stand, and not the absolute value of the
onostrophy index alone. The important differences between our 3D
xperiments and their 2D simulations on the sphere is very likely to in-
uce significant differences in the threshold of the zonostrophic regime.
he fact that we recover a −5 steep slope for the zonal spectrum,
nd that the zonal flow contains more energy than the fluctuations at
arge scales is somewhat more robust and physically meaningful that
he absolute value of 𝑅𝛽 alone. The zonostrophy index is nevertheless
seful to compare the degree of zonostrophy of different experiments,
s soon as it is computed the same way for each experiment. This is
hat was done to plot Fig. 1, where we compare various experiments
n zonal jets.

.2. Influence of the forcing scale

An important point that we want to discuss is the influence of the
orcing scale. Galperin et al. (2006) underline that the zonostrophic
egime is not defined by a single inequality on 𝑅𝛽 , but rather a series of
nequalities expressed as: 30∕𝑅 ≤ 8𝑘𝐸 ≤ 2𝑘𝛽 ≤ 𝑘𝑓 , in their specific 2D

simulations on the sphere, where 𝑅 is the radius of the sphere, and we
recall that 𝑘𝑓 is the forcing wavenumber. The last inequality requires
the forcing to act at a scale smaller than half the scale at which the
eddies start to feel the 𝛽-effect. Physically, this constraint can be seen
as the need for a significant Kolmogorov–Kraichnan inertial range to
exist such that an isotropic inverse cascade is able to develop between
𝑘𝑓 and 𝑘𝛽 . Practically, when the forcing scale is too large, Galperin
et al. (2006) report that non-universal behaviors are observed on the
spectra, without giving much additional details. In environmental flows
(oceans and planetary atmospheres), typically, the forcing acts at a
scale smaller than the scale of turbulence anisotropisation 𝐿𝛽 by a
factor 2 to 3 (Galperin et al., 2019, table 13.1). In our experiment,
and as discussed previously, we can estimate that the forcing scale
is in fact about one to twice 𝐿𝜖𝛽 . The forcing is thus already directly
influenced by the 𝛽-effect, which is quite clear on the fluid response
at the earliest times of our experiments (see Fig. 9 in Lemasquerier
14

P

et al., 2021). The differences in the forcing mechanism and forcing
scale may explain the rather non-universal estimates of 𝐶𝑍 obtained
in the past from simulations on the sphere, Cassini measurements of
Jupiter’s zonal flows and experiments. Second, it is probable that with a
rather large forcing scale, we prevent the initial isotropic inverse energy
cascade — an anisotropic cascade is present since the jets scale remains
larger than the forcing scale. Since we do obtain the scaling expected
in the zonostrophic regime, our experiments demonstrate that the scale
of the forcing is not such an important parameter for the zonal flow to
develop at large scales, and that a steep zonal spectra may develop even
if 𝑘𝑓 ∼ 𝑘𝛽 . To verify this hypothesis, we compute kinetic energy spectra
from simulations QG2, 3 and 4. We recall that for these simulations, we
decrease the forcing scale by dividing the distance between vorticity
sources by a factor 2 (see Table 4). The spectra corresponding to the
steady state flows are represented in Fig. 7(c–e). It is clear that as the
forcing scale is reduced the scale separation between 𝑘𝑓 (beginning of
the shaded area) and 𝑘𝛽 (intersection between the residual and zonal
spectra) is increased, and a slope consistent with a −5/3 power law
appears in that range.

To have a better scale separation between the forcing scale and
the transitional scale, another possibility is to decrease the rotation
rate, because it would decrease the free surface curvature, decrease
the topographic 𝛽-effect, and hence increase 𝐿𝛽 . We did not explore
various rotation rates in the present study because the bottom plate
was designed for a rotation rate of 75 RPM only. Second, one should
keep in mind that when reducing the 𝛽-effect, the width and distance
between the zonal jets will increase, and consequently finite-size effects
might become too important. Third, decreasing the rotation rate will
increase the Rossby and Ekman numbers, and the system will become
less rotationally-constrained.

To sum up, the important conclusions of our spectral analysis are
that:

1. Our experiments in Regime II are consistent with the picture of
zonostrophic turbulence, both in terms of slope and amplitude
of the theoretical spectra, which confirms their relevance to gas
giants applications. This constitutes the first fully-experimental
validation of the zonostrophic theory in a completely three-
dimensional framework;

2. The absence of scale separation between 𝑘𝑓 and 𝑘𝛽 does not
impede the establishment of a steep 𝑘−5 slope for the zonal
spectrum. Said differently, the zonal velocity profile obtained is
not strongly sensitive to the forcing scale, at least in the range
explored in the present study;

3. If one wishes to reach the regime of a well-developed isotropic
inverse energy cascade, the goal should be to decrease the
forcing scale, which is then a further experimental challenge.

5. Global and local potential vorticity mixing

We now turn to an analysis of the potential vorticity mixing, and use
it to quantify turbulent dissipation rates independently of the spectral
analysis presented in the previous section.

5.1. Staircasing

In the inviscid limit, the quasi-geostrophic model of the experimen-
tal flow reduces to the material conservation of the potential vorticity
(PV) 𝑞 defined as

𝑞(𝜌, 𝜙, 𝑡) =
𝜁 (𝜌, 𝜙, 𝑡) + 𝑓

ℎ(𝜌)
. (27)

s mentioned in the introduction, in the framework of PV mixing, nar-
ow prograde jets correspond to strong gradients of PV whereas large
etrograde jets coincide with regions of weak gradients, leading to the
stablishment of a PV staircase. In Fig. 9(a, d), we plot instantaneous
V maps for the experiments J and A, which correspond to increasing
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Fig. 9. Illustration of potential vorticity mixing for experiments J (first row) and A (second row). (a, d) Instantaneous PV maps. (b, e) PV profiles. The dashed black line is the
background PV profile, 𝑓∕ℎ, the continuous black line is the time and zonally-averaged PV profile ⟨𝑞⟩𝜙(𝜌), and the purple line is the equivalent latitude PV profile 𝑞(𝜌𝑒𝑞). The gray
lines show the variability of the PV profiles before performing the zonal average. The gray dashed–dotted line is the equivalent staircase 𝑞𝑠 defined in the text. The inserts show
the radial derivative of each PV profile. The stars show the locations of PV jumps selected to compute the equivalent staircase. (c, f) Instantaneous PV profile at a fixed angular
position 𝑞(𝜌, 𝜙0). Gray line: before sorting, Blue line: after sorting. The Thorpe scale deduced from the sorting process for that specific angle 𝜙0 is indicated at the top of each
panel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Reynolds numbers. Because the fluid height ℎ increases exponentially
with radius, the background PV profile, 𝑓∕ℎ, obtained when the flow
is at rest in the rotating frame, is maximum at the center and decreases
smoothly towards the edge of the tank. When zonal jets develop, the PV
maps show that the PV does not decrease smoothly radially, but instead
thin areas of sharp gradients develop. In Fig. 9(a, d), we represent
the associated time-averaged and azimuthally-averaged PV profiles,
⟨𝑞⟩𝜙(𝜌). The steps are more readily visible on these profiles, and each of
them corresponds to the presence of a prograde jet, whereas the regions
in between are supporting a retrograde flow. Despite significantly in-
creasing 𝑅𝑒, and thus increasing the degree of mixing, the ‘‘staircasing’’
remains moderate even for our most extreme experiments.

Performing a Eulerian zonal average is the most straightforward
way of obtaining the mean PV profile as a function of radius. This
procedure works well when the jets are straight with no or weak
meanders. However, Dritschel and Scott (2011) suggest that if the zonal
jets are meandering, the zonal average can smear out the locally sharp
PV gradients, and thereby underestimate the staircasing. Instead of per-
forming a zonal Eulerian mean, the authors rather suggest to perform
an average along the lines of constant PV to represent radial profiles of
PV or velocity. Since our zonal jets are sometimes strongly meandering,
15
especially at moderate forcing amplitude, we apply their procedure to
compute PV profiles. The method is the following: PV contours are
computed from an instantaneous PV map, then each contour is assigned
an equivalent latitude (or radius). The equivalent radius for a given
PV contour  is defined as the radius of the circular contour which
encloses the same area as . We can then plot the PV of each contour
as a function of the equivalent radius, denoted 𝑞(𝜌eq). This procedure
was performed using codes developed by David Dritschel (personal
communication). The corresponding results are plotted as pink lines
on Fig. 9(b, e). The insert on panel (b) shows that the PV gradients
are only very slightly stronger in the prograde jets with this method.
Our conclusions are hence unchanged: the degree of staircasing is only
moderate in our experiments, even in our most extreme cases.

To provide a more quantitative estimate of the degree of staircais-
ing, we use the method employed by Scott and Dritschel (2012). For
each mean PV profile ⟨𝑞⟩𝜙, we define an equivalent staircase, 𝑞𝑠 such
that the area below the curve is preserved, but with constant PV be-
tween each jump (see the dashed–dotted lines in Fig. 9(b, e)). Note that
the PV jumps are selected as local maxima in the PV radial derivative
such that the difference between the real PV gradient and the back-
ground PV gradient is larger than an arbitrary value of 50 m−2s−1 (we
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Fig. 10. Potential vorticity maps and profiles in simulations QG1a (a, d), QG1b (b, e) and QG1c (c, f). (a–c) Instantaneous PV maps once in quasi-steady state. (d–f) PV profiles.
The dashed black line is the background PV profile, 𝑓∕ℎ, the thick black line is the time and zonally-averaged potential vorticity profile ⟨𝑞⟩𝜙(𝜌). The gray lines show PV profiles
for different angles before performing the zonal and time averages. The gray dashed–dotted line is the equivalent staircase 𝑞𝑠 defined in the text. The inserts show the radial
derivative of the mean PV profile. The stars show the locations of PV jumps selected to compute the equivalent staircase.
use Matlab’s findpeaks function). This threshold was chosen arbitrarily
such that the identified peaks correspond to dynamically relevant jets,
and not to small fluctuations in the zonal velocity profile (see the stars
in Figs. 10(d–f)). We then compute the integral quantities, 𝐼1, 𝐼2 and 𝐼3
to quantify how far the actual profile is from the equivalent staircase
and the background PV:

𝐼1 = ∫

𝑅

0
|⟨𝑞⟩𝜙 − 𝑞𝑠| d𝜌,

𝐼2 = ∫

𝑅

0
|𝑞𝑠 − 𝑓∕ℎ| d𝜌,

𝐼3 = ∫

𝑅

0
|⟨𝑞⟩𝜙 − 𝑓∕ℎ| d𝜌.

The degree of staircaising can be evaluated by the quantities 𝐼12 =
1 − 𝐼1∕𝐼2 and 𝐼23 = 𝐼3∕𝐼2, which both take the value of 0 if ⟨𝑞⟩𝜙 =
𝑓∕ℎ (no staircaising) and 1 if ⟨𝑞⟩𝜙 = 𝑞𝑠 (perfect staircaising). For the
experiments J and A represented on Fig. 9, we obtain 𝐼12 = 0.14 and
0.12 and 𝐼23 = 0.15 and 0.16 respectively. Based on Fig. 13 in Scott
and Dritschel (2012), these values would correspond to a zonostrophy
index between approximately 3.5 and 4.5, which is consistent with
the zonostrophy index estimated independently for our experiments.
16
To achieve high degrees of staircaising, higher zonostrophy indices
are needed, as well as vanishing forcing and vanishing dissipation.
Even if strong, instantaneous jets form in our experiment, they are
both strongly forced and strongly dissipated. The strong viscous friction
constrains us to strongly force the flow in order to achieve sufficiently
high Reynolds. It is hence not surprising that the degree of staircaising
is weak in the experiments.

The QG simulations can again be employed to verify this hypothesis.
Numerically, the viscous dissipation of the flow can be reduced by
decreasing the Ekman number, everything else remaining unchanged
(something that is not possible in the experiment). Simulations QG1b
and QG1c have the exact same parameters as the reference simulation
QG1a, but the Ekman number was reduced from 𝐸𝑅 = 1.2 × 10−7

down to 6 × 10−8 and 2 × 10−8. Fig. 10 shows instantaneous potential
vorticity maps and time-averaged profiles for these three simulations.
The inserts show that the slopes in the mean PV profile increase as the
Ekman number is decreased. For the degree of staircaising, we obtain
respectively 𝐼12 = [0.17, 0.46, 0.38] and 𝐼23 = [0.25, 0.54, 0.48]. For the
two simulations at smaller Ekman number, the staircases become more
pronounced. Once again, these values are consistent with the results
reported in Scott and Dritschel (2012). Note that the large dispersion
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Fig. 11. Comparison between the Thorpe scale 𝐿𝑇 and (a) the Rhines scale (Eq. (2)), (b) the transitional scale based on the upscale energy transfer, and (c) the spectral transitional
scale (Eq. (26)). Circles: experiments. Diamonds: QG simulations. The equation at the top of each panel is the best linear fit of the experimental data, represented by the dashed
line.
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of both 𝐼12 and 𝐼23 for the same zonostrophy index (see their Fig. 13)
can explain why the lowest Ekman case QG1c have a staircaising degree
slightly smaller than the intermediate case QG1b.

5.2. Local mixing: The Thorpe scale

Even if strong, global staircaising does not develop, it is possible
to quantify the local potential vorticity mixing in each experiment by
measuring the equivalent of a mixing length, the so-called Thorpe scale.
To this end, we follow the idea developed by Galperin et al. (2014a,
2016). We recall that the Thorpe scale is the rms displacement of fluid
parcels when the PV profile is sorted into a monotonous profile. We
apply this procedure to instantaneous PV profiles along the radius,
for all the possible angles 𝜙. Examples of PV profiles before and after
sorting are shown in Fig. 9(c, f), and the resulting Thorpe scale is
indicated at the top on each panel. The increase in the Thorpe scale
and thus in the turbulent mixing is clear when the Reynolds number
of the experiment is increased: experiment J (Fig. 9(c)) shows only
few deviations from a monotonous PV profile, meaning that overturns
are not frequent and the PV is not efficiently mixed, whereas strong
deviations are observed for experiment A (Fig. 9(f)). The Thorpe scales
measured for every experiment and numerical simulation are reported
in Table 5.

