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a b s t r a c t 

Rheumatoid arthritis (RA) is a chronic inflammatory disorder that causes pain, swelling and stiffness in the joints, 

and negatively impacts the life of affected patients. The disease does not have a cure yet, as there are still many 

aspects of this complex disorder that are not fully understood. While mathematical models can shed light on some 

of these aspects, to date there are few such models that can be used to better understand the disease. As a first 

step in the mechanistic understanding of RA, in this study we introduce a new hybrid mathematical modelling 

framework that describes pannus formation in a small proximal interphalangeal (PIP) joint. We perform numerical 

simulations with this new model, to investigate the impact of different levels of immune cells (macrophages and 

fibroblasts) on the degradation of bone and cartilage. Since many model parameters are unknown and cannot 

be estimated due to a lack of experiments, we also perform a sensitivity analysis of model outputs to various 

model parameters (single parameters or combinations of parameters). Finally, we discuss how our model could 

be applied to investigate current treatments for RA, for example, methotrexate, TNF-inhibitors or tocilizumab, 

which can impact different model parameters. 
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. Introduction 

Rheumatoid arthritis (RA) is a chronic inflammatory disorder that

ffects over 1% of the worldwide population [1] . The characteristics

f RA include persistent inflammation of joints, which contributes to

he degradation of cartilage, and damage to the bone(s) within the

oint [2,3] . Along with symptoms related to inflammation within joints,

A can increase the risk of other health issues such as cardiovascular

vents [3,4] , reduced cognitive function in the brain, fibrotic disease

n the lungs, osteoporosis and a greater risk of cancers [5] . The main

ymptoms of RA include inflammation, pain, swelling and stiffness of

oints, fatigue and weight loss. Generally, the smaller joints in the hands

nd feet are most likely to be affected [4] , for example, proximal inter-

halangeal (PIP) joints, which are the middle joints on the non-thumb

ngers of the hand, are most commonly affected [6–9] . A key aspect

f RA progression within a joint is the formation of a ‘pannus’ from

he abnormally growing synovial membrane. The pannus is made up

f mainly fibroblast-like synoviocytes (FLSs) and macrophage-like syn-

viocytes (MLSs). Through the production of inflammatory cytokines

he proliferation, migration and cytokine secretion of these cell types

ncreases leading to further inflammation. These cells also produce ma-

rix degrading enzymes, like MMPs, which can breakdown cartilage and

one within a joint. In this work, we focus on these key features of pan-
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us formation and growth and the subsequent cartilage and bone degra-

ation. In the following subsection we provide further biological detail

f these specific mechanisms. For more robust reviews of the biology of

A we direct the reader to the following papers [5,10] . 

.1. Key biological background 

The synovial membrane is a soft connective tissue which lines syn-

vial joints and allows for smooth movement through the secretion of

ubricating synovial fluid [3,10] . This well vascularised tissue consists

f a intimal layer of evenly dispersed cells and a sub-lining comprised

f extracellular matrix interspersed with collagen fibrils and other ma-

rix proteins [11] . The porous structure of the synovial membrane al-

ows for the diffusion of nutrients, oxygen and chemokines into the

oint [12] . In a healthy joint, the intimal layer of the membrane is gener-

lly 1–2 cells thick and consists of fibroblast-like synoviocytes (FLSs) and

acrophage-like synoviocytes (MLSs) evenly distributed and in equal

mounts [11,12] . Following the onset of RA, the synovial membrane

xpands through various inflammatory mechanisms, this growing mem-

rane is known as a ‘pannus’ and can behave similarly to a locally inva-

ive tumour spreading within the joint [11] . Through both an increase

n the proliferation of FLSs and the infiltration of immune cells, such as

one-marrow derived macrophages, the synovial membrane can expand
ril 2022 
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o around 10–20 cells in thickness [5,11,13–15] . In this work, we focus

