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Abstract. Let m ≤ n ∈ N, and G ≤ Sym(m) and H ≤ Sym(n). In this article
we find conditions enabling embeddings between the symmetric R. Thompson

groups Vm(G) and Vn(H). When n ≡ 1 mod (m− 1), and under some other

technical conditions, we find an embedding of Vn(H) into Vm(G) via topologi-
cal conjugation. With the same modular condition we also generalise a purely

algebraic construction of Birget from 2019 to find a group H ≤ Sym(n) and

an embedding of Vm(G) into Vn(H).

1. Introduction

This article concerns embeddability conditions for pairs of groups from the fam-
ily of symmetric R. Thompson groups {Vm(G)}. The group Vm(G) is the group
Vm(G) = 〈Vm ∪G〉, where Vm ≤ Aut(Cm) is the Higman-Thompson group denoted
Gm,1 by Higman in [9], acting on the Cantor space Cm := {0, 1, . . . ,m− 1}ω, while

G is a particular faithful representation of a finite group G̃ ≤ Sym(m) in Aut(Cm).
The groups {Vm(G)} have developed as groups of interest for a variety of reasons.

Firstly, they were singled out as natural groups of interest in [14] and [15], and
they arise naturally as a fundamental subfamily of Hughes’ FSS groups [11]. The

paper [2] shows that for n ≥ 2, Vm ∼= Vm(G) if and only if G̃ is semiregular (the

nontrivial elements of G̃ have no fixed points), and also, that for m > 3 there exists

G̃, H̃ ∈ Sym(m) with G̃ ∼= H̃ but where the induced groups Vm(G) and Vm(H) are

not isomorphic (the orbit structure of the actions of the elements of the groups G̃

and H̃ impacts the isomorphism types of the groups Vm(G) and Vm(H)). In another
direction, in [7] Farley shows the symmetric R. Thompson groups are CoCF groups
(see [10] for the definition of CoCF groups). Thus, if one can show that some group
in the family {Vm(G)} fails to embed in V = V2, then Lehnert’s conjecture will be
shown to be false (see [12, 13, 4]).

We investigate conditions on m ≤ n, G ≤ Sym(m), and H ≤ Sym(n) that
guarantee the existence of embeddings between the groups Vm(G) and Vn(H) (we
now drop the “tilde” notation on the groups G and H when thinking of them as
subgroups of Sym(m) and Sym(n), respectively). Thus, this note can be thought
of as a continuation of the investigations in [2], and is partly inspired by the work
of Birget (in [1], he gives a method to embed V2 into Vm for 2 ≤ m), and partly
by considering some of the questions alluded to in the previous paragraph. In
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this context, our two embedding results depend on the direction of the embedding
(Vm(G) � Vn(H) or Vn(H) � Vm(G)), and our constructed embeddings require
in both cases the Higman condition n ≡ 1 mod (m− 1).

To our knowledge, the first case of a proof that all Vn embed into each other is by
Nicolás Matte Bon [5, Coroll. 11.16], although it was almost a folklore statement
that such embeddings existed. Before that, the only such embedding theorems that
we know of in the literature were those of Higman from [9, Thm. 7.2] (Vn � Vm
when m and n satisfy the Higman condition). We leverage Birget’s construction
[1] in this paper because of the utility of his successor function, which we are able
to generalize effectively for embeddings in our enriched context (Vm(G) and Vn(H)
as opposed to Vm and Vn).

The embedding Vm(G) � Vn(H) is algebraic in nature, and is the one which is
inspired by the embeddings of Birget, while the embedding Vn(H) � Vm(G) uses
a topological conjugacy by rational group elements (see [8]).

We can now state and discuss the main results of this chapter. For the topological

embedding Vn(H) � Vm(G), we need to define a group RG(S̃) ≤ Sym(n) (where

G ≤ Sym(m) and S̃ is a prefix code of Cm of length n). The group RG(S̃) is well

defined if there is an n-element prefix code S̃ in A∗m which is preserved by the action

of the iterated permutations of G on A∗m. In this case RG(S̃) is the subgroup of

Sym(n) induced from the action of G on the elements of S̃ under a bijection to
{1, 2, . . . , n}.

Theorem 1.1 (Topological Embedding). Let n,m ≥ 2 be natural numbers such
that m < n, and let G ≤ Sym(m), H ≤ Sym(n). Suppose that:

(1) There exists a prefix code S̃ of Cm such that |S̃| = n,

(2) the group RG(S̃) is well defined, and

(3) RG(S̃) and H are cyclically isomorphic.

Then Vn(H) embeds in Vm(G).

Thus, we have the following general observation.

Observation 1.1. In practical terms, natural applications of Theorem 1.1 occur by
choosingm and a prefix code that is closed under the action of iterated permutations
from some G ≤ Sym(m). Then, one immediately obtains a cyclically isomorphic
group H in Sym(n).

Theorem 1.2 (Algebraic Embedding). Let n,m ≥ 2 be natural numbers such that
n = k(m− 1) +m for some k ≥ 1, and let G ≤ Sym(m). Let H = Gext ≤ Sym(n)
the extended symmetric group of H, whose elements act as the elements of H on
the first m elements, and act as the identity on the remaining n−m.

Then Vm(G) embeds in Vn(H).

Thus, to achieve such an embedding, the main obstruction is that m and n satisfy
the Higman Condition, i.e.:

Corollary 1.2. Let m ≤ n so that n ≡ m mod (m − 1), and let G ≤ Sym(m).
Then, there exists H ≤ Sym(n) so that Vm(G) � Vn(H).