The advantage of the Thorpe scale is that it is very easily measured
a posteriori, for a given flow, and that it is an indirect measure of
turbulence intensity (Thorpe, 2005). For stratified turbulence, with a
buoyancy frequency 𝑁 , the Thorpe scale can be used to estimate the so-
called Ozmidov scale, 𝐿𝑂 (Ozmidov, 1965; Thorpe and Deacon, 1977)
which corresponds to the scale at which the turbulent turnover time
is equal to the internal waves period, i.e. the scale at which the wave
effect begins to dominate turbulence:

𝐿𝑂 =
( 𝜖
𝑁3

)1∕2
. (28)

or stratified turbulence, 𝐿𝑂 is thus the largest isotropic scale of the
ystem, and is analogous to the transitional scale, 𝐿𝛽 , for 𝛽-plane
urbulence. Hence, if 𝐿𝑇 allows to estimate 𝐿𝑂 in stratified turbulence,
t may allow to estimate 𝐿𝛽 in 𝛽-plane turbulence. This is of interest
ecause 𝜖 can be estimated from 𝐿𝛽 (Eq. (3)).

Here, we wish to confront this hypothesis to our experimental
easurements, where we have measured 𝜖 and thus 𝐿𝜖𝛽 in a completely

ndependent way using the spectral analysis. Fig. 11 compares the
horpe scale measured in our experiments and QG simulations with the
hines scale 𝐿𝑅 and the transitional scales 𝐿𝜖𝛽 and 𝐿𝑆𝛽 . These figures
how that there is a very good correlation between 𝐿𝑇 and both 𝐿𝑅

and 𝐿𝛽 , which holds for the whole range of 𝑅𝑒 explored:

𝐿𝑇 ≈ 𝑎𝐿𝜖𝛽 , 𝐿𝑇 ≈ 𝑏𝐿𝑅, 𝐿𝑇 ≈ 𝑐𝐿𝑆𝛽 , (29)

he fact that the correlation works equally well for those three scales
𝜖 𝜖
17

rises from the fact that 𝐿𝑅 ∼ 𝑅𝛽𝐿𝛽 , and the zonostrophy index
oes not vary sufficiently for the two scales to behave independently.
n our experimental set, 𝑅𝜖𝛽 ≈ 3.69–4.71, hence, we should have
𝑎 ≈ 3.69–4.71 𝑏, which is indeed what is observed. Similarly, 𝐿𝜖𝛽 =
(𝐶𝑍∕𝐶𝐾 )3∕10𝐿𝑆𝛽 , with (𝐶𝑍∕𝐶𝐾 )3∕10 ≈ 0.29–0.41. Hence, we expect 𝑐 ≈
(𝐶𝑍∕𝐶𝐾 )3∕10𝑎, which is again what is observed. That being said, con-
sidering 𝐿𝜖𝛽 alone, this result is a demonstration that 𝐿𝑇 can be used as a
proxy of the typical length scale of the flow. If one assumes 𝐿𝑇 ∼ 0.47𝐿𝜖𝛽
s determined from Fig. 11(b), we can define a Thorpe estimate of the
urbulent dissipation rate 𝜖𝑇 computed from the relation between 𝐿𝛽

and 𝜖 (Eq. (3)). The comparison between the measured 𝜖𝑆 and 𝜖𝑇 is
epresented in Fig. 8(b). There is a non-negligible dispersion around the
:1 relationship, but the overall tendency is good, suggesting that PV
orting can effectively be used to estimate turbulent energy transfers.

. Conclusions and discussion

We have presented experimental results from a laboratory setup
esigned to reach extreme regimes of zonal jets relevant to gas gi-
nts (Cabanes et al., 2017; Lemasquerier et al., 2021). Two regimes of
urbulent zonal jets have been identified by Lemasquerier et al. (2021).
ere, we analyzed the statistical properties of the intense, experimental
-plane turbulence obtained in the super-resonant Regime II, for large
orcing amplitudes. We showed that strong, instantaneous, turbulent
onal jets develop and contain up to 70% of the total kinetic energy
f the flow in the most extreme experiments. These experiments are
omplemented by 2D quasi-geostrophic numerical simulations which
llow us to reach the extreme experimental conditions in terms of
eynolds and Ekman numbers, and complement them by addressing
arious forcing and even more extreme regimes.

.1. Zonostrophic turbulence and potential vorticity mixing

From a spectral analysis of the flow, we showed that the mea-
ured turbulent flow shares the properties of the so-called zonostrophic
urbulence, relevant to the gas giants, in which the zonal flow alone
ontains more kinetic energy than the remaining of the flow. Along
ith Cabanes et al. (2017), these are the first experiments able to reach

uch extreme regimes (see Fig. 1). While we retrieve the predicted
teep slope for the zonal spectrum, it is hard to argue that a clear
nverse cascade of energy develop in the experiments. Thanks to QG
imulations, we show that this is due to the relatively large forcing scale
f our experiment, which is in particular too close to the transitional
cale. In other words, the forced eddies are directly influenced by the 𝛽-
ffect, and no isotropic inverse cascade of energy can robustly develop.
et, this absence of inverse cascade does not impede the flow from feed-

ng larger scales in an anisotropic way (i.e. feeding zonal structures),
s expected for scales larger than the transitional scale. Interestingly,
he forcing scale does not seem to have a significant influence on the
inal zonal jets profile obtained once in the quasi-steady state. This is
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consistent with the conclusions of Scott and Dritschel (2019), obtained
in idealized simulations of potential vorticity mixing, and means that
the relatively large forcing scale is not a significant limitation of our
current experimental setup to study turbulent zonal jets.

At this point, we would like to raise the question of the ‘‘locality’’ of
the zonal jets forcing. In a first paper (Lemasquerier et al., 2021), we
showed that the jets developing in our experiment are initially due to
wave-mean flow interactions, and emerge via the transport and deposi-
tion of momentum by Rossby waves, i.e. a streaming process. If this is
particularly relevant for Regime I, not described here, the nature of the
transition towards the second regime, a Rossby wave resonance, leads
us to the hypothesis that wave-mean flow interactions are probably
also of importance in the second regime, even in the highly turbulent
cases. The acceleration of the zonal flow by a streaming process is non-
local, and implies a direct transfer between waves and the mean flow.
This picture, where both local cascades and nonlocal direct transfers
coexist, is in line with quantifications of energy transfer in zonostrophic
turbulence simulations, where both processes are at play (Galperin
et al., 2019).

In terms of potential vorticity mixing, despite the strength and
rectilinear shape of the zonal jets in our most extreme experiments, we
showed that they are not accompanied by a strong potential vorticity
mixing. This is because the zonostrophy index of our experiments is still
‘‘moderate’’ relatively to the cases leading to strong staircaising (Scott
and Dritschel, 2012). Once again, QG simulations show that this is
due to experimental limitations, since decreasing the viscous friction
allow to reach higher degrees of staircaising. This result is important
by itself because it bridges the gap between experiments and asymptotic
numerical models. Furthermore, it shows that it is not necessary to be
in the asymptotic regime of vanishing friction and forcing to obtain
dominant turbulent zonal jets. In other words, strong, instantaneous
zonal jets can be obtained even if the background PV gradient is
moderately mixed, i.e. even if the relative vorticity associated with
the jets is small compared to the background, planetary vorticity. Note
that PV mixing studies (e.g. Dritschel and McIntyre, 2008) showed that
there is a relation between the jets spacing (the staircase width) and the
jets intensity (the PV jump at the interfaces). We could not test this
relation in our experiments, because we are confronted with spatial
confinement, and because only a small number of jets develops: the
measure of the jets spacing is then compromised by finite-size effects.
Next, we showed that it is possible to estimate the local intensity of the
potential vorticity mixing by measuring the equivalent of the Thorpe
scale (Thorpe, 2005). We verified experimentally that the measured
Thorpe scale is proportional to the transitional scale, and that this
relation can be used to deduce the upscale energy transfer rate. We
showed that we obtain a good estimate of the upscale energy flux
measured using spectral analysis. This result underlines the consistency
between the zonostrophic turbulence and potential vorticity mixing
theories.

6.2. Advantages and drawbacks of different methods for estimating the
upscale turbulent energy transfer rate

Our experiments allow to address how efficiently kinetic energy
spectra and PV mixing can be used to quantify the upscale energy
transfer rate 𝜖 of a given turbulent flow with a 𝛽-effect. In the present
paper, we have used three different methods:

1. The first and simplest estimate that can be made is based on
the assumption that, in the experiment, the energy is dissipated
by Ekman friction at a rate 𝛼 = 𝛺𝐸1∕2, and hence 𝜖 can be
estimated simply by measuring the total kinetic energy of the
flow: 𝜖𝐸 ∼ 𝑢2rms𝛼∕2.

2. The second method, and perhaps the most rigorous one, consists
in computing the residual kinetic energy spectra and fitting the
−5∕3 slope (Eq. (20)), 𝑠, which is proportional to 𝜖2∕3: 𝜖𝑆 ∼

3∕2
18

(𝑠∕𝐶𝐾 ) .
3. The third method consists in measuring a Thorpe scale by sorting
local and instantaneous PV profiles. The deduced scale, assuming
that it is correlated with 𝐿𝛽 , allows to retrieve 𝜖 thanks to the
relation 𝜖𝑇 ∼ 𝛽3(𝐿𝑇𝛽 )

5.

Method 1 gives a good order of magnitude for 𝜖, but we did not find
n exactly linear relationship between 𝜖𝐸 and 𝜖𝑆 (Fig. 8(a)), probably

because bulk viscous dissipation and side friction are not completely
negligible in our experiment. In addition, the main dissipation mech-
anism in natural flows is far from being a simple Ekman friction, and
this is rather a practical scaling for idealized experimental or numerical
model than a true generic method. While this first method assumes
that dissipation is due to bottom viscous boundary layers only, the
two other methods do not make any hypothesis on the nature of the
dissipation process. Method 2, which we consider as the reference one,
is probably the most robust but requires to have high resolution spatial
and temporal observations to be able to compute energy spectra. For
method 3, we show that the Thorpe scale is strongly correlated with the
transitional scale, suggesting that the turbulent transfer rate could be
efficiently retrieved in natural flows using potentially simpler measure-
ments of instantaneous potential vorticity profiles. The success of this
method however requires a precise estimate of the scaling prefactor for
the relationship between 𝐿𝑇 and 𝐿𝛽 . Here, we found 𝐿𝛽 ∼ 2.1𝐿𝑇 , but
this factor may potentially vary. We show nevertheless that this scaling
holds for the whole range of Reynolds numbers explored. A complete
systematic study, where 𝐸 and 𝑅𝛽 are varied independently would
allow to determine the validity of this scaling depending on the flow
regime. Note that the Thorpe scale is routinely used in oceanography
to measure the vertical mixing of stratified turbulence. Our results
support the analogy raised by Galperin et al. (2014a, 2016), i.e. that
an equivalent method can be used to measure the lateral mixing due
to 𝛽-plane turbulence, as done by Cabanes et al. (2020) for Jupiter and
Saturn.

6.3. Implication for Jupiter’s cloud layer dynamics

What are the implications of our results regarding the dynamics
observed in the cloud layer of Jupiter? We recall that the theory of
zonostrophic turbulence was developed in a purely two-dimensional
framework, thanks to numerical simulations on the sphere, i.e. indi-
rectly assuming that Jupiter’s turbulence is shallow and confined in
its weather layer. It is thus not obvious a priori that this theory is
still relevant in the case of Jupiter and Saturn jets, which are now
strongly believed to be deep, extending as deep as 3000 and 9000 km
respectively (Kaspi et al., 2018; Galanti et al., 2019; Kaspi et al.,
2020). Quantitative analyses of the Cassini 70 days movie of Jupiter’s
clouds support the picture of an inverse energy cascade in Jupiter’s
weather layer (Choi and Showman, 2011; Galperin et al., 2014b). Using
the same data, Young and Read (2017) showed that there is indeed
an inverse transfer of energy from scales of 2000–3000 km, up to
20,000 km. However, they also identify a direct transfer of energy from
2000 km towards small scales, which is not expected in classical 2D
turbulence. In addition, they show that most energy transfer occurs
between eddies and the zonal flow directly, i.e. non-locally. The scale
of transition between direct and inverse energy transfer is close to the
first Rossby radius of deformation, which supports the idea that the
forcing is due to baroclinic instabilities. However, one should keep in
mind that the velocity fields from which these conclusions are drawn
are measured in the weather layer only. It is possible that the forcing of
the jets at depth occurs via small scale convective motions, while baro-
clinic processes dominate in the shallow weather layer, with coupling
mechanisms unexplored to date. Note that dual cascades to small scales
and large scales have been reported for several physical systems, such
as magnetohydrodynamics in two and three space dimensions, surface
capillary waves and rotating-stratified turbulence (see Pouquet et al.,

2017 for an overview, and Galperin and Sukoriansky, 2020).
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In the present experimental setup, the zonal jets are barotropic
jets extending parallel to the rotation axis in a deep layer of water,
which is hence representative of the deep jets configuration contrary
to previous shallow water experiments. Our setup allows to model a
fully three-dimensional system, without any a priori assumption on
the two-dimensionality of the flow. The fact that jets can emerge
spontaneously from a deep, fast rotating, fully-3D turbulent flow, even
in the presence of a large bottom drag (relatively to that on Jupiter),
supports the deep hypothesis of zonal jets origin. Furthermore, the
spectral analysis shows that, even for deep jets, the spectral proper-
ties derived in the framework of two-dimensional turbulence can be
recovered. Therefore, the fact that these scalings are also measured on
Jupiter (Choi and Showman, 2011; Galperin et al., 2014b) does not
allow to discriminate between shallow and deep jets. One possible line
of investigation would be to continue the spectral analysis to confirm or
not the presence of a turbulent inverse cascade of energy by computing
structure functions. This would also allow for a direct comparison with
the aforementioned turbulent statistics of Jupiter, and in particular,
we could verify if we also retrieve a direct energy cascade despite
the quasi-two-dimensionality of our fast-rotating experimental flows.
This analysis was out of reach with our current experimental datasets
because better time and space-resolved PIV measurements are required.
Finally we wish to conclude by underlining that if Jupiter’s zonal jets
are deep and emerge from deep thermal convection, it is possible that
the turbulence observed in the cloud layer is somehow ‘‘superimposed’’
to a deeper turbulence from which the zonal jets emerge. In such a
case, comparing the residual and zonal kinetic energy spectra should be
taken with caution given that we may be looking at the superposition
or coexistence of flows having different physical origins.

