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1. Summary of the methods to estimate kg;s- (Table S1)

Entry Equations Assumptions Comments
¢ De =1
1 —AEg; (D, K Py, k3, = 0)
15 kise ==k ( ) y K Py, ki For metal complexes.
msc = g kiscexp (—p « e > kS or metal complexes
e kpise > kT + Ky
* Ppr =1
(k$, ~ 0, kL, ~ 0)
1 —AEs * D, <Dy, (ke » k) krapr 1s a triplet decay rate via S;
26 krapr = S k3 exp . .
3 RT e 7>1ps including ISC/RISC cycles.
« 0.05eV < AEg; < 0.3 eV
(kT = 0)
37 k - kpka ﬂ - Pq ok ke Kise > Kpises ke
FISE ™ ke @, d‘pp‘plsc e kl=0
.« IS T
45 P kpka @a _ Dy . ]ZTS’ Ii'sé > Kpisc fenr Transient PL prompt must be
RSC™ ke @y Dy . kZ'ET:O temperature independent.
T~
0 _ kpka kpkg o kS kS, kI, kL.
5 kpisc = s T LT
kp - kISC kr * kRISC > krr knr
a k _lpka @a © dy > kg k=0
610 RISC™ ke @, (kS + kS, + kisc > kpise + kXD kpisc can be determined even
@) Koo = kykq ® o kS, = 0,®p,0p = 0.9 for (1) when k$ < kg;sc.
RISC kS PLQY « kT~ 0 for (2)
“ kL~ 0
. T o
1 @, + B, rx0
71 krisc = kq 1— & =kq @ o ke > k> ky,
? ¢ kise » kpisc
© Dy /D, =4
g12 i _ ky + kg _ (kp + kd>2 k(1 +& e kI.~0 krisc can be determined even
RISC 2 2 phd ?, c kl'=0 when k < kgsc.
ds,] s
- _ LIN) ~1
o1s = —(k? + k5 [S1] + kpise[Ti] (kPSLQY~ 0.kT ~0) Estimated by multi-parameter
d[T] pr T T fitting.
dtl = kysc[S1] — krisc[Ti] s kf=0 &
Prepare the pristine and quencher
doped film.
kyo and kg are prompt and
delayed decay rate of pristine film.
1014 - kao® — kpokao e kL. ~0 k;sc is estimated by curve fitting of
RISC™ Kyse + kao — ko c kT~0 delayed emission for quencher
doped film.
Other parameters such as exciton
diffusion coefficients and length
are also estimated.
ky is triplet lifetime from transient
absorption spectra.
®r4pr is the difference of PLQY
presence and absence of Oz.
1115 krisc = kr®Prapr krisc is estimated as not an

elementary rate but an effective
rate which should be written as
krapr, because ISC/RISC cycle is
not considered.

Reference numbers is corresponding to that in main text.
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2. Summary of the methods to estimate @5~ (Table S2)
Entry Equations Assumptions Comments
116 P p(Wssky  Depending on estimation
567 er(DILL method of &,(1)16
Temperature dependency of the ratio
of prompt and delayed emission are
- 1 AEg 1 KT+ kT, . KT kT and . are mt?asured t.o provide the plot by
2 In Ir  \®c Y= R T *in CKuse temperature independent using equation.
PF 1sc RISC P P Then, you can find a best &,z value
to obtain linearity of plot by
continuous variation of @ .
When 79,,s is not provided, T,,s
d @ be obtained by th
o o lor e kI +kI,  and D are ané Pisc can be obtamed by the
319 Tpr = Tpros — \=— = 1| Tphos —— . similar method of entry 2 with the
Dsc Lop temperature independent
temperature dependency of 7z and
Ipp/Ips-
3N Only thin film state can be applied.
Doe =—— The OLED device should be
47 M= 11\11/1 = ol /0P fabricated using same emissive layer
— ¥EL
N = Lng/(p%L with the thin layer for PL
PL
measurement.
520 Por + Ppros  _ Pog o kS + e > sy > KT+ KT This method can be applicable to the

b . = =
s¢ d)rS + d)DF + (‘DPhOS (‘pPLQY

efficient TADF emitters.