As mentioned above, for givenm andG semiregular, the paper [2] shows Vm(G) ∼=
Vm, while Higman’s book [9] gives an embedding of Vm into R. Thompson’s group
V = V2. The semiregularity condition above has to do with local groups of germs
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of the action of Vm(G) on Cm (see [2, 3]). Our topological embedding preserves the
local groups of germs, while the algebraic embeddings (for G non-trivial) produce
complicated local groups of germs. Thus, it is impossible to chain our families
of embeddings together to get an embedding from Vm(G) into V2 when G is not
semi-regular.

We therefore ask the following question:

Question 1.3. Does there exist m ∈ N and G ∈ Sym(m) so that G is not semireg-
ular, but where there is an embedding from Vm(G) into V2?

Acknowledgements:
The authors would like to thank Javier Aramayona, Jim Belk, and Matthew G.
Brin for numerous and enjoyable conversations around the material in this note.
We also wish to thank an anonymous referee for helpful comments on exposition.

2. Symmetric Thompson’s groups

In this section, we introduce symmetric Thompson’s groups, giving an easy way
to express its elements as tables (this corresponds to a generalised construction of
Higman used by Scott and Röver in the creation of their extensions of V ([16, 17,
18, 15]).

2.1. Tables. For natural n > 1, let Cn be the n-adic Cantor set, which is con-
structed inductively as follows: C1

n corresponds to first subdividing C0
n = [0, 1] into

2n−1 closed intervals of equal length (so, sharing endpoints with neighbours), num-
bered 1, . . . , 2n−1 from left to right, and then taking the collection of odd-numbered
sub-intervals. Next, C2

n is obtained from C1
n by applying the same procedure to each

of the intervals forming C1
n, and so on. Then, Cn is the limit of this process, so that

Cn = ∩iCin.
Now, let An = {0, . . . , n − 1} and give it the discrete topology. It is easy to build
a direct homemorphism from the space AN

n equipped with the product topology to
Cn, so every element ζ ∈ Cn can be expressed as an infinite word ζ = w1w2 . . . ,
where wi ∈ An. It is a classical result of Brouwer from [6] that all of the spaces in
the set {Cn} are abstractly homeomorphic to each other.

We denote by A∗n the set of finite words in An. The empty word ε is also in A∗n.

Definition 2.1 (Concatenation). Let u = u1u2 . . . uk, ui ∈ An be a finite word and
v ∈ A∗n ∪AN

n with v = v1v2 . . . (where for all valid indices i we have vi ∈ An) . The
concatenation of u with v is the (finite or infinite) word:

u||v = u1u2 . . . ukv1v2 . . . .

With concatenation being a fundamental operation, we will often just write the
concatenation of two strings without the formal concatenation operator, that is, we
might write u||v as simply uv, reserving the formal use of “||” for situations where
we wish to stress that a concatenation is occuring.

Definition 2.2 (Prefix order). Let u ∈ A∗n and v ∈ A∗n ∪ AN
n. We say that u is a

prefix of v (u ≤pref v) if v = u||w, for some w ∈ A∗n ∪ AN
n.

Note that this property is transitive for finite length words: If u ≤pref v and
v ≤pref w then u ≤pref w. In addition, u ≤pref u, as ε ∈ A∗n. That is, ≤pref
provides a partial order on A∗n.



4 JULIO AROCA AND COLLIN BLEAK

Definition 2.3 (Prefix code). Let S be a finite set of words in A∗n. Then S is an
prefix code of Cn if for every infinite word ζ ∈ AN

n there exists one and only one
word s ∈ S such that s ≤pref ζ. (Specifically, a prefix code is a complete anti-chain
for the partial order ≤pref .)

For convenience, we will use the following notation: let σ ∈ Sym(n) be an element
of the symmetric group of n elements. Given any word ζ = z1z2z3 · · · ∈ A∗n ∪ AN

n

we define σ(ζ) = σ(z1)σ(z2)σ(z3) · · · ∈ A∗n ∪ AN
n. Let σi ∈ H ≤ Sym(n). (Note

that we are using left actions here, so if σ, τ ∈ Sym(n) then the product τσ means
employ the permutation σ first, and then employ τ).

With the above notation, an element of Vn(H) is a homeomorphism of Cn that
can be (non-uniquely) described by a table as follows:

v =


p1 p2 · · · pk
σ1 σ2 · · · σk
q1 q2 · · · qk
τ1 τ2 · · · τk

 ,
where pi, qi ∈ A∗n, σi, τi ∈ H and such that the sets P = {pi}ki=1 and Q = {qi}ki=1

are prefix codes of Cn. We say that k ≥ 1 is the length of the table. The homeo-
morphism of Cn induced can be defined as follows: for every infinite word ζ such
that pi ≤pref ζ, that is ζ = pi||u for some u ∈ AN

n, we have

v : pi||σi(u)→ qi||τi(u).

There are infinitely many tables which induce the same homeomorphism of Cn.
We proceed to define the four basic moves we can perform on a table in order to
obtain an equivalent one (the four basic moves naturally split as two essential sorts
of moves, together with their inverse (or “near-inverse”) moves).

The first basic move is expansion: for a given prefix code

P = {p1, . . . , pi, . . . , pk},

we can consider

P̃ = {p1, . . . , pi0, . . . , pi(n− 1), . . . , pk}

by expanding the word pi. This expansion not only occurs in P , as the image of pi
must be also expanded. So we have

Q̃ = {q1, . . . , qi0, . . . , qi(n− 1), . . . , qk}.