As already mentioned in the introduction, we want to underline
that exploring barotropic experimental or numerical models is still rel-
evant for systems which exhibit a predominantly baroclinic circulation,
such as oceans and atmospheres. Indeed, planetary, quasi-geostrophic
flows can undergo a phenomenon of barotropization. This process refers
to the fact that following baroclinic instabilities, the energy initially
cascades from the scale of meridional temperature gradients down
to the radius of deformation (commensurate with the most unstable
wavenumber). There is subsequently a conversion to barotropic en-
ergy, because the energy tends to feed the gravest mode, which is a
barotropic (vertically-invariant) mode. Finally, an inverse cascade to
larger modes occurs (Rhines, 1977; Salmon, 1978). Said differently, in
QG flows, the energy cascade to larger horizontal scales is generally
accompanied by a cascade to larger vertical scales, and the barotropic
modes can end up containing a significant fraction of the energy
(see Charney, 1971 and Chapter 12 in Vallis, 2006). For the Earth,
both GCM simulations and reanalysis of atmospheric and oceanic data
confirmed this tendency to strong barotropization (see Galperin et al.,
2019, and references therein). In baroclinic flows, the barotropization
occurs at a scale close to the internal radius of deformation, which
should be small enough to leave room for an inverse cascade in the
barotropic modes. In our experiment, instead of relying on baroclinic
instabilities to inject energy, we directly (mechanically) force the flow
at a small and well-controlled scale, and the barotropic flow grows by
itself because of the quasi-geostrophy of the system.

Because of the deep aspect ratio of our experiment, we also want
to underline that a comparison with results derived from the shallow-
water equations is not straightforward. For instance, Galperin et al.
(2019) suggested that the external Rossby radius of deformation, 𝐿𝑑 =
√

𝑔ℎ0∕2𝛺, determines the extent of the inverse energy cascade. They
stress out in particular that the anisotropisation of the flow is inhibited
if 𝐿𝑑 ≪ 𝐿𝑅. Here, 𝐿𝑑 ≈ 16 cm, a value close to the Rhines scale. The
trong anisotropisation observed in our experiments is hence compati-
le with their conclusions, even if it remains to be formally proven that
𝑑 plays the same role in a deep versus shallow-water configuration.
urthermore, our QG model, which is exactly rigid-lid (𝐿𝑑 → ∞), leads
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o quantitatively similar results compared the experiment, which is a
further hint that the external radius of deformation does not play a
significant role here.

Finally, in the present manuscript, we focus on gas giants dynamics
at midlatitudes, where the large variation of the Coriolis force with
radius is responsible for a strong 𝛽-effect and hence strong zonal flows.
At increasing latitudes, the gradient of the Coriolis force decreases and
tends towards zero at the pole. Consequently, the zonal jets weaken,
and the dynamics becomes more isotropic, with a predominance of vor-
tices rather than jets. In addition, the vortices become predominantly
cyclonic, contrary to what is observed at midlatitudes. This transition in
the dynamics with increasing latitude has been first suggested by Theiss
(2004) for Earth’s oceans, and later observed in shallow-water turbu-
lence models on the sphere (e.g. Cho and Polvani, 1996; Scott and
Polvani, 2007). When the Juno spacecraft arrived at Jupiter, visible
and infrared observations from above the poles revealed an incredible
dynamics consisting in persistent polygonal patterns of cyclones around
both poles (Adriani et al., 2018). A natural extension of this work
is hence to look at how the dynamics evolve for a progressively less
dominant 𝛽-effect.

6.4. Advantages and limitations of experimental approaches of zonal jets

We wish to conclude this study by a broader discussion on the
approach and methods employed in the prospect of better understand-
ing gas giants dynamics. The regimes reached experimentally (𝐸 ∼
3 × 10−7, 𝑅𝑒 ∼ 104, 𝑅𝑜 ∼ 10−3) are not impossible to reach in direct
numerical simulations, but at very large cost. To give an order of mag-
nitude, a single DNS of 1000 rotation times at an Ekman number three
times larger than in the experiment (𝐸 ∼ 10−6) represents 13 minutes of
an experiment, but would require 13 days of computation on 2048 CPU
cores (650,000 CPU hours). This type of DNS was performed in Cabanes
et al. (2017), but it is clear that numerical systematic studies in these
regimes are inconceivable. The high cost of these DNS is inherent
to 3D simulations of geostrophic turbulent flows, where both large-
scale structures and small-scale turbulent eddies and inertial waves are
present and need to be resolved simultaneously. On the contrary, one
experimental realization ‘‘costs’’ about 2 days (one for the actual exper-
iment, and one for saving and post-processing the images through the
PIV algorithm), which allows for multiple realizations and exploration
of the parameter space. In addition, the dynamics of the large-scale
jets is slow, and results from cumulative effects from the underlying
turbulence. Studying their long-term dynamics requires to wait for very
long times. Experimentally, we can easily reach several thousands of
rotation times, and time-resolved particle image velocimetry allows for
high-resolution records of the interactions between the turbulent flow
and the slowly evolving large-scale jets.

Of course, idealized numerical models allow to circumvent these
difficulties. This is the case for instance of reduced two-dimensional
models, such as shallow-water models and quasi-geostrophic models
including the one used in the present study. Statistical simulations
and quasilinear models (e.g. Constantinou et al., 2014) where eddy–
eddy interactions are neglected can also be used. Recently, rare events
algorithm have also been employed to study multistability and spon-
taneous transitions among zonal jets (Bouchet et al., 2019). However,
the assumptions underlying each of these models and their relevance
for gas giants dynamics need to be systematically addressed.

Despite their clear advantages, experiments also come with their
own limitations, as underlined throughout this paper:

• The spatial confinement of the experiment is problematic for
studying zonal jets equilibration. For instance, finite-size effects
‘‘discretize’’ the evolution of jets spacing when varying any con-
trol parameter. Due to confinement, jets are not free to evolve
in space, and this may for instance impede long-term drift or
nucleation of jets. One could nevertheless argue that jets on the

planets are also confined, but there are still about ten prograde
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jets on Jupiter, leading to a scale separation between the size
of the domain and the jets. We should hence seek to build
experiments where the scale of the tank is large compared to the
scale of the jets, which itself is large compared to the scale of
injection. This is challenging, because when trying to reach more
extreme regimes, we increase the turbulence intensity or decrease
the Ekman friction, which increases the jets scale. Imposing a fast
rotation on larger scale containers is also a technical challenge.

• Experiments at high rotation rates allow to reach regimes with
small friction (here 𝐸 ∼ 3 × 10−7), but never asymptotically small.
We stand in a strongly forced-dissipative regime, and it is difficult
to bridge the gap with idealized models where both the forcing
and the dissipation are vanishing, as discussed in the case of
potential vorticity mixing.

• The experimental forcing is performed at small-scale, but it is
difficult to reach the same scale separation as in numerical simu-
lations and less straightforward to change the forcing properties.
Exploring numerically the effect of the forcing properties (scale,
spatio-temporal stationarity. . . ) is hence required to extrapolate
experimental results to more realistic planetary conditions, as
proposed here using QG simulations.

• Finally, a last difficulty is that we cannot vary independently the
Ekman and Reynolds numbers and the zonostrophy index of the
flow. Changing the rotation rate modifies the Ekman number but
also the zonostrophy index because it changes the free surface
shape. One way of avoiding this is to use a sloping bottom and a
rigid lid instead of a free surface for the 𝛽-effect, but it introduces
a supplementary friction which can kill the zonal flow.

These limitations justify that we employed idealized numerical
simulations to reproduce the experimental conditions and then explore
one by one some effects artificially introduced by the experimental
constraints (forcing nature, spatial confinement, high viscosity, bound-
ary conditions, etc.). Note that it is also important to consider the
addition of physical effects which will hardly be incorporated in ex-
periments, such as magneto-hydrodynamical dissipation of zonal flows
or compressibility effects.

Finally, let us underline that the goal of the idealized experimental
and numerical models presented here is to shed light on fundamental
mechanisms governing the dynamics of the system, rather than be
quantitatively predictive regarding the specific case of Jupiter. Jupiter
exhibits a wealth of dynamical processes, occurring at very different
temporal and spatial scales. Our understanding of Jupiter and the gas
giants as global systems is still complicated by numerous sources of
uncertainty and technical limitations. The continuous improvement
of technical and computational capabilities allows experimental and
numerical models to get closer to the planetary regimes. However,
understanding Jupiter by forward modeling requires observations of
sufficiently good quality and coverage to which the models outputs can
be compared. The recent, accurate observations of Jupiter and Saturn
from the Juno and Cassini missions constitute a very good opportu-
nity in this regard, while introducing new and exciting challenges for
planetary modelers at the same time.
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Appendix A. Hovmoller diagrams and zonal flows for experiment
and QG simulations

On Fig. 12, we plot space–time diagrams and zonal flow profiles for
a typical experiment and four QG numerical simulations.

Appendix B. Data from previous experiments

In Table 6, we provide the dimensional and non-dimensional pa-
rameters that are used to plot Fig. 1, where the regimes reached by
experiments on zonal jets are compared. Note that various forcing
types are employed. The definition of the Ekman number 𝐸, Reynolds
number 𝑅𝑒 and zonostrophy index 𝑅𝛽 are those of Table 1.

Appendix C. Quasi-geostrophic model of the experiment

C.1. Derivation

We use the cylindrical coordinates (𝜌, 𝜙, 𝑧) with 𝑧 oriented down-
ward and (𝐞𝜌, 𝐞𝜙, 𝐞𝑧) the associated unit vectors (Fig. 2). We consider
the flow of an incompressible fluid of constant kinematic viscosity 𝜈 and
density 𝜌𝑓 , rotating around the vertical axis at a constant rate 𝜴 = 𝛺 𝐞𝑧.
In our experimental setup, 𝛺 > 0 since the turntable rotates in the
clockwise direction. We denote the velocity field 𝐮 = (𝑢𝜌, 𝑢𝜙, 𝑢𝑧)𝐞𝜌 ,𝐞𝜙 ,𝐞𝐳 .
The fluid is enclosed inside a cylinder of radius 𝑅. The lower boundary
is a rigid plate located at 𝑧 = 0 and the upper boundary is a free
surface defined by 𝑧 = −ℎ(𝜌). Note that here we assume that our ex-
periment, which has a parabolic free-surface and a curved bottom, can
be modeled with a flat bottom and an exponential free-surface. Doing
so, we neglect the influence of the shape of the bottom topography on
the vertical velocity (see Eq. (37)). The experimental parameters were
carefully chosen such that the bottom topography is as small as possible
in amplitude (resulting in a maximum height difference of 5.36 cm
and a mean absolute slope of 22%). Thus, one should keep in mind
that the presently derived model is only valid for relatively smooth
bottom topographies for which we can use the expression of the Ekman
pumping over a flat surface. If the topography was of high amplitude,
then the local inclination of the bottom boundary would enter the QG
model because it modifies the Ekman pumping (Greenspan, 1968).

We start from the continuity and horizontal Navier–Stokes equa-
tions in the rotating frame:

𝜕𝑢𝜌
𝜕𝑡

+ 𝑢𝜌
𝜕𝑢𝜌
𝜕𝜌

+
𝑢𝜙
𝜌
𝜕𝑢𝜌
𝜕𝜙

−
𝑢2𝜙
𝜌

− 𝑓𝑢𝜙

= − 1
𝜌𝑓

𝜕𝑃
𝜕𝜌

+ 𝜈
(

∇2𝑢𝜌 −
𝑢𝜌
𝜌2

− 2
𝜌2
𝜕𝑢𝜙
𝜕𝜙

)

, (30)

𝜕𝑢𝜙
𝜕𝑡

+ 𝑢𝜌
𝜕𝑢𝜙
𝜕𝜌

+
𝑢𝜙
𝜌
𝜕𝑢𝜙
𝜕𝜙

+
𝑢𝜙𝑢𝜌
𝜌

+ 𝑓𝑢𝜌

= − 1 1 𝜕𝑃 + 𝜈
(

∇2𝑢𝜙 −
𝑢𝜙 + 2 𝜕𝑢𝜌

)

, (31)

𝜌𝑓 𝜌 𝜕𝜙 𝜌2 𝜌2 𝜕𝜙
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Fig. 12. Space–time diagrams and zonal flow profiles for a typical experiment in regime II (a, b), and for QG simulations QG1a (c, d), QG2 (e, f), QG3 (g, h) and QG4 (i, j) (see
Table 4).
1
𝜌
𝜕(𝜌𝑢𝜌)
𝜕𝜌

+ 1
𝜌
𝜕𝑢𝜙
𝜕𝜙

+
𝜕𝑢𝑧
𝜕𝑧

= 0, (32)

where ∇2⋅ = 𝜕2𝜌 ⋅ +𝜕
2
𝜙 ⋅ ∕𝜌2 + 𝜕𝜌 ⋅ ∕𝜌. The Coriolis parameter is 𝑓 = 2𝛺

and 𝑃 = 𝑝 + 𝜌 𝑔𝑧 − 𝜌 𝑓 2𝜌2∕8 is the reduced pressure incorporating
21

𝑓 𝑓
the gravity and centrifugal effects. Note that if we neglect the vertical
dependence of the horizontal velocity, we keep it for the vertical
velocity 𝑢𝑧. Indeed, as previously explained, 𝑢𝑧 is expected to strongly
vary close to the top and bottom boundaries, and we want to take into
account these effects on the horizontal velocity divergence.
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Table 6
Dimensional and non-dimensional parameters of present and previous experimental studies of zonal jets. 𝑢rms is the total root-mean-squared velocity, ℎ0 the mean fluid thickness,
𝑅 the tank radius, 𝛺 the rotation rate, and the 𝛽-effect arises from the paraboloidal free surface, a sloping bottom, or both depending on the study. When a range of parameters
was explored, we indicate the values of the most extreme cases. For rotating annuli, 𝑅 is the gap width, not the external radius. The non-dimensional parameters definitions are
provided in Table 1. For the planetary flows, 𝑢rms, 𝛽 and 𝑅𝛽 are taken from Table 13.1 in Galperin and Read (2019). The depth of the fluid layer for Jupiter and Saturn is taken
from Galanti and Kaspi (2021). The kinematic viscosity used to compute the Ekman and Reynolds numbers is assumed to be 𝜈 ∼ 3 × 10−7 m2s−1 for Jupiter and Saturn (Gastine
et al., 2014), 1.5 × 10−5 m2s−1 for the atmosphere, and 1 × 10−6 m2s−1 for the oceans.