n resident macrophages, or macrophage-like synoviocytes, and resi-

ent fibroblasts, or fibroblast-like synoviocytes, which form the major-

ty of the pannus. However, the pannus can also consist of other immune

ell types, including leukocytes, plasma cells, T cells and mast cells. Pan-

us formation and growth is controlled through the expression of pro-

nflammatory cytokines by the cells, promoting further inflammation

f the synovial membrane. The cytokines involved are vast and varied,

ncluding those with roles in immune cell recruitment, immune cell acti-

ation, chemotaxis of cells and degradation of the cartilage/bone. There

an be a high level of heterogeneity in macrophage origin and function

n the context of RA [15] , as well as FLS phenotypes and cytokine pro-

les [16] . In general, the pannus is a heterogeneous structure, consist-

ng of diverse cellular and molecular signatures [11] . In recent years,

istinct patterns have been recognised primarily according to composi-

ion, organisation and localisation of cellular infiltrates [11] . As a first

pproach, we consider homogenous cell populations whereby each cell

ithin a population will exhibit the same phenotypic characteristics.

owever, we do implement stochasticity within the system through our

odelling choices. 

Cartilage is a connective tissue consisting of chondrocytes which pro-

uce a dense extra cellular matrix (ECM). Matrix metalloproteinases

MMPs) and tissue inhibitors of metalloproteinases (TIMPs) mediate car-

ilage destruction and are produced by B cells, FLSs and macrophages

n the RA setting [3,5,10,13,17] . Cells within the pannus can also stim-

late cartilage degradation via direct cell contact mechanisms [3,14] .

fter cartilage has been damaged the bone underneath can become ex-

osed. Bone erosion can be induced by cytokines that promote osteo-

lasts within the bone. In health, osteoclasts inhibit osteoblasts which

roduce new bone. In RA, the function of osteoclasts is increased, re-

ucing the levels of new bone being formed leading to a reduction in

one formation [5,10,13] . As an initial formulation, for simplicity, we

ill consider both total cartilage and total bone densities rather than

he individual components of each of these tissues. 

Once initiated the outcomes of RA cannot be reversed, however dis-

ase progression can be slowed and the symptoms of the disease can be

educed through a variety of treatment approaches. There are several

lasses of RA treatment drugs including non-steroidal anti-inflammatory

rugs (NSAIDs), steroids and disease modifying anti-rheumatic drugs

DMARDs). These drugs can be used alone or in conjunction with other

reatment approaches. Biological DMARDs are generally used in con-

unction with conventional DMARDs, increasing their efficacy, and are

onsidered to have a strong benefit-to-risk profile [18,19] . However, a

arge number of patients (approx. 40%) do not respond to the therapy,

hile others respond initially and then lose response over time [20] .

witching biologics is one approach considered for the patients with in-

dequate response to the initial treatment, although the second biologic

ight not be more effective than the first one [20] . For a full description

f the drugs used in rheumatoid arthritis treatment we refer the reader

o the following papers [4,21,22] . We discuss some specific drugs and

he effects they have in the RA context in Section 3.4 . 

.2. Previous mathematical descriptions of RA 

Mathematical modelling is a useful tool to aid in the understanding

f biological process at multiple spatial and temporal scales. In a recent

eview paper [23] , we have considered existing mathematical models

hat aim to capture the mechanisms of rheumatoid arthritis in a variety

f contexts. We refer the reader to the review paper for the full details,

owever we provide a short summary of the mathematical approaches

eviewed here. 

.2.1. Summary of models reviewed in [23] 

Systems of ordinary differential equations (ODEs), which are non-

patial deterministic continuous equations that describe the time evolu-

ion of a variable of interest, are the most common modelling approach
2 
sed to describe the evolution of RA. Single compartment ODE mod-

ls have been used to model joint erosion [24] , the interactions be-

ween generic pro- and anti-inflammatory cytokines [25] , the role of

he cytokine TNF- 𝛼 [26,27] , the interactions of immune cells within

he RA environment and the drug Tocilizumab [28] . More complex,

ulti-compartment ODE approaches have also been used to consider

he circadian dynamics involved in the progression of rheumatoid arthri-

is [29] and the inflammatory and invasive processes occurring at the

artilage-pannus interface [30] . Furthermore, a number of ODE based

pproaches consider the pharmacokinetics and pharmacodynamics of

arious drugs used to treat RA [31–38] . 