It is easy to see that both P̃ and Q̃ are also prefix codes. Then:
p1 · · · pi · · · pk
σ1 · · · σi · · · σk
q1 · · · qi · · · qk
τ1 · · · τi · · · τk

 ≡

p1 · · · piσi(0) · · · piσi(n− 1) · · · pk
σ1 · · · σi · · · σi · · · σk
q1 · · · qiτi(0) · · · qiτi(n− 1) · · · qk
τ1 · · · τi · · · τi · · · τk

 .
One can always perform an expansion, but not all tables look like the result of an
expansion. Naturally, the inverse of an expansion (when it is defined) is called a
reduction.

The second move we can perform on a table is pushing down (resp. pushing up)
the action of all σi such that σi = Id for every i ∈ {1, . . . , k} (resp. τi = Id for
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every i ∈ {1, . . . , k}):
p1 p2 · · · pk
σ1 σ2 · · · σk
q1 q2 · · · qk
τ1 τ2 · · · τk

 ≡


p1 p2 · · · pk
Id Id · · · Id
q1 q2 · · · qk

τ1σ
−1
1 τ2σ

−1
2 · · · τkσ

−1
k



≡


p1 p2 · · · pk

σ1τ
−1
1 σ2τ

−1
2 · · · σkτ

−1
k

q1 q2 · · · qk
Id Id · · · Id

 .
It is not hard to see that a table gives a well-defined homeomorphism of the

appropriate Cantor space, and if two tables are related by a finite sequence of our
four moves then they represent the same homeomorphism. The reader can also
check that if a homeomorphism of an appropriate Cantor space is represented by
two tables, then in fact these tables are in the same equivalence class under our
four basic moves on tables. Thus, we can just consider our group elements to be
the equivalence classes of tables with the aforementioned relations.

The composition of two different elements u, v ∈ Vn(H) is easy to compute using
the equivalences. Let u, v ∈ Vn(H), such that u takes the prefix code P to the
prefix code Q (resp. v takes P ′ to Q′). We need to find a prefix code S such that,
for every element s ∈ S, there exists one element q ∈ Q and one element p′ ∈ P ′
such that q ≤pref s and p′ ≤pref s. This can always be done by expanding P ′ and
Q until we obtain the same prefix code S. Thus, without loss of generality:

u =


p1 p2 · · · pk
σ1 σ2 · · · σk
s1 s2 · · · sk
τ1 τ2 · · · τk

 , v =


s1 s2 · · · sk
σ′1 σ′2 · · · σ′k
q′1 q′2 · · · q′k
τ ′1 τ ′2 · · · τ ′k

 .
Finally, we push up the action of u and push down the action of v:

u =


p1 p2 · · · pk

σ1τ
−1
1 σ2τ

−1
2 · · · σkτ

−1
k

s1 s2 · · · sk
Id Id · · · Id

 ,

v =


s1 s2 · · · sk
Id Id · · · Id
q′1 q′2 · · · q′k

τ ′1(σ′1)−1 τ ′2(σ′2)−1 · · · τ ′k(σ′k)−1

 ,
so

v ◦ u =


p1 p2 · · · pk

σ1τ
−1
1 σ2τ

−1
2 · · · σkτ

−1
k

q′1 q′2 · · · q′k
τ ′1(σ′1)−1 τ ′2(σ′2)−1 · · · τ ′k(σ′k)−1

 .
We sum up the previous discussion in the following proposition:

Proposition 2.4. Vn(H) is a group with the composition.
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3. Topological Embeddings

In this section, we present topological embeddings between symmetric Thomp-
son’s groups. The key idea is, given any group Vn(H), to translate the action of
an element σ ∈ H into a permutation σ̃ of the elements of some prefix code of Cm.
Therefore, σ̃ ∈ Vm(G) for some G.

Our method will be first to understand when actions on prefix codes over smaller
alphabets can represent embeddings of permutations on larger alphabets which
commute with our core operations of expansion and contraction of prefix codes.
With that understanding in hand, we can then build the desired embedding from
a group Vn(H) to a group Vm(G) for m ≤ n.

We first establish some useful definitions.

3.1. The Root Group RG(S). Given a linear order ≤ on An (we choose 0 <
1 < . . . < n− 1), there is an induced standard dictionary order:

Definition 3.1 (Dictionary order). Let An = {a0, . . . , an−1} be an alphabet with
linear order ≤. We define the dictionary order on A∗n as follows. Let u, v ∈ A∗n,
then u ≤dict v if and only if:

(1) u ≤pref v,
(2) u 6≤pref v and there exist p, s, t ∈ A∗n and α, β ∈ An such that u = pαs, v =

pβt, and α < β.

Let 2 ≤ m < n ∈ N be fixed, and let G ≤ Sym(m). We assume for the
construction Higman’s condition: n = k(m − 1) + 1 for some k ≥ 0 (so, n ≡ 1
mod (m− 1)). Then, we can find S = {s0, . . . , sn−1} an ordered prefix code of Cm
of length n (using the dictionary order). Observe for now that if σ(S) = S ∀σ ∈ G,
then σ : S → S will induce the desired rearrangement σ̃ of the elements of S, that
is, σ̃ ∈ SymS

∼= Sym(n).
We will be interested in the set T of triples (m,n,G) where m ≤ n, n ≡ 1

mod (m− 1), and G ∈ Sym(m). We will say a triple (m,n,G) ∈ T is satisfiable if
there is a prefix code S ⊂ X∗m with |S| = n and where for each σ ∈ G the action of
σ on X∗m preserves S. In this case we say S is a solution for the triple (m,n,G).

Definition 3.2 (Root group). Given a triple (m,n,G) ∈ T and a solution S, we
define the root group RG(S) to be the group of permutations of S induced by the
action of G on S.

It is the case that not every triple (m,n,G) ∈ T admits a solution S. However,
when it does admit a solution S, it is immediate that RG(S) is isomorphic to G.