Ref. Forcing 𝑢rms (ms−1) ℎ0 (m) 𝑅 (m) 𝛺 (RPM) 𝛽 (m−1 s−1) 𝐸 𝑅𝑒 𝑅𝑜 = 𝑅𝑒 × 𝐸 𝑅∗
𝛽 = 0.5𝑅𝐸𝛽

Present Sinks & sources (𝐿𝑓 ∼ 7 cm) 5.00 × 10−2 0.58 0.49 75 50 3.78 × 10−7 19720 7.46 × 10−3 2.70
Burin et al. (2019) Sinks & sources (𝐿𝑓 ∼ 6.5 cm) 2.50 × 10−2 0.22 0.13 100 18 1.97 × 10−6 5500 1.09 × 10−2 1.91
Cabanes et al. (2017) Sinks & sources (𝐿𝑓 ∼ 10 cm) 5.00 × 10−2 0.5 0.5 75 74 5.09 × 10−7 17500 8.91 × 10−3 2.72
Read et al. (2015) Barotropic thermal conv. 4.00 × 10−3 0.8 7.5 1.5 6.20 × 10−2 9.95 × 10−6 3200 3.18 × 10−2 1.78
Zhang and Afanasyev (2014) Electromag. (𝐿𝑓 ∼ 4.6 cm) 1.40 × 10−2 0.08 0.55 22 35 6.78 × 10−5 1120 7.60 × 10−2 1.83
Smith et al. (2014) Diff-heated rotating annulus 3.00 × 10−3 0.15 0.49 38 107 1.12 × 10−5 450 5.03 × 10−3 1.89
Di Nitto et al. (2013) Electromag (𝐿𝑓 ∼ 1.2 cm) 8.00 × 10−3 0.03 0.5 32 35 3.32 × 10−4 240 7.96 × 10−2 1.38
Afanasyev and Craig (2013) Electromag (𝐿𝑓 ∼ 4.6 cm) 5.80 × 10−3 0.1 0.55 22 35 4.34 × 10−5 580 2.52 × 10−2 1.76
Afanasyev et al. (2012) Local buoyancy source 5.00 × 10−3 0.12 0.65 22 6 3.01 × 10−5 600 1.81 × 10−2 1.51
Espa et al. (2012) Electromag.(𝐿𝑓 ∼ 2 cm) 1.10 × 10−2 0.01 0.18 24 44 3.98 × 10−3 110 4.38 × 10−1 1.20
Wordsworth et al. (2008) Diff-heated rotating annulus 1.80 × 10−2 0.22 0.1 37 29 5.33 × 10−6 3960 2.11 × 10−2 2.15
Read et al. (2007) Spray of dense water 3.40 × 10−3 0.55 7.5 1.5 8 2.10 × 10−5 1870 3.94 × 10−2 1.50
Afanasyev and Wells (2005) Electromag.(𝐿𝑓 ∼ 2 cm) 5.00 × 10−3 0.005 0.15 14 40 2.73 × 10−2 25 6.82 × 10−1 1.00
Aubert et al. (2002) Sinks & sources (𝐿𝑓 ∼ 1.4 cm) 2.00 × 10−2 0.19 0.32 150 17 1.76 × 10−6 3800 6.70 × 10−3 1.74
Bastin and Read (1998) Diff-heated rotating annulus 3.00 × 10−3 0.14 0.06 43 91 1.13 × 10−5 420 4.76 × 10−3 1.81

Planet 𝑢rms (ms−1) ℎ0 (m) 𝑅 (m) 𝛺 (rad/s) 𝛽 (m−1 s−1) 𝐸 𝑅𝑒 𝑅𝑜 = 𝑅𝑒 × 𝐸 𝑅𝑆𝛽
Jupiter – 50 2 × 106 7 × 107 7 × 10−4 3 × 10−12 4 × 10−16 3 × 1014 1 × 10−1 5
Saturn – 40 7 × 106 6 × 107 7 × 10−4 3 × 10−12 3 × 10−17 9 × 1014 3 × 10−2 5.3
Earth’s atmosphere – 4 1 × 104 6.4 × 106 2 × 10−3 1 × 10−11 2 × 10−9 3 × 109 6 1.6
Earth’s oceans – 0.1 1 × 103 6.4 × 106 2 × 10−3 1 × 10−11 1 × 10−8 1 × 108 1 1.4
T

ℎ

The curl of the Navier–Stokes equation leads to the vorticity equa-
ion
𝜕𝜁
𝜕𝑡

+ 𝑢𝜌
𝜕𝜁
𝜕𝜌

+
𝑢𝜙
𝜌
𝜕𝜁
𝜕𝜙

+ (𝜁 + 𝑓 ) 𝛁ℎ ⋅ 𝒖 = 𝜈∇2𝜁, (33)

where 𝜁 = (𝛁 × 𝒖) ⋅ 𝒆𝑧 = (𝜕𝜌(𝜌𝑢𝜙) − 𝜕𝜙𝑢𝜌)∕𝜌 is the vertical component of
the vorticity and 𝛁ℎ ⋅ 𝒖 is the horizontal divergence

𝛁ℎ ⋅ 𝒖 = 1
𝜌
𝜕(𝜌𝑢𝜌)
𝜕𝜌

+ 1
𝜌
𝜕𝑢𝜙
𝜕𝜙

. (34)

he last term of the left hand side of Eq. (33), the vortex stretching
erm, involves the horizontal divergence of the flow which can be
stimated from Eq. (32) after integration from 𝑧 = −ℎ(𝜌) to 𝑧 = 0 (𝑧

oriented downward) to unveil the Ekman pumping through the vertical
velocity:

𝛁ℎ ⋅ 𝒖 = − 1
ℎ(𝜌) ∫

0

𝑧=−ℎ

𝜕𝑢𝑧
𝜕𝑧
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𝑢𝑧
|

|

|𝑧=−ℎ
− 𝑢𝑧

|

|

|𝑧=0
ℎ(𝜌)

. (35)

The vertical velocity at the free surface 𝑢𝑧
|

|

|𝑧=−ℎ
is given by the kinematic

condition

𝑢𝑧
|

|

|𝑧=−ℎ
= −

(

𝜕ℎ
𝜕𝑡

+ 𝑢𝜌
𝜕ℎ
𝜕𝜌

+
𝑢𝜙
𝜌
𝜕ℎ
𝜕𝜙

)

= −𝑢𝜌
𝜕ℎ
𝜕𝜌
, (36)

since ℎ is axisymmetric and we neglect any temporal variations of
the fluid height (rigid lid approximation). The vertical velocity at the
bottom 𝑢𝑧

|

|

|𝑧=0
results from the no-slip boundary condition generating

an Ekman pumping. According to linear Ekman theory, for a flat
bottom and small Rossby number, the vertical velocity at the top of the
boundary layer is proportional to the relative vorticity in the interior
flow (see section 5.7 in Vallis, 2017):

𝑢𝑧
|

|

|𝑧=0
= −1

2
𝛿𝜁 = −1

2
𝐸1∕2ℎ0𝜁, (37)

here 𝛿 =
√

2𝜈∕𝑓 is the thickness of the Ekman layer and 𝐸 = 2𝜈∕(𝑓ℎ20)
is the Ekman number, ℎ0 being the mean fluid height. The horizontal
ivergence (35) is then

ℎ ⋅ 𝐮 = −
𝑢𝜌
ℎ

dℎ
d𝜌

+ 𝐸1∕2

2
ℎ0
ℎ
𝜁. (38)

The squeezing and stretching of vorticity is hence due to both the
changes in the fluid depth and the vertical velocity induced by the
Ekman boundary layer.
22
Substitution of the horizontal divergence (38) in the vorticity equa-
tion (33) yields

𝜕𝜁
𝜕𝑡

+ 𝑢𝜌
𝜕𝜁
𝜕𝜌

+
𝑢𝜙
𝜌
𝜕𝜁
𝜕𝜙

−(𝜁 + 𝑓 )
𝑢𝜌
ℎ

dℎ
d𝜌

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Topographic 𝛽−effect

+ 𝐸1∕2

2
ℎ0
ℎ
(𝜁 + 𝑓 )𝜁

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ekman pumping

= 𝜈∇2𝜁, (39)

We switch to non-dimensional variables using 1∕𝑓 as the timescale
and the radius of the tank, 𝑅, as the length-scale, and we denote the
non-dimensional variables with a tilde such that

𝜁 = 𝜁𝑓 , (40)
𝑢𝜌 = 𝑢𝜌𝑓𝑅 (41)

𝑢𝜙 = 𝑢𝜙𝑓𝑅 (42)

𝜌 = 𝜌̃𝑅 (43)
𝑡 = 𝑡∕𝑓 (44)
ℎ = ℎ̃𝑅 (45)

We keep the tilde in the following to better identify non-dimensional
variables, and to avoid confusion with the experimental variables and
parameters which are always given in dimensional forms first. Eq. (39)
becomes

𝜕𝜁
𝜕𝑡

+ 𝑢𝜌
𝜕𝜁
𝜕𝜌̃

+
𝑢𝜙
𝜌̃
𝜕𝜁
𝜕𝜙

−
𝑢𝜌
ℎ̃

dℎ̃
d𝜌̃

(𝜁 + 1) +
𝐸1∕2
𝑅

2ℎ̃
(𝜁 + 1)𝜁 =

𝐸𝑅
2

∇̃2𝜁 + 𝐹 , (46)

where 𝐸𝑅 is the Ekman number based on the radius of the tank,
𝐸𝑅 = 2𝜈∕(𝑓𝑅2) = (ℎ0∕𝑅)2𝐸, and we have introduced a forcing term 𝐹 .
To close this equation, we now need an expression for the horizontal
components of the velocity. To do so, we use the definition of 𝜁 to
rewrite the expression of the horizontal divergence (Eq. (38)) as a
zero-divergence for a modified velocity field:

1
𝜌̃
𝜕(𝜌̃𝑢𝜌)
𝜕𝜌̃

+ 1
𝜌̃
𝜕𝑢𝜙
𝜕𝜙

= −
𝑢𝜌
ℎ̃
𝜕ℎ̃
𝜕𝜌̃

+
𝐸1∕2
𝑅

2ℎ̃
𝜁 (47)

⟹
𝜕
𝜕𝜌̃

(

𝜌̃

[

ℎ̃𝑢𝜌 − 𝑢𝜙
𝐸1∕2
𝑅
2

])

+ 𝜕
𝜕𝜙

(

ℎ̃𝑢𝜙 + 𝑢𝜌
𝐸1∕2
𝑅
2

)

= 0. (48)

his allows us to define a streamfunction 𝜓̃ such that

̃ 𝑢𝜌 − 𝑢𝜙
𝐸1∕2
𝑅 = 1 𝜕𝜓̃ , (49)

2 𝜌̃ 𝜕𝜙
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ℎ̃𝑢𝜙 + 𝑢𝜌
𝐸1∕2
𝑅
2

= −
𝜕𝜓̃
𝜕𝜌̃
, (50)

or equivalently

𝑢𝜌 =
1
ℎ̃

1
1 + 𝐸𝑅ℎ̃−2

(

1
𝜌̃
𝜕𝜓̃
𝜕𝜙

−
𝐸1∕2
𝑅

2ℎ̃
𝜕𝜓̃
𝜕𝜌

)

= 1
ℎ̃

(

1
𝜌̃
𝜕𝜓̃
𝜕𝜙

−
𝐸1∕2
𝑅

2ℎ̃
𝜕𝜓̃
𝜕𝜌̃

)

+ (𝐸𝑅ℎ̃−2), (51)

𝑢𝜙 = 1
ℎ̃

1
1 + 𝐸𝑅ℎ̃−2

(

−
𝐸1∕2
𝑅

2ℎ̃𝜌̃
𝜕𝜓̃
𝜕𝜙

−
𝜕𝜓̃
𝜕𝜌̃

)

= 1
ℎ̃

(

−
𝐸1∕2
𝑅

2ℎ̃𝜌̃
𝜕𝜓̃
𝜕𝜙

−
𝜕𝜓̃
𝜕𝜌̃

)

+ (𝐸𝑅ℎ̃−2), (52)

where we have neglected terms of order greater or equal to (𝐸𝑅ℎ̃−2),
hich is justified in the limit where we stand since ℎ̃ is of order
nity, and 𝐸𝑅 ≪ 1. Physically, this approximation means that the
kman boundary layers are very thin compared to the fluid height.
ubstituting the horizontal velocities with their expressions (51) and
52) into the vorticity equation (46), we obtain in its condensed form
he final vorticity equation