To account for spatio-temporal features of RA, systems of partial dif-

erential equations (PDEs) have been utilised. PDEs are deterministic

ontinuous equations that can describe the spatial and temporal evolu-

ion of a variable of interest. PDEs are less commonly used to describe

A specific processes, in comparison to ODEs. For example, Moise et.

l. [39] consider a three-compartment model to describe the spatio-

emporal interactions between immune cells, cytokines and drugs in the

ynovial membrane, synovial fluid and cartilage of a joint. 

Deterministic methods such as ODEs and PDEs cannot capture the

otential variability or stochasticity within a biological system. Stochas-

ic mathematical and computational models describe the interactions

etween the different components of the system, or the transitions be-

ween different states of these components as probabilistic. Such models

ave been mainly applied in the context of treatment decisions [40] , to

nalyse RA incidence rates [41] , or to predict radiological progression

ithin RA [42,43] . Moreover, a subset of stochastic Markov chain mod-

ls have focused on assessing the cost-effectiveness of single or com-

ined RA treatments [44,44–47] . 

.2.2. Further stochastic and hybrid (deterministic-stochastic) modelling 

pproaches 

The few models existent in the literature are mainly determinis-

ic and are given by differential equations. However it has been sug-

ested that accounting for stochasticity within RA may be key in under-

tanding the evolution of the disease [10,48] and predicting the success

f RA treatments [49] . Along with the stochastic models described in

ection 1.2.1 , a small number of studies have considered Boolean net-

ork models for RA [50,51] . 

A different approach to incorporate stochasticity at a cellular level

ithin mathematical models is to use an individual-based (IB) (or agent-

ased) modelling approach [52,53] . This approach allows each cell to

e described as an individual agent which follows a set of predetermined

ules. These agents reside in a defined spatial domain. This domain can

e constrained as a lattice, where agents are restricted to moving be-

ween lattice positions, or more realistically an off-lattice approach can

e utilised where agents have freedom in direction of movement. Off-

attice individual-based modelling has been used in multiple areas of

athematical biology research including modelling the cellular immune

esponse to viruses [54] and cancer [55] . Individual-based models can

e computationally expensive especially when modelling a large num-

er of agents. This expense can be reduced by using a hybrid modelling

pproach. For example, when modelling a chemical we may not neces-

arily be interested in modelling each individual molecule but the total

ocal concentration instead. To model these more continuous aspects a

eterministic approach can be used, where the total local concentration

s described rather than each molecule, this can be viewed as a tissue-

evel approach. To allow us to consider both the stochastic cellular level

cale and deterministic tissue level dynamics of the system we can use a

ybrid multiscale modelling approach [56] . To model the deterministic

omponents we can use classical methods such as differential equations.

ybrid approaches have been used to model various biological phenom-

na such as monocyte migration in the vasculature [57] , the cellular

mmune response to sepsis [58] , inflammation in chronic obstructive

ulmonary disease [59] or various mechanisms of cancer growth and

evelopment [60–63] . In a similar way, in the context of rheumatoid
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Table 1 

Descriptions of the parameters used to set-up the initial spatial do- 

main of the hybrid model as shown in Fig. 1 . 

Symbol Description 

𝑊 𝐵 the height of bone protruding into the domain 

𝑊 𝐶 the width of the cartilage that surrounds the bone 

𝑊 𝐽 the width of the joint space between the two bone ends 

𝑊 𝑀 the initial width of the synovial membrane 

𝑊 𝑆 the space between the cartilage and the edge of the domain 
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rthritis, using multi-scale hybrid modelling approaches may be valu-

ble in modelling disease progression and predicting the success of RA

reatment. 

