
This document is confidential and is proprietary to the American Chemical Society and its authors. Do not 
copy or disclose without written permission. If you have received this item in error, notify the sender and 
delete all copies.

Exact Solution of Kinetic Analysis for Thermally Activated 
Delayed Fluorescence Materials

Journal: The Journal of Physical Chemistry

Manuscript ID jp-2021-04056x.R2

Manuscript Type: Article

Date Submitted by the 
Author: n/a

Complete List of Authors: Tsuchiya, Youichi; Kyushu University , OPERA
Diesing, Stefan; University of St Andrews
Bencheikh, Fatima ; Kyushu University, Center for Organic Photonics and 
Electronics Research (OPERA)
wada, yoshimasa; The University of Tokyo, Institute of Industrial Science
dos Santos, Paloma Laís ; University of St Andrews
Kaji, Hironori; Kyoto University, Institute for Chemical Research
Zysman-Colman, Eli; University of St Andrews, Chemistry
Samuel, Ifor D. W.; University of St Andrews
Adachi, Chihaya; Kyushu University, Center for Organic Photonics and 
Electronics Research (OPERA)

 

ACS Paragon Plus Environment

The Journal of Physical Chemistry



 

Exact solution of kinetic analysis for thermally activated delayed  

fluorescence materials 

Youichi Tsuchiya a*, Stefan Diesing b,c, Fatima Bencheikh a, Yoshimasa Wada d, Paloma L. dos Santos c,  

Hironori Kaji d, Eli Zysman-Colman b*, Ifor D. W. Samuel c*, and Chihaya Adachi a,e* 

a Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-

0395, Japan 

b Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK 

c Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 

9ST, UK 

d Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan 

e International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744, Motooka, Nishi-ku, Fuku-

oka 819-0395, Japan 

*Email: tsuchiya@opera.kyushu-u.ac.jp, eli_journals@zysman-colman.com, idws@st-andrews.ac.uk, adachi@cstf.kyushu-u.ac.jp 

 

 

ABSTRACT: The photophysical analysis of thermally activated delayed fluorescence (TADF) materials has become instrumental to provid-

ing insight into their stability and performance, which is not only relevant for organic light-emitting diodes (OLED), but also for other 

applications such as sensing, imaging and photocatalysis. Thus, a deeper understanding of the photophysics underpinning the TADF mech-

anism is required to push materials design further. Previously reported analyses in the literature of the kinetics of the various processes 

occurring in a TADF material rely on several a priori assumptions to estimate the rate constants for forward and reverse intersystem crossing 

(ISC and RISC, respectively). In this report, we demonstrate a method to determine these rate constants using a three-state model together 

with a steady-state approximation and, importantly, no additional assumptions. Further, we derive the exact rate equations, greatly facilitating 

a comparison of the TADF properties of structurally diverse emitters and providing a comprehensive understanding of the photophysics of 

these systems. 

INTRODUCTION  

In recent years, organic thermally activated delayed fluo-
rescence (TADF) materials have attracted significant atten-
tion within the organic semiconductor community as TADF 
provides a route for 100% internal quantum efficiency in 
organic light-emitting diodes (OLEDs), without the need to 
use precious noble metal complexes.1-4 Distinct from phos-
phors that rely on large spin-orbit coupling to drive the con-
version of singlet excitons to triplets and then phosphores-
cence of the latter, organic TADF materials convert triplet 

excitons to singlet excitons by taking advantage of the small 
energy gap (ΔEST), typically taken as less than 200 meV, be-
tween the lowest singlet (S1) and triplet (T1) excited states. 
As T1 excitons are efficiently upconverted into an S1 level 
through a reverse intersystem crossing (RISC) route, OLEDs 
can harvest the 75% of electrically generated excitons that 
are triplets for electroluminescence (EL) as delayed fluores-
cence from the singlet excited state. The most common mo-
lecular design that shows small ΔEST is based on a donor-
acceptor architecture wherein there is poor electronic com-
munication between the two moieties, resulting in a small 
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exchange integral and a correspondingly small ΔEST. TADF 
materials typically exhibit dual fluorescence consisting of a 
prompt nanosecond fluorescence originating from the radi-
ative decay of directly formed singlet excitons and a micro-
second to millisecond delayed fluorescence that originates 
from the multiple ISC and RISC cycles preceding emission 
from the singlet excited state. The performance of the OLED, 
and in particular the efficiency roll-off and the device stabil-
ity, are intimately linked to the population of the long-lived 
triplet excitons. As RISC is the slowest process typically ob-
served in OLEDs using organic TADF emitters, the optimiza-
tion of the device performance is intimately linked to in-
creasing the rate constant associated with RISC, kRISC. Thus, 
it is essential to have an accurate measure of this key rate 
constant. 

Many researchers have tried to understand the photophys-
ics of TADF materials by curve fitting the time-resolved 
photoluminescence (PL) decays using a conventional rate 
equation strategy that accounts for each decay process. 
While this approach is useful, most previous analyses re-
quire several a priori assumptions, leading to rather large 
deviations from experiment or, in some cases, completely 
incorrect conclusions. For example, in 1983, McMillin and 
co-workers explained the TADF behavior of a Cu(I) complex 
using a Boltzmann statistical analysis of the population 
equilibrium of excitons in the S1 and T1 states, this analysis 
based on several assumptions. These included that the in-
tersystem crossing (ISC) efficiency (𝛷𝐼𝑆𝐶 ) is almost unity 
and the rate constant of nonradiative decay from the singlet 
excited state (𝑘𝑛𝑟

𝑆 ) is 0.5 In a very early study in 2012, our 
group applied this method to organic TADF materials hav-
ing nearly 100% PL quantum yield (PLQY).6 Here, 𝑘𝑇𝐴𝐷𝐹 
was given by 

𝑘𝑇𝐴𝐷𝐹 =
1

3
𝑘𝑟
𝑆 exp (

−Δ𝐸𝑆𝑇

𝑅𝑇
) , (1) 

where 𝑘𝑇𝐴𝐷𝐹 is a triplet decay rate via S1 including ISC/RISC 
cycles (not the element value of 𝑘𝑅𝐼𝑆𝐶), 𝑅 and 𝑇 are the ideal 
gas constant and the temperature, respectively. However, 
the materials that can be analyzed using this method are 
quite limited because of the demanding assumptions this 
model makes. Subsequently, in our first kinetics analysis 
model in 2012, 𝑘𝑅𝐼𝑆𝐶  was obtained but with a less stringent 
set of assumptions that the radiative and nonradiative de-
cay rate constant from a singlet excited state (𝑘𝑟

𝑆) and 𝑘𝑛𝑟
𝑆 , 

respectively, and the ISC rate constant (𝑘𝐼𝑆𝐶) are all signifi-
cantly larger than both the rate constants of nonradiative 
decay from a triplet excited state (𝑘𝑛𝑟

𝑇 ) and 𝑘𝑅𝐼𝑆𝐶 ; further, it 
was assumed that radiative decay from a triplet excited 
state (𝑘𝑟

𝑇) does not occur.7 In our second, revised, kinetics 
analysis study, we further simplified the model by imposing 
the additional assumption that 𝑘𝑛𝑟

𝑆 = 0,8 which implies that 
𝑘𝑟
𝑆  and 𝑘𝐼𝑆𝐶  are significantly larger than 𝑘𝑛𝑟

𝑆  and 𝑘𝑅𝐼𝑆𝐶 . 
Within this framework, 𝑘𝐼𝑆𝐶  and 𝑘𝑅𝐼𝑆𝐶  can be formulated as: 

𝑘𝑅𝐼𝑆𝐶 =
𝑘𝑝𝑘𝑑

𝑘𝐼𝑆𝐶
⋅
𝛷𝐷𝐸

𝛷𝑃𝐹
, (2) 

𝑘𝐼𝑆𝐶 = 𝑘𝑝(1 − 𝛷𝑃𝐹), (3) 

where 𝛷𝑃𝐹 , 𝛷𝐷𝐸 , 𝑘𝑝 and 𝑘𝑑 are the experimentally obtained 

PL efficiencies and decay rates for the prompt and delayed 
emissions. In 2015, Kaji and co-workers carefully explained 
to derive 𝑘𝑅𝐼𝑆𝐶  when Δ𝐸𝑆𝑇  is quite small.9 In 2016, Wu, 

Wong and co-workers arrived at the same equations as 
those of Eqs. 2 and 3, but by imposing fewer assumptions in 
their model.10 In the same paper, they also obtained the fol-
lowing equation with the assumption of 𝑘𝑟

𝑇 = 𝑘𝑛𝑟
𝑇 = 0 as: 

𝑘𝑅𝐼𝑆𝐶 =
𝑘𝑝𝑘𝑑

𝑘𝑟
𝑆
𝛷𝑃𝐿𝑄𝑌, (4) 

Dias, Penfold and Monkman more recently proposed a 
model that applies for TADF emitters that show a large frac-
tion of delayed emission, i.e., 𝛷𝐷𝐸/𝛷𝑃𝐹 > 4, and with the as-
sumptions that 𝑘𝑟

𝑇 = 𝑘𝑛𝑟
𝑇 = 0.11 

𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑑
𝛷𝑃𝐹 + 𝛷𝐷𝐸

𝛷𝑃𝐹
, (5) 

Kaji and co-workers removed the constraint that 𝛷𝐷𝐸/
𝛷𝑃𝐹 > 4  and showed that 𝑘𝑅𝐼𝑆𝐶  could be estimated with 
only the assumptions that 𝑘𝑟

𝑇 = 𝑘𝑛𝑟
𝑇 = 0.12 

𝑘𝑅𝐼𝑆𝐶 =
𝑘𝑝 + 𝑘𝑑

2
− √(

𝑘𝑝 + 𝑘𝑑

2
)
2

− 𝑘𝑝𝑘𝑑 (1 +
𝛷𝐷𝐸

𝛷𝑃𝐹
) . (6) 

Taking each a different approach, Hasse, Brütting, Monk-
man and co-workers demonstrated the direct fitting of the 
time-resolved PL decays using the rate constants as fitting 
parameters,13 while Nguyen et al. provided an analysis 
model derived from experiments employing an exciton 
quencher.14 Goodson and co-workers extracted the triplet 
decay rate using transient absorption (TA) measurement as 
a proxy for the RISC rate constant, but they did not appear 
to consider cycling between the singlets and triplets.15 The 
constraints and assumptions for these RISC rate constant 
estimations are summarized in Table S1. Since there are 
now a large number of different models used to estimate 
𝑘𝑅𝐼𝑆𝐶 , each with their own set of assumptions, it has become 
impossible to accurately compare the estimated rate con-
stants across these studies, complicating any meta-analysis. 
To reduce the number of assumptions and the differences 
in estimated 𝑘𝑅𝐼𝑆𝐶 , 𝛷𝐼𝑆𝐶  must be measured experimentally. 

Because 𝛷𝐼𝑆𝐶  and its related rate constant 𝑘𝐼𝑆𝐶  are two of 
the essential parameters of photochemical processes that 
implicate triplet states, dating back to before 1970, several 
groups have focused on an estimation method of accurate 
𝛷𝐼𝑆𝐶 . Scott and Maltenieks proposed a method to estimate 
𝑘𝐼𝑆𝐶  using triplet absorption under steady-state condi-
tions.16 To apply this method to TADF materials, their equa-
tion can be rewritten as 

𝛷𝐼𝑆𝐶 =
𝜌(𝜆)𝑆𝑆𝑘𝑑

𝜀𝑇(𝜆)𝐼𝑎𝑙
, (7) 

where 𝜌(𝜆)𝑆𝑆  is the optical density change due to the tri-
plet-triplet absorption from a T1 state to a higher-lying tri-
plet (Tn) state at the steady-state condition, 𝜀𝑇(𝜆) is the tri-
plet-triplet extinction coefficient, 𝐼𝑎  is the rate of absorption 
of exciting light, and 𝑙 is the optical path length. It should be 
noted that 𝜀𝑇(𝜆) can be estimated experimentally.17 In an-
other study, Berberan-Santos et al. provided an estimation 
of 𝛷𝐼𝑆𝐶  by fitting the intensity ratio of the prompt and de-
layed emission (𝐼𝑃𝐹 𝐼𝐷𝐹⁄ ), corresponding to 𝛷𝑃𝐿

𝑝
𝛷𝑃𝐿
𝑑⁄ , vs 1 𝑇⁄  

by using Eq. 8.18 

ln [
𝐼𝑃𝐹

𝐼𝐷𝐹
− (

1

𝛷𝐼𝑆𝐶
− 1)] =

Δ𝐸𝑆𝑇

𝑅
∙
1

𝑇
 + ln (

𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇

�̅�𝑅𝐼𝑆𝐶
) , (8) 
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where �̅�𝑅𝐼𝑆𝐶  is the average rate constant for RISC. The shape 
of the plot is very sensitive to 𝛷𝐼𝑆𝐶 , and is normally not lin-
ear. Continuous variation of 𝛷𝐼𝑆𝐶  within the search for max-
imum linearity yields its best value. It should be noted that 
this method assumes that (𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇 ) and 𝛷𝐼𝑆𝐶  are each es-

sentially temperature independent. They also provided an-
other analysis method for 𝛷𝐼𝑆𝐶 , shown in Eq. 9, which com-
bines a steady-state condition and a time-resolved analy-
sis.19 

𝜏𝐷𝐹 = 𝜏𝑃ℎ𝑜𝑠
0 − (

1

𝛷𝐼𝑆𝐶
− 1) 𝜏𝑃ℎ𝑜𝑠

0
𝐼𝐷𝐹

𝐼𝑃𝐹
, (9) 

where 𝜏𝐷𝐹 is the delayed fluorescence lifetime (1 𝑘𝑑⁄ ) and 
𝜏𝑃ℎ𝑜𝑠
0  is the low-temperature phosphorescence lifetime 

without any contribution to the emission associated with 
TADF, which means 1 (𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇 )⁄ . This method also as-

sumes that (𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 )  is temperature independent. Our 
group demonstrated an estimation of 𝛷𝐼𝑆𝐶  for thin film sam-
ples by combining pulse-excited electroluminescence (EL) 
and PL measurements.7 Here, 𝛷𝐼𝑆𝐶  can be obtained as 

𝛷𝐼𝑆𝐶 =
3𝑁

𝑀 − 𝑁
, (1. 10) 

where 𝑀 and 𝑁 are the quantum yield ratio of delayed fluo-
rescence and prompt fluorescence for EL and PL, respec-
tively; 𝛷𝐸𝐿

𝑑 𝛷𝐸𝐿
𝑝⁄ = 𝑀, 𝛷𝑃𝐿

𝑑 𝛷𝑃𝐿
𝑝⁄ = 𝑁. This method is very ef-

fective since it requires only the ratio of initial exciton dis-
tribution between S1 and T1 states, although this model is 
only relevant for thin films where OLED driving is applica-
ble. Very recently, Naito et al. reconsidered the estimation 
method to obtain 𝑘𝐼𝑆𝐶  from PL decay measurements under 
the assumption of 𝑘𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 ≫ 𝑘𝑟
𝑇 + 𝑘𝑛𝑟 

𝑇 , (Eq. 11).20 
This is a reasonable assumption for efficient organic TADF 
emitters. 