𝜕𝜁
𝜕𝑡

+  (𝑞, 𝜓̃) −
𝐸1∕2
𝑅

2ℎ̃
𝛁̃𝜓̃ ⋅ 𝛁̃𝑞 =

𝐸𝑅
2

∇̃2𝜁 −
𝐸1∕2
𝑅

2ℎ̃
𝜁 (𝜁 + 1) + 𝐹 (53)

where  is the non-dimensional Jacobian operator in cylindrical coor-
dinates

 (𝑎, 𝑏) = 1
𝜌̃

(

𝜕𝑎
𝜕𝜌̃

𝜕𝑏
𝜕𝜙

− 𝜕𝑏
𝜕𝜌̃

𝜕𝑎
𝜕𝜙

)

, (54)

nd we introduced the potential vorticity

𝑞 =
𝜁 + 1
ℎ̃

. (55)

aking the curl of (51)–(52), we obtain the modified Poisson equation
hat links the vorticity and the streamfunction, which closes the system
f equations:

̃ = − 1
ℎ̃
∇̃2𝜓̃ + 1

ℎ̃2
𝛁̃ℎ̃ ⋅ 𝛁̃𝜓̃ +

𝐸1∕2
𝑅

ℎ̃2
 (ℎ̃, 𝜓̃). (56)

ote that the potential vorticity 𝑞 is a materially conserved quantity
f we drop the forcing term and neglect viscous effects. Eq. (53) can
ndeed be recast as
𝜕𝑞
𝜕𝑡

+ 1
ℎ̃𝜌̃

(

𝜕𝜓
𝜕𝜙

𝜕𝑞
𝜕𝜌̃

−
𝜕𝜓
𝜕𝜌̃

𝜕𝑞
𝜕𝜙

)

= 0 (57)

⇔
𝐷𝑞
𝐷𝑡

= 0. (58)

.2. Justification for keeping higher order, non-linear terms

In the case of QG models derived for rotating convection (e.g.
ardin and Olson, 1994; Aubert et al., 2003; Gillet and Jones, 2006),
he Ekman pumping effects are incorporated the same way as we
id, except that their geometry is more complicated and the no-slip
oundaries cannot be considered as flat. Apart from these geometrical
actors, the main difference lies in the fact that in (33), it is common
n the rotating convection community to assume that the local vorticity

is negligible compared to the planetary vorticity 𝑓 , and retain only
he linear terms for the topographic 𝛽-effect and Ekman pumping.

In that case, the terms 𝐸1∕2
𝑅 ∕2ℎ̃ 𝛁𝜓̃ ⋅ 𝛁𝑞 and 𝜁2𝐸1∕2

𝑅 ∕2ℎ̃ are removed
from Eq. (53). These two terms hence represent corrections due to
nonlinear Ekman effects. The first term corrects the potential vorticity
advection, while the second one is a correction of vortex stretching
effects. Following Sansón and Van Heijst (2000, 2002), we argue that
these terms should be kept in our simulations since they are at least
of same order as the term 𝐸𝑅∕2∇2𝜁 which represents the bulk viscous
effects.
23
This can be verified by introducing the local Rossby number, based
on the local vorticity, 𝑅𝑜𝜁 = 𝜁∕𝑓 = 𝜁 , which is different from the global
Rossby number defined in the main text, 𝑅𝑜 = 𝑢rms∕𝑓𝑅. In our case,
we are in a regime where both the Ekman and global Rossby numbers
are small, meaning that rotation dominates respectively viscous effects
and inertia. Both conditions are mandatory to legitimately assume a
two-dimensionalization of the flow. However, the local Rossby number
may not be small and the local vorticity 𝜁 associated with small
turbulent eddies may be of same order as the rotation rate 𝑓∕2, which
is indeed verified in our simulations. This justifies the fact that we keep
supplementary non-linear terms compared to other studies. Using the
(non-dimensional) Ekman spin-down time scale 𝐸−1∕2 as the reference
time scale, the different terms of Eq. (53) are indeed of order

𝑎.
𝜕𝜁
𝜕𝑡

∼ 𝑅𝑜𝜁𝐸
1∕2 ∼ 3 × 10−5, (59)

𝑏.  (𝑞, 𝜓̃) ∼ (1 +𝑅𝑜𝜁 )𝑅𝑜 ∼ 1 × 10−4, (60)

𝑐. 𝐸
1∕2

2ℎ̃
∇̃𝜓̃ ⋅ ∇̃𝑞 ∼ 𝐸1∕2

2
(1 + 𝑅𝑜𝜁 )(𝑅𝑜) ∼ 3 × 10−8, (61)

𝑑. 𝐸
2
∇̃2𝜁 ∼ 𝐸

2
𝑅𝑜𝜁 ∼ 1 × 10−8, (62)

𝑒. 𝐸
1∕2

2ℎ̃
𝜁2 ∼ 𝐸1∕2

2
𝑅𝑜2𝜁 ∼ 3 × 10−6, (63)

𝑓. 𝐸
1∕2

2ℎ̃
𝜁 ∼ 𝐸1∕2

2
𝑅𝑜𝜁 ∼ 3 × 10−5, (64)

where we used 𝐸 ∼ 10−7, 𝑅𝑜𝜁 ∼ 10−1, 𝑅𝑜 ∼ 10−3. The two non-linear
erms discussed (c. and e.) are greater or equal to the bulk viscous
ffects (d.) and should not be neglected in our case.

.3. Forcing

For now, we have introduced the forcing as an additional source of
orticity (term 𝐹 in Eq. (53)). The goal is to reproduce the experimental

forcing such that the QG numerical model can be used as a guide and
complement the experimental exploration.

In the experiment, because of the Coriolis effect, each inlet (sucking
water from the tank) or outlet generates respectively a small cyclone or
anticyclone right above it. This process can be modeled as a stationary
source of vorticity in the form of positive or negative Gaussian sources
of vorticity of radius 𝓁𝑓 distributed on a prescribed array. We thus
define 𝑁 forcing points distributed over the numerical domain, and at
each point, we place a Gaussian source of vorticity such that

𝐹 (𝑥̃, 𝑦̃) = 𝐹0
𝑁
∑

𝑖=1
(−1)𝑖 exp

⎛

⎜

⎜

⎝

−

[

𝑥̃ − 𝑥̃𝑖
𝓁𝑓

]2

−

[

𝑦̃ − 𝑦̃𝑖
𝓁𝑓

]2
⎞

⎟

⎟

⎠

, (65)

where (𝑥̃, 𝑦̃) are non-dimensional cartesian coordinates, the pairs
𝑥̃𝑖, 𝑦̃𝑖), 𝑖 ∈ [[1, 𝑁]] are the center of each forcing vortex, 𝓁𝑓 their
adius and 𝐹0 the forcing amplitude. Various forcing configurations
ere explored, as listed in Table 4.

.4. Zonal flow evolution equation

We perform a Reynolds decomposition of the flow by writing the
elocity field as an azimuthal (zonal) average plus some fluctuations:

𝑋⟩𝜙 = 1
2𝜋 ∫

2𝜋

𝜙=0
𝑋𝑑𝜙, (66)

𝑢̃𝜙 = ⟨𝑢̃𝜙⟩𝜙 + 𝑢̃′𝜙 = 𝑈̃𝜙(𝜌̃, 𝑡) + 𝑢̃′𝜙(𝜌̃, 𝜙, 𝑡) (67)

𝑢̃𝜌 = ⟨𝑢̃𝜌⟩𝜙 + 𝑢̃′𝜌 = 𝑈̃𝜌(𝜌̃, 𝑡) + 𝑢̃′𝜌(𝜌̃, 𝜙, 𝑡). (68)

ote that the zonally-averaged radial velocity, 𝑈̃𝜌, is not zero because
f the Ekman pumping. Instead, from (47) we have

̃ =
𝐸1∕2
𝑅 𝑈̃ . (69)
𝜌 2ℎ̃ 𝜙
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Taking the zonal mean of the 𝜙-component of the momentum Eq. (31)
gives an equation for the zonal flow evolution:

𝜕𝑈̃𝜙
𝜕𝑡

+𝑈̃𝜌
𝜕𝑈̃𝜙
𝜕𝜌̃

−
𝑈̃𝜙𝑈̃𝜌
𝜌̃

+𝑈̃𝜌 = −
⟨

𝑢̃′𝜌
𝜕𝑢̃′𝜙
𝜕𝜌̃

−
𝑢̃′𝜙𝑢̃

′
𝜌

𝜌̃

⟩

𝜙
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟



+
𝐸𝑅
2

(

∇̃2𝑈̃𝜙 −
𝑈̃2
𝜙

𝜌̃2

)

.

(70)

q. (70) shows that the zonal flow is driven by non-linear interactions
etween eddies, . This term corresponds to the divergence of hori-
ontal Reynolds stresses, sometimes referred to as the eddy momentum
lux.

.5. Numerical methods

The numerical model used in this paper is directly adapted from a
revious code used to study convection in a plane layer (Favier et al.,
014; Matthews et al., 1995).

The non-axisymmetric and axisymmetric motions are solved sep-
rately. For the non-axisymmetric motions (azimuthal Fourier modes
𝑚| > 0), we solve the vorticity-stream-function system (53)–(56) with
ree-slip boundary conditions at both the outer and inner boundaries.
he unknown 𝜓̃ and 𝜁 are decomposed into their Fourier components
p to degree 𝑚 = 2048 and we use a pseudo-spectral method in the
zimuthal direction with the 2∕3rd-rule dealiasing method. In the radial
irection, we use centered finite differences of fourth-order on 1024
niformly-distributed points. The zonal mode (𝑚 = 0) is computed
eparately by solving Eq. (70). Time integration is performed with an
mplicit Crank–Nicolson scheme for the linear operator, applied directly
n the Fourier space. An explicit third-order Adams Bashforth scheme
s used for the non-linear terms. We use an adaptative time-step so that
he CFL stability condition is verified, with a safety factor of 0.1. The
ode is parallelized using MPI, and we typically ran the simulations
ver 64 CPUs. For the simulations with 𝐸𝑅 = 1.25 × 10−7, the typical
omputational time is of ∼20 hours for ∼ 3, 000 rotation times.

Appendix D. Discrete Bessel–Fourier transform

The experimental velocity fields being obtained on a discrete grid,
the Bessel–Fourier transform coefficients need to be computed using
numerical quadrature, and we will thus obtain a finite set of discrete
coefficients { ̂̂𝑢𝑛𝑚|𝑛 = 1, 2,⃛ , 𝑁𝜌 and 𝑚 = −𝑁𝜙∕2 + 1,⃛ , 0, 1, 2,⃛ , 𝑁𝜙∕2}. For
implicity, we denote 𝑓𝑗𝑖 = 𝑓 (𝜌𝑖, 𝜙𝑗 ) where 𝜌𝑖 and 𝜙𝑗 are the discrete

radial and azimuthal positions respectively (𝑖 ∈ [[1, 𝑁𝜌]], 𝑗 ∈ [[1, 𝑁𝜙]]).

Discrete Fourier transform. The angular part of the transform is per-
ormed using the Matlab fft function. For each radius, we thus compute

a discrete FFT in the azimuthal direction. The direct and inverse
discrete transforms read respectively

𝑓𝑚(𝜌) =
𝑁𝜙
∑

𝑗=1
𝑓𝑗 (𝜌)𝑒

−2𝑖𝜋𝑚 𝑗−1
𝑁𝜙 , (71)

𝑓𝑗 (𝜌) = 1
𝑁𝜙

𝑁𝜙
∑

𝑚=1
𝑓𝑚(𝜌)𝑒

2𝑖𝜋(𝑗−1) 𝑚−1𝑁𝜙 . (72)

he associated discrete version of the Parseval relation is
𝑁𝜙

𝑗=1
|𝑓𝑗 |

2 = 1
𝑁2
𝜙

𝑁𝜙
∑

𝑚=1
𝑓𝑚𝑓

∗
𝑚. (73)

he kinetic energy per azimuthal wavenumber can then be computed
s

𝑚, 𝐸𝑚(𝜌) =
1
𝑁2
𝜙

[

𝑢̂𝑚𝑢̂
∗
𝑚 + 𝑣̂𝑚𝑣̂∗𝑚

]

(74)

(see Durran et al., 2017, for more details).
24
Discrete Hankel transform. For each azimuthal mode 𝑚, its Fourier
transform coefficient 𝑓𝑚(𝜌) has a radial structure onto which we per-
form a discrete Hankel transform of order 𝑚. We use the Matlab algo-
rithm provided by Guizar-Sicairos and Gutiérrez-Vega (2004). Briefly,
for each mode 𝑚, the discrete Hankel transform coefficients are com-
puted following

∀ 𝑚, ̂̂𝑓𝑛𝑚 = 1
𝜋𝑉 2

𝑁𝜌
∑

𝑖=1

𝑓𝑚𝑖
𝐽 2
𝑚+1(𝛼𝑚𝑖)

𝐽𝑚
(𝛼𝑛𝑚𝛼𝑚𝑖

𝑆

)

, (75)

∀ 𝑚, 𝑓𝑚𝑖 =
1
𝜋𝑅2

𝑁𝜌
∑

𝑛=1

̂̂𝑓𝑛𝑚
𝐽 2
𝑚+1(𝛼𝑚𝑛)

𝐽𝑚
(𝛼𝑛𝑚𝛼𝑚𝑖

𝑆

)

(76)

where 𝑓𝑚𝑖 = 𝑓𝑚(𝜌𝑖) is the radial structure of each Fourier mode, 𝑅 is
he maximum radius, 𝑉 is the maximum radial wavenumber, which is
ifferent for each mode 𝑚 (𝑉𝑚 = 𝛼𝑁𝜌+1,𝑚∕(2𝜋𝑅)), and 𝑆 = 2𝜋𝑅𝑉 . Here

again, 𝛼𝑛𝑚 is the 𝑛th zero of the Bessel function of the first kind of order
𝑚, 𝐽𝑚. The corresponding discrete Parseval relation is