These hybrid modelling approaches allow for the dynamics of single

ells within a system to be investigated while chemical concentrations

nd tissue-level effects are modelled deterministically. This is useful in

he context of RA as it has been found that there exists high levels of

henotypic and spatial heterogeneity of cells within the synovial mem-

rane [64] . Moreover, understanding these single cell phenomena fur-

her has been highlighted as an important step in the identification of

reatment targets [65–67] . To investigate these single cell dynamics, we

ropose a hybrid (stochastic-discrete) modelling method would be ap-

ropriate to describe the cellular dynamics in the progression of RA. 

.3. Overview of paper 

Building upon previous on-lattice hybrid models to describe inter-

cting cell and chemical populations [68,69] , we develop an off-lattice

ybrid model as a first step towards building a more realistic model of

rthritic destruction within a small PIP joint. More specifically, we in-

orporate the dynamics of two resident cell populations, fibroblasts (or

broblast-like synoviocytes) and macrophages (or macrophage-like syn-

viocytes) through a stochastic off-lattice individual-based modelling

pproach. The dynamics of cartilage and bone density, along with the

volution of MMPs are described via a deterministic PDE approach. In

he model we consider the simplified interactions of these components

hich can lead to destruction of cartilage and subsequently the bone

ithin the joint. The methods used to implement each of the mecha-

isms described are those which could be used to include the necessary

iological detail as the framework is improved upon in future iterations

f the model. The paper is structured as follows. In Section 2 , we de-

cribe the details of the framework and how each biological mechanism

s described mathematically. In Section 3 , as an example we highlight

ome initial results of the framework and perform a sensitivity analysis

o investigate the role of the parameters in the RA system. We addition-

lly describe how the framework could be related to current rheuma-

oid arthritis treatments. Finally in Section 4 we discuss the key out-

uts of our framework and their biological relevance, the requirements

o validate the framework and the plans for developing the framework

urther. 

. The discrete model 

In this section we introduce the hybrid modelling framework used

o describe pannus formation in a joint affected by rheumatoid arthri-

is. In the framework we consider 5 components: bone and cartilage

ensities, resident fibroblasts (or fibroblast-like synoviocytes) and resi-

ent macrophages (or macrophage-like synoviocytes) and the degrading

roteases, matrix metalloproteinases (MMPs). Note, we include only fi-

roblasts and macrophages as they contribute to the majority of the

annus, however further cell types could be considered in future itera-

ions of the modelling framework. We use an off-lattice individual-based

odelling approach to describe the dynamics of the cells, coupled with

iscretised PDEs to model cartilage density, bone density and MMP con-

entration. In Section 2.1 , we describe the set-up of the initial spatial do-

ain to replicate a PIP joint. The mathematical methods used to describe

oth fibroblast and macrophage dynamics are presented in Section 2.2 .

ection 2.3 contains the mechanisms used to describe the evolution of

MPs in the system. The methods used to describe both cartilage and

one density are given in Section 2.4 . Finally, we describe how the on

nd off-lattice components of the model are coupled in Section 2.5 . 

.1. Set-up of the domain 

We consider a 2D spatial domain with 𝑥 ∈ [ 𝑥 𝑙 , 𝑥 ℎ ] and 𝑦 ∈ [ 𝑦 𝑙 , 𝑦 ℎ ] .
 schematic diagram of the spatial domain and initial condition is pro-
3 
ided in Fig. 1 . As described in Section 1.1 , small joints in the hand are

ost commonly affected by rheumatoid arthritis and can be affected

n early stages of the disease. Therefore we formulate the model in the

ontext of rheumatoid arthritis within a small PIP joint. There would

e no difficulty in reframing the model in the context of other RA in-

ected joints. To replicate a small joint we consider the joint space to

ontain two bone ends, surrounded by cartilage with a small space be-

ween the two bones. As a simplification, in the model we consider the

one and cartilage domains to be rectangular. In healthy joints, the syn-

vial membrane is around 1–2 cells thick consisting of macrophages and

broblasts which are evenly distributed and in equal amounts [11,12] .

herefore, we position macrophages and fibroblasts randomly in two

ayers at the boundaries of the domain, where the width of the mem-

rane is approximately 2 cells thick. To define the spatial domain, we

onsider the width, length or height of each of these areas by defining

he following parameters 𝑊 , the descriptions of these parameters are

vailable in Table 1 . 