𝛷𝐼𝑆𝐶 =
𝛷𝐷𝐹 + 𝛷𝑃ℎ𝑜𝑠

𝛷𝑟
𝑆 + 𝛷𝐷𝐹 + 𝛷𝑃ℎ𝑜𝑠

 =
𝛷𝐷𝐸
𝛷𝑃𝐿𝑄𝑌

. (11) 

This equation for 𝛷𝐼𝑆𝐶  converges to our three-state analysis 
(see Eq. S6.4) when 𝛷𝑛𝑟

𝑇 = 0 and 𝛷𝑟
𝑇 = 0  are employed; 

however, we note that Eq. 11 is derived without these as-
sumptions. This method should only be applied at around 
room temperature for organic TADF materials where triplet 
excitons mainly decay by a RISC path. Naito et al. also pro-
vided an equation for 𝛷𝐼𝑆𝐶  determined at low temperature 
where the TADF is completely suppressed. For the temper-
ature region where contributions from nonradiative decay 
paths cannot be ignored, an alternative approach using the 
temperature dependence of the prompt fluorescence rate is 
also provided. 

Thus, if thin film samples are available, our model using Eq. 
10 is the most promising and provides the most accurate 
determination of 𝛷𝐼𝑆𝐶 . Without considering the complexity 
of the experimental setup and the associated specialized in-
strumentation, the method proposed by Scott and Malten-
ieks should be employed for solution-state samples. Both 
methods provided by Berberan-Santos et al. assume that 
(𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇 ) is temperature independent, which is a limita-

tion of their methods as 𝑘𝑛𝑟
𝑇  usually possesses a tempera-

ture dependence that is explained in terms of the thermal 
quench model.21,22 The method of Naito et al. should be use-
ful as it does not assume temperature independence for 
(𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇 ) ; however, it cannot be applied to inefficient 

TADF materials. 

As explained above, most of the previously reported rate 
equations used for TADF compounds are based on models 
derived from highly emissive materials and assume 𝛷𝑛𝑟

𝑆 = 0 
or 𝛷𝑛𝑟

𝑇 = 0, in order to obtain an estimation of 𝛷𝐼𝑆𝐶 . There-
fore, most of these previously reported rate equations are 
not appropriate for the analysis of low efficiency TADF ma-
terials. However, we often find reports that uncritically em-
ploy these models and equations to extract rate constants 
for low efficiency materials. In addition, assumptions such 
as 𝛷𝑛𝑟

𝑆 = 0 or 𝛷𝑛𝑟
𝑇 = 0 raise the question about “which pa-

rameter should be set to zero”. Here, we introduce two ki-
netics analysis methods for TADF materials based on a 
three-state system of S0, S1, and T1. In our first method 
where we invoke a steady-state approximation, no other as-
sumptions are required in order to derive the set of rate 
constants related to the emission of TADF materials. This 
method not only can help in our understanding of TADF 
processes, but it can demonstrate the connections between 
several previously reported methods; however, this method 
still has the weakness in terms of providing an accurate es-
timation of 𝛷𝐼𝑆𝐶 . To resolve this outstanding issue, we then 
present a derived exact solution to provide precise rate con-
stants in the kinetics analysis of TADF materials. 

RESULT AND DISCUSSION  

Exact equation for emission decay curve for a three-
state system. We first present an exact equation to model 
the emission decay that occurs from a three-state system 
comprising S1 and T1 coupled excited states and the S0 
ground state (Figure 1). The combined decay rates from 
both excited states in the absence of exciton-formation pro-
cesses can be formulated as  

𝑑[S1]

𝑑𝑡
= −(𝑘𝑟

𝑆 + 𝑘𝑛𝑟
𝑆 + 𝑘𝐼𝑆𝐶)[S1] + 𝑘𝑅𝐼𝑆𝐶[T1], (12) 

𝑑[T1]

𝑑𝑡
= −(𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇 + 𝑘𝑅𝐼𝑆𝐶)[T1] + 𝑘𝐼𝑆𝐶[S1], (13) 

where [S1] and [T1] are the populations of S1 and T1 excitons. 
The differential equations, Eqs. 12 and 13, are a system of 
ordinary differential equations of the general formula of 

𝑑Y⃗⃗ (𝑡) 𝑑𝑡⁄ = 𝐴Y⃗⃗ (𝑡), and can be written as, 

𝑑

𝑑𝑡
(
[S1]

[T1]
) = (

−𝑘𝑆 𝑘𝑅𝐼𝑆𝐶
𝑘𝐼𝑆𝐶 −𝑘𝑇

) (
[S1]

[T1]
) , (14) 

where 𝑘𝑆  = 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶  and 𝑘𝑇  = 𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + 𝑘𝑅𝐼𝑆𝐶 , re-
spectively. The general solution to this system is given by, 

�⃗� (𝑡) =∑𝑐𝑖𝑣𝑖⃗⃗⃗  exp(𝜆𝑖𝑡)

𝑛

𝑖=1

, (15) 

where 𝑣𝑖⃗⃗⃗   is the eigenvector with corresponding eigenvalue 
𝜆𝑖 of the matrix 𝐴, and 𝑐𝑖  is a constant depending on the ini-
tial conditions. For the matrix 𝐴 in Eq. 14, the eigenvalues 
can be calculated as, 

det(𝐴 − 𝜆𝐸) = det [(
−𝑘𝑆 − 𝜆 𝑘𝑅𝐼𝑆𝐶
𝑘𝐼𝑆𝐶 −𝑘𝑇 − 𝜆

)]

= (𝑘𝑆 + 𝜆)(𝑘𝑇 + 𝜆) − 𝑘𝐼𝑆𝐶𝑘𝑅𝐼𝑆𝐶 = 0, (16)

 

where 𝐸 is the identity matrix. Eq. 16 can be rewritten as, 

𝜆2 + (𝑘𝑆 + 𝑘𝑇)𝜆 + 𝑘𝑆𝑘𝑇 − 𝑘𝐼𝑆𝐶𝑘𝑅𝐼𝑆𝐶 = 0. (17) 

This quadratic equation provides λ as, 
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𝜆1,2 = −
𝑘𝑆 + 𝑘𝑇

2
∓ √

(𝑘𝑆 + 𝑘𝑇)2

4
− 𝑘𝑆𝑘𝑇 + 𝑘𝐼𝑆𝐶𝑘𝑅𝐼𝑆𝐶

= −
1

2
(𝑘𝑆 + 𝑘𝑇 ±√(𝑘𝑆 − 𝑘𝑇)2 + 4𝑘𝐼𝑆𝐶𝑘𝑅𝐼𝑆𝐶) . (18)

 

Here, it is worth pointing out that λ1 < λ2 < 0 and, there-
fore, the exact prompt and delayed emission decays for the 
photoluminescence (𝑘𝑝 , 𝑘𝑑 ) are written as 𝑘𝑝 = −𝜆1  and 

𝑘𝑑 = −𝜆2 , respectively. Several rate equations introduced 
in the previous section have been derived from Eq. 18 but 
employ a number of different assumptions. Here, we note 
that Eq. 18 provides a relationship among 𝑘𝑆, 𝑘𝑇, 𝑘𝑝, and 𝑘𝑑 

as, 

𝑘𝑆 + 𝑘𝑇 = 𝑘𝑝 + 𝑘𝑑 . (19) 

Considering the clear relationships of 𝑘S > 𝑘𝑑 and 𝑘𝑝 > 𝑘
𝑇, 

Eq. 16 implies the relationships of 𝑘𝑝 > 𝑘𝑆  and 𝑘𝑇 > 𝑘𝑑 

(these provided relationships are explained again in later). 
If these relationships are not operative, then there should 
be no observed delayed emission. The corresponding eigen-
vectors are given by evaluating 𝜆𝑖𝑣𝑖⃗⃗⃗  = 𝐴𝑣𝑖⃗⃗⃗  . 

 

Figure 1. The scheme of photophysical process for three-state sys-

tem. 

λ𝑖 (
𝑥1
𝑥2
) = (

−𝑘𝑆 𝑘𝑅𝐼𝑆𝐶
𝑘𝐼𝑆𝐶 −𝑘𝑇

) (
𝑥1
𝑥2
) . (20) 

Eq. 20 leads to the relationship of Eq. 21. 

{
 

 𝑥1 =
𝑘𝑅𝐼𝑆𝐶

𝑘𝑆 + 𝜆𝑖
𝑥2

𝑥2 =
𝑘𝐼𝑆𝐶

𝑘𝑇 + 𝜆𝑖
𝑥1

  ⟺ {
𝑥1 =

𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 + 𝜆𝑖

𝑥2

𝑥2 = 𝑥2, 𝑥2 ∈ ℝ

  

⟺ {

𝑥1 = 𝑥1, 𝑥1 ∈ ℝ

𝑥2 =
𝑘𝐼𝑆𝐶

𝑘𝑇 + 𝜆𝑖
𝑥1

. (21)

 

Using Eq 16, this set of equations can be easily reduced to a 
linear relationship between the dimensions of the eigenvec-
tor, allowing for the other dimension to be fixed to a freely 
chosen value. When 𝑥2 = 1 is chosen, both eigenvectors, 𝑣1⃗⃗  ⃗ 
and 𝑣2⃗⃗⃗⃗  are given by 

𝑣1⃗⃗  ⃗ = (

𝑘𝑅𝐼𝑆𝐶

𝑘𝑆 + 𝜆1
1

) , 𝑣2⃗⃗⃗⃗ = (

𝑘𝑅𝐼𝑆𝐶

𝑘𝑆 + 𝜆2
1

) . (22) 

Inserting Eq. 22 in Eq. 15 yields the following equations for 
[S1] and [T1] as a function of time. 

(
[S1]

[T1]
) = 𝑐1 (

𝑘𝑅𝐼𝑆𝐶

𝑘𝑆 + 𝜆1
1

) exp(𝜆1𝑡)

+𝑐2 (

𝑘𝑅𝐼𝑆𝐶

𝑘𝑆 + 𝜆2
1

) exp(𝜆2𝑡) , (23)

 

{
 
 

 
 [S1] = 𝑐1

𝑘𝑅𝐼𝑆𝐶

𝑘𝑆 − 𝑘𝑝
exp(−𝑘𝑝𝑡)

+𝑐2
𝑘𝑅𝐼𝑆𝐶

𝑘𝑆 − 𝑘𝑑
exp(−𝑘𝑑𝑡)

[T1] = 𝑐1 exp(−𝑘𝑝𝑡) + 𝑐2 exp(−𝑘𝑑𝑡)

. (24) 

The pre-exponential factors depend on the initial conditions. 
Using [S1] = [S1]𝑡=0  and [T1] = [T1]𝑡=0 = 0  at 𝑡 =  0 , they 
are expressed as follows. 

(
[S1]𝑡=0
0

) = 𝑐1 (

𝑘𝑅𝐼𝑆𝐶

𝑘𝑆 − 𝑘𝑝
1

) + 𝑐2 (

𝑘𝑅𝐼𝑆𝐶

𝑘𝑆 − 𝑘𝑑
1

) . (25) 

Eq. 25 expresses the relationship of Eq. 26. 

{
[S1]𝑡=0 = 𝑐1

𝑘𝑅𝐼𝑆𝐶

𝑘𝑆 − 𝑘𝑝
+ 𝑐2

𝑘𝑅𝐼𝑆𝐶

𝑘𝑆 − 𝑘𝑑
𝑐1 = −𝑐2

. (26) 

Here, [S1]𝑡=0 and 𝑐2 are given as Eqs. 27 and 28. 