∀ 𝑚,
𝑁𝜌
∑

𝑖=1

|𝑓𝑚𝑖|
2

2𝜋2𝑉 2𝐽 2
𝑚+1(𝛼𝑚𝑖)

=
𝑁𝜌
∑

𝑛=1

|𝑓𝑚𝑛|
2

2𝜋2𝑅2𝐽 2
𝑚+1(𝛼𝑚𝑛)

. (77)

Taking into account both the Fourier and Hankel transforms, the kinetic
energy for each mode (𝑚, 𝑛) can then be expressed as

∀ (𝑛, 𝑚), 𝐸𝑛𝑚 = 1
𝑁2
𝜙

1
2𝜋2𝑅3𝐽 2

𝑚+1(𝛼𝑛𝑚)

[

̂̂𝑢𝑛𝑚 ̂̂𝑢
∗
𝑛𝑚 + ̂̂𝑣𝑛𝑚 ̂̂𝑣

∗
𝑛𝑚

]

. (78)

Note that ̂̂𝑢𝑛𝑚 is in m3s−1, and thus 𝐸𝑛𝑚 is in m3s−2, which is ho-
mogeneous to a kinetic energy per wavenumber. The corresponding
wavenumber is 𝑘𝑛𝑚 = 𝛼𝑛𝑚∕(2𝜋𝑅). The zonal kinetic energy spectrum 𝐸𝑧
is the spectrum of the axisymmetric mode 𝑚 = 0 only, and the residual
energy spectra 𝐸𝑟 is the sum of the contributions of the remaining
modes:

𝐸𝑧 = 𝐸𝑛0, (79)
𝐸𝑟 =

∑

𝑚,𝑚≠0
𝐸𝑛𝑚. (80)

Note that each azimuthal mode, 𝑚, has a different corresponding
wavevector, 𝑘𝑛𝑚 because the zeros of a Bessel function, 𝛼𝑛𝑚, depends
on its order 𝑚. To perform the summation leading to the residual
spectrum, we hence use data binning. More precisely, the magnitudes of
all spectra with 𝑚 ≠ 0 are combined and sorted into wavevector bins,
which are defined to correspond to the zonal wavevector 𝑘𝑛0. Then,
the amplitudes contained in each bin are added together. This process
provides a single residual spectrum associated to a unique wavevector.

References

Adriani, A., Mura, A., Orton, G., Hansen, C., Altieri, F., Moriconi, M.L., Rogers, J.,
Eichstädt, G., Momary, T., Ingersoll, A.P., Filacchione, G., Sindoni, G., Tabataba-
Vakili, F., Dinelli, B.M., Fabiano, F., Bolton, S.J., Connerney, J.E.P., Atreya, S.K.,
Lunine, J.I., Tosi, F., Migliorini, A., Grassi, D., Piccioni, G., Noschese, R., Cic-
chetti, A., Plainaki, C., Olivieri, A., O’Neill, M.E., Turrini, D., Stefani, S., Sordini, R.,
Amoroso, M., 2018. Clusters of cyclones encircling Jupiter’s poles. Nature 555
(7695), 216–219. http://dx.doi.org/10.1038/nature25491.

Afanasyev, Y.D., Craig, J.D.C., 2013. Rotating shallow water turbulence: Experi-
ments with altimetry. Phys. Fluids 25 (10), 106603. http://dx.doi.org/10.1063/
1.4826477.

Afanasyev, Y.D., O’leary, S., Rhines, P.B., Lindahl, E., 2012. On the origin of jets in
the ocean. Geophys. Astrophys. Fluid Dyn. 106 (2), 113–137. http://dx.doi.org/10.
1080/03091929.2011.562896.

Afanasyev, Y.D., Wells, J., 2005. Quasi-two-dimensional turbulence on the polar beta-
plane: Laboratory experiments. Geophys. Astrophys. Fluid Dyn. 99 (1), 1–17.
http://dx.doi.org/10.1080/03091920412331319513.

Aubert, J., Gillet, N., Cardin, P., 2003. Quasigeostrophic models of convection in
rotating spherical shells. Geochem. Geophys. Geosyst. 4 (7), http://dx.doi.org/10.
1029/2002GC000456.

Aubert, J., Jung, S., Swinney, H.L., 2002. Observations of zonal flow created by poten-
tial vorticity mixing in a rotating fluid. Geophys. Res. Lett. 29 (18), 23–1–23–4.

http://dx.doi.org/10.1029/2002GL015422.

http://dx.doi.org/10.1038/nature25491
http://dx.doi.org/10.1063/1.4826477
http://dx.doi.org/10.1063/1.4826477
http://dx.doi.org/10.1063/1.4826477
http://dx.doi.org/10.1080/03091929.2011.562896
http://dx.doi.org/10.1080/03091929.2011.562896
http://dx.doi.org/10.1080/03091929.2011.562896
http://dx.doi.org/10.1080/03091920412331319513
http://dx.doi.org/10.1029/2002GC000456
http://dx.doi.org/10.1029/2002GC000456
http://dx.doi.org/10.1029/2002GC000456
http://dx.doi.org/10.1029/2002GL015422


Icarus 390 (2023) 115292D. Lemasquerier et al.
Bastin, M.E., Read, P.L., 1998. Experiments on the structure of baroclinic waves and
zonal jets in an internally heated, rotating, cylinder of fluid. Phys. Fluids 10 (2),
374–389. http://dx.doi.org/10.1063/1.869530.

Boffetta, G., Ecke, R.E., 2012. Two-Dimensional Turbulence. Annu. Rev. Fluid Mech.
44 (1), 427–451. http://dx.doi.org/10.1146/annurev-fluid-120710-101240.

Bolton, S.J., Lunine, J., Stevenson, D., Connerney, J.E.P., Levin, S., Owen, T.C.,
Bagenal, F., Gautier, D., Ingersoll, A.P., Orton, G.S., Guillot, T., Hubbard, W.,
Bloxham, J., Coradini, A., Stephens, S.K., Mokashi, P., Thorne, R., Thorpe, R.,
2017. The Juno Mission. Space Sci. Rev. 213 (1–4), 5–37. http://dx.doi.org/10.
1007/s11214-017-0429-6.

Bouchet, F., Rolland, J., Simonnet, E., 2019. Rare Event Algorithm Links Transitions
in Turbulent Flows with Activated Nucleations. Phys. Rev. Lett. 122 (7), 074502.
http://dx.doi.org/10.1103/PhysRevLett.122.074502, arXiv:1810.11057.

Bouchet, F., Venaille, A., 2012. Statistical mechanics of two-dimensional and geophys-
ical flows. Statistical Mechanics of Two-Dimensional and Geophysical Flows, Phys.
Rep. Statistical Mechanics of Two-Dimensional and Geophysical Flows, vol. 515
(5), 227–295.http://dx.doi.org/10.1016/j.physrep.2012.02.001,

Burin, M.J., Caspary, K.J., Edlund, E.M., Ezeta, R., Gilson, E.P., Ji, H., McNulty, M.,
Squire, J., Tynan, G.R., 2019. Turbulence and jet-driven zonal flows: Secondary
circulation in rotating fluids due to asymmetric forcing. Phys. Rev. E 99 (2),
023108. http://dx.doi.org/10.1103/PhysRevE.99.023108.

Cabanes, S., Aurnou, J., Favier, B., Le Bars, M., 2017. A laboratory model for deep-
seated jets on the gas giants. Nat. Phys. 13 (4), 387–390. http://dx.doi.org/10.
1038/nphys4001.

Cabanes, S., Espa, S., Galperin, B., Young, R.M.B., Read, P.L., 2020. Revealing the
Intensity of Turbulent Energy Transfer in Planetary Atmospheres. Geophys. Res.
Lett. 47 (23), http://dx.doi.org/10.1029/2020GL088685, e2020GL088685.

Cabanes, S., Favier, B., Le Bars, M., 2018. Some statistical properties of three-
dimensional zonostrophic turbulence. Geophys. Astrophys. Fluid Dyn. 112 (3),
207–221. http://dx.doi.org/10.1080/03091929.2018.1467413.

Cardin, P., Olson, P., 1994. Chaotic thermal convection in a rapidly rotating spherical
shell: Consequences for flow in the outer core. Phys. Earth Planet. Inter. 82 (3),
235–259. http://dx.doi.org/10.1016/0031-9201(94)90075-2.

Charney, J.G., 1971. Geostrophic Turbulence. J. Atmos. Sci. 28 (6), 1087–1095. http:
//dx.doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

Chekhlov, A., Orszag, S., Sukoriansky, S., Galperin, B., Staroselsky, I., 1996. The effect
of small-scale forcing on large-scale structures in two-dimensional flows. Physica
D 98 (2–4), 321–334. http://dx.doi.org/10.1016/0167-2789(96)00102-9.

Cho, J.Y.-K., Polvani, L.M., 1996. The emergence of jets and vortices in freely
evolving, shallow-water turbulence on a sphere. Phys. Fluids 8 (6), 1531–1552.
http://dx.doi.org/10.1063/1.868929.

Choi, D.S., Showman, A.P., 2011. Power spectral analysis of Jupiter’s clouds and kinetic
energy from Cassini. Icarus 216 (2), 597–609. http://dx.doi.org/10.1016/j.icarus.
2011.10.001.

Constantinou, N.C., Farrell, B.F., Ioannou, P.J., 2014. Emergence and Equilibration
of Jets in Beta-Plane Turbulence: Applications of Stochastic Structural Stability
Theory. J. Atmos. Sci. 71 (5), 1818–1842. http://dx.doi.org/10.1175/JAS-D-13-
076.1.

Cope, L., 2021. The Dynamics of Geophysical and Astrophysical Turbulence (Ph.D.
thesis). University of Cambridge, http://dx.doi.org/10.17863/CAM.75705.

Cornillon, P.C., Firing, E., Thompson, A.F., Ivanov, L.M., Kamenkovich, I., Bucking-
ham, C.E., Afanasyev, Y.D., 2019. Oceans. In: Galperin, B., Read, P.L. (Eds.), Zonal
Jets: Phenomenology, Genesis, and Physics. Cambridge University Press, Cambridge,
pp. 46–71. http://dx.doi.org/10.1017/9781107358225.003.

Di Nitto, G., Espa, S., Cenedese, A., 2013. Simulating zonation in geophysical flows by
laboratory experiments. Phys. Fluids 25 (8), 086602. http://dx.doi.org/10.1063/1.
4817540.

Dritschel, D.G., McIntyre, M.E., 2008. Multiple jets as PV staircases: The Phillips effect
and the resilience of eddy-transport barriers. J. Atmos. Sci. 65 (3), 855–874.
http://dx.doi.org/10.1175/2007JAS2227.1.

Dritschel, D.G., Scott, R.K., 2011. Jet sharpening by turbulent mixing. Phil. Trans. R.
Soc. A 369 (1937), 754–770. http://dx.doi.org/10.1098/rsta.2010.0306.

Dunkerton, T.J., Scott, R.K., 2008. A barotropic model of the angular momentum–
conserving potential vorticity staircase in spherical geometry. J. Atmos. Sci. 65
(4), 1105–1136. http://dx.doi.org/10.1175/2007JAS2223.1.

Durran, D., Weyn, J.A., Menchaca, M.Q., 2017. Practical Considerations for Computing
Dimensional Spectra from Gridded Data. Mon. Weather Rev. 145 (9), 3901–3910.
http://dx.doi.org/10.1175/MWR-D-17-0056.1.

Espa, S., Bordi, I., Frisius, T., Fraedrich, K., Cenedese, A., Sutera, A., 2012. Zonal jets
and cyclone–anticyclone asymmetry in decaying rotating turbulence: Laboratory
experiments and numerical simulations. Geophys. Astrophys. Fluid Dyn. 106 (6),
557–573. http://dx.doi.org/10.1080/03091929.2011.637301.

Farrell, B.F., Ioannou, P.J., 2003. Structural Stability of Turbulent Jets. J. Atmos.
Sci. 60 (17), 2101–2118. http://dx.doi.org/10.1175/1520-0469(2003)060<2101:
SSOTJ>2.0.CO;2.

Favier, B., Silvers, L.J., Proctor, M.R.E., 2014. Inverse cascade and symmetry breaking
in rapidly rotating Boussinesq convection. Phys. Fluids 26 (9), 096605. http:
//dx.doi.org/10.1063/1.4895131.

Galanti, E., Kaspi, Y., 2021. Combined magnetic and gravity measurements probe the
deep zonal flows of the gas giants. Mon. Not. R. Astron. Soc. 501 (2), 2352–2362.
http://dx.doi.org/10.1093/mnras/staa3722.
25
Galanti, E., Kaspi, Y., Miguel, Y., Guillot, T., Durante, D., Racioppa, P., Iess, L., 2019.
Saturn’s Deep Atmospheric Flows Revealed by the Cassini Grand Finale Gravity
Measurements. Geophys. Res. Lett. 46 (2), 616–624. http://dx.doi.org/10.1029/
2018GL078087.

Galperin, B., Hoemann, J., Espa, S., Di Nitto, G., Lacorata, G., 2016. Anisotropic
macroturbulence and diffusion associated with a westward zonal jet: From lab-
oratory to planetary atmospheres and oceans. Phys. Rev. E 94 (6), 063102. http:
//dx.doi.org/10.1103/PhysRevE.94.063102.

Galperin, B., Hoemann, J., Espa, S., Nitto, G.D., 2014a. Anisotropic turbulence and
Rossby waves in an easterly jet: An experimental study. Geophys. Res. Lett. 41
(17), 6237–6243. http://dx.doi.org/10.1002/2014GL060767.

Galperin, B., Nakano, H., Huang, H.P., Sukoriansky, S., 2004. The ubiquitous zonal jets
in the atmospheres of giant planets and Earth’s oceans. Geophys. Res. Lett. 31 (13),
http://dx.doi.org/10.1029/2004GL019691.