Reference numbers is corresponding to that in main text.
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3. Conversion equation from quantum efficiency of prompt and delayed emission component
commonly used to precise efficiency.
The quantum efficiency of prompt and delayed emission components, which have been used commonly

in most of literature, were written as,

¢, = ke, $3.1
D= Agka + Agky VPOV N
P L $3.2
= Aokg + Agle, TPLeY (53.2)
From Egs. 33, 34, S3.1 and S3.2 the conversion equations can be obtained as,
kq
Dpp = P, +— Py, (S3.3)
kp
k
dpp = (1 - —d> @, (S3.4)
kp
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4. Validity of k® ~ k, by assuming of kS + K3, + kisc > kgisc

Eq. 40 provided by the steady state approximation, which require k3 + k3, + k;sc > kgisc, can be
written as

kISC
R R - L

kisc
kT —kq =~ #kmsc-

From the relationship of Egs. 19 and 78, the equation can be rewritten as

kisc
ky — kS ~ #kmsc,

2
kpks — k5 = kisckrisc
kepkS — k5% & (e — k) (kS — k),
kpkS — k5% % kykS — kykg — kS + kSkg,
k® = k. (54.1)

Therefore, when k; + k;, + kjsc » kgysc is assuming, the approximation of k,, ~ k* can be approval.
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5. Relationship between efficiencies and overall efficiencies (approximating k5 ~ k,)

The efficiencies related to the distribution of triplet exciton can be described to Egs. S5.1-S5.3.

krisc
Prisc = krisc + k¥ + KL o)
kT
of = 4 . S5.2
" eprs + KL F Ky (55.2)
kT
or. = nr (S5.3)

krisc + k¥ + KL
The overall efficiencies related to final distribution of triplet exciton can be described to Eqgs. 49-51. From
tease equations, the relationship between overall efficiencies and the efficiencies related to the distribution
of T population as Egs. S5.4-S5.6.

or _ (1= Prsc)Prisc

@ =~ IS¢ RISC $5.4
Risc¢ 1- (pISC(pRISC ( )
(DT
e — (S5.5)
" 1- (DISC(DRISC
(pT
ol % = nr (S5.6)

B 1- (DISC(pRISC.
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6. Derivation of @2L=0 for three-state analysis

From Egs. 55-57,

- (pPhos) . kpkd _ (pPhos

Ppr k=0 "¢ =0

_ P Pppos — PISE —°Ppg + Ppp — Ppnos + PprPpnos

nrT=0
PprPysc

)
Ky = 0 = kg — (1 — opzr=0) {228

=1

Therefore,

by — D 1-9
(p[r}grg‘:o — DE PhOS( PF) . (861)
Dpp + Ppg — Pppos
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7. Derivation of kg at the limit conditions (k}gz 0, k4Z=°) for three-state analysis

From Eq. 41,
P =1—-@7 =1— Dpp.
From Egs. 54 and S7.1,
k}"fgr(:S:O = kp(l - (pPF)-

From Egs. 54 and S6.1,

k;gé”:() -k (DDE - (pPhOS(l - CDPF) .
P @pp + Ppg — Pppos

When @p,,,c = 0 was employed,

Dpp —k Ppr
P @pp + Opp P ®proy’

nrT=0
kISC ~ k

From Eqgs. S7.2 and S7.4 the exchange equation of k;s. between the limit condition is provided as,

Iy . L —
(1 = @pp)PpLoy

S9
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8. Derivation of kg at the limit conditions (k3¢ °, kjiZc?) for three-state analysis

From Eqgs. 51 and 57,

(DDE - (pPhos

k =k
RISC a (pp (DISC
From Egs. S6.1, S7.1, and S8.1,

rS=0 — kd (pDE - (pPhOS
Rise ®pp(1— Ppp)’

KT=0 = Jo_ Ppe(Ppr — Ppe) — Ppros(Ppr — Pphos)
PprPpe — PrrPphos(1 + Ppr)

When @p,,,c = 0 was employed for simplification,

P ()
kan:O =k DF =k DF ,
RISC = T ppp(1— Bpp) ~ C DppPrsc
- Ppr + Ppp Dproy
kgzrsTc 0= kq ®pr =kq ®pp

(S8.1)

(S8.2)

(S8.3)

(58.4)

(58.5)

Egs. S8.4 and S8.5 are completely corresponding to the Goushi-Masui’s equation and Dias’ equation

respectively (see Entry 3, 4, and 6 in Table S1). This means kg;¢c Values in the literatures estimated by their

method with the different assumption of @3 = 0 and @, = 0 can be compared by using Eq. S8.6. In this

case, the efficiency values of @pr and @ Or @p oy With the ratio of @pp and @ are requested to the

literature.