Definition 3.3 (Cycle type). Let σ ∈ Sym(n). The cycle type c of σ is the multiset
(a set, but allowing multiple elements that are equal) of lengths of the cycles in the
cycle decomposition of σ. We say that two subgroups H,H ′ ∈ Sym(n) are cyclically
isomorphic if there exists an isomorphism ψ : H → H ′ which preserves the cycle
type of every permutation, that is, c(σ) = c(ψ(σ)) for all σ ∈ H.

Remark 3.4. Subgroups H and H ′ are cyclically isomorphic if and only if they
are conjugate in Sym(n), but our focus is on cycle structure and that is why we
are using the language we have chosen. (N.B., there exist exotic automorphisms
of Sym(6) which do not arise by conjugation, but these automorphisms change the
cycle structure of some elements of order two.)
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3.2. The induced group G. We proceed to define the group G < Vm(G) such
that Vn(H) is isomorphic to G.

Let Vm(G) and Vn(H) be two symmetric Thompson’s groups such that m and n

fulfill Higman’s condition. Let Ãm = {a0, a1, . . . , an−1} be an ordered prefix code

of Cm of length n, such that RG(Ãm) is well defined. We may think of RG(Ãm)

as a subgroup of Sym(n) by using the bijection from Ãm to An induced by the

lexicographic ordering of Ãm. Thus, we can define G as the set of equivalence
classes of tables of the form:

v =


p1 p2 · · · pk
σ1 σ2 · · · σk
q1 q2 · · · qk
τ1 τ2 · · · τk

 ,
where σi, τi ∈ RG(Ãm) ∀i and the prefix codes P and Q consist of words in the

alphabet Ãm, that is, every pi and qi is a nonempty concatenation of elements of

Ãm.
It is straightforward to check that G is a group, since the concatenation of two

words in Ã∗m is another word in Ã∗m. Tables of G are well defined by expansions

and pushings, and the action of an element σ ∈ RG(Ãm) on a word in Ãm gives

another word in Ãm by the definition of root group, so the composition of any two
elements in G gives another element of G.

We recall and prove our topological embedding theorem:

Theorem 1.1 (Topological Embedding). Let n,m ≥ 2 be natural numbers such
that m < n, and let G ≤ Sym(m), H ≤ Sym(n). Suppose that:

(1) There exists a prefix code S̃ of Cm such that |S̃| = n,

(2) the group RG(S̃) is well defined, and

(3) RG(S̃) and H are cyclically isomorphic.

Then Vn(H) embeds in Vm(G).

Proof. Let Vm(G) and Vn(H) two symmetric Thompson’s groups. Let An =

{0, 1, . . . , n − 1} and Ãm = {a0, a1, . . . , an−1} such that RG(Ãm) is well defined.
We define the following translating map:

t̃ : An −→ Ãm
i −→ ai,

and

t : H −→ RG(Ãm)
σ −→ σ̃

,

where t is the isomorphism between H and RG(Ãm). Note that t and t̃ have the
following property:

t̃(σ(i)) = aσ(i) = σ̃(ai) = t(σ)(ai) = t(σ)(t̃(i)),∀σ ∈ H,∀i ∈ An,

as σ̃(ai) = aσ(i),∀σ ∈ H,∀i ∈ An, since RG(Ãm) and H are cyclically isomorphic.
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Our embedding is as follows:

v =


p1 p2 · · · pk
σ1 σ2 · · · σk
q1 q2 · · · qk
τ1 τ2 · · · τk

 ι−→


t̃(p1) t̃(p2) · · · t̃(pk)
t(σ1) t(σ2) · · · t(σk)

t̃(q1) t̃(q2) · · · t̃(qk)
t(τ1) t(τ2) · · · t(τk)

 .
We see that ι commutes with expansions and pushings, that is, ι(exp(v)) = exp(ι(v))
and ι(push(v)) = push(ι(v)) ∀v ∈ Vn(H):

push(v) =


p1 p2 · · · pk
Id Id · · · Id
q1 q2 · · · qk

τ1σ
−1
1 τ2σ

−1
2 · · · τkσ

−1
k

 ,

ι(push(v)) =


t̃(p1) t̃(p2) · · · t̃(pk)
Id Id · · · Id

t̃(q1) t̃(q2) · · · t̃(qk)
t(τ1σ

−1
1 ) t(τ2σ

−1
2 ) · · · t(τkσ

−1
k )

 ,

push(ι(v)) =


t̃(p1) t̃(p2) · · · t̃(pk)
Id Id · · · Id

t̃(q1) t̃(q2) · · · t̃(qk)
t(τ1)t(σ−11 ) t(τ2)t(σ−12 ) · · · t(τk)t(σ−1k )

 .
As t is an isomorphism of groups, the commutativity follows. On the other hand,
suppose that we expand the prefix code P = {p1, . . . , pk} on pi (we argue below
that ι commutes with expanding, but our argument uses the pushed version of v:
it is easy to see that this is sufficient):

exp(v) =


p1 · · · pi0 · · · pi(n− 1) · · · pk
Id · · · Id · · · Id · · · Id
q1 · · · qi||τiσ−1i (0) · · · qi||τiσ−1i (n− 1) · · · qk

τ1σ
−1
1 · · · τiσ

−1
i · · · τiσ

−1
i · · · τkσ

−1
k

 .
The table for ι(exp(v)) is:

t̃(p1) · · · t̃(pi0) · · · t̃(pi(n− 1)) · · · t̃(pk)
Id · · · Id · · · Id · · · Id

t̃(q1) · · · t̃(qi||τiσ−1i (0)) · · · t̃(qi||τiσ−1i (n− 1)) · · · t̃(qk)
t(τ1σ

−1
1 ) · · · t(τiσ

−1
i ) · · · t(τiσ

−1
i ) · · · t(τkσ

−1
k )