Galperin, B., Read, P.L., 2019. Zonal Jets: Phenomenology, Genesis, and Physics. Cam-
bridge University Press, Cambridge, http://dx.doi.org/10.1017/9781107358225.

Galperin, B., Sukoriansky, S., 2020. Quasinormal scale elimination theory of the
anisotropic energy spectra of atmospheric and oceanic turbulence. Phys. Rev. Fluids
5 (6), 063803. http://dx.doi.org/10.1103/PhysRevFluids.5.063803.

Galperin, B., Sukoriansky, S., Dikovskaya, N., 2010. Geophysical flows with anisotropic
turbulence and dispersive waves: Flows with a 𝛽-effect. Ocean Dyn. 60 (2),
427–441. http://dx.doi.org/10.1007/s10236-010-0278-2.

Galperin, B., Sukoriansky, S., Dikovskaya, N., Read, P., Yamazaki, Y., Wordsworth, R.,
2006. Anisotropic turbulence and zonal jets in rotating flows with a 𝛽-effect.
Nonlinear Process. Geophys. 13 (1), 83–98. http://dx.doi.org/10.5194/npg-13-83-
2006.

Galperin, B., Sukoriansky, S., Young, R.M.B., Chemke, R., Kaspi, Y., Read, P.L.,
Dikovskaya, N., 2019. Barotropic and Zonostrophic Turbulence. In: Galperin, B.,
Read, P.L. (Eds.), Zonal Jets: Phenomenology, Genesis, and Physics. Cambridge Uni-
versity Press, Cambridge, pp. 220–237. http://dx.doi.org/10.1017/9781107358225.
013.

Galperin, B., Young, R.M.B., Sukoriansky, S., Dikovskaya, N., Read, P.L., Lancaster, A.J.,
Armstrong, D., 2014b. Cassini observations reveal a regime of zonostrophic macro-
turbulence on Jupiter. Icarus 229, 295–320. http://dx.doi.org/10.1016/j.icarus.
2013.08.030.

Gargett, A., Garner, T., 2008. Determining Thorpe Scales from Ship-Lowered CTD
Density Profiles. J. Atmos. Ocean. Technol. 25 (9), 1657–1670. http://dx.doi.org/
10.1175/2008JTECHO541.1.

Gastine, T., Heimpel, M., Wicht, J., 2014. Zonal flow scaling in rapidly-rotating
compressible convection. Phys. Earth Planet. Inter. 232, 36–50. http://dx.doi.org/
10.1016/j.pepi.2014.03.011, arXiv:1402.3679.

Gastine, T., Wicht, J., 2021. Stable stratification promotes multiple zonal jets in a
turbulent Jovian dynamo model. Icarus 114514. http://dx.doi.org/10.1016/j.icarus.
2021.114514.

Gillet, N., Brito, D., Jault, D., Nataf, H.C., 2007. Experimental and numerical studies
of convection in a rapidly rotating spherical shell. J. Fluid Mech. 580, 83–121.
http://dx.doi.org/10.1017/S0022112007005265.

Gillet, N., Jones, C.A., 2006. The quasi-geostrophic model for rapidly rotating spherical
convection outside the tangent cylinder. J. Fluid Mech. 554, 343–369. http://dx.
doi.org/10.1017/S0022112006009219.

Greenspan, H.P., 1968. The Theory of Rotating Fluids. Cambridge University Press,
London.

Guervilly, C., Cardin, P., 2017. Multiple zonal jets and convective heat transport barriers
in a quasi-geostrophic model of planetary cores. Geophys. J. Int. 211 (1), 455–471.
http://dx.doi.org/10.1093/gji/ggx315.

Guillot, T., Miguel, Y., Militzer, B., Hubbard, W., Kaspi, Y., Galanti, E., Cao, H.,
Helled, R., Wahl, S., Iess, L., et al., 2018. A suppression of differential rotation
in Jupiter’s deep interior. Nature 555 (7695), 227–230. http://dx.doi.org/10.1038/
nature25775.

Guizar-Sicairos, M., Gutiérrez-Vega, J.C., 2004. Computation of quasi-discrete Hankel
transforms of integer order for propagating optical wave fields. J. Opt. Soc. Amer.
A 21 (1), 53–58. http://dx.doi.org/10.1364/JOSAA.21.000053.

Heimpel, M., Gastine, T., Wicht, J., 2016. Simulation of deep-seated zonal jets and
shallow vortices in gas giant atmospheres. Nat. Geosci. 9 (1), 19–23. http://dx.doi.
org/10.1038/ngeo2601.

Huang, H.-P., Galperin, B., Sukoriansky, S., 2000. Anisotropic spectra in two-
dimensional turbulence on the surface of a rotating sphere. Phys. Fluids 13 (1),
225–240. http://dx.doi.org/10.1063/1.1327594.

Kaspi, Y., Galanti, E., Hubbard, W.B., Stevenson, D.J., Bolton, S.J., Iess, L., Guillot, T.,
Bloxham, J., Connerney, J.E.P., Cao, H., Durante, D., Folkner, W.M., Helled, R.,
Ingersoll, A.P., Levin, S.M., Lunine, J.I., Miguel, Y., Militzer, B., Parisi, M.,
Wahl, S.M., 2018. Jupiter’s atmospheric jet streams extend thousands of kilometres
deep. Nature 555 (7695), 223–226. http://dx.doi.org/10.1038/nature25793.

Kaspi, Y., Galanti, E., Showman, A.P., Stevenson, D.J., Guillot, T., Iess, L., Bolton, S.J.,
2020. Comparison of the Deep Atmospheric Dynamics of Jupiter and Saturn in
Light of the Juno and Cassini Gravity Measurements. Space Sci. Rev. 216 (84),
http://dx.doi.org/10.1007/s11214-020-00705-7, arXiv:1908.09613.

http://dx.doi.org/10.1063/1.869530
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1007/s11214-017-0429-6
http://dx.doi.org/10.1007/s11214-017-0429-6
http://dx.doi.org/10.1007/s11214-017-0429-6
http://dx.doi.org/10.1103/PhysRevLett.122.074502
http://arxiv.org/abs/1810.11057
http://dx.doi.org/10.1016/j.physrep.2012.02.001
http://dx.doi.org/10.1103/PhysRevE.99.023108
http://dx.doi.org/10.1038/nphys4001
http://dx.doi.org/10.1038/nphys4001
http://dx.doi.org/10.1038/nphys4001
http://dx.doi.org/10.1029/2020GL088685
http://dx.doi.org/10.1080/03091929.2018.1467413
http://dx.doi.org/10.1016/0031-9201(94)90075-2
http://dx.doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
http://dx.doi.org/10.1016/0167-2789(96)00102-9
http://dx.doi.org/10.1063/1.868929
http://dx.doi.org/10.1016/j.icarus.2011.10.001
http://dx.doi.org/10.1016/j.icarus.2011.10.001
http://dx.doi.org/10.1016/j.icarus.2011.10.001
http://dx.doi.org/10.1175/JAS-D-13-076.1
http://dx.doi.org/10.1175/JAS-D-13-076.1
http://dx.doi.org/10.1175/JAS-D-13-076.1
http://dx.doi.org/10.17863/CAM.75705
http://dx.doi.org/10.1017/9781107358225.003
http://dx.doi.org/10.1063/1.4817540
http://dx.doi.org/10.1063/1.4817540
http://dx.doi.org/10.1063/1.4817540
http://dx.doi.org/10.1175/2007JAS2227.1
http://dx.doi.org/10.1098/rsta.2010.0306
http://dx.doi.org/10.1175/2007JAS2223.1
http://dx.doi.org/10.1175/MWR-D-17-0056.1
http://dx.doi.org/10.1080/03091929.2011.637301
http://dx.doi.org/10.1175/1520-0469(2003)060<2101:SSOTJ>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)060<2101:SSOTJ>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)060<2101:SSOTJ>2.0.CO;2
http://dx.doi.org/10.1063/1.4895131
http://dx.doi.org/10.1063/1.4895131
http://dx.doi.org/10.1063/1.4895131
http://dx.doi.org/10.1093/mnras/staa3722
http://dx.doi.org/10.1029/2018GL078087
http://dx.doi.org/10.1029/2018GL078087
http://dx.doi.org/10.1029/2018GL078087
http://dx.doi.org/10.1103/PhysRevE.94.063102
http://dx.doi.org/10.1103/PhysRevE.94.063102
http://dx.doi.org/10.1103/PhysRevE.94.063102
http://dx.doi.org/10.1002/2014GL060767
http://dx.doi.org/10.1029/2004GL019691
http://dx.doi.org/10.1017/9781107358225
http://dx.doi.org/10.1103/PhysRevFluids.5.063803
http://dx.doi.org/10.1007/s10236-010-0278-2
http://dx.doi.org/10.5194/npg-13-83-2006
http://dx.doi.org/10.5194/npg-13-83-2006
http://dx.doi.org/10.5194/npg-13-83-2006
http://dx.doi.org/10.1017/9781107358225.013
http://dx.doi.org/10.1017/9781107358225.013
http://dx.doi.org/10.1017/9781107358225.013
http://dx.doi.org/10.1016/j.icarus.2013.08.030
http://dx.doi.org/10.1016/j.icarus.2013.08.030
http://dx.doi.org/10.1016/j.icarus.2013.08.030
http://dx.doi.org/10.1175/2008JTECHO541.1
http://dx.doi.org/10.1175/2008JTECHO541.1
http://dx.doi.org/10.1175/2008JTECHO541.1
http://dx.doi.org/10.1016/j.pepi.2014.03.011
http://dx.doi.org/10.1016/j.pepi.2014.03.011
http://dx.doi.org/10.1016/j.pepi.2014.03.011
http://arxiv.org/abs/1402.3679
http://dx.doi.org/10.1016/j.icarus.2021.114514
http://dx.doi.org/10.1016/j.icarus.2021.114514
http://dx.doi.org/10.1016/j.icarus.2021.114514
http://dx.doi.org/10.1017/S0022112007005265
http://dx.doi.org/10.1017/S0022112006009219
http://dx.doi.org/10.1017/S0022112006009219
http://dx.doi.org/10.1017/S0022112006009219
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb48
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb48
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb48
http://dx.doi.org/10.1093/gji/ggx315
http://dx.doi.org/10.1038/nature25775
http://dx.doi.org/10.1038/nature25775
http://dx.doi.org/10.1038/nature25775
http://dx.doi.org/10.1364/JOSAA.21.000053
http://dx.doi.org/10.1038/ngeo2601
http://dx.doi.org/10.1038/ngeo2601
http://dx.doi.org/10.1038/ngeo2601
http://dx.doi.org/10.1063/1.1327594
http://dx.doi.org/10.1038/nature25793
http://dx.doi.org/10.1007/s11214-020-00705-7
http://arxiv.org/abs/1908.09613


Icarus 390 (2023) 115292D. Lemasquerier et al.
Lemasquerier, D., 2021. Experimental and Numerical Study of Jupiter’s Dynam-
ics: Jets, Vortices and Zonostrophic Turbulence (Ph.D. thesis). (2021AIXM0439),
Aix-Marseille Université, NNT:2021AIXM0439, tel-03410022.

Lemasquerier, D., Favier, B., Le Bars, M., 2021. Zonal jets at the laboratory scale:
Hysteresis and Rossby waves resonance. J. Fluid Mech. 910, A18. http://dx.doi.
org/10.1017/jfm.2020.1000, arXiv:2008.10304.

Matthews, P.C., Proctor, M.R.E., Weiss, N.O., 1995. Compressible magnetoconvection in
three dimensions: Planforms and nonlinear behaviour. J. Fluid Mech. 305, 281–305.
http://dx.doi.org/10.1017/S0022112095004630.

Maximenko, N.A., Bang, B., Sasaki, H., 2005. Observational evidence of alternating
zonal jets in the world ocean. Geophys. Res. Lett. 32 (12), http://dx.doi.org/10.
1029/2005GL022728.

McIntyre, M.E., 2008. Potential-vorticity inversion and the wave-turbulence jigsaw:
Some recent clarifications. Adv. Geosci. 15, 47–56. http://dx.doi.org/10.5194/
adgeo-15-47-2008.

Meunier, P., Leweke, T., 2003. Analysis and treatment of errors due to high velocity
gradients in particle image velocimetry. Exp. Fluids 35 (5), 408–421. http://dx.doi.
org/10.1007/s00348-003-0673-2.

Mitchell, J.L., Birner, T., Lapeyre, G., Nakamura, N., Read, P.L., Riviére, G., Sánchez-
Lavega, A., Vallis, G.K., 2019. Terrestrial Atmospheres. In: Galperin, B., Read, P.L.
(Eds.), Zonal Jets: Phenomenology, Genesis, and Physics. Cambridge University
Press, Cambridge, pp. 9–45. http://dx.doi.org/10.1017/9781107358225.002.

Moore, K.M., Cao, H., Bloxham, J., Stevenson, D.J., Connerney, J.E.P., Bolton, S.J.,
2019. Time variation of Jupiter’s internal magnetic field consistent with zonal wind
advection. Nature Astron. 3 (8), 730–735. http://dx.doi.org/10.1038/s41550-019-
0772-5.

Ozmidov, R.V., 1965. On the turbulent exchange in a stably stratified ocean. Izv. Acad.
Sci. USSR. Atmos. Oceanic Phys. 1, 861–871.

Pelinovsky, E., 1978. Wave turbulence on beta-plane. Okeanologiya 18, 192–195.
Phillips, O.M., 1972. Turbulence in a strongly stratified fluid— is it unstable? Deep

Sea Res. Oceanogr. Abstr. 19 (1), 79–81. http://dx.doi.org/10.1016/0011-7471(72)
90074-5.

Pouquet, A., Marino, R., Mininni, P.D., Rosenberg, D., 2017. Dual constant-flux energy
cascades to both large scales and small scales. Phys. Fluids 29 (11), 111108.
http://dx.doi.org/10.1063/1.5000730.