jrr=0 _ gnrs=0 (L~ ®pr)Prigy
RISC = ™RISC @ .
DF

S10
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ars Avg. Avg.
9. Definition of k)¢~ and k¢

nrS=0 nrT’=0 nrS=0 nrT=0
_ (kg™ + kisc + (kisc™" — kisc

Avg.
kisc = > + 5 (59.1)
A9 = (kRiec® + kRise®) + (kRisc® — kRise®) 592

RISC = 2 X 2 . (59.2)
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10. Detail derivation of k'f;’cg' and k';',’gqé for three-state analysis (approximating @pp,s = 0 for
simplification)
From Egs. S6.1, S7.4, and S9.1

Avg. 1 1 DF
kise” =5 [kp(L = Ppr) + k| £ = k(1 = Ppp) = kp(p
DPproy PLQY
_kp Pprov(1 = @pp) + Ppp £ [@pLoy (1 = Ppr) — P
) PpLoy
kp | [Pprov(1 = Per) + Ppr] £ Ppp(1 — Prigr) (510.1)
) Dproy ' .
From Egs. S8.4, S8.5, and S9.2,
Ave PLQY Dpr Pproy PpF
kRISgC [kd Ppp t+ka Dpp(1— d)PF)] -2 [ a Ppr ~ka Ppp(1— (pPF)]
_ka Pproy(1 — Ppp) + Ppr £ Ppr(1— (DPLQY) (510.2)

2 Ppp(1 — ®pr)

Because the relationship of Eq. S7.5, k{i%¢ can be obtained from reported k5. by using S10.1 as

rseo Prroy(1— @pp) + Ppp £ Ppp(1 — cbpwy)

Avg.
= 10.
kisc' = kisc 2@ 197 (L — Ppr) (510.3)
®poy (1 — Ppp) + Ppp + Ppp(1— @
kA9 — =0 £PLOY PF pr = Per( PLQY) (510.4)

2®pp

Because the relationship of Eq. S8.6, kire: can be obtained from reported kg, s¢ by using S10.2 as

0} 1—@pp) + Ppp + Ppp(1+ @
kg;;gc = Jrs=0 pLoy ( pF) 2(;)[1; PF( PLQY) (510.5)

kAVg | nrT=0 (DPLQY(l cz)PF) + CDDF + d)pp(l — (DPLQY)
RISC — ™RISC Z(I)PLQy(l — (I)PF)

(510.6)
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11. Analysis of exciton distribution of three-state system at photoexcitation

R
= Dpp + 05, + 5% (07 + L7 + gy F)

= Ppp + ¢’1fro£ + d)lscOEcbrTOE + ¢1scOE‘Drfr0E + P F Dy OF
D + Dy,
qDrs + d)ﬁqr)
®P 4+ OFEg  OF Py
o5 + B3, s Prisc ™ o5 s
o,
DF + D5,

OF OF
= Opp + Pip + Pppos + Proc " Py 4 Drg O Prysc”F (

OE OE OE OE OE
= Opp + D A Pppos + Pisc” Py + i Ppyse

OE 0 OF 0 0

= Ppp + Py + Pppos + Prsc” Py + Ppp + Py Prysc
o5,

D5 + OF,
o5,

D5 + dF.

OE OE OFE
= Opp + P + Ppp + PPN+ Do s

0E 0E
= Opoy + Py + Py DL+ By OF Drysc”F (S11.1)

@, and overall efficiencies are the final distribution considering the ISC/RISC cycles. Therefore, S; excitons
via Ty are distributed with essential efficiencies of @7 and @;,.. The finally distributed S; excitons via T;

(@15 Prisc®") must not distribute to 1SC process anymore to generate T1. When k5 ~ k,, was employed,

®p, ®5.°7 and @,5-°F can be written by S, @S, and @, respectively.

Note for definition of each efficiency related to Si:
OE
Ppp = kf/kp ’ S kgr/kp ’ (DISCOE = (kISC +kp — ks)/kp
d’rs = kf/ks, d’rfr = kir/ks; Prsc = klsc/ks
kS = k;? + kg?” + kISC

S13



12. Detail derivation of exact rate equation for k;s (Eq. 73)

From Egs. 70, 71, and 72, the quadratic formula of k;s. was obtained as below.

