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Over fifty years of work on animal cognition, enthusiasms for

different topics can wax and wane. Interest in spatial cognition,

once popular, has more recently waned. Some of this change,

however, is only apparent, as research on spatial cognition

continues to evolve and produce new scientific innovations.

Indeed, recent technological developments has enabled us to

now address questions raised from classic early studies. Here

we review several key examples where past and present

research approaches have intersected to provide new answers

to old questions concerning spatial memory in food-storing

birds and other laboratory animals, navigation in birds and

insects, and spatial cognition in wild hummingbirds.
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One of the great success stories of cognitive ecology is

that of the discovery of the association between storing

multiple food items, the memory demand for retrieving

that food, the neural substrate (hippocampus), and spatial

cognition. Birds that store more seeds, have a bigger

hippocampus, and do better in spatial memory tasks.

Despite the lack of sophisticated technology, by correctly

coupling the subject species with a suitable question

about cognition plus experimental designs accessible to

wild animals, forty years later, this research still forms the

foundation for research on cognitive ecology. The exper-

imental designs, themselves adapted to test spatial cog-

nition, are still used in behavioural ecology and other
www.sciencedirect.com 
fields such as behavioural neuroscience and developmen-

tal psychology [1]. Our aim is to provide a reminder that

such foundational work continues to inform the field of

animal cognition and beyond, and point to the ways in

which new technology is allowing us to tap into previously

inaccessible questions raised by classic studies.

Cognition of the wild
Although the original spatial cognition work was con-

ducted in the field, it quickly became apparent that

the key manipulations would be conducted far more

readily in the laboratory. Fortunately, wild-caught food

storers adapted well to the laboratory environment, both

in terms of survival and welfare as well as their amena-

bility to experimental procedures: a variety of species

(tits, chickadees, nutcrackers, jays) were readily trained

and tested on a range of spatial tasks. Although this work

often relied on traditional experimental psychology meth-

ods, such as spatial delayed-non-matching-to-sample

tasks presented on touchscreens [2], birds were often

tested in whole rooms allowing birds to fly from location

to location in a ‘nearer-realistic’ spatial scale to that

experienced in the wild [3]. By such means, tests of

cognition ‘of’ the wild were achieved.

But the logistics of testing different mechanisms of spatial

cognition of a wide range of taxa, in nearer-realistic spatial

scales meant that this research was, and is, restricted in

terms of where it can be conducted and which species can

be studied. The experiments typically depend heavily on

the spatial capacity of research facilities and remain

limited to a relatively small number of institutions, typi-

cally wealthy universities or zoos. The species that lend

themselves to spatial cognition assessment are also typi-

cally constrained to small animals, such as songbirds such

as tits, chickadees and zebra finches Taeniopygia guttata
[4], killifish Kryptolebias marmoratus and guppies Poecilia
reticulata [5,6], poison frogs Dendrobates auratus [7��], or

invertebrates [8], although not always [9,10]. This nar-

rowing of logistically feasible species is one of the reasons

that spatial cognition testing did not maintain its promi-

nent position in animal cognition. The emphasis on

studying species with ‘extreme’ spatial cognition

demands, as are conspicuous for food-caching birds, also

limited the scope of plausible species. Nonetheless, these

laboratory-based experiments have popularised straight-

forward and standardized memory tests developed for

laboratory animals (e.g. finding food hidden in covered

wells) which have taken root in behavioural and cognitive

ecology, planted the seeds for research on the genetic
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2 Cognition in the wild
basis of spatial cognition [11] as well as continuing to offer

insights into the nature of adaptive specialisations [12].

Meanwhile, with the aid of cutting-edge technology,

limitations of scope in laboratory-based studies has led

to work on spatial cognition in the wild, specifically avian

and insect navigation.

Cognition in the wild
Avian navigation

Most of what we know about the role of cognition in avian

navigation comes from flights of homing pigeons

(Columba livia). In the early days, these data were of

homing speed or vanishing direction based on manipula-

tions at the release site [13], but it is increasingly possible

to examine the cognitive basis of vast-scale navigational

feats in the wild due to the development of new technol-

ogies such as GPS, head tracking, and satellite tracking.