 ,
Finally, the table for exp(ι(v)) is:

t̃(p1) · · · t̃(pi)a0 · · · t̃(pi)an−1 · · · t̃(pk)
Id · · · Id · · · Id · · · Id

t̃(q1) · · · t̃(qi)||t(τiσ−1i )(a0) · · · t̃(qi)||t(τiσ−1i )(an−1) · · · t̃(qk)
t(τ1σ

−1
1 ) · · · t(τiσ

−1
i ) · · · t(τiσ

−1
i ) · · · t(τkσ

−1
k )

 ,
Both tables exp(ι(v)) = ι(exp(v)) are equal as:

t̃(pi||j) = t̃(pi)||t̃(j) = t̃(pi)||t̃(aj),

t̃(qi||τiσ−1i (j)) = t̃(qi)||t̃(τiσ−1i (j)) = t̃(qi)||t(τiσ−1i )(t̃(j)) = t̃(qi)||t(τiσ−1i )(aj).
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(We have used the concat symbol “||” in these tables and the immediate discus-
sion after, wherever we think it makes terms easier to read. In our later explanations
we will generally refrain from using it.)

To finish the proof, we need to show that ι(v) ◦ ι(u) = ι(v ◦ u). This follows
easily from the fact that ι commutes with expansions and pushings. Without loss
of generality, consider:

u =


p1 p2 · · · pk
Id Id · · · Id
s1 s2 · · · sk
τ1 τ2 · · · τk

 , ι(u) =


t̃(p1) t̃(p2) · · · t̃(pk)
Id Id · · · Id

t̃(s1) t̃(s2) · · · t̃(sk)
t(τ1) t(τ2) · · · t(τk)

 ,

v =


s1 s2 · · · sk
τ1 τ2 · · · τk
q′1 q′2 · · · q′k
τ ′1 τ ′2 · · · τ ′k

 , ι(v) =


t̃(s1) t̃(s2) · · · t̃(sk)
t(τ1) t(τ2) · · · t(τk)

t̃(q′1) t̃(q′2) · · · t̃(q′k)
t(τ ′1) t(τ ′2) · · · t(τ ′k)

 .
Thus:

ι(v) ◦ ι(u) = ι(v ◦ u) =


t̃(p1) t̃(p2) · · · t̃(pk)
Id Id · · · Id

t̃(q′1) t̃(q′2) · · · t̃(q′k)
t(τ ′1) t(τ ′2) · · · t(τ ′k)

 .
�

4. Algebraic Embeddings

In this section we present some algebraic embeddings Vm(G) � Vn(H) between
symmetric Thompson’s groups (recall here n−m = k(m− 1) for some positive k,
G ≤ Sym(m) and with H a particular extended version of G in Sym(n)).

We call these embeddings “algebraic” as they do not arise via topological con-
jugacy. In particular, these embeddings do not preserve the orbit lengths of the
points of Cn (when n > m, which is our primary case of interest).

4.1. Successors. Here, we give the key idea for our algebraic embeddings, which
relies on extending an idea of Birget into our context.

The successor of an element, expressed as a table, was defined in [1] in order to
embed V2(Id) in Vn(Id), for all n ≥ 2. We generalise Birget’s definition.

Definition 4.1 (Set of prefixes). [1] Let P ⊂ A∗n be a prefix code of Cn. We define
the set of prefixes of P , spref(P ) as follows:

spref(P ) = {w ∈ A∗n : ∃p ∈ P, w <pref p}.

In other words, spref(P ) is the set of strict prefixes of the elements of P .

We are embedding a symmetric Thompson’s group on alphabet Am into a sym-
metric Thompson’s group on alphabet An, where m ≤ n. For this, we will as-
sume Am ⊆ An. And in particular we set Am = {a0, a1, . . . , am−1} and An =
Am ∪ {am, am+1, . . . , an−1} with symbols with distinct indices being distinct (so
that |An| = n).

In what follows, we take a prefix code P ⊂ am−1||A∗m (so each element of P
begins with the letter am−1) and transform it to a new prefix code Succ(P ) ⊂ A∗n
by appending letters from the set {am, am+1, . . . , an}.
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Definition 4.2 (Successor). Let P ⊂ am−1||{a0, . . . , am−1}∗ be a prefix code (com-
plete, were we to remove the initial prefix letter am−1, so that |P | ≡ 1 mod (m−1))
with |P | = l ≥ 1, and let {p1, . . . , pl} be the ordered list of all the elements of P ,
using the reverse dictionary order.

We build a new prefix code Succ(P ) inductively using our ordered list (p1, p2, . . . , pl).
Let k be the smallest non-negative integer so that n − m = k(m − 1) (this k

will exist when m and n satisfy Higman’s condition, which we require to build our
embeddings).

We define (inductively) nested sets Ps,i, where s will grow from 1 to l, and for
each value of s, we will have i grow from 1 to k.

Set Am,n := {am, am+1, . . . , an−1}. For every ps ∈ P , and i ∈ {1, 2, . . . , k}
the i-th successor (ps)

′
i of ps is the element of spref(P )||Am,n defined as follows,

assuming that

Ps,i−1 =


(p1)′1, (p1)′2, . . . , (p1)′k,
(p2)′1, (p2)′2, . . . , (p2)′k,

...
(ps)

′
1, (ps)

′
2, . . . , (ps)

′
i−1


has already been defined, we set:

(ps)
′
i = min{xaj ∈ spref(P )||Am,n : ps <dict xaj and xaj 6∈ Ps,i−1},

where min uses the dictionary order in {a0, . . . , an−1}.