S

E

®peRPE = W‘ch Edpsc?,

q)DERgE(kS —kisc) = qu)ISCOEq)RISCOE'

kISC + kp - kS . kRISC - kp + kS

(pDERBg(kS —kisc) = k%s K

p kq

kpkq
ks ‘pDERgE(kS kisc) = [kISC + (kp - ks)][kmsc - (kp - ks)]'
(D—PdeR £ (kS —kisc) = kisckpisc + (kp - kS)lesc - (kp - ks)klsc - (kp - ks)z,
®pg
q)—ﬁdeBE(kS —kise) = (kp — KS)(KS = k) + (K = k) kerase — (kp — K5)kase — (e — k)7,

® By
(ky — kS)kysc — ®—MdeB§k,SC = (kp — kS)[kS — kg — (K, + k)] + (kp — kS kpssc — - —22 e kSRBE,

® ®
(ky — kS)kyse — == de Ekisc = (kp — k) (2kS — kg — k) + (kp — k) kpisc — —— kdkSRDE,

@ ky — kS) (kS —ky) @
(kp = k)kyse — 2% de Fkise = (kyp — kS)(2kS — kg — k) + (kp ,3 ( @) _ os —2% kykSRBE,
I1sC PF
®
(1ep — k5 - —de )k,sc [(kp — k) (25 — kg — k) — ﬂkdkSRgg] kise — (ky — kS)° (kS — k) = 0,
(o)
(ﬂ KaRBE — Ky + 1) Kusc? + [ (ky = k%) (I° = Ky = k) + (k= K°) = —kdkSRggl asc + (ky — k)’ (kS = k) = 0,

®
(¢—M kaRpg = kp + ks) kisc” + [(kp — k%) (k® = ky = kq) — K (¢—Z kqRBE — k, + ks)] ise + (ke — k5)2 (kS = kg) = 0.

Therefore, the solution using quadratic formula for k;¢. is as below.

—b +Vb? — 4ac
kISC = . (8121)
2a
®pE DF s
Ppr
b= (k,— k%) (kS —k, — kq) — ak®. (512.3)
Because k;sc should be smaller than k%, the value is uniquely determined as,
—b —+Vb? — 4ac
kISC = oa . (5124)
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13. Equation conversion of k3, from Eq. 83 to Eq. 85
From Egs. 82, 83, 86, and 88,

o) o)
ki = 165 = K =l = (kp— ﬂ)—kp%—(k i—kdﬂ)

Pproy PpLoy PpLoy

(‘DPLQY Ppp (DPLQY Dpp >
kp

@pr + Ppp — Ppp(Ppr + Ppr) — d)DF)
= kp
Dproy
(DPF Dpp? — ‘pPF‘pDF)
Pproy
()
= kp g—— (1= &pp — Ppy)
PLOY
Ppp
=ky [1 = (®pr + Ppp)]
PLOY
PLOY

S15



14. Detail derivation of exact rate equation for k5 (Eq. 96)
From Egs. 81, 88, 89, and 91,

d)T
k —k _kdtp +kISC¢)S’
kpka®pe (1 — RBE
(kisc + kp — k5)(kyp + kg — k%)
ks
ks

@
kS =k, — kg—=+ k;sc
Ppr

Dpg klsckpkd¢’DE(1 - Rgg)ks
=k, —kq—+ < <
Ppr ke ®Ppp(kisc + ky — k) (ky + kg — kS)
@ kysckq®pr(1 — RBEYKS
— kp _ kdﬂ_i_ 1scd DE( DE)

Ppr pp[kS? — (kysc + 2k + ko) kS + (kise + kp) (kp + k)]’

kS 157 = (kise + 2k, + ko)l + (Kise + ky) (kp + ka)|

= (kp = ka :;ii )52 = CRasc + 2k + Iea )k + (lase + )y + k)| + Kasclea 52 o % (1 REE)K,
1% — (Kyse + 2k + ka )leS? + (Kise + k) (Kp + kg )k

= (kp — ka z—z> k5% = (luse + 2Ky + Iea) (I = K Z—i) S o+ (Rase + Iep) (e + ) (K = b ZDE)

[«
+ kysckq —q)DE (1 = RREKS,
PF

®
K5 — (kuse + 2k, + ko )k (k g, 2 % >k52 + (kuse + k) (K + ko )KS + (Kisc + 2k, + kd)( —k, ¢DE) kS
PF

®
k,sckd (1 — RBEYKS — (Kusc + ky) (Kp + ko) (kp —k, ¢_LI:’FE> — 0,
1S® — (k,sc + 2k, + kg + Ky — kg ¢—“) K52 + (Kischy + k2 + kyscha + kyka)KS
PF

@ @ @
+ (Kischy + 216y + Jephea = Kisclea g2t = 2hykq 72 = ka® o22) kS = kyscha 2 (1~ REE)KS
PF PF
(DDE
— (kisc + kp) (kp + ka) ( kp — kg 2)=0
PF

ks (k,sc+2k kg + —kdd’ )ksz
PF

pe ,®

+ [ kischy + Iy + kischa + kpka + kischy + 2k, + kykg — kysckg —— — 2k kd — kg2 2E