.2. Cell dynamics 

Fibroblasts and macrophage populations are included in the model

sing an off-lattice individual-based modelling approach. We track the

otal number of fibroblasts and macrophages over time, denoted by

 𝐹 ( 𝑡 ) and 𝑁 𝑀 

( 𝑡 ) , respectively. To take into account the physical size

f the cells, each cell within both populations is tracked by the spatial

osition of the cell centre and the radius of the cell. To allow for sim-

licity we consider all cells to be perfectly spherical ( i.e. the radius of

he cell is consistent) and we further consider that the cell size does not

hange over time. We consider homogeneous populations of fibroblasts

nd macrophages, that have the radii 𝑅 𝐹 for the fibroblasts and 𝑅 𝑀 

for

he macrophages. 

Initially, we randomly place 𝑁 𝐹 (0) fibroblasts and 𝑁 𝑀 

(0)
acrophages in the areas denoted by width 𝑊 𝑀 

, as shown in

ig. 1 . To ensure physical space is taken into account, for each cell

 desired initial position is chosen then checked for overlap with

reviously placed cells, cartilage, bone or the domain boundary as we

onsider a volume-exclusion process, whereby only one cell can occupy

 particular area of free space. If there is overlap, a new position is

hosen for that cell and the process repeats, until all cells are placed. 

To replicate growth and invasion of the pannus into the joint

pace, we allow both cell types to undergo mechanisms of random mo-

ion/migration and proliferation within the individual-based model, as

escribed in the following subsections. For simplicity, we consider both

he fibroblast and macrophage populations to be homogeneous, that is

ach fibroblast will have the same potential to divide, die or migrate

nd similarly, each macrophage will have the same potential to divide,

ie or migrate. Furthermore, we impose zero-flux boundary conditions

nsuring all cells remain within the spatial domain. That is, we consider

nly cells that reside within the simulated joint and omit the influx or

ecruitment of external immune cells into the domain. 

Cell movement . We incorporate random cell movement for both fi-

roblasts and macrophages using the same mechanism and allow dif-

erent probabilities of movement for each cell type. At every time-step

ach cell can move randomly with probability, 𝜆 or 𝜆 , if a fibrob-
𝐹 𝑀 
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Fig. 1. The initial spatial domain of the hybrid model. Shaded 

grey area represents the areas where bone is initially present, 

while shaded blue represents the areas where cartilage is ini- 

tially present. The larger red and smaller purple circles repre- 

sent macrophages and fibroblasts, respectively. Note, that the 

initial position of both cell types of cells is randomised, so the 

positions here are just an example. The white space represents 

synovial fluid in which cells can freely move and proliferate, 

e.g., essentially free space in the system. Each of the parame- 

ters 𝑊 are shown on the diagram represent the length, height 

or width of each of the areas within the domain. Note, the di- 

agram is not to scale. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 2. Schematic of the off-lattice cell movement mechanism. The solid black 

circle represents the initial cell position where the cell has radius 𝑅 . A desired 

position is chosen by selecting a random angle 𝜃 ∈ [0 , 2 𝜋] and then placing the 

cell centre at a distance of Δ𝑥 from the original position in the direction 𝜃. The 

desired position (blue dashed circle) is chosen as the cell’s updated position if no 

other cells, cartilage or bone overlap this spatial position. If this position does 

overlap the cell movement process is aborted. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 3. Schematic of the off-lattice cell division mechanism. The solid black 