Example 4.3. Suppose m = 3 and n = 5, so that k = 1. In the definition above,
am−1 = 2. So, consider the set P = {20, 210, 211, 212, 22}. Now, k = 1 and
spref(P ) = {ε, 2, 21}. We obtain

p1 = 22 (p1)′1 = 23
p2 = 212 (p2)′1 = 213
p3 = 211 (p3)′1 = 214
p4 = 210 (p4)′1 = 24
p5 = 20 (p5)′1 = 3.

Remark 4.4. The three constants, n,m, k are not arbitrary, as the system of
successors needs to be well defined. If every element has k successors, then:

n−m = k(m− 1), k ≥ 0,

which is Higman’s condition.

Proof. If we expand an element pi ∈ P , we need to assign successors to each element
piaj for every 0 ≤ j ≤ m − 1. In particular, the number of successors k of every
leaf does not vary, and each element piar for every m ≤ r ≤ n− 1 needs to be the

successor of some element in P̃ = (P\{pi})∪{pia0, . . . , piam−1}. Then P̃ has m−1
more elements than P and there are n−m new elements piar for m ≤ r ≤ n− 1.
Thus, we need m−1 to evenly divide n−m, and k is the factor of this division. �

We proceed to prove the following lemma, essential for the proof of Theorem 1.2:

Lemma 4.5. Suppose m ≤ n are naturals so that there is k natural with n−m =
k(m − 1). Suppose l is a positive integer congruent to m modulo m − 1. Let
S = {am, . . . , an−1} and let P ⊂ am−1||{a0, . . . , am−1}∗ be an l-element prefix code,
ordered as pl <dict pl−1 <dict . . . <dict p1. Let i with 1 ≤ i ≤ l. Then, the
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successors (pi)
′
1, (pi)

′
2, . . ., (pi)

′
k are well defined, and furthermore, the expansion

in which we replace P by P̃ = (P\{pi}) ∪ pi{a0, . . . , am−1} has successors (piaj)
′
i

uniquely determined as follows:

(piam−1)′1 = piam
...

(piam−1)′k = piam+k−1
(piam−2)′1 = piam+k

...
(piam−2)′k = piam+2k−1

...
(pia1)′1 = piam+(m−2)k

...
(pia1)′k = piam+(m−1)k−1 = pian
(pia0)′1 = (pi)

′
1

...
(pia0)′k = piam+(m−1)k = (pi)

′
k.

Proof. We prove the two statements by induction on l.

Base Case (l = 1):
If l = 1 then P = {am−1}. We have spref P = {ε}. It then follows that the
k successors are, the set {am, am+1, . . . , am+k−1}, noting that these are given
in order and are the results of the inductive definition of the k successors of
am−1. Thus we have in the base case that the successors are well defined. We
need to verify the existence of well defined successors for an expansion of P =
{am−1}. In this case, P admits only one expansion, which is precisely the set

P̃ = {am−1am−1, am−1am−2, . . . , am−1a0}. We have spref(P̃ ) = {ε, am−1} and we
have

(am−1am−1)′1 = am−1am
...

(am−1am−1)′k = am−1am+k−1
(am−1am−2)′1 = am−1am+k

...
(am−1am−2)′k = am−1am+2k−1

...
(am−1a1)′1 = am−1am+(m−2)k

...
(am−1a1)′k = am−1am+(m−1)k−1 = am−1an
(am−1a0)′1 = (am−1)′1

...
(am−1a0)′k = am−1am+(m−1)k = (am−1)′k.

We can directly observe these successors are well defined and distinct. Thus, the
statement is true for l = 1.
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Inductive Case (l > 1):

Now let us assume that P̃ is a result of v expansions from the one-element prefix
code {am−1}, for some v ≥ 1, where for any prefix code resulting from u expansions
from {am−1} for 0 ≤ u < v the statement of the lemma holds. We will show that

the successors of our expansion P̃ are well defined. In particular, if P is the prefix
code (of size l) arising from doing only the first t − 1 expansions from {am−1}
towards the prefix code P̃ , and pi is the element of P which is being replaced by

and m-fold expansion to create P̃ , then by induction, the successors (pi)
′
1, (pi)

′
2,

. . ., (pi)
′
k of pi ∈ P are well defined.

Note that Pi−1,k = P̃i−1,k, as the involved subsets of both P and P̃ are equal.
Thus the first successor to assign is (piam−1)′1. Suppose that (piam−1)′1 <dict piam,
then (piam−1)′1 = pat for some p ∈ spref(P ) : p <dict pi and at ∈ {am, . . . , an−1}.
Thus, before expanding P , pat is one of the successors of some pr ∈ P .

If pr <dict pi, then the set of successors of pi is defined before the set of successors
of pr. Because pi is expanded, the set of k successors of piam−1 is equal to the set
of successors of pi, and this set does not contain pat, which is a contradiction.

On the other hand, if pr >dict pi, then pat ∈ Pi−1,k = P̃i−1,k, which is also a
contradiction. Thus (piam−1)′1 = piam. We can use a similar argument for all
(piam−1)′1 . . . (pia1)′k.

For pia0, all successors of the form pias, as ∈ {am, . . . , an−1}, have already been
assigned. Thus, the remaining k successors are precisely the k successors of pi,
taken in order. �

Remark 4.6. Birget in [1] gives a formula for the i-th successor of an element,
for the case of m = 2. The statement of Lemma 4.5 above shows the natural
generalisation of that formula holds when we have the Higman Condition (as we
must for successors to be well defined). The resulting formula is given as follows:

Let P ⊂ am−1||{a0, . . . , am−1}∗ be a prefix code with |P | ≥ 2, such that the
elements of P are ordered in reverse dictionary order. Then every element of w ∈ P
can be written uniquely in the form uaia

t
0, where u ∈ {a0, . . . , am−1}∗ and t ≥ 0.