Dpr cp pr

DF s Ppp\
k,sckd (1 —RBE) ) k5 = (kisc + k) (kp + ka) ( Kp — kdd)—ﬁ =0,
- [k,sc + 3k, + kg (1 - —)] s?
+[2k ky + 3k,? + 2k, k (1 Pos )+k k (1—%) kg =25 — kigck DE(1—RDF)]kS
1SCKp p pid ®pp 1scKa ®pr d d) 1scid g DE
(DDE
= (kisc + kp) (lkp + ka) (kp = ka5 —) = 0,
PF

@
ks® — [k,sc +3k, + kg (1 - (p—”)] kS?
PF

@ @ @
~ {ho {3k — 2 [ksc + 3k + k(1= S|} - ke S22 + hasclea [1 - 22 2 - RED)| i
d)PF ¢PF d)PF

@
~ (lasc + k) (ep + k) (K — K (DDE) 0.
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Therefore,
kS® + dkS? + ekS+ f =0,

0
- [kISC + 3kp + kd (1 - ﬂ):l
Ppr

@
e = luscka[1 = 2% (2 = RBE)| — Iy (30, + 20) = e 322,
PF

f= _(kISC + kp)(k + kd) (k —k, (PDE)

The solutions of cubic equation were obtained by Cardano—Tartaglia formula as,

kS, = |—g+Jg>+h*+ |—g— 2+h3—1d
gtvg g—~4g :

-1+ 1
kS, = \/— X |—g+gZ+h3+ x ' |—g—gZ+h JoP+ R —=d,

-1—iv3 -1+iV3 1
k53=Th/_x3/—g+,/g2+h3+Tl\/_x3 —g—,/g2+h3—§d.

27f + 2d3 — 9de
54 )

3e — d?
T

g:

h =

(514.1)

(S14.2)

(514.3)

(514.4)

(514.5)

(S14.6)

(S14.7)

(514.8)

(514.9)

Because k° should be smaller than k, and larger than k;sc (k;sc < k < k,), the solution to the cubic

equation is uniquely determined as k5.

NOTE:

The discriminant D for k5> + dkS” + ekS + f = 0 is written by,
D = —4e3 +e2d? — 4fd3 + 18def — 27f?
The solutions of cubic equation can be obtained as,
D > 0: three real roots

D < 0: one real root and two imaginary roots

D = 0: multiple root
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15. Detail derivation of rate constants for four-state analysis among Sy, S1, T; and T,
Here, we derived the rate equations for the four-state analysis considering higher triplet state (T,,) as an
intermediate state of RISC state with the generally expected assumptions for the emitters.

S_l krisc
T,

kRIC

Figure S1. Schematic diagram for four-state analysis of So, S1, T1 and Th.

When we assume direct ISC/RISC process between S; and T; state and direct radiative/nonradiative
process from T, to S, are forbidden, those decay pass can be eliminated. These assumptions should be related
to the El-Saied's and Kasha’s rules (Figure S1). The global decay rate from each excited state in the absence

of exciton-formation processes can be formulated as

dE{il] = —k3[S1] — knr[S1] — Kisc[S1] + kpisc[Tul, (§15.1)
d[T,

Elt - ~krisc[Tal = kic[Tal + kisc[S1] + kpic[Ti], (515.2)
d([;;l] = —ki [Ty] = ki [Ty] = Keic[Ty] + ki [Tal, (515.3)

where [T, ] is the densities of T, excitons, k;c and kg, are the rate constants for internal conversion (IC) and
reverse-internal conversion (RIC) processes. In this system, all three components of [S;], [T,], and [T;]
should be provide as the tri-exponential curves. Therefore, the emission decay can be fit with a tri-exponential
curve as,

I(t) = A, exp(—kpt) + Agq exp(—kgqit) + Agy exp(—kgot), (S15.4)
where A,, Ag1, Agz, kp, kg1, and kg, are the pre-exponential factors (A4) and decay rates (k) for prompt (p),
primary delayed (d1), and secondary delayed (d2) components. To obtain the quantum efficiency of prompt

(Dpr), primary delayed (®@pg,), and secondary (@pg,) delayed components, Eq. S15.4 should be rewritten
by,
1(t) = (Ap + Ags + Agz) exp(—kpt)
+(Agy + Agy)|[— exp(—kyt) + exp(—kgy t)]
+A 4 [—exp(—kgqt) + exp(—kgt)]. (515.5)
In this form, the first, second, and third terms are exactly corresponding to the prompt, primary delayed and
secondary delayed components, respectively, and each efficiency can be estimated as Egs. S15.6-S15.8,
Ap+Agr + Ay
= kp (I)
T At AntAn  An tAn An tAge Ae_Ae Y
kp ka1 ky kaz  kax
_ (Ap + Ag, + Adz)kdlkdz ®
- Apkaikas + Agikpkas + Agzkpkay pLev:
S18
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Ann +Agy  Agi +Ag
® — kdl kp @
PR At AatAe AutAn AatAn  Ac_ An Y
kp kdl kp kdz kdl
(Ag: + Adz)(kp - kdl)kdz