[S1]𝑡=0 = 𝑐2
𝑘𝑅𝐼𝑆𝐶(𝑘𝑝 − 𝑘𝑑)

(𝑘𝑝 − 𝑘
𝑆)(𝑘𝑆 − 𝑘𝑑)

, (27) 

𝑐2 = [S1]𝑡=0
𝑘𝐼𝑆𝐶

𝑘𝑝 − 𝑘𝑑
. (28) 

From Eqs. 24, 27, and 28, the exact [S1] and [T1] can be writ-
ten as following equations. 

[S1] =
[S1]𝑡=0

𝑘𝑝 − 𝑘𝑑
[
(𝑘𝑆 − 𝑘𝑑) exp(−𝑘𝑝𝑡)

+(𝑘𝑝 − 𝑘
𝑆) exp(−𝑘𝑑𝑡)

] . (29) 

[T1] =
[S1]𝑡=0𝑘𝐼𝑆𝐶
𝑘𝑝 − 𝑘𝑑

[− exp(−𝑘𝑝𝑡) + exp(−𝑘𝑑𝑡)]. (30) 

Here, it is evident that Eq. 29 provides a bi-exponential de-
cay of the S1 population, and Eq. 30 provides a convex curve 
behavior of the evolution of the T1 population. Hasse et al. 
reported that the emission decay of TADF materials corre-
sponds to the S1 population decay when assuming 𝑘𝑟

𝑇 =
𝑘𝑛𝑟
𝑇 = 0 .12 They also verified that the depletion of the T1 

population was accurately determined by the TA decay. 
When now including the depletion from the T1 state term 
described in Eq. 30, the total emission decay now includes 
the contributions from both S1 and T1 populations. Because 
the total emission from S1 is the sum of the overall emission 
efficiencies from S1 excitons, which are generated by direct 
photoexcitation and indirectly from the T1 population, i.e., 
sum of prompt and delayed fluorescence (𝛷𝑃𝐹 + 𝛷𝐷𝐹), the 
contribution arising from generated triplet excitons must 
also be accounted for within the emission efficiency from T1, 
phosphorescence (𝛷𝑃ℎ𝑜𝑠 ). The S1 and T1 populations de-
scribed by Eqs. 29 and 30 do not consider the luminescence. 
Therefore, the exact emission decay can be modelled as a bi-
exponential decay as described in Eq. 31 using the radiative 
decay ratio for each exciton (Figure 2). 
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𝐼(𝑡) = 𝛷𝑟
𝑆[S1] + 𝛷𝑟

𝑇[T1]

=
[𝑆1]𝑡=0

𝑘𝑝 − 𝑘𝑑

{
 
 

 
 [
(𝑘𝑆 − 𝑘𝑑)𝛷𝑟

𝑆

−𝑘𝐼𝑆𝐶𝛷𝑟
𝑇] exp(−𝑘𝑝𝑡)

    + [
(𝑘𝑝 − 𝑘

𝑆)𝛷𝑟
𝑆

+𝑘𝐼𝑆𝐶𝛷𝑟
𝑇
] exp(−𝑘𝑑𝑡)

}
 
 

 
 

. (31)
 

where 𝐼(𝑡)  is the time-dependent emission intensity, 𝛷𝑟
𝑆 

and 𝛷𝑟
𝑇 are the quantum efficiencies of the radiative decay 

for S1 and T1 as written by and 𝑘𝑟
𝑆 𝑘𝑆⁄  and 𝑘𝑟

𝑇 𝑘𝑇⁄ , respec-
tively. By using this equation that describes explicitly the 
emission decay, we can deeply understand the kinetics of 
TADF based on a three-state system. 

 

Figure 2. Emission decay curve and theoretical curves of Eqs. 29-

31 within nanosecond time range (a) and microsecond time range 

(b). The difference of total emission and exciton population de-

cays is related to the fluorescence and phosphorescence contribu-

tions depending on emitting ratio of each exciton. 

Derivation of rate equations using steady-state approx-
imation. In the previous section, we derived the rate equa-
tions for the emission decay of TADF materials based on a 
three-state system. In this section, we derive the rate 

equations by using the assumption of 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫
𝑘𝑅𝐼𝑆𝐶 . This assumption implies that at least one of 𝑘𝑟

𝑆, 𝑘𝑛𝑟
𝑆 , or 

𝑘𝐼𝑆𝐶  is much larger than 𝑘𝑅𝐼𝑆𝐶 . Since the T1 level is lying be-
low the S1 level, 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  should always be valid and no 
further assumptions are employed. 

Before deriving the rate equations, we define 𝛷𝑃𝐹  and 𝛷𝐷𝐸  
in terms of 𝐴𝑝, 𝐴𝑑 , 𝑘𝑝 and 𝑘𝑑 which are parameters that de-

scribe a bi-exponential decay curve; these parameters are 
the pre-exponential factors (𝐴) and decay rate constants (𝑘) 
for the prompt (𝑝) and delayed (𝑑) components, respec-
tively. There are several reported methods to obtain these 
values experimentally.23 For instance, these values can be 
obtained from the integration of the emission decay corre-
sponding to the prompt and delayed emission, respec-
tively.24 Also, there is the rough method of using the experi-
mentally determined PLQY under aerated conditions as a 
surrogate for 𝛷𝑃𝐹 ; however, the triplet state may not be 
completely quenched by O2 under aerated conditions, and it 
is not the case that oxygen is benign to react with the S1 state 
of TADF materials as its presence has been shown to in-
crease the nonradiative decay path from the S1 state.25 The 
most commonly used approach to determine these values 
would be using Eqs. S3.1 and S3.2 where 𝐴𝑝, 𝐴𝑑, 𝑘𝑝 and 𝑘𝑑 

can be obtained from bi-exponential curve fitting. However, 
the two exponential curves in Eq. 31 do not directly corre-
spond to the exact “prompt emission” and “delayed emis-
sion”, respectively. To estimate each efficiency, therefore, it 
is necessary to rewrite Eq. 31 as,  

𝐼(𝑡) = (𝐴𝑝 + 𝐴𝑑) exp(−𝑘𝑝𝑡)

+𝐴𝑑[− exp(−𝑘𝑝𝑡) + exp(−𝑘𝑑𝑡)]. (32)
 

In this form, the first and second terms exactly correspond 
to the prompt and delayed emission, respectively (Figure 3). 
The quantum efficiency of the prompt (𝛷𝑃𝐹) and delayed 
emission (𝛷𝐷𝐸) are therefore given by, 

𝛷𝑃𝐹 =

𝐴𝑝 + 𝐴𝑑
𝑘𝑝

𝐴𝑝 + 𝐴𝑑
𝑘𝑝

+
𝐴𝑑
𝑘𝑑
−
𝐴𝑑
𝑘𝑝

𝛷𝑃𝐿𝑄𝑌

=
(𝐴𝑝 + 𝐴𝑑)𝑘𝑑

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌, (33)

 

𝛷𝐷𝐸 =

𝐴𝑑
𝑘𝑑
−
𝐴𝑑
𝑘𝑝

𝐴𝑝 + 𝐴𝑑
𝑘𝑝

+
𝐴𝑑
𝑘𝑑
−
𝐴𝑑
𝑘𝑝

𝛷𝑃𝐿𝑄𝑌

=
𝐴𝑑(𝑘𝑝 − 𝑘𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌, (34)
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Figure 3. (a) Emission decay curve and biexponential fitting curves which are employed to estimate the prompt and delayed emission effi-

ciency in general. (b) Corrected prompt and delayed component curves to provide exact emission efficiencies. (c) Closeup within nano 

second range to recognise difference of prompt components for general and corrected estimation method. 

Under the assumption of 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  and with 
the restriction condition of [S1] ≫ [T1]  ( 𝑡 ≪ 1 𝑘𝑝⁄ ), the 

emission decay agrees with the prompt decay in this region 
and [T1] can be approximated to be 0 (Figure 2a). Eq. 12 can 
therefore be rewritten as Eq. 35. Hence, the singlet decay 
rate (𝑘𝑆) can be approximated to the prompt decay rate (𝑘𝑝), 

and the evolution of the S1 population as a function of time 
at short time can be written as Eq. 36. 

𝑑[S1]

[S1]
≈ −(𝑘𝑟

𝑆 + 𝑘𝑛𝑟
𝑆 + 𝑘𝐼𝑆𝐶)𝑑𝑡. (35) 

[S1] ≈ 𝐴𝑆 exp[−(𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶)𝑡]

= 𝐴𝑆exp(−𝑘
𝑆𝑡)

≈ 𝐴𝑆 exp(−𝑘𝑝𝑡) , (36)

 

where 𝐴𝑆 is a pre-exponential factor. 

Next, we focus on the exponential decay of [T1] to derive 𝑘ISC. 
Eq. 13 can be rewritten as Eq. 37. 

𝑑[T1]

[T1]
≈ −(𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇 + 𝑘𝑅𝐼𝑆𝐶 − 𝑘𝐼𝑆𝐶

[S1]

[T1]
) 𝑑𝑡. (37) 

Here, since [S1]  and [T1]  are time-dependent terms; this 
equation cannot be integrated. In the delayed decay region, 
however, we note that the decay rate is not exactly the same 
as the intrinsic triplet decay rate, as delayed emission decay 
also contains a term relating to the singlet population given 
that there is an exp(−𝑘𝑑𝑡) term found in the corresponding 
equations of Eqs. 29-31. Therefore, the ratio of singlet and 
triplet population, [S1] [T1]⁄ , is not a time-dependent value 
but an exactly fixed value in the delayed decay region (𝑡 ≫
1 𝑘𝑝⁄ ). Further, the delayed component that originates from 

an S1 population decay is extremely small compared with 
the T1 population decay, [T1] ≫ [S1], because 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  
(Figure 2b). Therefore, the temporal differentiation of [S1] 
can be approximated to be 0, i.e., 𝑑[S1] 𝑑𝑡⁄ ≈ 0, in this time 
region. In other words, the population of the intermediate 
state S1 resulting from upconversion of T1 excitons, which 
then decay to S0 can be considered using the steady-state 
approximation. We thus obtain the ratio of [S1] [T1]⁄  in Eq. 
37 by using the steady-state approximation (SSA) in this 
time region. By the SSA, the ratio of [S1] [T1]⁄  can be pro-
vided as Eq. 38. Also, the SSA provides a description of the 
time dependence for [T1] as Eq. 39. 

[S1]

[T1]
≈

𝑘𝑅𝐼𝑆𝐶

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
=
𝑘𝑅𝐼𝑆𝐶

𝑘𝑆
. (38) 

[T1] ≈ 𝐴𝑇 exp {− [𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + (1 −
𝑘𝐼𝑆𝐶

𝑘𝑆
) 𝑘𝑅𝐼𝑆𝐶] 𝑡}

= 𝐴𝑇 exp(−𝑘𝑑𝑡) , (39)
 

where 𝐴𝑇 is a pre-exponential factor for the delayed decay 
component of the triplet excitons. Now, 𝑘𝑑 can be approxi-
mated as, 

𝑘𝑑 ≈ 𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + (1 −
𝑘𝐼𝑆𝐶

𝑘𝑆
) 𝑘𝑅𝐼𝑆𝐶 . (40) 

For this approximation, 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  remains a 
necessary assumption to achieve the restriction condition 
of [T1] ≫ [S1]. However, this assumption is valid in general 
as we explained previously. Invoking the SSA leads to a re-
duction in the number of required assumptions for the anal-
ysis of the kinetics of organic TADF materials. 

The total decay efficiency of singlet excitons generated by 
photoexcitation is the sum of 𝛷𝑟

𝑆, 𝛷𝑛𝑟
𝑆 , and 𝛷𝐼𝑆𝐶  (for the dis-

tribution of singlet exciton, the ISC/RISC cycles are not con-
sidered because 𝑘𝑆 was approximated as 𝑘𝑝 in this section 

by Eq. 36, i.e., 𝛷𝑟
𝑆 ≈ 𝛷𝑃𝐹), and the decay efficiency of triplet 

excitons that results from an ISC process is the sum of 𝛷𝑟
𝑇, 

𝛷𝑛𝑟
𝑇 , and 𝛷𝑅𝐼𝑆𝐶 , which are given by 

𝛷𝑟
𝑆 + 𝛷𝑛𝑟

𝑆 + 𝛷𝐼𝑆𝐶 = 1, (41) 

𝛷𝑟
𝑇 + 𝛷𝑛𝑟

𝑇 + 𝛷𝑅𝐼𝑆𝐶 = 1. (42) 

As a result of 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 , the RISC process is 
rate determining for the decay of T1 excitons via the S1 state 
while the S1 excitons generated by the RISC process rapidly 
decay to the S0 state or return back to the T1 state according 
to Eq. 31. In other words, the T1 excitons return to T1 state 
with a certain probability after ISC/RISC cycling.  In this 
case, the efficiencies shown in Eq. 32 should be modified to 
take ISC/RISC cycling explicitly into account by using over-
all efficiencies (OEs), which correspond to the distributed 
exciton ratio between the S1 and T1 populations under the 

SSA via ISC/RISC cycles; these are 𝛷𝑟
𝑇𝑂𝐸 > 𝛷𝑟

𝑇, 𝛷𝑛𝑟
𝑇 𝑂𝐸

> 𝛷𝑛𝑟
𝑇 , 

and 𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 < 𝛷𝑅𝐼𝑆𝐶  (see section 4 in supporting infor-

mation for the detailed relationship between efficiencies 

and OEs). From these, 𝛷𝐼𝑆𝐶  can be divided into 𝛷𝑟
𝑇𝑂𝐸 , 𝛷𝑛𝑟

𝑇 𝑂𝐸
, 

and 𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 , and the total efficiency is given by 
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𝛷𝑟
𝑇𝑂𝐸 + 𝛷𝑛𝑟

𝑇 𝑂𝐸
+ 𝛷𝑅𝐼𝑆𝐶

𝑂𝐸 = 1. (43) 

The fraction of T1 exciton decays via S1 (𝛷𝐼𝑆𝐶𝛷𝑅𝐼𝑆𝐶
𝑂𝐸) can be 

divided to occur either radiatively (𝛷𝑟
𝑆) or nonradiatively 

(𝛷𝑛𝑟
𝑆 ), because 𝛷𝑅𝐼𝑆𝐶

𝑂𝐸  encompasses the exciton ratio after 
considering ISC/RISC cycling. The delayed fluorescence 
(𝛷𝐷𝐹) can now be formulated as a function of the radiative 
fraction to the total efficiency, 𝛷𝑟

𝑆 + 𝛷𝑛𝑟
𝑆 . 