The i-th successor of w is:

(w)′i = (uaja
t
0)′i = uam−1+(m−1−j)k+i.

We stress that this formula is only valid if P is ordered in reverse dictionary order.

4.2. The algebraic embedding. We proceed to define the algebraic embedding
of Vm(G) in Vn(H) = Vn(Gext). Let g ∈ Vm(G), given by the following table:

g =


p1 p2 · · · pl
σ1 σ2 · · · σl
q1 q2 · · · ql
τ1 τ2 · · · τl


We define the embedding ι(g) below. The resulting tables are large, and our nota-
tion requires some explanation. The idea of the embedding is to use the identity
map initially, and at am+k and later letters, but under the address am−1 we place
the prefix code p1 to pl, and we also require action under the successors. The
first row then has entries following the ordered list given here (wrapped at natural
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locations due to page length constraints):

a0, a1, . . . , am−2,
am−1p1, am−1p2, . . . , am−1pl,

(am−1p1)′1, (am−1p2)′1, . . . , (am−1pl)
′
1,

(am−1p1)′2, (am−1p2)′2, . . . , (am−1pl)
′
2,

. . .
(am−1p1)′k, (am−1p2)′k, . . . , (am−1pl)

′
k,

am+k, am+k+1, . . . , an−1.

We use vertical bars “|” in our table at the same locations that we placed line-wraps
in the row detailed above, for clarity of grouping. The element ι(g) is now given
by the following table:
a0 · · · am−2 | am−1p1 · · · am−1pl | (am−1p1)′1 · · · (am−1pl)′1 | · · ·
Id · · · Id | σ′1 · · · σ′l | σ′1 · · · σ′l | · · ·
a0 · · · am−2 | am−1q1 · · · am−1ql | (am−1q1)′1 · · · (am−1ql)′1 | · · ·
Id · · · Id | τ ′1 · · · τ ′l | τ ′1 · · · τ ′l | · · ·



=


· · · | (am−1p1)′k · · · (am−1pl)′k | am+k · · · an−1
· · · | σ′1 · · · σ′l | Id · · · Id
· · · | (am−1q1)′k · · · (am−1ql)′k | am+k · · · an−1
· · · | τ ′1 · · · τ ′l | Id · · · Id


Note that the set of successors of P = {p1, . . . , pl} are assigned supposing that

pl <dict . . . <dict p1. Therefore, the set of successors of Q = {q1, . . . , ql} is assigned
following the order ql → · · · → q1, which does not need to follow the dictionary
order on Q.

Indeed, the first and third rows of ι(g) are both prefix codes of Cn. On the
one hand, suppose that the number of columns of g is l = m + d(m − 1) for some
d ≥ 0. It follows that the number of columns of ι(g) whose elements of the first row
start with am−1 is n + d(n − 1) (observe that the last k terms from the successor
substitution will not begin with am−1). On the other hand, as the number of
columns of g is (m + d(m − 1)), and we assign k successors to every column, we
have (m+ d(m− 1))(k + 1) columns on ι(g). As we have Higman’s Condition, the
reader can verify that (m+ d(m− 1))(k+ 1) = n+ d(n− 1) + k. From this, we see
firstly that (n − 1)|k, but more importantly, this embedding/successor operation
does not place any constraints on the number of expansions d that were used to
create the original prefix code for the domain of g.

We now recall and prove our algebraic embedding theorem:

Theorem 1.2 (Algebraic Embedding). Let n,m ≥ 2 be natural numbers such that
n = k(m− 1) +m for some k ≥ 1, and let G ≤ Sym(m). Let H = Gext ≤ Sym(n)
the extended symmetric group of H, whose elements act as the elements of H on
the first m elements, and act as the identity on the remaining n−m.

Then Vm(G) embeds in Vn(H).

Proof. If we push down the action of every σi, we have:

push(g) =


p1 p2 · · · pl
Id Id · · · Id
q1 q2 · · · ql

τ1σ
−1
1 τ2σ

−1
2 · · · τlσ

−1
l


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Thus the table for ι(push(g)) is:


a0 · · · am−2 | am−1p1 · · · am−1pl | (am−1p1)′1 · · · (am−1pl)′1 | · · ·
Id · · · Id | Id · · · Id | Id · · · Id | · · ·
a0 · · · am−2 | am−1q1 · · · am−1ql | (am−1q1)′1 · · · (am−1ql)′1 | · · ·
Id · · · Id | (τ1σ−11 )′ · · · (τlσ−1l )′ | (τ1σ

−1
1 )′ · · · (τlσ

−1
l )′ | · · ·



=


· · · | (am−1p1)′k · · · (am−1pl)′k | am+k · · · an−1
· · · | Id · · · Id | Id · · · Id
· · · | (am−1q1)′k · · · (am−1ql)′k | am+k · · · an−1
· · · | (τ1σ

−1
1 )′ · · · (τlσ

−1
l )′ | Id · · · Id


On the other hand the table for push(ι(g)) is:


a0 · · · am−2 | am−1p1 · · · am−1pl | (am−1p1)′1 · · · (am−1pl)′1 | · · ·
Id · · · Id | Id · · · Id | Id · · · Id | · · ·
a0 · · · am−2 | am−1q1 · · · am−1ql | (am−1q1)′1 · · · (am−1ql)′1 | · · ·
Id · · · Id | τ ′1(σ′1)−1 · · · τ ′l (σ′l)−1 | τ ′1(σ′1)−1 · · · τ ′l (σ′l)−1 | · · ·