= D . (515.7)
Apkgikaz + Agikpkas + Agzkpkaq pLev
Aaz _Ady
DEZ AP +Ad1 +Ad2 +Ad1 +Ad2 _Adl +Ad2 +@_@ PLQY
kp kdl kp kdz kdl
Agr (kg — kgo)k
az(ka1 az)kp (515.8)

B Apkgikaz + Agikpkas + Agzkpkaq PrLor

Under the assumption of k2 + ki, + k;gc > kgrisc With the restriction condition of [S;] > [T,] (t <

1/k,), Eq. S15.1 can be rewritten as Eq. S15.9. Therefore, the singlet decay rate (k*) can be approximate to
the prompt decay rate (k,), and the function of time can be written as Eq. S15.10.

d[S,]

[S4]

[S,] = Ag exp[—(k§ + ki + kisc)t] = Ag exp(—kSt) = Asexp(—kyt), (515.10)

~ (=kf — kyy — kisc)dt, (515.9)

where Ag is a pre-exponential factor.

Next, we focus on the exponential decay of [Tn]. Eq. S15.2 can be rewritten as Eq. S15.11 under the
assumption of k2 + k3, + kjsc > kgrisc and kgisc + kjc > kg With the restriction condition of [T;] «
[To] and [S;] « [T,] (1/k, K t < 1/kqq). By the assumption of kg;sc + k¢ > kg, the term related to
the T1 can be vanished.

S
= (‘lesc — kic + kisc Q) dt, (515.11)

[Tnl
The time dependent term of [S;]/[T,] can be obtained as non-time-dependent value by the steady state
approximation (SSA) of Eq. S15.1, d[S,]/dt = 0.

[S,] - krisc
[Tn] kf + krgr + kISC.

This require the assumption some of k2, k., or k;sc is much larger than kg, .. When T, level is lying below

(S15.12)

S1 level, k;gc > kgisc is always approved because the relationship of exo- and endothermic process. If
kisc > kgisc is satisfied as a consequence, it should not matter whether T, level is lying above S; level. By

using Eq. S15.12, the time dependence for [T, ] is provided as Eq. S15.13.

kISC
[Tol(t) = Ary exp {— [(1 - m) krisc + klc] t}

= Arpexp(—k™t) = Ar, exp(—kg4qt), (515.13)

where Ar,, is a pre-exponential factor, k™™ is a decay rate of T, state. Therefore, k4, can be approximate as,

kdl =[(1-— L kRISC + k[c. (51514)
k¥ + kpy + Kisc

Further, we focus on the exponential decay of [T1]. Eq. S15.3 can be rewritten as Eq. S15.15 under the
assumption of kg sc + ki > kg With the restriction condition of [T, ] « [Ty] t » 1/kgs.
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dlTy] [T,]
1 (—kl — kT, — kpie + kic ﬁ) dt. (15.15)

The time dependent term of [T,]/[T;] can be obtained as non-time-dependent value by the steady state
approximation (SSA) of Egs. S15.1 and S15.2, d[S;]/dt = 0 and d[T,]/dt = 0, respectively; this is

necessary to assume k;c > kg;c but it always approved because of the relationship of exo- and endothermic

process.
T, k
[Tl RIc . (S15.16)
Tl (1- R )lesisc +
kS + kny + kyse) T RC T TIC
By the similar process, observed k;, can be written as Eq. S15.17.
kg, ~ kTt =[1— Fic KT, + kT + kT (515.17)
a2 ~ - (1 kISC ) k + k RIC T nr- '
kS + ke + kyge)  RC T TIC

The total decay efficiency of singlet excitons generated by photo-excitation is the sum of @ (x ®pf), @3,
and @;c.

D5 + DS, + By = 1. (515.18)

The decay efficiency of T, excitons resulted from an ISC process is the sum of @g;q- and the internal

conversion (®}7). It should be noted again here, we assumed that the T, excitons do not decay directly to the
So state but rather through the T; state, related to Kasha's rule.

Drisc + Ol = 1. (515.19)

Because of k3 + k3, + k;jsc > kgisc, the RISC process controls the decay of T, excitons via the S; state and

S1 excitons generated by the RISC process rapidly decayed to Sp or T, states according to Eqg. S15.18.