𝛷𝐷𝐹 = 𝛷𝐷𝐸𝑅𝐷𝐸
𝐷𝐹 = 𝛷𝐼𝑆𝐶𝛷𝑅𝐼𝑆𝐶

𝑂𝐸 𝛷𝑟
𝑆

𝛷𝑟
𝑆 + 𝛷𝑛𝑟

𝑆

= 𝛷𝐼𝑆𝐶𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 𝛷𝑟

𝑆

1 − 𝛷𝐼𝑆𝐶
. (44)

 

where 𝛷𝐷𝐸  are the quantum efficiency of phosphorescence 
and delayed emission, which is the sum of 𝛷𝐷𝐹  and phos-
phorescence (𝛷𝑃ℎ𝑜𝑠), 𝛷𝐷𝐸 = 𝛷𝐷𝐹 + 𝛷𝑝ℎ𝑜𝑠. 𝑅𝐷𝐸

𝐷𝐹  is the ratio of 

the delayed fluorescence component of the delayed emis-
sion (𝛷𝐷𝐹 𝛷𝐷𝐸⁄ ). On the other hand, the fraction of radiative 

decay from T1 (𝛷𝐼𝑆𝐶𝛷𝑟
𝑇𝑂𝐸) corresponds to 𝛷𝑃ℎ𝑜𝑠, as shown 

in Eq. 45. 

𝛷𝐼𝑆𝐶𝛷𝑟
𝑇𝑂𝐸 = 𝛷𝑃ℎ𝑜𝑠

= 𝛷𝑃𝐿𝑄𝑌 − 𝛷𝑃𝐹 −𝛷𝐷𝐹

= 𝛷𝐷𝐸(1 − 𝑅𝐷𝐸
𝐷𝐹), (45)

 

In the three-state analysis, the lifetimes of TADF and phos-
phorescence are exactly the same since they occur from the 
same origin of the T1 state (see Eq. 31). Therefore, both 𝛷𝐷𝐹 
and 𝛷𝑃ℎ𝑜𝑠 contribute to the delayed emission (𝛷𝐷𝐸). The to-
tal PL quantum yield (𝛷𝑃𝐿𝑄𝑌 ) is the sum of 𝛷𝑟

𝑆  and 𝛷𝐷𝐸 . 

Based on the above analysis, all of the efficiencies related to 
the TADF process are presented in Eqs. 46-51. 

𝛷𝑟
𝑆 =

𝑘𝑟
𝑆

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
=
𝑘𝑟
𝑆

𝑘𝑝
. (46) 

𝛷𝑛𝑟
𝑆 = 1 − 𝛷𝑟

𝑆 − 𝛷𝐼𝑆𝐶 =
𝑘𝑛𝑟
𝑆

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
=
𝑘𝑛𝑟
𝑆

𝑘𝑝
. (47) 

𝛷𝐼𝑆𝐶 =
𝑘𝐼𝑆𝐶

𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶
=
𝑘𝐼𝑆𝐶
𝑘𝑝

. (48) 

𝛷𝑟
𝑇𝑂𝐸 =

𝛷𝑃ℎ𝑜𝑠

𝛷𝐼𝑆𝐶
=

𝑘𝑟
𝑇

𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + (1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶
=
𝑘𝑟
𝑇

𝑘𝑑
. (49) 

𝛷𝑛𝑟
𝑇 𝑂𝐸

=
𝑘𝑛𝑟
𝑇

𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + (1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶
=
𝑘𝑛𝑟
𝑇

𝑘𝑑
. (50) 

𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 =

𝛷𝐷𝐹(1 − 𝛷𝐼𝑆𝐶)

𝛷𝑟
𝑆𝛷𝐼𝑆𝐶

=
(1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶

𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + (1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶

=
(1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶

𝑘𝑑
. (51)

 

The corresponding rate constants are thus described by Eqs. 
52-57. 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑃𝐹 = 𝑘𝑝𝛷𝑟

𝑆. (52) 

𝑘𝑛𝑟
𝑆 = 𝑘𝑝𝛷𝑛𝑟

𝑆 = 𝑘𝑝(1 − 𝛷𝑟
𝑆 − 𝛷𝐼𝑆𝐶). (53) 

𝑘𝐼𝑆𝐶 = 𝑘𝑝𝛷𝐼𝑆𝐶 . (54) 

𝑘𝑟
𝑇 = 𝑘𝑑𝛷𝑟

𝑇𝑂𝐸 = 𝑘𝑑
𝛷𝑃ℎ𝑜𝑠
𝛷𝐼𝑆𝐶

= 𝑘𝑑
𝛷𝐷𝐸(1 − 𝑅𝐷𝐸

𝐷𝐹)

𝛷𝐼𝑆𝐶
. (55) 

𝑘𝑛𝑟
𝑇 = 𝑘𝑑 − (1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶 − 𝑘𝑟

𝑇. (56) 

𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑑
𝛷𝑅𝐼𝑆𝐶

𝑂𝐸

1 − 𝛷𝐼𝑆𝐶
=
𝑘𝑝𝑘𝑑

𝑘𝐼𝑆𝐶
⋅
𝛷𝐷𝐹
𝛷𝑟
𝑆
= 𝑘𝑑

𝛷𝐷𝐸𝑅𝐷𝐸
𝐷𝐹

𝛷𝑟
𝑆𝛷𝐼𝑆𝐶

. (57) 

As explained above, we obtained these rate equations with 
essentially no assumptions; they are nearly identical to 
those described in Ref 7. The value of 𝑅𝐷𝐸

𝐷𝐹  can be obtained 
by fitting the delayed emission spectrum with the prompt 
fluorescence and phosphorescence spectra to provide the 
contribution of the phosphorescence to the delayed emis-
sion. However, we note that these equations still require 
𝛷𝐼𝑆𝐶  to be known. We can employ 𝛷𝑛𝑟

𝑆 = 0 or 𝛷𝑛𝑟
𝑇 = 0 as the 

limiting conditions to determine 𝛷𝐼𝑆𝐶 . This method should 
be applicable for most TADF materials; however, it should 
be noted that the model employs the approximation of 𝑘𝑆 ≈
𝑘𝑝 in this section, which introduces a degree of uncertainty 

to the estimated rate constants, thus reducing their accu-
racy. 

Reevaluation of rate equation using assumption of 
𝜱𝒏𝒓
𝑺 = 𝟎 or 𝜱𝒏𝒓

𝑻 = 𝟎 . As it is difficult to measure directly 
𝑘𝐼𝑆𝐶 , in most of the literature the rate equations for TADF 
materials have been estimated using one of the assumptions 
of 𝛷𝑛𝑟

𝑆 = 0 or 𝛷𝑛𝑟
𝑇 = 0 . The previously reported equations 

have been used indiscriminately to analyze not only highly 
emissive TADF materials but also poorly emissive materials, 
despite the inappropriateness of these models to handle the 
latter given their implicit assumptions. The derived rate 
constants must therefore be evaluated skeptically. The 
equations provided in the previous section using the SSA 
have upward compatibility with previously reported mod-
els, especially those of Goushi-Masui and Dias, which have 
been often employed in the literature. 8,10 When we employ 
𝛷𝑛𝑟
𝑆 = 0 or 𝛷𝑛𝑟

𝑇 = 0 as a limiting condition to obtain 𝛷𝐼𝑆𝐶 , 
our equation using SSA leads to the same rate equations as 
those discussed in Refs 8 and 10 (𝛷𝑃ℎ𝑜𝑠 ≈ 0), respectively, 
shown here as Eqs. 58 and 59. 

𝛷𝐼𝑆𝐶
𝑛𝑟𝑆=0 = 1 − 𝛷𝑃𝐹 . (58) 

𝛷𝐼𝑆𝐶
𝑛𝑟𝑇=0 =

𝛷𝐷𝐸 − 𝛷𝑃ℎ𝑜𝑠(1 − 𝛷𝑃𝐹)

𝛷𝑃𝐹 + 𝛷𝐷𝐸 − 𝛷𝑃ℎ𝑜𝑠
. (59) 

Where 𝛷𝐼𝑆𝐶
𝑛𝑟𝑆=0 and 𝛷𝐼𝑆𝐶

𝑛𝑟𝑇=0 correspond to the maximum and 
minimum values of 𝛷𝐼𝑆𝐶 , respectively. When 𝛷𝑟

𝑇 ≈ 0  (this 
approximation holds for organic TADF emitter behavior at 
around room temperature), the average 𝑘𝐼𝑆𝐶  and 𝑘𝑅𝐼𝑆𝐶  val-
ues within the range between these limiting conditions 

(𝑘𝐼𝑆𝐶
𝐴𝑣𝑔.

 and 𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

, respectively) are provided as follows. 

𝑘𝐼𝑆𝐶
𝐴𝑣𝑔.

=
𝑘𝑝

2
∙

[𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹]             

                   ±[𝛷𝑃𝐹(1 − 𝛷𝑃𝐿𝑄𝑌)]

𝛷𝑃𝐿𝑄𝑌
. (60)

 

𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

=
𝑘𝑑
2
∙

[𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹]             

                   ±[𝛷𝑃𝐹(1 − 𝛷𝑃𝐿𝑄𝑌)]

𝛷𝑃𝐹(1 − 𝛷𝑃𝐹)
. (61)

 

The maximum and minimum values of 𝑘𝐼𝑆𝐶
𝐴𝑣𝑔.

 are the values 
for the limiting conditions of 𝛷𝑛𝑟

𝑆 = 0 and 𝛷𝑛𝑟
𝑇 = 0, respec-

tively, while the maximum and minimum values of 𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

 are 
the values for the limiting conditions of 𝛷𝑛𝑟

𝑇 = 0 and 𝛷𝑛𝑟
𝑆 =

0, respectively. 
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Figure 4. (a) Plot of 𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

 for the delayed emission ratio to PLQY; blue circle, 𝛷𝑃𝐹: 𝛷𝐷𝐹 = 0.1: 0.9; green triangle, 𝛷𝑃𝐹: 𝛷𝐷𝐹 = 0.5: 0.5; 

red square, 𝛷𝑃𝐹: 𝛷𝐷𝐹 = 0.9: 0.1; 1 𝑘𝑝⁄ , 20 ns; 1 𝑘𝑑⁄ , 20 μs; plot was generated using Eq. 61. (b) Ratio of RISC rate constant between as-

suming 𝑘𝑛𝑟
𝑆 = 0 and 𝑘𝑛𝑟

𝑇 = 0 for each PLQY with color properties indicating the ratio of 𝛷𝑃𝐹 and 𝛷𝐷𝐹; solid black line, 𝛷𝑃𝐹: 𝛷𝐷𝐹 = 1; 

plot was generated by using Eq. 61. 