circle represents the original cell position where the cell has radius 𝑅 . The cell 

will divide into two identical daughter cells, one cell will remain on the original 

cell’s position and the other will be placed at a desired position adjacent to 

the original cell’s position. A desired position for the second daughter cell is 

chosen by selecting a random angle 𝜃 ∈ [0 , 2 𝜋] and then placing the cell centre 

at a distance of 2 𝑅 , i.e., the cell’s diameter, from the original position in the 

direction 𝜃. The desired position (blue dashed circle) is chosen as the daughter 

cell’s position if no other cells, cartilage or bone overlap this spatial position. If 

this position does overlap the cell division process is aborted and the original 

cell remains. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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ast or macrophage, respectively. If the cell is permitted to move, then

 new direction is chosen from an angle 𝜃 between 0 and 2 𝜋 for the cell

o move in, as shown in Fig. 2 . The new position is calculated as a jump

f length Δ𝑥 , to ensure proper scaling of movement probabilities. The

ovement to this desired position is only permitted if the new position

s within the boundary, does not overlap with any other cells or with

artilage/bone density. If any of these properties prevent movement,

he movement jump is aborted. 

Cell proliferation . We incorporate cell division and death for both fi-

roblasts and macrophages using the same mechanism and allow dif-

erent probabilities of division and death for each cell type. It has been

hown that a major factor controlling cell division in fibroblasts is a

andom event controlled by a transition probability [70] . Therefore, to

ncorporate cell division into our model we allow for this random event
4 
y allocating a probability of division at each time-step to each cell. This

andom event occurs once the cell has reached a minimum size, how-

ver for simplicity in this model we do not incorporate cell cycle or cell

ize, these details could be explicitly considered in future developments

f the model. At every time-step, each cell has a probability of dividing

iven by 𝛼𝐹 or 𝛼𝑀 

, for fibroblasts or macrophages respectively. If the

ell is permitted to divide, then the cell splits into two identical daughter

ells. One is placed on the parent cell’s original position and the other

s placed in a chosen position adjacent to this, as shown in Fig. 3 . This

djacent position is chosen from an angle 𝜃 between 0 and 2 𝜋. The new

osition is set at a length of twice the radius of the cell 𝑅 𝐹 or 𝑅 𝑀 

, i.e.,

he cell’s diameter. This new cell is only placed on this position if the

osition is within the boundary, does not overlap with any other cells

r with cartilage/bone density. If any of these properties prevent divi-
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t  
ion, the process is aborted and the parent cell remains in the original

osition. 

Furthermore, at every time-step, each cell has a probability of dy-

ng. The probability of dying is given by 𝜅𝐹 or 𝜅𝑀 

, for fibroblasts or

acrophages respectively. If the cell is assigned to die at a given time-

tep, it is simply removed from the simulation instantly. 

.3. MMP dynamics 

Since matrix metalloproteinases (MMPs) produced by fibroblasts and

acrophages mediate cartilage destruction and bone destruction we in-

lude the dynamics of MMPs in to the mathematical model. We describe

he dynamics of MMPs in the system as a deterministic process, as we

re interested in the total local concentration of MMPs rather than each

ndividual molecule. We use a similar approach to Moise et. al. [39] and

nclude the diffusion, production and decay of MMPs. As MMPs are se-

reted by both fibroblasts and macrophages, we consider the density of

ells to contribute to the local MMP concentration. In the RA setting,

issue inhibitors of metalloproteinases (TIMPs) regulate the activity of

MPs, however for simplicity, we take into account the actions of TIMPs

mplicitly by including a decay rate of MMPs and imposing a local limit

n the concentration of MMPs at any spatial position to ensure the lo-

al concentration is bounded. Mathematically these assumptions can be

aptured by the PDE, 

𝜕𝐶𝑀 𝑀 𝑃 

𝜕𝑡 
= 𝜆𝐶𝑀 𝑀 𝑃 ∇ 

2 𝐶𝑀 𝑀 𝑃 + 

(
𝛽𝐹 𝜌𝐹 + 𝛽𝑀 

𝜌𝑀 

)
(1 − 𝐶𝑀 𝑀 𝑃 ) 