These methods have enabled us to learn even more about

homing pigeons, even though we already knew so much,

such as how individual pigeons develop a unique route

following visual landmarks [14], and how different cues

are combined or compete [15], including landmarks and

the sun compass [16] and visual and olfactory cues [17].

Now we can even get inside the head of a pigeon as it

homes because hippocampal-lesioned birds are no longer

lost once they disappear from view but can be tracked as

they lose their way [18��,19].

By allowing for experiments at even larger scales, and in

more challenging terrains, these technologies are trans-

forming our understanding of spatial cognition in the

wild, of real animals at ecological meaningful scales.

Seabirds, like shearwaters and frigatebirds, can now be

tracked as they travel over vast stretches of ocean without

apparent landmarks and we are beginning to understand

how they can reliably find their way home following long

foraging trips at sea. Not that these data have necessarily

overturned older data gained from homing pigeons as,

like homing pigeons, these seabirds find their way home

using both smell and sun compass to identify the neces-

sary direction to travel home [20,21], although unlike

pigeons, they do not appear to encode a route of visual

features such as islands, failing to avoid islands in their

path [22].

For over 50 years we have known that adult birds learn

cues that allow them to compensate for displacement

during migration in a way that first-time migrators (relying

on an inherited migration programme) apparently could

not [23]. But it is becoming clear that this familiar fact

may not be a complete description. For example, in

species with considerable variation in migratory routes,

such as honey buzzards Pernis ptilorhynchus, learning may

play a role in the migratory route birds develop [24]. In

addition, using GPS-trackers, it is possible to identify

when young birds (e.g. fledgling great frigatebirds Fregata
minor) learn to compensate for wind displacement [25��],
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while satellite-tracking shows that, after experimental

displacements, young cuckoos Cuculus canoris can also

return to an appropriate migratory route, just as do expe-

rienced adults [26].

Insect navigation

Another of the great success stories in spatial cognition

comes not from studying vast migratory journeys or even

well-worn laboratory paradigms, but from pulling apart

the sensory and cognitive basis of insect navigation. We

include it here not least because this work, although

addressed to questions familiar to those working on

spatial cognition in vertebrates, rarely informs this latter

research, which is disappointing and perhaps detrimental.

In recent years, significant advances have been made in

the neural mechanisms controlling insect navigation [27],

advances built on decades of field experiments [28]. As far

back as the 1970s, field experiments with species such as

the desert ant Cataglyphis bicolor, unravelled the key

components of insect navigation: polarisation compass,

panoramic visual memories, visual and physical odome-

try, and path integration [29]. This sturdy foundation of

sensory cue use has allowed analysis of the ways insects

combine different kinds of information [30] and how the

memories for navigational information are acquired and

used [31��].

Traditionally field experiments on insect navigation are

relatively ‘low-tech’, with animals tested with simple

artificial landmarks and tracked using pen and paper or,

when close to the nest, filmed from above. In recent

years this has changed with analysis of body position

and orientation by hand or from video giving way to

automatic image-based and radar tracking [32]. Esti-

mates of the visual information insects experience have

evolved from visual angles based on head position, to

systematic analysis of panoramic images, to rendering

3D modelling of the environment [33]. By combining

these tools with traditional behavioural experiments

and observations, researchers have mapped the spatial

memory of wild ants [34], unravelled how stereotyped

‘learning flights’ assist place learning in wild wasps [35],

and captured how bumblebees’ spatial behaviour

develops over an individual’s lifetime [36]. Alongside

models analysing how the kinds of information insects

experience in the wild could be used for robust and

versatile navigation [37], these experiments have pro-

vided the framework for investigating the neural basis

of insect navigation. Despite the obvious differences in

their sensory and neural apparatus, suggestions that

navigation by insects and vertebrates might share simi-

lar features [38] also offers opportunities for those

studying spatial cognition and navigation in vertebrates

not least for those vertebrate species sharing foraging

problems with insects.
www.sciencedirect.com



Space, the original frontier Healy et al. 3
Spatial cognition in wild hummingbirds

While technological advances, such as harmonic radar

[32,39] and reflective tags [40] have allowed for the

tracking of increasingly smaller animals like honeybees

and bumblebees, there are some animals for which similar

technological advances are still more a hope than a reality.