We analysed the range of 𝑘𝑅𝐼𝑆𝐶  values of the three-state sys-

tem by using Eq. 61. Figure 4a shows the plot of 𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

 for the 
delayed emission ratio as a function of PLQY. The maximum 
and minimum values of the ranges are the values for the lim-
iting conditions of 𝛷𝑛𝑟

𝑇 = 0 and 𝛷𝑛𝑟
𝑆 = 0, respectively. The 

plots of blue circles, green triangles, and red squares corre-
spond to the respective values of 0.9, 0.5, and 0.1 for 𝛷𝐷𝐹 . 
The prompt and delayed emission lifetimes ( 𝜏𝑝  and 𝜏𝑑 ) 

were fixed at 20 ns and 20 μs, which are representative val-
ues observed for organic TADF emitters. This plot reveals 
several important points: (1) the ratio of the delayed emis-
sion component significantly affects the magnitude of 𝑘𝑅𝐼𝑆𝐶 . 
When the emission decay has only a small contribution 
from the delayed component, 𝑘𝑅𝐼𝑆𝐶  is not only slow but re-
mains slow even if the material shows a high PLQY; (2) 
When the PLQY of TADF materials is not very high, i.e., less 
than 0.8, there is a larger range of accessible 𝑘𝑅𝐼𝑆𝐶  values 
within the limiting conditions, regardless of the magnitude 
of 𝛷𝐷𝐸 . Similar relationships also exist with respect to 𝑘𝐼𝑆𝐶 . 
It is important to note that the assumption of 𝛷𝑛𝑟

𝑆 = 0 re-
sults in both an underestimation of 𝑘𝑅𝐼𝑆𝐶  and an overesti-
mation of 𝑘𝐼𝑆𝐶  while the assumption of 𝛷𝑛𝑟

𝑇 = 0 results in 
both an overestimation of 𝑘𝑅𝐼𝑆𝐶  and an underestimation of 
𝑘𝐼𝑆𝐶 . The estimated 𝑘𝑅𝐼𝑆𝐶  values do not change as a result of 
changes to the PLQY when the assumption of 𝛷𝑛𝑟

𝑇 = 0 is em-
ployed. This in turn creates problems when this assumption 
is applied to the poorly emissive TADF materials. Especially 
for inefficient emitters (𝛷𝑃𝐿𝑄𝑌 < 0.1), the values of 𝑘𝑅𝐼𝑆𝐶  un-

der the assumption of 𝛷𝑛𝑟
𝑆 = 0 or 𝛷𝑛𝑟

𝑇 = 0 have been esti-
mated with one order magnitude higher error depending on 
the ratio of 𝛷𝑃𝐹 and 𝛷𝐷𝐹 (Figure 4b). Further, despite when 
materials have high PLQY (𝛷𝑃𝐿𝑄𝑌 > 0.9), the difference be-

tween 𝑘𝑅𝐼𝑆𝐶
𝑛𝑟𝑆=0 and 𝑘𝑅𝐼𝑆𝐶

𝑛𝑟𝑇=0 can be more than double than the 
𝛷𝑃𝐹 𝛷𝐷𝐹⁄  ratio. In the supporting information, several equa-
tions are provided to convert 𝑘𝐼𝑆𝐶  and 𝑘𝑅𝐼𝑆𝐶  using a limiting 
condition to another condition or average rate constants, e.g. 
these equation make possible to interconvert the rate con-
stants defined with the models of either Goushi-Masui or 
Dias and our models. When the 𝑘𝑝 and 𝑘𝑑 are each provided 

in the literature along with 𝛷𝑃𝐿𝑄𝑌, 𝛷𝑃𝐹 , and 𝛷𝐷𝐹 , Eqs. 59 and 

60 allow direct extrapolation of the range of accessible val-
ues of 𝑘𝐼𝑆𝐶  and 𝑘𝑅𝐼𝑆𝐶 , and make possible the comparison be-
tween the value estimated using the different models and 
thus assess the possible range of values these rate constants 
can attain. 

Recently, the importance of the role of intermediate triplet 
excited states in facilitating RISC processes, aided by spin-
vibronic coupling has been elucidated.26-29 Thus, we often 
find the delayed component of TADF shows biexponential 
decay. Naito et al. demonstrated the direct fitting of the TR 
PL decay by using the rate constants as a fitting parameter 
within a four-state model.27 Very recently, we also reported 
a rate analysis based on a four-state system consisting of S1, 
T1, Tn, and S0, where Tn is a triplet state of intermediate en-
ergy between S1 and T1.30 The rate equations for the four-
state system implicate that RISC proceeds via transient pop-
ulation of the intermediate Tn state. However, it is difficult 
to derive the exact rate equations for the four-state analysis 
without invoking several a priori assumptions. Such a four-
state system can also be modeled by using the SSA in a sim-
ilar manner as we have described for the three-state system 
(see section 15 in supporting information). There are two 
required assumptions: the direct ISC/RISC process between 
the S1 and T1 states and the direct radiative/nonradiative 
processes from Tn to S0 be both forbidden, which are related 
to El-Sayed’s and Kasha’s rules, respectively.31,32 This situa-
tion occurs when S1 and T1 involve orbitals of the same or-
bital type and thus the corresponding ISC/RISC rate con-
stants are negligibly small. Using a similar approach to that 
employed for the three-state system, we can obtain the rate 
equations that describe all of the rate constants, 𝑘𝑟

𝑆, 𝑘𝑛𝑟
𝑆 , 𝑘𝐼𝑆𝐶 , 

𝑘𝑅𝐼𝑆𝐶 , 𝑘𝐼𝐶
𝑇 , 𝑘𝑅𝐼𝐶

𝑇 , and 𝑘𝑛𝑟
𝑇 . Here, 𝑘𝐼𝐶

𝑇  and 𝑘𝑅𝐼𝐶
𝑇  are the forward 

(IC) and reverse internal conversion (RIC) rate constants 
between Tn and T1. We again confront the problem of deter-
mining 𝛷𝐼𝑆𝐶 . As explained in the previous section, we wish 
to avoid invoking the assumption that 𝛷𝑛𝑟

𝑆 = 0 or 𝛷𝑛𝑟
𝑇 = 0 in 

order to estimate 𝛷𝐼𝑆𝐶 . Therefore, we propose to determine 
𝛷𝐼𝑆𝐶  using, again, the average rate constants for the ISC, 
RISC, IC and RIC processes within a range of accessible 
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values as an alternative, assuming 𝛷𝑛𝑟
𝑆 = 0  or 𝛷𝑛𝑟

𝑇 = 0 . 
When 𝛷𝑟

𝑇 ≈ 0 is employed as a likely limiting condition, in 
an analogous manner to our previous analysis, 𝑘𝐼𝑆𝐶 , 𝑘𝑅𝐼𝑆𝐶 , 
𝑘𝐼𝐶  and 𝑘𝑅𝐼𝐶  values within these conditions are given by Eqs. 
62-65. 

𝑘𝐼𝑆𝐶
𝐴𝑣𝑔.

=

𝑘𝑝 [
2𝛷𝑃𝐿𝑄𝑌 − 𝛷𝑃𝐹(1 + 𝛷𝑃𝐿𝑄𝑌)

    ±𝛷𝑃𝐹(1 − 𝛷𝑃𝐿𝑄𝑌)
]

2𝛷𝑃𝐿𝑄𝑌
. (62)

 

𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑔.

=

𝑘𝑑1𝛷𝐷𝐹1 [
2𝛷𝑃𝐿𝑄𝑌 − 𝛷𝑃𝐹(1 + 𝛷𝑃𝐿𝑄𝑌)

     ±𝛷𝑃𝐹(1 − 𝛷𝑃𝐿𝑄𝑌)
]

2𝛷𝑃𝐹(1 − 𝛷𝑃𝐹)(𝛷𝑃𝐿𝑄𝑌 −𝛷𝑃𝐹)
. (63)

 

𝑘𝐼𝐶
𝐴𝑣𝑔.

= 𝑘𝑑1 −

𝑘𝑑1𝛷𝐷𝐹1 [
1 + 𝛷𝑃𝐿𝑄𝑌 − 2𝛷𝑃𝐹

 ±(1 − 𝛷𝑃𝐿𝑄𝑌)
]

2(1 − 𝛷𝑃𝐹)(𝛷𝑃𝐿𝑄𝑌 − 𝛷𝑃𝐹)
. (64)

 

𝑘𝑅𝐼𝐶
𝐴𝑣𝑔.

=

𝑘𝑑2 [
2𝛷𝐷𝐹2(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹1(1 − 𝛷𝑃𝐿𝑄𝑌)

  ±𝛷𝐷𝐹1(1 − 𝛷𝑃𝐿𝑄𝑌)
]

2𝛷𝐷𝐹1(1 − 𝛷𝑃𝐹 −𝛷𝐷𝐹1)
. (65)

 

Derivation of exact rate equations for three-state sys-
tem containing 𝒌𝑰𝑺𝑪. In first section, we derived the exact 
equation to model the experimental bi-exponential emis-
sion decay of TADF materials. In second section, we also 
provided a solution to determine the rate equations while 
minimizing the assumptions made. Though these rate equa-
tions provide several important insights, they are still based 
on the approximation of 𝑘𝑆 ≈ 𝑘𝑝 . Here, we show that this 

approximation need not be invoked and derive the exact 
rate equations. In so doing, we aim to eliminate the confu-
sion caused by implicating this approximation. 

    Here, we focus on the exponential decay of [T1] to derive 
𝑘ISC. In second section, we obtained the ratio of [S1] [T1]⁄  by 
applying the SSA to Eq. 12, but the exact value of [S1] [T1]⁄  
within the delayed emission regime can be provided from 
the exact population decay equations of Eqs. 29 and 30. 

[S1]

[T1]
=
𝑘𝑝 − 𝑘

𝑆

𝑘𝐼𝑆𝐶
=

𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 − 𝑘𝑑

. (66) 

Therefore, Eq. 37 can be integrated and the evolution of [T1] 
as a function of time becomes, 

[T1] = 𝐴𝑑
𝑇exp {− [𝑘𝑟

𝑇 + 𝑘𝑛𝑟
𝑇 + (1 −

𝑘𝐼𝑆𝐶

𝑘𝑆 − 𝑘𝑑
)𝑘𝑅𝐼𝑆𝐶] 𝑡}

=
[S1]𝑡=0𝑘𝐼𝑆𝐶
𝑘𝑝 − 𝑘𝑑

exp(−𝑘𝑑𝑡) , (67)

 

where 𝐴𝑑
𝑇  is a preexponential factor of the delayed decay of 

triplet excitons. Therefore, 𝑘𝑑 can be written by, 

𝑘𝑑 = 𝑘𝑟
𝑇 + 𝑘𝑛𝑟

𝑇 + (1 −
𝑘𝐼𝑆𝐶

𝑘𝑆 − 𝑘𝑑
) 𝑘𝑅𝐼𝑆𝐶 . (68) 

From the relationship of Eqs. 19 and 68, 𝑘𝑝 can be written 

by 

𝑘𝑝 = 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + (1 +
𝑘𝑅𝐼𝑆𝐶

𝑘𝑆 − 𝑘𝑑
)𝑘𝐼𝑆𝐶 . (69) 

Surprisingly, Eq. 69 implies that 𝑘𝐼𝑆𝐶  is slightly accelerated 
by the presence of multiple ISC/RISC cycles, and the result-
ing relationship of the observed decay rate of S1 (𝑘𝑝 ) is 

larger than the pure decay rate of S1 (𝑘𝑆), in spite of increas-
ing the singlet exciton population due to the upconversion 

from a T1 state. The relationship 𝑘𝑝 > 𝑘
𝑆  was mentioned 

also in first section. This phenomenon would be the result 
of the inflow from T1. From the relationship of Eqs. 16, 68 

and 69, the overall efficiency of ISC and RISC (𝛷𝐼𝑆𝐶
𝑂𝐸 , 

𝛷𝑅𝐼𝑆𝐶
𝑂𝐸) can be written as, 

𝛷𝐼𝑆𝐶
𝑂𝐸 =

(1 +
𝑘𝑅𝐼𝑆𝐶
𝑘𝑆 − 𝑘𝑑

)𝑘𝐼𝑆𝐶

𝑘𝑝

=
𝑘𝐼𝑆𝐶 + 𝑘𝑝 − 𝑘

𝑆

𝑘𝑝
, (70)

 

𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 =

(1 −
𝑘𝐼𝑆𝐶

𝑘𝑆 − 𝑘𝑑
)𝑘𝑅𝐼𝑆𝐶

𝑘𝑑

=
𝑘𝑅𝐼𝑆𝐶 − 𝑘𝑝 + 𝑘

𝑆

𝑘𝑑
. (71)

 

Because 𝛷𝐷𝐹 can be explained as the overall emission effi-
ciency from S1 via T1, it can be defined as,  

𝛷𝐷𝐹 = 𝛷𝐷𝐸𝑅𝐷𝐸
𝐷𝐹 = 𝛷𝐼𝑆𝐶

𝑂𝐸𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 𝛷𝑃𝐹

1 − 𝛷𝐼𝑆𝐶
𝑂𝐸

=
𝑘𝑟
𝑆

𝑘𝑆 − 𝑘𝐼𝑆𝐶
𝛷𝐼𝑆𝐶

𝑂𝐸𝛷𝑅𝐼𝑆𝐶
𝑂𝐸 , (72)

 

where 𝛷𝑃𝐹 corresponds to the overall quantum efficiency of 
the radiative decay from excitons populated directly at S1. 
Note that the generated S1 excitons via T1 described as 

𝛷𝐼𝑆𝐶
𝑂𝐸𝛷𝑅𝐼𝑆𝐶

𝑂𝐸  decay to S0 both radiatively or nonradia-

tively because 𝛷𝐼𝑆𝐶
𝑂𝐸𝛷𝑅𝐼𝑆𝐶

𝑂𝐸 is the final distributed exciton 
ratio of S1 via T1, considering the ISC/RISC cycles. They 
should not distribute to T1 anymore. From Eq. 72, the quad-
ratic equation for 𝑘𝐼𝑆𝐶  can be obtained as 

𝑘𝐼𝑆𝐶 =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
, (73) 

𝑎 = 𝑘𝑑
𝛷𝐷𝐸

𝛷𝑃𝐹
𝑅𝐷𝐸
𝐷𝐹 − 𝑘𝑝 + 𝑘

𝑆, (74) 

𝑏 = (𝑘𝑝 − 𝑘
𝑆)(𝑘𝑆 − 𝑘𝑝 − 𝑘𝑑) − 𝑎𝑘

𝑆, (75) 

𝑐 = (𝑘𝑝 − 𝑘
𝑆)
2
(𝑘𝑆 − 𝑘𝑑). (76) 

As 𝑘𝐼𝑆𝐶  should be smaller than 𝑘𝑆, the value is uniquely de-
termined as described in Eq. 73. When we can approximate 
that the delayed emission does not contain phosphores-
cence (𝑅𝐷𝐸

𝐷𝐹 ≈ 1), the value of 𝑎 becomes 0 and the equation 
for 𝑘𝐼𝑆𝐶  can be rewritten more simply as, 

𝑘𝐼𝑆𝐶 =
(𝑘𝑝 − 𝑘

𝑆)(𝑘𝑆 − 𝑘𝑑)

𝑘𝑑 + 𝑘𝑝 − 𝑘
𝑆

. (77) 

𝑘𝑅𝐼𝑆𝐶  can be obtained from the relationship shown in Eq. 78, 
which is also found in Eq. 16. The equation for 𝑘𝑅𝐼𝑆𝐶  is pro-
vided as Eq. 79 with the approximation of 𝑅𝐷𝐸

𝐷𝐹 ≈ 1. 