− 𝜅𝐶𝑀 𝑀 𝑃 𝐶𝑀 𝑀 𝑃 , (2.1) 

here 𝐶𝑀 𝑀 𝑃 = 𝐶𝑀 𝑀 𝑃 ( 𝐱, 𝑡 ) is the local concentration of MMPs at

osition 𝐱 at time 𝑡 , 𝜆𝐶𝑀 𝑀 𝑃 is the diffusivity of MMPs, 𝛽𝐹 and 𝛽𝑀 

are

he rates of production of MMPs by fibroblasts and macrophages, respec-

ively, 𝜌𝐹 = 𝜌𝐹 ( 𝐱, 𝑡 ) and 𝜌𝑀 

= 𝜌𝑀 

( 𝐱, 𝑡 ) are the cell densities of fibroblasts

nd macrophages, respectively, and 𝜅𝐶𝑀 𝑀 𝑃 is the decay rate of MMPs.

e solve the PDE with zero-Neumann boundary conditions to allow all

MPs to remain within the domain. We note that as MMPs are a small

olecule, MMPs can enter the areas of cartilage and bone density freely

nd there are no spatial restrictions on the MMPs diffusion within the

omain. 

.4. Cartilage and bone dynamics 

In the model, we are interested in the destruction of cartilage and

one by MMPs. Therefore, we consider the density of cartilage and bone

ithin the spatial domain over time. For simplicity, we do not include

he biological components of cartilage or bone, and consider these tis-

ues as a whole. We model the evolution of cartilage and bone through

he PDEs, 

𝜕𝜌𝐶 

𝜕𝑡 
= − 𝜅𝜌𝐶 

𝜌𝐶 𝐶𝑀 𝑀 𝑃 , (2.2) 

𝜕𝜌𝐵 

𝜕𝑡 
= − 𝜅𝜌𝐵 

𝜌𝐵 𝐶𝑀 𝑀 𝑃 , (2.3) 

here 𝜌𝐶 = 𝜌𝐶 ( 𝐱, 𝑡 ) and 𝜌𝐵 = 𝜌𝐵 ( 𝐱, 𝑡 ) are the densities of cartilage and

one, respectively. Here, 𝜅𝜌𝐶 
and 𝜅𝜌𝐵 

are the rates of degradation of

artilage and bone by MMPs, 𝐶𝑀 𝑀 𝑃 = 𝐶𝑀 𝑀 𝑃 ( 𝐱, 𝑡 ) , respectively. We

olve these equations with zero-Neumann boundary conditions to ensure

ll components remain within the spatial domain. As an initial formu-

ation of the model, we do not allow for the growth of cartilage or bone

hich could be incorporated by adding more levels of complexity. 

.5. Linking the individual-based and PDE components of the model 

As the modelling framework utilises a hybrid approach ( i.e. a

tochastic off-lattice model for cell dynamics and deterministic PDEs

or MMPs, cartilage and bone evolution) we have to ensure that the two
5 
pproaches allow for interactions between the stochastic and determin-

stic components. For numerical simulations of the model we discretise

qs. (2.1) - (2.3) such that each of these densities is defined on a discrete

attice, the discretisation method is provided in Appendix A . The de-

cription of how the off-lattice components are then coupled with the

iscrete lattice components are described in the following paragraphs. 

Secretion of MMPs . In Eq. (2.1) at the tissue-level scale, the pro-

uction of MMPs is dependent on the density of fibroblasts and

acrophages. At the cellular level scale, this translates to the secretion

f MMPs by each of the cells. For simplicity, we assume that cells pro-

uce MMPs at the centre position of the cell. To allow the concentration

f MMPs to remain on our discretised grid, we calculate the nearest grid-

osition to the cell centre, and add the desired MMP concentration to

his grid position. 