One of these is the rufous hummingbird Rufus selasphorus,
a species used to examine spatial cognition in the wild for

almost three decades. These birds weigh around 3 g,

heavy enough to bear the weight of a harmonic radar

aerial but as they fly through open meadows and moder-

ately dense woodland, their environment precludes such

methodology. While waiting, we have managed to exploit

the ease with which these wild hummingbirds can be

trained to feed from artificial feeders to explore spatial

cognition in the wild [41]. For over 70 years it has been

clear that foraging for hummingbirds is a spatial memory

task: field experiments consistently demonstrate that,

given a choice between a flower of the same colour as

that of a previously rewarded flower or a flower at the

same spatial location, both territorial males and nonterri-

torial females revisit the flower at the correct spatial

location [42,43].

Field experiments using modifications of laboratory

experimental designs can add depth to our understanding

of spatial cognition. For example, some of the first data on

spatial performance in 3D showed that rats Rattus norve-
gicus and hummingbirds solve spatial problems differ-

ently, perhaps due to differences in their foraging ecol-

ogy: while laboratory rats moved more vertically in a cubic

maze, wild hummingbirds moved through the horizontal

and vertical planes equally [44]. Furthermore, rats were

more accurate in the horizontal than they were in the

vertical plane, while hummingbirds were more accurate

in the vertical rather than the horizontal plane. Differ-

ences in type of spatial cue used to solve spatial task the

laboratory (e.g. proximal or distal cues) are also seen in

cue use by wild hummingbirds. Here the explanation for

the difference depends on spatial scale; not the kind of

spatial scale that characterises pigeon homing or cuckoo

migration but over distances of less than a metre. For

example, hummingbirds remember which is the

rewarded flower relative to other flowers within an array,

but only when flowers are within 40 cm [45]. When

flowers are further apart however, hummingbirds will

use landmarks outside the array to choose the flower to

visit [45,46].

Reconstruction of the search paths of trained, foraging

hummingbirds shows that, when landmarks are made

larger or are located further apart than they were during

training, the hummingbirds’ search locations are consis-

tent with estimating distance and direction through view-

matching [47,48]. This interpretation of the

hummingbirds’ use of visual information was only possi-

ble through the application of some technology,
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specifically, analysis of videos captured by multiple cam-

eras. The analysis component of these videos, however,

was very far from high-tech: it involved extraction of x,y

coordinates of the bird’s location by hand from each

video, a considerable amount of labour on the part of

the first author of those papers. Unlike other recent

papers in which comparisons have been made between

laboratory and field performance on the same task [49],

the data from these field experiments did not recapitulate

data from birds trained to use landmarks in the laboratory.

Rather, the view-matching of the birds more strongly

resembles the way in which ants return to rewarding

locations [50]. As has been noted previously [51], there

have been few comparisons of cognitive performance

between captive and wild populations, and where there

have, there has been little agreement. In the humming-

bird experiment, the question was not one of cognitive

performance (i.e. better or worse) but what information

the birds used to solve the spatial problem, and it seems

more likely that spatial scale (already seen to be pertinent

in the case of the hummingbirds) may explain the differ-

ence. Whatever the explanation, we might wish to be

cautious about interpretations of variation in data that

come from laboratory-field comparisons (cognition of the

wild compared with cognition in the wild): such variation

might have biological relevance. But it might also be one

of context, and spatial scale is one very significant con-

textual difference between the laboratory and the wild.

One comparison with laboratory work for which spatial

scale does not seem especially relevant is that of time-

place learning, whereby animals learn when to visit one

location rather than another. A very elegant laboratory

study showed that garden warblers Sylvia borin not only

learned which room to visit to gain food and when that

room could be accessed, but that they learned to predict
which of the four rooms to visit at the appropriate period

through the day [52]. Like the garden warblers, rufous

hummingbirds can also learn to use time of day to deter-

mine which patch of flowers is the most likely to contain

food [53]. When the hummingbirds were trained with

four patches of flowers, each patch of flowers rewarded for

a different hour across four hours of each day, humming-

birds consistently chose the ‘correct’ patch for that time

(Figure 1). Unlike the warblers, however, the humming-

birds did not seem to predict which patch to visit. Instead,

they continued to visit a patch until they had evidence

that further reward was not forthcoming in that patch

(flowers when emptied did not refill). Upon encountering

empty flowers, however, hummingbirds went directly to

the patch that now contained food, as might be expected

from a win-stay, lose-shift foraging strategy. This suggests

that hummingbirds might not have learned circadian time

in the way that the warblers appeared to have done, but

had learned something about the sequence in which

patches refilled. Such ‘order’ in which flowers refill,

indeed appears to be important to the hummingbird sense
Current Opinion in Behavioral Sciences 2022, 44:101106
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Figure 1
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Left panel. Diagram of the flower array, showing four patches of six flowers. The flowers in each patch were the same colour, while patches