𝑘𝑅𝐼𝑆𝐶 =
(𝑘𝑝 − 𝑘

𝑆)(𝑘𝑆 − 𝑘𝑑)

𝑘𝐼𝑆𝐶
. (78) 

𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑑 + 𝑘𝑝 − 𝑘
𝑆. (79) 

From Eq. 31, Eq. 33 can be rewritten by, 
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𝛷𝑃𝐹
𝛷𝑃𝐿𝑄𝑌

=
(𝐴𝑝 + 𝐴𝑑)𝑘𝑑
𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝

=
𝛷𝑟
𝑆(𝑘𝑝 − 𝑘𝑑)𝑘𝑑

[𝛷𝑟
𝑆(𝑘S − 𝑘𝑑) − 𝛷𝑟

𝑇𝑘𝐼𝑆𝐶]𝑘𝑑                        

                    +[𝛷𝑟
𝑆(𝑘𝑝 − 𝑘

𝑆) + 𝛷𝑟
𝑇𝑘𝐼𝑆𝐶]𝑘𝑝

. (80)
 

Eq. 80 provides an exact solution for the singlet decay rate 
(𝑘𝑆) as, 

𝑘𝑆 = 𝑘𝑝 − 𝑘𝑑
𝛷𝐷𝐸
𝛷𝑃𝐹

+ 𝑘𝐼𝑆𝐶
𝛷𝑟
𝑇

𝛷𝑟
𝑆
. (81) 

This equation also can be derived from Eqs. 31 and 34 with 
the similar derivation, and also the ratio of preexponential 
factor (𝐴𝑑 𝐴𝑝⁄ ) of Eq. 31.  When 𝑅𝐷𝐸

𝐷𝐹 ≈ 1 can be approxi-

mated meaning no phosphorescence in emission, 𝑘𝑆 is sim-
plified as the phosphorescence related term vanishes as Eq. 
82.  

𝑘𝑆 = 𝑘𝑝 − 𝑘𝑑
𝛷𝐷𝐹

𝛷𝑃𝐹
. (82) 

The rate constants for non-radiative decay from S1 and T1 
can be extracted from Eq. 19 without invoking the simplifi-
cation of 𝑅𝐷𝐸

𝐷𝐹 ≈ 1 as, 

𝑘𝑛𝑟
𝑆 = 𝑘𝑆 − 𝑘𝑟

𝑆 − 𝑘𝐼𝑆𝐶 , (83) 

𝑘𝑛𝑟
𝑇 = 𝑘𝑇 − 𝑘𝑅𝐼𝑆𝐶 − 𝑘𝑟

𝑇

= 𝑘𝑑 + 𝑘𝑝 − 𝑘
𝑆 − 𝑘𝑅𝐼𝑆𝐶 − 𝑘𝑟

𝑇. (84)
 

When data is collected at 300 K or in solution state, it is not 
unusual to assume the observed emission does not contain 
phosphorescence (𝛷𝑃ℎ𝑜𝑠 ≈ 0), i.e., 𝑅𝐷𝐸

𝐷𝐹 ≈ 1. However, 𝑘𝑛𝑟
𝑇  is 

always 0 when approximated as 𝑅𝐷𝐸
𝐷𝐹 ≈ 1 because of Eqs. 79 

and 84. As a result, the rate constants for 𝑘𝑛𝑟
𝑆 , 𝑘𝐼𝑆𝐶 , and 𝑘𝑅𝐼𝑆𝐶  

under the approximation of 𝑅𝐷𝐸
𝐷𝐹 ≈ 1  can be written in 

terms of decay rates and efficiencies for prompt and de-
layed components as shown in Eqs. 85-87. In this case, it 
should be noted that 𝑘𝑅𝐼𝑆𝐶  is obtained as a maximum for 
these possible values. 

𝑘𝑛𝑟
𝑆 = 𝑘𝑝

𝛷𝑃𝐹
𝛷𝑃𝐿𝑄𝑌

(1 − 𝛷𝑃𝐿𝑄𝑌), (85) 

𝑘𝐼𝑆𝐶 = 𝑘𝑝
𝛷𝐷𝐹
𝛷𝑃𝐿𝑄𝑌

− 𝑘𝑑
𝛷𝐷𝐹
𝛷𝑃𝐹

. (86) 

𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑑
𝛷𝑃𝐿𝑄𝑌

𝛷𝑃𝐹
. (87) 

Interestingly, the rate equation for 𝑘𝑅𝐼𝑆𝐶  is exactly same 
with the model of Dias. The radiative decay rate 𝑘𝑟

𝑆 is inde-
pendently obtained by, 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑃𝐹 . (88) 

Next, we provide the exact solution of the kinetics analysis 
for TADF of a three-state system without any assumptions 
and approximations. The relationship related to the phos-
phorescence is provided as, 

𝛷𝐼𝑆𝐶
𝑂𝐸𝛷𝑟

𝑇𝑂𝐸 = 𝛷𝑃ℎ𝑜𝑠 = 𝛷𝑃𝐿𝑄𝑌 −𝛷𝑃𝐹 − 𝛷𝐷𝐹

= 𝛷𝐷𝐸(1 − 𝑅𝐷𝐸
𝐷𝐹), (89)

 

From Eq. 89 the rate equation and radiative decay quantum 
efficiency for T1 excitons (𝑘𝑟

𝑇 and 𝛷𝑟
𝑇) can be described as 

Eqs. 90 and 91. 

𝑘𝑟
𝑇 =

𝑘𝑑𝛷𝐷𝐸(1 − 𝑅𝐷𝐸
𝐷𝐹)

𝛷𝐼𝑆𝐶
𝑂𝐸 =

𝑘𝑝𝑘𝑑𝛷𝐷𝐸(1 − 𝑅𝐷𝐸
𝐷𝐹)

𝑘𝐼𝑆𝐶 + 𝑘𝑝 − 𝑘
𝑆

. (90) 

𝛷𝑟
𝑇 =

𝑘𝑑𝛷𝑟
𝑇𝑂𝐸

𝑘𝑇𝛷𝐼𝑆𝐶
𝑂𝐸 =

𝑘𝑝𝑘𝑑𝛷𝐷𝐸(1 − 𝑅𝐷𝐸
𝐷𝐹)

(𝑘𝑝 + 𝑘𝑑 − 𝑘
𝑆)(𝑘𝐼𝑆𝐶 + 𝑘𝑝 − 𝑘

𝑆)
. (91) 

From the Eqs. 81, 88, 89, and 89 the exact 𝑘𝑆  can be ob-
tained as a solution of the following cubic equation, 

𝑘𝑆
3
+ 𝑑𝑘𝑆

2
+ 𝑒𝑘𝑆 + 𝑓 = 0. (92) 

𝑑 = − [𝑘𝐼𝑆𝐶 + 3𝑘𝑝 + 𝑘𝑑 (1 −
𝛷𝐷𝐸

𝛷𝑃𝐹
)] . (93) 

𝑒 = 𝑘𝐼𝑆𝐶𝑘𝑑 [1 −
𝛷𝐷𝐸

𝛷𝑃𝐹
(2 − 𝑅𝐷𝐸

𝐷𝐹)]

   −𝑘𝑝(3𝑘𝑝 + 2𝑑) − 𝑘𝑑
2𝛷𝐷𝐸

𝛷𝑃𝐹
. (94)

 

𝑓 = −(𝑘𝐼𝑆𝐶 + 𝑘𝑝)(𝑘𝑝 + 𝑘𝑑) (𝑘𝑝 − 𝑘𝑑
𝛷𝐷𝐸

𝛷𝑃𝐹
) . (95) 

Because 𝑘𝑆 should be smaller than 𝑘𝑝 and larger than 𝑘𝐼𝑆𝐶  

( 𝑘𝐼𝑆𝐶 < 𝑘
𝑆 < 𝑘𝑝 ), the solution to the cubic equation is 

uniquely determined using the Cardano–Tartaglia formula 
as, 

𝑘𝑆 =
−1 + 𝑖√3

2
× √−𝑔 + √𝑔2 + ℎ3

3

+
−1 − 𝑖√3

2
× √−𝑔 − √𝑔2 + ℎ3

3

−
1

3
𝑑. (96)

 

𝑔 =
27𝑓 + 2𝑑3 − 9𝑑𝑒

54
. (97) 

ℎ =
3𝑒 − 𝑑2

9
. (98) 

Because the exact equations for 𝑘𝐼𝑆𝐶  and 𝑘𝑆  contain the 
terms of 𝑘𝑆  and 𝑘𝐼𝑆𝐶 , respectively, a numerical analysis is 
required to obtain the exact rate. For example, 𝑘𝐼𝑆𝐶  at 𝑅𝐷𝐸

𝐷𝐹 ≈
1  can be provided to obtain 𝑘𝑆  and then estimated 𝑘𝐼𝑆𝐶  
were evaluated to avoid the circular reference; a new 𝑘𝐼𝑆𝐶  
value can be provided to minimize the difference between 
the given and estimated values. The 𝑅𝐷𝐸

𝐷𝐹  is given as all rate 
constants are provided as ≥ 0. 

Here, we derived the exact rate equations for organic TADF 
materials based on the three-state model. It is noteworthy 
that the equations in this section considerably reduce the 
errors in the estimation of the rate constants compared 
with the previous methods without the requirement of ad-
ditional experiments except the transient PL decay and 
PLQY measurements to obtain 𝑘𝐼𝑆𝐶 . The equation for 𝑘𝐼𝑆𝐶  
cannot be applied to the previously reported rate equations 
that use the approximation of 𝑘𝑆 ≈ 𝑘𝑝. We note here again, 

the emission lifetimes of TADF and phosphorescence are ex-
actly the same as in the three-state system because both de-
cays are related to the T1 decay; the ISC/RISC cycles behave 
as an exciton pool for both decays. Therefore, the delayed 
emission should always include both contributions from de-
layed fluorescence and phosphorescence at the fixed ratio 
(𝑅𝐷𝐸

𝐷𝐹  and 1 − 𝑅𝐷𝐸
𝐷𝐹) in the three-state model. In other words, 

when data contain three or more decays, the “exact” rate 
equation derived in this section should not be applied. For 
example, phosphorescence often can be found as an addi-
tional radiative decay distinct from TADF. In this case, the 
material should be analyzed by other models, e.g., four-state 
model explained in SI of this paper. Because the rate equa-
tions describing the three-state system were derived con-
sidering the phosphorescence is intrinsic to the delayed 
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emission, it is favorable to collect the emission decay data 
in the full-range of fluorescence and phosphorescence spec-
tra, i.e., the decay data collected not only by a single wave-
length measurement but also with multiple wavelength 
measurements. When the single wavelength measurement 
is employed, the measurement wavelength should be a 
wavelength around the intersection between the normal-
ized fluorescence and phosphorescence spectra. 

Finally, we re-estimated the rate constants for several TADF 
materials in the literature: 4CzIPN;28 5CzBN;28,33 
3Cz2DPhCzBN;33 5Cz-TRZ;34 TQ;35 ν-DABNA;36 TMCz-BO;37 
TPAt-tFFO;12 Br-3PXZ-XO;38 DiKTa;39 and MCz-TXT.40 We 
undertook this analysis with the approximation of 𝑅𝐷𝐸

𝐷𝐹 ≈ 1. 
The rate constant values listed in Table 1 contain the origi-
nally reported values from the literature, the values using 
the equations where the SSA is invoked with the general es-
timation method of 𝛷𝑃𝐹  and 𝛷𝐷𝐸  (SSA-1), the values using 
equations where the SSA is invoked with the corrected esti-
mation method of 𝛷𝑃𝐹 and 𝛷𝐷𝐸  (SSA-2), and using the “ex-
act” equations for the three-state model. For SSA-1 and SSA-
2, the 𝑘𝐼𝑆𝐶  and 𝑘𝑅𝐼𝑆𝐶  values are provided with the limiting 
conditions of 𝑘𝑛𝑟

𝑆 = 0 and 𝑘𝑛𝑟
𝑇 = 0.  