=


· · · | (am−1p1)′k · · · (am−1pl)′k | am+k · · · an−1
· · · | Id · · · Id | Id · · · Id
· · · | (am−1q1)′k · · · (am−1ql)′k | am+k · · · an−1
· · · | τ ′1(σ′1)−1 · · · τ ′l (σ′l)−1 | Id · · · Id


Recall from the statement of Theorem 1.2 that for an element τ ∈ Sym(m), the

extended version τ ′ of τ in Sym(n) is that element of Sym(n) which agrees with τ
on the set Am and acts as the identity on the points of Am,n in An. Thus, both

tables are equal, as (τiσ
−1
i )′ = (τ ′i)(σ

′
i)
−1, ∀i ∈ {i, . . . , l}. If we expand g on pi:

exp(g) =


p1 p2 · · · pia0 · · · piam−1 · · · pl
Id Id · · · Id · · · Id · · · Id
q1 q2 · · · qiτi(a0) · · · qiτi(am−1) · · · ql
τ1 τ2 · · · τi · · · τi · · · τl


Then the table for ι(exp(g)) is:


a0 · · · am−2 | am−1p1 · · · am−1pia0 · · · am−1piam−1 · · · am−1pl | · · ·
Id · · · Id | Id · · · Id · · · Id · · · Id | · · ·
a0 · · · am−2 | am−1q1 · · · am−1qiτi(a0) · · · am−1qiτi(am−1) · · · am−1ql | · · ·
Id · · · Id | τ ′1 · · · τ ′i · · · τ ′i · · · τ ′l | · · ·



=


· · · | · · · (am−1pia0)′j · · · (am−1piam−1)′j · · · | am+k · · · an−1
· · · | · · · Id · · · Id · · · | Id · · · Id
· · · | · · · (am−1qiτi(a0))′j · · · (am−1qiτi(am−1))′j · · · | am+k · · · an−1
· · · | · · · τ ′i · · · τ ′i · · · | Id · · · Id


On the other hand, the table for exp(ι(g)) is:
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a0 · · · am−2 | am−1p1 · · · am−1pia0 · · · am−1pian−1 · · · am−1pl | · · ·
Id · · · Id | Id · · · Id · · · Id · · · Id | · · ·
a0 · · · am−2 | am−1q1 · · · am−1qiτ ′i(a0) · · · am−1qiτ ′i(an−1) · · · am−1ql | · · ·
Id · · · Id | τ ′1 · · · τ ′i · · · τ ′i · · · τ ′l | · · ·



=


· · · | · · · (am−1p1)′j · · · (am−1pi)′j · · · (am−1pl)′j · · · | am+k · · · an−1
· · · | · · · Id · · · Id · · · Id · · · | Id · · · Id
· · · | · · · (am−1q1)′j · · · (am−1qi)′j · · · (am−1ql)′j · · · | am+k · · · an−1
· · · | · · · τ ′1 · · · τ ′i · · · τ ′l · · · | Id · · · Id


It is straightforward to check that for both tables the columns starting at am−1pias
for 0 ≤ s ≤ m− 1 are equal, as τ ′i(s) = τi(s),∀s ∈ {0, . . . ,m− 1}.

For m ≤ s ≤ n−1 by Lemma 4.5, we know there is a correspondence between the
first two rows of ι(exp(g)) and the first two rows of exp(ι(g)). On the other hand,
from the description of the algebraic embedding, the order in which successors for
every qj are selected depends only on the order of {p1, . . . , pl}, so we have the
following calculations:

(am−1qiτi(am−1))′1 = am−1qiam = am−1qiτ
′
i(am)

...
...

(am−1qiτi(am−1))′k = am−1qiam+k−1 = am−1qiτ
′
i(am+k−1)

(am−1qiτi(am−2))′1 = am−1qiam+k = am−1qiτ
′
i(am+k)

...
...

(am−1qiτi(am−2))′k = am−1qiam+2k−1 = am−1qiτ
′
i(am+2k−1)

...
...

(am−1qiτi(a1))′1 = am−1qiam+(m−2)k = am−1qiτ
′
i(am+(m−2)k)

...
...

(am−1qiτi(a1))′k = am−1qian = am−1qiτ
′
i(am+(m−1)k−1)

(am−1qiτi(a0))′1 = (am−1qi)
′
1

...
(am−1qiτi(a0))′k = (am−1qi)

′
k.

That is, e.g., (am−1qiτi(am−1))′1 comes first in the choice of successor as (am−1piam−1)′1
appears first under the order of the pi, independent of τi. Thus, the latter two rows
of these tables are also equivalent.

Finally, it is easy to see that ι(h◦g) = ι(h)◦ ι(g), as ι commutes with expansions
and pushings. We only need to obtain row equality on the first part of the table as
the remaining part depends entirely on P (resp. on Q for the element h):

ι(g) =


· · · am−1pi · · · (am−1pi)

′
j · · ·

· · · Id · · · Id · · ·
· · · am−1qi · · · (am−1qi)

′
j · · ·

· · · τ ′i · · · τ ′i · · ·

 ,
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ι(h) =


· · · am−1qi · · · (am−1qi)

′
j · · ·

· · · τ ′i · · · τ ′i · · ·
· · · am−1ri · · · (am−1ri)

′
j · · ·

· · · τ ′′i · · · τ ′′i · · ·

 ,

ι(h) ◦ ι(g) =


· · · am−1pi · · · (am−1pi)

′
j · · ·

· · · Id · · · Id · · ·
· · · am−1ri · · · (am−1ri)

′
j · · ·

· · · τ ′′i · · · τ ′′i · · ·

 = ι(h ◦ g).

Thus the result follows. �
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