differed in colour. Right panel. The percentage of first visits (mean � S.E.) made by eight rufous hummingbirds to each patch over five days. Each

of the four sets of coloured bars panel shows the visits made to each of the patches over the four hours. Modified from Ref. [53].
of time: in similar experiments where flowers were

rewarded at specific times, hummingbirds used a combi-

nation of order and time of day to choose which of several

flowers to visit [54]. In this coupling of spatial cognition

with temporal cognition, we followed in the footsteps of a

textbook example (episodic-like memory in scrub jays

Aphelocoma californica [55]), subsequently leading to the

discovery that these wild, free-living birds could remem-

ber what flowers to visit, where and when (see also Ref.

[56]) and to evidence of numerical cognition [57,58��].
Among the questions raised by these data is how the

hummingbirds integrate memories for multiple locations:

do they use a ‘simple’ movement heuristic or construct a

cognitive map of their surroundings?

Take-home messages

The hummingbird research illustrates our take-home

messages. By using modifications of classic experimental

food-finding tasks we have, without the aid of technology,

managed to uncover much about the spatial cognition that

underpins foraging in wild, territorial hummingbirds. Just

as for examining cognition in wild animals in the labora-

tory, our ability to collect high-quality data of appropriate

quantity is hugely dependent on the logistic features of

our chosen species. Features of these animals that have
Current Opinion in Behavioral Sciences 2022, 44:101106 
enabled such examinations include the male’s highly

aggressive territoriality (other birds rarely get to visit

the experimental arrays), the regular foraging trips (about

every 10 min through the daylight hours), combined with

the birds’ profound indifference to the presence of

humans (enabling observation from around 2 m) and their

rapid learning of associations between stimuli (e.g. land-

marks, colour) and reward. Much as we might like to

examine cognition across a wide range of species in their

natural environment, many animals live lives in locations

that make such examination inordinately challenging

[59].

Technology can also help us overcome some of the

obstacles to testing cognition in wild animals (even for

hummingbirds [60]) albeit only to a certain degree.

Tracking devices have to be of an appropriate ratio of

device/body weight that the animal has unimpeded

movement and even so there is increasing evidence that

carrying even lightweight devices can be costly. For

example, in both the year of tagging and the following

year, incubating Manx shearwaters Puffinus puffinus car-

rying GPS devices spent twice as much time away when

foraging as did control birds, had a reduction in flight time

of 14%, and gained 64% less mass per day [61��].
www.sciencedirect.com
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Using technology in the form of automated feeders where

the animals come to the technology rather than wearing it

has also become popular and these can be enormously

profitable with regard to time spent training and in the

amount of data collected in the absence of the researcher

[62]. Indeed, devices of this kind have finally enabled

work on food storing and spatial cognition to go back to

the field, to cognition in the wild and not just of the wild.

Indeed, this work is finally able to begin to determine the

role that natural selection plays in spatial memory in food

storers: no longer a key assumption, but access to testing

that assumption. But such devices also have their draw-

backs: they depend not just on birds learning how to

manipulate the device, which may vary across individuals,

birds must also return regularly.

Our final take-home message might appear equally as

evident but a reminder will not hurt. In our enthusiasm

for recent significant contributions to our understanding

of spatial cognition in real animals in their real worlds, we

have tried to point to older, key bases for the newer

developments. Much as we encourage our students to

keep up to date with the latest work in our field, and

indeed, that is the aim of this issue (and explicit in the

journal’s title), we should also remind them not to disre-

gard the older literature. While our recent technological

advances are enabling us to address previously inaccessi-

ble questions, those questions are of the kind that arise

from a mature field. They could not be addressed or even

arise without the framework provided by very fine science

conducted a decade or more ago.
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