An evaluation of the results using these different models re-
veals that the literature reported 𝑘𝑅𝐼𝑆𝐶  values and those us-
ing SSA-1 are similar. Most of the literature reported 𝑘𝑅𝐼𝑆𝐶  
values using the assumption of 𝑘𝑛𝑟

𝑆 = 0 and those using the 
exact value (𝑘𝑛𝑟

𝑇 = 0) show no difference; however, this is 
the result of a fortuitous cancellation of errors with the as-
sumption of 𝑘𝑛𝑟

𝑆 = 0, the approximation of 𝑘𝑆 ≈ 𝑘𝑝, and the 

estimation method of 𝛷𝑃𝐹  and 𝛷𝐷𝐸 . The 𝑘𝑅𝐼𝑆𝐶  values of 
TPAt-tFFO, which is estimated with the assumption of 𝑘𝑛𝑟

𝑇 =
0, show relatively large differences depending on the model 
used. This is related to the estimation method of 𝛷𝑃𝐹  and 
𝛷𝐷𝐸  and the use of the approximation via a Maclaurin ex-
pansion. For the 𝑘𝑅𝐼𝑆𝐶  estimation, the SSA-2 with the condi-
tion of 𝑘𝑛𝑟

𝑇 = 0  showed good agreement with those using 
the exact equation. This is because both rate equations to 
determine 𝑘𝑅𝐼𝑆𝐶  are exactly the same (see Eqs. 87 and S7.5) 
when approximating 𝑅𝐷𝐸

𝐷𝐹 ≈ 1 and when using SSA with the 
limiting condition of 𝑘𝑛𝑟

𝑇 = 0. When TADF materials show 
very fast T1-S1 upconversion, i.e. 𝑘𝑝 ≈ 𝑘𝑑 , will become avail-

able, the equations using the SSA cannot be applied, but 
there remains no restriction to the use of the exact equa-
tions. In addition, when using the wrong estimation of 𝛷𝑃𝐹 
and 𝛷𝐷𝐸  by Eqs. S3.1 and S3.2 employed in many literature 
reports, 𝑘𝐼𝑆𝐶  tended to be overestimated; this can be found 
by comparing the 𝑘𝐼𝑆𝐶  between SSA-1 and SSA-2. To reduce 
the estimation error of the rate constants, it is important to 
use the corrected estimation method for 𝛷𝑃𝐹 and 𝛷𝐷𝐸 . Fur-
ther, Eqs. 86 and S6.4 provide the correction coefficient, 
−𝑘𝑑 𝛷𝐷𝐹 𝛷𝑃𝐹⁄  for 𝑘𝐼𝑆𝐶  to exclude the affection of 𝑘𝑆 ≈ 𝑘𝑝 . 

Thus, all derived equations help understand the spin-flip 
processes with the exact rate constants for reported TADF 
materials; the equations in the model with practically no as-
sumptions allow the conversion of the rate constants ob-
tained using the model of Goushi-Masui’s to those using the 
model of Dias, and the correction coefficient between the 
model of Dias and exact model provides the exact rate con-
stants. 

As an additional finding, the estimated rate constants nu-
merical analysis showed no change with the case of 𝑅𝐷𝐸

𝐷𝐹 ≈
1  for most of the materials explained above. Both 𝑘𝑟

𝑇  and 
𝑘𝑛𝑟
𝑇  are estimated as ≪ 1. Therefore, the approximation of 
𝑅𝐷𝐸
𝐷𝐹 ≈ 1 should be reasonable. This finding is highly sugges-

tive in the photophysics in three-state system. When there 
is the decay channel of T1 via S1, then direct decay from T1 
to S0 is not available. To explain the direct decay of T1, a new 
model would be necessary to explain the materials that 
show the dual emission of TADF and room temperature 
phosphorescence. The four-state kinetics analysis ex-
plained in the SI would help to understand the advanced 
function of emissive materials. 

Summary  

In this paper, we provided the exact decay curve equation 
for the TADF materials on the three-state system. The equa-
tion was derived from exact S1 and T1 population decays 
considering all exciton decay processes. The exact equa-
tions of exciton population decays help advance our under-
standing of the photophysics of not only TADF materials but 
also materials related to the three-state system of S1, T1, and 
S0, because these equations were derived without employ-
ing any approximations and assume not particular prefer-
ential decay pathway. In addition, the equations to estimate 
the efficiencies for the prompt and delayed emission com-
ponents (𝛷𝑃𝐹  and 𝛷𝐷𝐸 ) were corrected. The estimation 
method of efficiencies strongly influenced the estimated 
value of rate constants. Further, we demonstrated that it is 
possible to derive the rate equations with “practically” and 
“perfectly” no-assumptions. The rate equations are summa-
rized in Table 2 (Entry 1-4). 

For the first method, we employed two approximations. 
One is 𝑘𝑆 ≈ 𝑘𝑝 , which is commonly used, to analyse the 

prompt emission under the condition of [S1] ≫ [T1]  (𝑡 ≪
1 𝑘𝑝⁄ ). This approximation requires the assumption of 𝑘𝑟

𝑆 +

𝑘𝑛𝑟
𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶 ; however, this is satisfied because of the 

relationship of exo- and endothermic processes of 𝑘𝐼𝑆𝐶  and 
𝑘𝑅𝐼𝑆𝐶 . The other one is the steady-state approximation of the 
S1 population to obtain the [S1] [T1]⁄  ratio at the delayed 
emission region of [S1] ≪ [T1] (𝑡 ≫ 1 𝑘𝑝⁄ ). This approxima-

tion also requires the assumption of 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫
𝑘𝑅𝐼𝑆𝐶 . To analyse the experimental data, this method re-
quires that the 𝛷𝐼𝑆𝐶  must be provided by additional meas-
urement; however, it is possible to employ 𝛷𝑛𝑟

𝑆 = 0  or 
𝛷𝑛𝑟
𝑇 = 0 as not assumptions but as limiting conditions. This 

practically no-assumption method makes exchange these 
two assumptions used in the most of literatures being able 
to compare the reported values. This method has some mar-
gin of error; however, it should be noted that there are some 
inapplicable cases because of the approximations employed. 
When 𝛷𝐼𝑆𝐶  is not provided, the rate constants should be re-
ported as average values between both sets of limiting con-
ditions. In addition, the rate equations for the TADF materi-
als using a four-state system of S0, S1, Tn and T1 are derived 
in the supporting information. 
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Table 1. Rate constants of interest TADF materials in this paper for three-state TADF system (assuming 𝑹𝑫𝑬
𝑫𝑭 ≈ 𝟏). 

  𝜱𝑷𝑭 𝜱𝑫𝑭 
𝒌𝒑 

(107 s-1) 

𝒌𝒅 

(105 s-1) 

𝒌𝒓
𝑺 

(107 s-1) 

𝒌𝒏𝒓
𝑺  

(106 s-1) 

𝒌𝑰𝑺𝑪 

(107 s-1) 

𝒌𝒏𝒓
𝑻  

(104 s-1) 

𝒌𝑹𝑰𝑺𝑪 

(105 s-1) 

4CzIPN 

   in toluene 

original 0.21a 0.65 

8.850 2.174 

1.8 - 7.0 - 8.8 

SSA-1 0.21a 0.65 
1.858 0 6.991 3.853 8.517 

1.858 3.025 6.689 0 8.903 

exact 0.21a 0.65 1.858 3.190 6.61 0 8.836 

5CzBN 

   in toluene 

original 0.07a 0.68 

26.32 0.214 

1.9 - 25 - 2.2 

SSA-1 0.07a 0.68 
1.842 0 24.47 0.574 2.232 

1.842 6.140 23.86 0 2.289 

exact 0.07a 0.68 1.842 6.160 23.84 0 2.288 

5CzBN 

 20 wt% 

   in mCBP 

original 0.16 0.65 

31.25 0.980 

5.0 - 26 4.1 3.6 

SSA-1 0.16 0.65 
5.000 0 26.24 2.218 4.730 

5.000 11.73 25.07 0 4.952 

SSA-2 0.160 0.650 
5.006 0 26.24 2.218 4.735 

5.006 11.74 25.07 0 4.957 

exact 0.160 0.650 5.006 11.74 25.03 0 4.957 

3Cz2DPhCzBN 

 20 wt% 

   in mCBP 

original 0.14 0.80 

22.22 1.770 

3.0 - 19 4.1 9.9 

SSA-1 0.14 0.80 
1.552 0 19.11 1.235 11.76 

1.552 19.86 18.91 0 11.88 

SSA-2 0.141 0.799 
3.125 0 19.10 1.236 11.717 

3.125 19.95 18.90 0 11.83 

exact 0.141 0.799 3.125 19.95 18.80 0 11.83 

5Cz-TRZ 

   in toluene 

original 0.031 0.889 

24.39 2.439 

0.544 - 17 - 150 

SSA-1 0.031 0.889 
0.544 0 17.00 4.345 155.8 

0.544 0.473 16.95 0 156.2 

SSA-2 0.034 0.886 
0.591 0 16.95 4.357 143.4 

0.591 0.514 16.90 0 143.8 

exact 0.034 0.886 0.591 0.514 15.52 0 143.8 

TQ 

 10 wt%  

   in DPEPO 

original 0.459 0.095 

8.8 111 

- - - - 0.035 

SSA-1 0.459 0.095 
5.216 0 6.148 0.743 0.034 

5.216 41.99 1.949 0 0.109 

SSA-2 0.459 0.095 
5.216 0 6.148 0.743 0.034 

5.216 41.99 1.948 0 0.109 

exact 0.459 0.095 5.216 41.99 1.948 0 0.109 
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  𝜱𝑷𝑭 𝜱𝑫𝑭 
𝒌𝒑 

(107 s-1) 

𝒌𝒅 

(105 s-1) 

𝒌𝒓
𝑺 

(107 s-1) 

𝒌𝒏𝒓
𝑺  

(106 s-1) 

𝒌𝑰𝑺𝑪 

(107 s-1) 

𝒌𝒏𝒓
𝑻  

(104 s-1) 

𝒌𝑹𝑰𝑺𝑪 

(105 s-1) 

ν-DABNA 

   in toluene 

original 0.82 0.08 

24.39 2.439 

20 22 2.3 0 2.0 

SSA-1 0.82 0.08 
20.00 0 4.390 13.55 1.322 

20.00 22.22 2.168 0 2.677 

SSA-2 0.820 0.080 
20.00 0 4.388 13.56 1.321 

20.00 22.22 2.166 0 2.677 

exact 0.820 0.080 20.00 22.22 2.163 0 2.677 

TMCz-BO 

 30 wt% 

   in PPF 

original 0.66 0.32 

2.632 13.33 

1.7 - 0.9 - 19 

SSA-1 0.66 0.32 
1.737 0 0.895 7.843 19.01 

1.737 0.354 0.859 0 19.80 

SSA-2 0.676 0.304 
1.780 0 0.852 8.236 18.50 

1.780 0.363 0.816 0 19.32 

exact 0.676 0.304 1.780 0.363 0.756 0 19.32 

TpAT-tFFO 

   in mCBP 

original 0.02 0.82 

6.536 2.262 

0.11 0.20 5.3 - 120 

SSA-1 0.02 0.82 
0.131 0 6.405 3.694 94.65 

0.131 0.249 6.380 0 95.02 

SSA-2 0.023 0.817 
0.149 0 6.387 3.705 82.84 

0.149 0.284 6.358 0 83.21 

exact 0.023 0.817 0.149 0.284 5.549 0 83.21 

Br-3PXZ-XO 

   in toluene 

original 0.033 0.42 

20.00 20.41 

0.68 - 19 120 260 

SSA-1 0.033 0.42 
0.660 0 19.34 115.4 268.6 

0.660 7.970 18.54 0 280.1 

SSA-2 0.037 0.416 
0.746 0 19.25 116.0 236.4 

0.746 9.005 18.35 0 247.9 

exact 0.037 0.416 0.746 9.005 16.08 0 247.9 

DiKTa 

   in toluene 

original 0.25 0.01 

19.61 0.435 

4.9 140 0.75 - 0.46 

SSA-1 0.25 0.01 
4.902 0 14.71 4.290 0.023 

4.902 139.5 0.754 - 0.452 

SSA-2 0.25 0.01 
4.902 0 14.71 4.290 0.023 

4.902 139.5 0.754 - 0.452 

exact 0.25 0.01 4.902 139.5 0.754 0 0.452 

MCz-TXT 

   in mCBP 

original 0.012b 0.908 

107.3 13.33 

1.3 - 94 - 1100 

SSA-1 0.012b 0.908 
1.287 0 106.0 10.80 1021.0 

1.287 1.119 105.9 0 1022.2 

SSA-2 0.013b 0.907 
1.287 0 105.8 10.81 933.2 

1.408 1.224 105.7 0 934.3 

exact 0.013b 0.907 1.408 1.224 96.51 0 934.3 

a) using the PLQY before introduce the inert gas. 
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We also derived the “exact” rate equations for the TADF ma-
terials on the three-state model. In this model, 𝛷𝐼𝑆𝐶  can be 
estimated without any other additional measurements 
other than emission spectra, transient emission decay, and 
PLQY. This method requires the estimation of 𝛷𝑝ℎ𝑜𝑠, which 

can be obtained by spectral fitting or numerical analysis. 
However, there is difficult case because of the high accuracy 
of the equations. In this case, the equations allow to approx-
imate 𝛷𝑝ℎ𝑜𝑠 ≈ 0, which can be applied to the data collected 

at temperatures where TADF is operational and is used in 
most of the literature reports. With the approximation of no 
phosphorescence contribution, the rate equations simplify 
and a consequence of this approximation within the model 
is that 𝛷𝑛𝑟

𝑇 = 0; i.e. the rate constants of radiative and non-
radiative decay from T1 are coupled. This method provides 
the most precise set of rate constants for TADF materials. 
Further, the exact equations reveal the presence of an im-
portant relationship on the photophysics; the singlet popu-
lation decay is accelerated by the presence of a RISC process. 

By using either model reported here, we can derive the ex-
act rate constants from reported values in the literature by 
analysing the data using the models of either Goushi-Masui 
or Dias, which are the ones most commonly used.  