Therefore, the multiple ISC/RISC cycle is present. In this case, the efficiencies in Eq. S15.19 should be

modified by using overall efficiencies (OEs), which are the final distributed exciton ratio between S; and T,
population via ISC/RISC cycles; those are ®g;sc%F > ®g;sc and cD,TCOE > @T.. Observed decay rate is an

apparent value of T, decays, OEs are employed to the analysis. Therefore, @, can be divided into ®g;5-°F

and cD,TCOE, and the total efficiency is given by,
®procF + L% = 1. (S15.20)
Similarly, the RIC process controls the decay of T1 excitons via the T, state and T, excitons generated by the
RIC process rapidly decayed to S; or T states according to Eq. S15.20 because of kg;sc + ke > kgic-
Therefore, the multiple IC/RIC cycle is present. The efficiencies related to T1 and its OEs are written by Eqgs.
S$15.21 and S15.22; those are &7 > @7 &7 °F > &T and @, °F < Pg,c. Observed decay rate is an
apparent value of T; decay, OEs are employed to the analysis. Therefore, @;5.®,.°F can be divided into
&T% o °F and dp, OF.
& + O + dpyc = 1. (515.21)
o + o % 4 0, OF = 1. (S15.22)
The fraction of T, exciton decay event via S1 (®;5cPr;sc %) can decay either radiatively (#5) or non-
radiatively (®3,.), because @x;5-°F is the finally distributed exciton ratio after considering the ISC/RISC
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cycle. Therefore, the primary delayed fluorescence (®pgq, i.€., primary delayed emission @pg;) can be
formulated as a function of the radiative fraction to the total efficiency, &7 + ®3,..

®P ®P

Ppr1 = Ppp1 = ‘DISC‘DRISCO m = ‘plsc‘pRISCOEl_—d,ISC' (515.23)

Similarly, the fraction of Ty exciton decay event via Si (@,5c®@;c%F @g;c%F) can decay either @3 or &3,
because ®g,-°F is the finally distributed exciton ratio after considering both IC/RIC and ISC/RISC cycles
(see Eq. S15.17). Therefore, the secondary delayed fluorescence (@) can be formulated as a function of
@7 to the &2 + @3,

@
D + b3,

where R5E2 is a ratio in of secondary delayed fluorescence in secondary delayed emission, ®pp,/®@pg,. In

o8

_ OE OE
- (I)ISC(I)IC d)RIC 1 ® '
- ¥ISC

Ppry = Ppg2RPES = Bpsc®icF Dy ” (515.24)

the four-state analysis model, the observed lifetime of secondary delayed fluorescence and phosphorescence
are exactly the same (1/kg,) since they occur from the same origin of the T, state. Therefore, both &5, and
®@ppes cONtribute to the secondary delayed emission (®p,). The total PL quantum efficiency (@p,qy) is the
sum of &7, ®prq, and @p5,. Based on the above analysis, all of the efficiencies related to the TADF process
were presented in Egs. S15.25-S15.32.

PS = kﬁ = k;? (S15.25)
kS kS ke Ky '
DS =1—P5 — @ =k—flr=k—£r (515.26)
" T Rt kise Ky
kisc kisc
Do = = . S§15.27
1se ki +kny +kise Ky ( )
() 1-9¢ 1—-@ k 1-o k
DpyscOF = DEl(S 1sc) _ ( 1sc)krisc _ ( 1sc) RISC (515.28)
P Pysc (1 = Py5c)kpisc + kic kay
ki Ppr; kic
@,c0F = : = =1—@p°F (515.29)
e kre Pprr (1= Prso)kpisc + kic Ris¢
®. OF — Drisc” ke _ Drisc ke 5
RIC - OE;, T T T k . (Sl 30)
Prisc” Kric + ki + ki d2
70 Prros  Pppa(1— RpES _ kf _ kr $15.31
r _¢ ¢ OE — (D d) OE _(D OEk kT kT _k " ( " )
1scPic 1scPic rRisc Kric t Ky + Kpr dz

por _ 1= Pprgy o 1= PrsePic” (1= Ppic”™) _ ke _ ki
ol OF = P& _ g8 - S — T (51532)