Quinn, B.E., Nazarenko, S.V., Connaughton, C.P., Gallagher, S., Hnat, B., 2019.
Modulational Instability in Basic Plasma and Geophysical Models. In: Galperin, B.,
Read, P.L. (Eds.), Zonal Jets: Phenomenology, Genesis, and Physics. Cambridge Uni-
versity Press, Cambridge, pp. 255–265. http://dx.doi.org/10.1017/9781107358225.
016.

Read, P.L., Jacoby, T.N.L., Rogberg, P.H.T., Wordsworth, R.D., Yamazaki, Y.H., Miki-
Yamazaki, K., Young, R.M.B., Sommeria, J., Didelle, H., Viboud, S., 2015. An
experimental study of multiple zonal jet formation in rotating, thermally driven
convective flows on a topographic beta-plane. Phys. Fluids 27 (8), 085111. http:
//dx.doi.org/10.1063/1.4928697.

Read, P.L., Yamazaki, Y.H., Lewis, S.R., Williams, P.D., Wordsworth, R., Miki-
Yamazaki, K., Sommeria, J., Didelle, H., 2007. Dynamics of Convectively Driven
Banded Jets in the Laboratory. J. Atmos. Sci. 64 (11), 4031–4052. http://dx.doi.
org/10.1175/2007JAS2219.1.

Rhines, P.B., 1975. Waves and turbulence on a beta-plane. J. Fluid Mech. 69 (03), 417.
http://dx.doi.org/10.1017/S0022112075001504.

Rhines, P.B., 1977. The dynamics of unsteady currents. The Sea 6, 189–318.
Salmon, R., 1978. Two-layer quasi-geostrophic turbulence in a simple special

case. Geophys. Astrophys. Fluid Dyn. 10 (1), 25–52. http://dx.doi.org/10.1080/
03091927808242628.

Sansón, L.Z., Van Heijst, G., 2000. Nonlinear ekman effects in rotating barotropic flows.
J. Fluid Mech. 412, 75–91. http://dx.doi.org/10.1017/S0022112000008193.

Sansón, L.Z., Van Heijst, G., 2002. Ekman effects in a rotating flow over bot-
tom topography. J. Fluid Mech. 471, 239–255. http://dx.doi.org/10.1017/
S0022112002002239.

Scott, R.K., Dritschel, D.G., 2012. The structure of zonal jets in geostrophic turbulence.
J. Fluid Mech. 711, 576–598. http://dx.doi.org/10.1017/jfm.2012.410.
26
Scott, R.K., Dritschel, D.G., 2019. Zonal Jet Formation by Potential Vorticity Mixing at
Large and Small Scales. In: Galperin, B., Read, P.L. (Eds.), Zonal Jets: Phenomenol-
ogy, Genesis, and Physics. Cambridge University Press, Cambridge, pp. 238–246.
http://dx.doi.org/10.1017/9781107358225.014.

Scott, R.K., Polvani, L.M., 2007. Forced-Dissipative Shallow-Water Turbulence on the
Sphere and the Atmospheric Circulation of the Giant Planets. J. Atmos. Sci. 64 (9),
3158–3176. http://dx.doi.org/10.1175/JAS4003.1.

Scott, R.K., Tissier, A.-S., 2012. The generation of zonal jets by large-scale mixing.
Phys. Fluids 24 (12), 126601. http://dx.doi.org/10.1063/1.4771991.

Siegelman, L., Klein, P., Ingersoll, A.P., Ewald, S.P., Young, W.R., Bracco, A., Mura, A.,
Adriani, A., Grassi, D., Plainaki, C., Sindoni, G., 2022. Moist convection drives
an upscale energy transfer at Jovian high latitudes. Nat. Phys. 18 (3), 357–361.
http://dx.doi.org/10.1038/s41567-021-01458-y.

Smith, C.A., Speer, K.G., Griffiths, R.W., 2014. Multiple Zonal Jets in a Differentially
Heated Rotating Annulus. J. Phys. Oceanogr. 44 (9), 2273–2291. http://dx.doi.org/
10.1175/JPO-D-13-0255.1.

Soderlund, K.M., Kalousová, K., Buffo, J.J., Glein, C.R., Goodman, J.C., Mitri, G., Patter-
son, G.W., Postberg, F., Rovira-Navarro, M., Rückriemen, T., Saur, J., Schmidt, B.E.,
Sotin, C., Spohn, T., Tobie, G., Van Hoolst, T., Vance, S.D., Vermeersen, B., 2020.
Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites. Space Sci.
Rev. 216 (5), 80. http://dx.doi.org/10.1007/s11214-020-00706-6.

Sukoriansky, S., Dikovskaya, N., Galperin, B., 2007. On the Arrest of Inverse Energy
Cascade and the Rhines Scale. J. Atmos. Sci. 64 (9), 3312–3327. http://dx.doi.org/
10.1175/JAS4013.1.

Sukoriansky, S., Galperin, B., Dikovskaya, N., 2002. Universal Spectrum of Two-
Dimensional Turbulence on a Rotating Sphere and Some Basic Features of
Atmospheric Circulation on Giant Planets. Phys. Rev. Lett. 89 (12), http://dx.doi.
org/10.1103/PhysRevLett.89.124501.

Theiss, J., 2004. Equatorward Energy Cascade, Critical Latitude, and the Predom-
inance of Cyclonic Vortices in Geostrophic Turbulence. J. Phys. Oceanogr. 34
(7), 1663–1678. http://dx.doi.org/10.1175/1520-0485(2004)034<1663:EECCLA>
2.0.CO;2.

Thorpe, S.A., 2005. The Turbulent Ocean. Cambridge University Press, Cambridge,
http://dx.doi.org/10.1017/CBO9780511819933.

Thorpe, S.A., Deacon, G.E.R., 1977. Turbulence and mixing in a Scottish Loch. Philos.
Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 286 (1334), 125–181. http:
//dx.doi.org/10.1098/rsta.1977.0112.

Tollefson, J., Wong, M.H., de Pater, I., Simon, A.A., Orton, G.S., Rogers, J.H.,
Atreya, S.K., Cosentino, R.G., Januszewski, W., Morales-Juberías, R., et al., 2017.
Changes in Jupiter’s Zonal Wind Profile preceding and during the Juno mission.
Icarus 296, 163–178. http://dx.doi.org/10.1016/j.icarus.2017.06.007.

Vallis, G.K., 2006. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and
Large-Scale Circulation. Cambridge Univ. Press.

Vallis, G.K., 2017. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-
Scale Circulation, second ed. Cambridge University Press, Cambridge, http://dx.
doi.org/10.1017/9781107588417.

Vallis, G.K., Maltrud, M.E., 1993. Generation of Mean Flows and Jets on a Beta Plane
and over Topography. J. Phys. Oceanogr. 23 (7), 1346–1362. http://dx.doi.org/10.
1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

Vasavada, A.R., Showman, A.P., 2005. Jovian atmospheric dynamics: An update after
Galileo and Cassini. Rep. Progr. Phys. 68 (8), 1935–1996. http://dx.doi.org/10.
1088/0034-4885/68/8/R06.

Wang, Q., Ronneberger, O., Burkhardt, H., 2008. Fourier Analysis in Polar and Spherical
Coordinates. Albert-Ludwigs-UniversitÄt Freiburg, Institut FÜr Informatik.

Williams, G., 1975. Some ocean–Jupiter connections. MODE Hot Line News 78, 2.
Wordsworth, R.D., Read, P.L., Yamazaki, Y.H., 2008. Turbulence, waves, and jets in

a differentially heated rotating annulus experiment. Phys. Fluids 20 (12), 126602.
http://dx.doi.org/10.1063/1.2990042.

Young, R.M.B., Read, P.L., 2017. Forward and inverse kinetic energy cascades in
Jupiter’s turbulent weather layer. Nat. Phys. 13 (11), 1135–1140. http://dx.doi.
org/10.1038/nphys4227.

Zhang, Y., Afanasyev, Y.D., 2014. Beta-plane turbulence: Experiments with altimetry.
Phys. Fluids 26 (2), 026602. http://dx.doi.org/10.1063/1.4864339.

https://www.theses.fr/2021AIXM0439
https://hal.archives-ouvertes.fr/tel-03410022
http://dx.doi.org/10.1017/jfm.2020.1000
http://dx.doi.org/10.1017/jfm.2020.1000
http://dx.doi.org/10.1017/jfm.2020.1000
http://arxiv.org/abs/2008.10304
http://dx.doi.org/10.1017/S0022112095004630
http://dx.doi.org/10.1029/2005GL022728
http://dx.doi.org/10.1029/2005GL022728
http://dx.doi.org/10.1029/2005GL022728
http://dx.doi.org/10.5194/adgeo-15-47-2008
http://dx.doi.org/10.5194/adgeo-15-47-2008
http://dx.doi.org/10.5194/adgeo-15-47-2008
http://dx.doi.org/10.1007/s00348-003-0673-2
http://dx.doi.org/10.1007/s00348-003-0673-2
http://dx.doi.org/10.1007/s00348-003-0673-2
http://dx.doi.org/10.1017/9781107358225.002
http://dx.doi.org/10.1038/s41550-019-0772-5
http://dx.doi.org/10.1038/s41550-019-0772-5
http://dx.doi.org/10.1038/s41550-019-0772-5
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb64
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb64
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb64
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb65
http://dx.doi.org/10.1016/0011-7471(72)90074-5
http://dx.doi.org/10.1016/0011-7471(72)90074-5
http://dx.doi.org/10.1016/0011-7471(72)90074-5
http://dx.doi.org/10.1063/1.5000730
http://dx.doi.org/10.1017/9781107358225.016
http://dx.doi.org/10.1017/9781107358225.016
http://dx.doi.org/10.1017/9781107358225.016
http://dx.doi.org/10.1063/1.4928697
http://dx.doi.org/10.1063/1.4928697
http://dx.doi.org/10.1063/1.4928697
http://dx.doi.org/10.1175/2007JAS2219.1
http://dx.doi.org/10.1175/2007JAS2219.1
http://dx.doi.org/10.1175/2007JAS2219.1
http://dx.doi.org/10.1017/S0022112075001504
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb72
http://dx.doi.org/10.1080/03091927808242628
http://dx.doi.org/10.1080/03091927808242628
http://dx.doi.org/10.1080/03091927808242628
http://dx.doi.org/10.1017/S0022112000008193
http://dx.doi.org/10.1017/S0022112002002239
http://dx.doi.org/10.1017/S0022112002002239
http://dx.doi.org/10.1017/S0022112002002239
http://dx.doi.org/10.1017/jfm.2012.410
http://dx.doi.org/10.1017/9781107358225.014
http://dx.doi.org/10.1175/JAS4003.1
http://dx.doi.org/10.1063/1.4771991
http://dx.doi.org/10.1038/s41567-021-01458-y
http://dx.doi.org/10.1175/JPO-D-13-0255.1
http://dx.doi.org/10.1175/JPO-D-13-0255.1
http://dx.doi.org/10.1175/JPO-D-13-0255.1
http://dx.doi.org/10.1007/s11214-020-00706-6
http://dx.doi.org/10.1175/JAS4013.1
http://dx.doi.org/10.1175/JAS4013.1
http://dx.doi.org/10.1175/JAS4013.1
http://dx.doi.org/10.1103/PhysRevLett.89.124501
http://dx.doi.org/10.1103/PhysRevLett.89.124501
http://dx.doi.org/10.1103/PhysRevLett.89.124501
http://dx.doi.org/10.1175/1520-0485(2004)034<1663:EECCLA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2004)034<1663:EECCLA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2004)034<1663:EECCLA>2.0.CO;2
http://dx.doi.org/10.1017/CBO9780511819933
http://dx.doi.org/10.1098/rsta.1977.0112
http://dx.doi.org/10.1098/rsta.1977.0112
http://dx.doi.org/10.1098/rsta.1977.0112
http://dx.doi.org/10.1016/j.icarus.2017.06.007
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb89
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb89
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb89
http://dx.doi.org/10.1017/9781107588417
http://dx.doi.org/10.1017/9781107588417
http://dx.doi.org/10.1017/9781107588417
http://dx.doi.org/10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2
http://dx.doi.org/10.1088/0034-4885/68/8/R06
http://dx.doi.org/10.1088/0034-4885/68/8/R06
http://dx.doi.org/10.1088/0034-4885/68/8/R06
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb93
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb93
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb93
http://refhub.elsevier.com/S0019-1035(22)00384-0/sb94
http://dx.doi.org/10.1063/1.2990042
http://dx.doi.org/10.1038/nphys4227
http://dx.doi.org/10.1038/nphys4227
http://dx.doi.org/10.1038/nphys4227
http://dx.doi.org/10.1063/1.4864339

	Zonal jets experiments in the gas giants' zonostrophic regime
	Introduction
	Experimental and numerical methods
	Experimental set-up
	Description of the setup
	Non-dimensional parameters
	List of experiments

	Quasi-geostrophic numerical model

	Qualitative observations
	Experimental flows
	Independence on the forcing scale

	Spectral analysis
	Spectral properties and signature of the zonostrophic regime
	Zonal and residual kinetic energy spectra
	Rate of upscale energy transfer
	Zonostrophy index

	Influence of the forcing scale

	Global and local potential vorticity mixing
	Staircasing
	Local mixing: The Thorpe scale

	Conclusions and Discussion
	Zonostrophic turbulence and potential vorticity mixing
	Advantages and drawbacks of different methods for estimating the upscale turbulent energy transfer rate
	Implication for Jupiter's cloud layer dynamics
	Advantages and limitations of experimental approaches of zonal jets

	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Hovmoller diagrams and zonal flows for experiment and QG simulations
	Appendix B. Data from previous experiments
	Appendix C. Quasi-geostrophic model of the experiment
	Derivation
	Justification for keeping higher order, non-linear terms
	Forcing
	Zonal flow evolution equation
	Numerical methods

	Appendix D. Discrete Bessel–Fourier transform
	References