However, Ermolaev's rule approximates 𝛷𝑛𝑟
𝑆  as zero (S1 energy 

should have larger than 2.17 eV),41,42 and it would be a problem 

to apply 𝛷𝑛𝑟
𝑇 = 0 especially in the case of low PLQY emitters. 

Therefore, we recommend to provide the average and maxi-

mum rate constants corrected by the exact solution for ISC rate 

(Table 2, Entry 5), if there is no specific reason, e.g., the mate-

rial possessing extremely high PLQY. In this case, the maxi-

mum values of 𝑘𝑅𝐼𝑆𝐶 , 𝑘𝑛𝑟
𝑆 , and the minimum value of 𝑘𝐼𝑆𝐶 cor-

respond to the exact solution. Whatever the case, the four values 

of 𝛷𝑃𝐹 , 𝛷𝐷𝐸 , 𝑘𝑝, and 𝑘𝑑 should be provided. We believe the 

equations provided here will enable the universalization of 
the kinetics analysis of TADF materials and so lead to a bet-
ter understanding of their photophysics, and ultimately bet-
ter materials. 

 

Table 2. Summary of rate equations provided in this paper for three-state TADF system. 

Entry Equations Comments 

1 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑃𝐹 

𝑘𝑛𝑟
𝑆 = 𝑘𝑝(1 − 𝛷𝑃𝐹 − 𝛷𝐼𝑆𝐶) 

𝑘𝐼𝑆𝐶 = 𝑘𝑝𝛷𝐼𝑆𝐶 

𝑘𝑟
𝑇 = 𝑘𝑑

𝛷𝐷𝐸(1 − 𝑅𝐷𝐸
𝐷𝐹)

𝛷𝐼𝑆𝐶
 

𝑘𝑛𝑟
𝑇 = 𝑘𝑑 − (1 − 𝛷𝐼𝑆𝐶)𝑘𝑅𝐼𝑆𝐶 − 𝑘𝑟

𝑇 

𝑘𝑅𝐼𝑆𝐶 =
𝑘𝑑𝛷𝐷𝐸𝑅𝐷𝐸

𝐷𝐹

𝛷𝐼𝑆𝐶𝛷𝑃𝐹
 

Assumption: 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  to approximate 
𝑘𝑝 ≈ 𝑘

𝑆 and apply steady state approximation. 

 

Requirement to obtain all rate constants 

𝑘𝐼𝑆𝐶  estimation or assuming 𝑘𝑛𝑟
𝑆 = 0 or 𝑘𝑛𝑟

𝑇 = 0 

𝑅𝐷𝐸
𝐷𝐹 estimation or approximate 𝑅𝐷𝐸

𝐷𝐹 ≈ 1 

 

𝛷𝑟
𝑆 = 𝛷𝑃𝐹 =

𝑘𝑑(𝐴𝑝 + 𝐴𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

𝛷𝐷𝐸 =
𝐴𝑑(𝑘𝑝 − 𝑘𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

2 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑃𝐹 

𝑘𝑛𝑟
𝑆 𝑀𝑎𝑥

= 𝑘𝑝 (1 − 𝛷𝑃𝐹 −
𝛷𝐷𝐹
𝛷𝑃𝐿𝑄𝑌

) 

𝑘𝐼𝑆𝐶
𝐴𝑣𝑒. =

𝑘𝑝
2
∙
𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹 ± 𝛷𝑃𝐹(1 − 𝛷𝑃𝐿𝑄𝑌)

𝛷𝑃𝐿𝑄𝑌
 

𝑘𝑛𝑟
𝑇 𝑀𝑎𝑥

= 𝑘𝑑 (1 −
𝛷𝐷𝐹

1 − 𝛷𝑃𝐹
) 

𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑒. =

𝑘𝑑
2
∙
𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹 ±𝛷𝑃𝐹(1 − 𝛷𝑃𝐿𝑄𝑌)

𝛷𝑃𝐹(1 − 𝛷𝑃𝐹)
 

Based on Entry 1. 

Assumption: 𝑘𝑟
𝑆 + 𝑘𝑛𝑟

𝑆 + 𝑘𝐼𝑆𝐶 ≫ 𝑘𝑅𝐼𝑆𝐶  to approximate 
𝑘𝑝 ≈ 𝑘

𝑆 and apply steady state approximation. 

 

Approximation: 𝑅𝐷𝐸
𝐷𝐹 ≈ 1 (or when 𝑅𝐷𝐸

𝐷𝐹 = 1) 

 

𝛷𝑟
𝑆 = 𝛷𝑃𝐹 =

𝑘𝑑(𝐴𝑝 + 𝐴𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

𝛷𝐷𝐹 =
𝐴𝑑(𝑘𝑝 − 𝑘𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 
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3 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑃𝐹 

𝑘𝑛𝑟
𝑆 = 𝑘𝑆 − 𝑘𝑟

𝑆 − 𝑘𝐼𝑆𝐶  

𝑘𝐼𝑆𝐶 =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
 

𝑘𝑅𝐼𝑆𝐶 =
(𝑘𝑝 − 𝑘

𝑆)(𝑘𝑆 − 𝑘𝑑)

𝑘𝐼𝑆𝐶
 

𝑘𝑟
𝑇 =

𝑘𝑝𝑘𝑑𝛷𝐷𝐸(1 − 𝑅𝐷𝐸
𝐷𝐹)

𝑘𝐼𝑆𝐶 + 𝑘𝑝 − 𝑘
𝑆

 

𝑘𝑛𝑟
𝑇 = 𝑘𝑝 + 𝑘𝑑 − 𝑘

𝑆 − 𝑘𝑅𝐼𝑆𝐶 − 𝑘𝑟
𝑇 

 

𝑘𝑆 =
−1 + 𝑖√3

2
× √−𝑔 +√𝑔2 + ℎ3

3

+
−1 − 𝑖√3

2
× √−𝑔 − √𝑔2 + ℎ3

3

−
1

3
𝑑 

No assumption (require numerical analysis) 

𝛷𝑃𝐹 =
𝑘𝑑(𝐴𝑝 + 𝐴𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

𝛷𝐷𝐸 =
𝐴𝑑(𝑘𝑝 − 𝑘𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

{
 
 

 
 𝑎 =

𝛷𝐷𝐸
𝛷𝑃𝐹

𝑘𝑑𝑅𝐷𝐸
𝐷𝐹 − 𝑘𝑝 + 𝑘

𝑆

𝑏 = (𝑘𝑝 − 𝑘
𝑆)(𝑘𝑆 − 𝑘𝑝 − 𝑘𝑑) − 𝑎𝑘

𝑆

𝑐 = (𝑘𝑝 − 𝑘
𝑆)
2
(𝑘𝑆 − 𝑘𝑑)

 

{
  
 

  
 𝑑 = − [𝑘𝐼𝑆𝐶 + 3𝑘𝑝 + 𝑘𝑑 (1 −

𝛷𝐷𝐸
𝛷𝑃𝐹

)]

𝑒 = 𝑘𝐼𝑆𝐶𝑘𝑑 [1 −
𝛷𝐷𝐸
𝛷𝑃𝐹

(2 − 𝑅𝐷𝐸
𝐷𝐹)] − 𝑘𝑝(3𝑘𝑝 + 2𝑑) − 𝑘𝑑

2𝛷𝐷𝐸
𝛷𝑃𝐹

𝑓 = −(𝑘𝐼𝑆𝐶 + 𝑘𝑝)(𝑘𝑝 + 𝑘𝑑) (𝑘𝑝 − 𝑘𝑑
𝛷𝐷𝐸
𝛷𝑃𝐹

)

 

{
 

 𝑔 =
27𝑓 + 2𝑑3 − 9𝑑𝑒

54

ℎ =
3𝑒 − 𝑑2

9

 

4 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑃𝐹 

𝑘𝑛𝑟
𝑆 = 𝑘𝑝

𝛷𝑃𝐹
𝛷𝑃𝐿𝑄𝑌

(1 − 𝛷𝑃𝐿𝑄𝑌) 

𝑘𝐼𝑆𝐶 = 𝑘𝑝
𝛷𝐷𝐹
𝛷𝑃𝐿𝑄𝑌

− 𝑘𝑑
𝛷𝐷𝐹
𝛷𝑃𝐹

 

𝑘𝑅𝐼𝑆𝐶 = 𝑘𝑑
𝛷𝑃𝐿𝑄𝑌
𝛷𝑃𝐹

 

𝑘𝑛𝑟
𝑇 = 0 

Based on Entry 3. 

Approximation: 𝑅𝐷𝐸
𝐷𝐹 ≈ 1 (or when 𝑅𝐷𝐸

𝐷𝐹 = 1) 

 

𝛷𝑃𝐹 =
𝑘𝑑(𝐴𝑝 + 𝐴𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

𝛷𝐷𝐹 =
𝐴𝑑(𝑘𝑝 − 𝑘𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

5 

𝑘𝑟
𝑆 = 𝑘𝑝𝛷𝑃𝐹 

𝑘𝑛𝑟
𝑆 𝑀𝑎𝑥

= 𝑘𝑝
𝛷𝑃𝐹
𝛷𝑃𝐿𝑄𝑌

(1 − 𝛷𝑃𝐿𝑄𝑌) 

𝑘𝐼𝑆𝐶
𝐴𝑣𝑒. =

[𝑘𝑝(1 − 𝛷𝑃𝐹) − 𝑘𝑑𝛷𝐷𝐹]𝛷𝑃𝐿𝑄𝑌 + 𝑘𝑝𝛷𝑃𝐹𝛷𝐷𝐹                              

                                      ±[𝑘𝑝𝛷𝑃𝐹
2(1 − 𝛷𝑃𝐿𝑄𝑌) + 𝑘𝑑𝛷𝐷𝐹𝛷𝑃𝐿𝑄𝑌]

2𝛷𝑃𝐹𝛷𝑃𝐿𝑄𝑌
 

𝑘𝑛𝑟
𝑇 𝑀𝑎𝑥

= 𝑘𝑑 (1 −
𝛷𝐷𝐹

1 − 𝛷𝑃𝐹
) 

𝑘𝑅𝐼𝑆𝐶
𝐴𝑣𝑒. =

𝑘𝑑
2
∙
𝛷𝑃𝐿𝑄𝑌(1 − 𝛷𝑃𝐹) + 𝛷𝐷𝐹 ±𝛷𝑃𝐹(1 − 𝛷𝑃𝐿𝑄𝑌)

𝛷𝑃𝐹(1 − 𝛷𝑃𝐹)
 

Combination of Entries 2 and 4. 

Approximation: 𝑅𝐷𝐸
𝐷𝐹 ≈ 1 (or when 𝑅𝐷𝐸

𝐷𝐹 = 1) 

 

𝛷𝑃𝐹 =
𝑘𝑑(𝐴𝑝 + 𝐴𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

𝛷𝐷𝐹 =
𝐴𝑑(𝑘𝑝 − 𝑘𝑑)

𝐴𝑝𝑘𝑑 + 𝐴𝑑𝑘𝑝
𝛷𝑃𝐿𝑄𝑌 

 

𝑘𝑛𝑟
𝑆 𝑀𝑎𝑥

, 𝑘𝐼𝑆𝐶
𝑀𝑖𝑛 and 𝑘𝑅𝐼𝑆𝐶

𝑀𝑎𝑥  are the same values with Entry 4. 

ASSOCIATED CONTENT  

Supporting information: Typical estimation methods in litera-
ture for 𝑘𝑅𝐼𝑆𝐶  and 𝑘𝐼𝑆𝐶  were summarized as Table S1 and S2, 
respectively. The several conversion equations from reported 
to corrected ones were provided. The validity of the approxi-
mation of 𝑘𝑆 ≈ 𝑘𝑝  by assuming 𝑘𝑆 ≫ 𝑘𝑅𝐼𝑆𝐶  were explained. 

The relationships of efficiencies between element and overall 
ones were provided. Several equations for derivation omitted 
in main text were provided. The detail of exciton distribution is 
explained. The derivation of rate equations standing on four-
state photophysics were demonstrated with the minimum as-
sumptions which related to El-Sayed’s and Kasha’s rules. 
An excel spreadsheet for analysis is available on ChemRxiv; 
https://doi.org/10.26434/chemrxiv.14178113. 
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The scheme of photophysical process for three-state system. 

Page 19 of 22

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Emission decay curve and theoretical curves of Eqs. 29-31 within nanosecond time range (a) and 
microsecond time range (b). The difference of total emission and exciton population decays is related to the 

fluorescence and phosphorescence contributions depending on emitting ratio of each exciton. 
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(a) Emission decay curve and biexponential fitting curves which are employed to estimate the prompt and 
delayed emission efficiency in gen-eral. (b) Corrected prompt and delayed component curves to provide 

exact emission efficiencies. (c) Closeup within nano second range to recognise difference of prompt 
components for general and corrected estimation method. 
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(a) Plot of k_RISC^(Avg.) for the delayed emission ratio to PLQY; blue circle, Φ_PF:Φ_DF=0.1:0.9; green 
triangle, Φ_PF:Φ_DF=0.5:0.5; red square, Φ_PF:Φ_DF=0.9:0.1; 1⁄k_p , 20 ns; 1⁄k_d , 20 μs; plot was 
generated using Eq. 61. (b) Ratio of RISC rate constant between assuming k_nr^S=0 and k_nr^T=0 for 

each PLQY with color properties indicating the ratio of Φ_PF and Φ_DF; solid black line, Φ_PF:Φ_DF=1; plot 
was generated by using Eq. 61. 
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