DiscPc DrscPrc”” (1 — Pprgc) Prisc kric + ki + ki dz

The corresponding rate constants are described by Egs. S15.33-515.40.
kS = k8. (515.33)
kar = kpd)ffr = kp(l - ¢1§ - (DISC)- (515.34)
kisc = kp®isc- (515.35)
Dpisc?” kpkar Ppr1 Dpr1
k =k = . = . (S15.36)
RISC T~ ke @ S ay SProe

ki = kg — (1 — Prs)kpyse. (515.37)
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OE
T Dhic _ (1 — ®15¢)Ppe2RDES
Prisc PP PrscPrisc Pic
16)) 1-— RDFZ
KT = de(DrTOE — kg, pE2( : olz)sEz (515.39)
(pISC(plC
OE OE
OE 1- (DPLQY S 1+ (pISC(I)}TC ((pglc - 1)
knr = kaz®@pr = kdzw — Ka2%nr 7 OE (515.40)
(pISC(pIC (pISC(pIC (1 - (I)ISC)

The value of R5E2 can be estimated by fitting the secondary delayed emission spectrum with the prompt

fluorescence and phosphorescence spectra to provide the contribution of the phosphorescence to the

secondary delayed emission. For the data collected at high temperature, Rp%3 can be approximate as 1.
Because we obtained above rate equations by minimum assumptions. We can employ the constraint @3, =

0 or ®1. = 0 as limit conditions to provide the @;¢. values of ®175=% and ®17=°, respectively, as below.

PUS=0 =1 — @S, (515.41)
Pproy — BF — (1 — &) P Pproy — D7
(plr.lSrCTzo — PLQY a ( r) Phos ~ PLQY a ’ ( Rgg% ~ 1)' (515.42)
(pPLQY — Pppos (pPLQY

We can also calculate the average kisc, kgisc, klc and kk,c values with the range between the limit
conditions (@3, = 0 or ®1. = 0), when it is difficult to estimate &, .. By using ®/%3=° and @/u =0, prrs=0
and @R1T=0 are estimated from Eq. S15.36. The average rate constants for ISC and RISC can be obtained
from Egs. S9.1 and S9.2, respectively. The average rate constants for IC and RIC can be obtained by Egs.
S15.43 and S15.44.

g, _ G0 4 KET=0) | (=0 — kg 7=0)

ko = > + > (515.43)
kan=0 + knr5=0 kan=O _ knr5=0

When @, is approximated as 0 (i.e., R3E2 ~ 1) for the simplification, these average values can be

estimated as followed.

Avg. _ kp [Z(pPLQY - cz)PF(l + cz)PLQY) t (DPF(l - cz)PLQY)]

k _ (515.45)
sc 2®p 0y
A9 — kd1¢DF1[2‘pPLQy - "75101:(1 + (DPLQY) T (DPF(l — (DPLQY)] (515.46)
RISC 20pp(1 - (pPF)((pPLQY - cz)PF)
kg1 ®pri|1+ @ —2@ppt(1-9
kIA:g =kgy — a1Por1 PLQY prt( piov)] _ (515.47)
2(1 - (pPF)((pPLQY - d’PF)
1 Av9. _ kaz2[2®pr, (1 — @pp) + @ppy (1 — Pproy ) 2 Ppra (1 — Ppioy)] (515.48)

Ric 2051 (1 — ®pp — Pppy)
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16. Average and maximum rate equations corrected by exact solution (for Table 2 entry 5)
Comparing Egs. 59 (with the approximation of no phosphorescence) and 86, the k;s. have a difference
while both equations are same conditions; that means kI’ = 0 and k%, = 0.

Therefore, the relationship between k%<t and kJ¥7=° can be written by

kisfet = kgl =0 —kqg—, (S16.1)
Ppr

where kfZ#<t is the ISC rate constants in exact solution on three states. This difference is caused by the
approximation of k,, ~ k5. Therefore, k[¥/=° should be corrected as
(DDF (I)DF

—ky—. (516.2)
POproy  Ppr

nr’T=0 _
kISC =k

When kJ,. = 0, kg;s¢ is maximum value, and the difference of k,, and k° at k.. = 0 is also the maximum
value of k; @pr/®pp (see Eq. 82). On the other hand, while it is difficult to know the difference of k,, and

kS, ®]7F=0 should be 1 — ®pp when k;,. = 0.

Therefore, Eq. S10.1 should be corrected as

1 @ ®pr] 1 @ @
Avg. DF DF DF DF
_2 i Por_ _ N @
kisd =5 |kp(1 = @pp) + k - —kag Z[kpm or) <k,, -~k PF)]

k(1 — @pp)®@prPproy + (ky®Ppr — kaPrroy)Por
+[kp®pr? (1 — Pproy) + kaPprPproy]

= . (516.3)
20ppPproy

The maximum values of k3, and kT, should be same with Table 2 entry 4 and Table 2 entry 2, respectively.
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