Volume-exclusion . To ensure that the cells do not move or divide onto

reas of the domain that contains bone or cartilage we need to evaluate

he position of the whole cell on the grid. If no cartilage or bone degrada-

ion has occurred we simply check whether the new desired position is

ithin ± 𝑅 (radius) of the initial areas of the domain containing cartilage

r bone, as depicted in Fig. 1 . That is, we check any part of the cell will

e within the initial cartilage or bone domain areas. If bone or cartilage

egradation has occurred then we want to ensure that the cell can now

ove into this free space. To do this we find equally distributed points

n each cell’s circumference and then calculate the nearest grid-position

f each of these points. We then check whether there is cartilage or bone

resent on those positions, to ensure the cell is able to move. Note, here

e make the assumption that a cell can only inhabit an area of space if

he cartilage and bone density is zero, however in future work we could

llow cells to inhabit areas if these densities are below some threshold

alue, if appropriate. 

. Numerical simulations and sensitivity analysis 

To visualise the hybrid modelling framework developed in

ection 2 we run numerical simulations using Matlab , the details of

he explicit method used to solve the PDEs is given in Appendix A . Ev-

ry iteration of the simulation is run with the same initial condition.

ach simulation is run over a 20 day time-frame as differences in the

utcome of the model between runs with different parameter set-ups

ould be observed over this time-frame. A schematic overview of the key

omponents, biological mechanisms and key parameters in the model is

rovided in Fig. 4 . To run these simulations we have to choose values

or the parameters within the model, we display these parameters in

able 2 . We then provide some example results of the model focusing

n the aggressiveness of pannus growth through varying the division

robabilities of macrophages and fibroblasts in Section 3.2 . To investi-

ate the role of each parameter within the model we perform a one-at-a-

ime sensitivity analysis in Section 3.3 . Different therapeutic treatments

an target specific mechanisms within the formation of the pannus and

estruction of the joint, implicitly we can relate these therapeutics to

arying single parameters within the model or varying combinations of

arameters, we discuss this in Section 3.4 . 

.1. Parameterising the model 

To parameterise the model, where possible, we use data from the lit-

rature and previous mathematical models. The parameters used in the

umerical simulations of the model, unless stated otherwise are those

hown in Table 2 . We provide in Appendix C a full description of the

hoices of these parameters and how they are calculated. 

.2. Increasing the division probabilities of macrophages and fibroblasts 

As an example of the simulation results of the model we consider

he cases where all parameter values are taken to be the values given
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Fig. 4. Schematic describing the components, mechanisms and parameters included in the hybrid model. Here, 𝛼𝐹 and 𝛼𝑀 

represent the probability of cell division for 

fibroblasts and macrophages, respectively, while 𝜅𝐹 and 𝜅𝑀 

, represent the probability of cell death. The probability of cell movement for fibroblasts and macrophages 

is given by 𝜆𝐹 and 𝜆𝑀 

, respectively. The MMP secretion rates of fibroblasts and macrophages are given by 𝛽𝐹 and 𝛽𝑀 

, respectively. The MMPs decay naturally at the 

rate 𝜅𝐶𝑀 𝑀 𝑃 and can diffuse in the spatial domain at the rate 𝜆𝐶𝑀 𝑀 𝑃 . The MMPs additionally degrade both cartilage and bone at the rates 𝜅𝜌𝐶 
and 𝜅𝜌𝐵 

, respectively. 

Fig. 5. Example results where all parameters are those given in Table 2 . Left-hand plots: Panels show the visualisation of spatial results of one of the runs of the 

simulation at the time-points 𝑡 = {0,5,10,20} days. The red dots are macrophages, the purple dots are fibroblasts, the blue-green surface is cartilage density and the 

black-grey surface is bone density. White space represents space in which cells can move freely in the joint, e.g., synovial fluid. Right-hand plots: The plots show the 

cell number, concentration or density over time averaged over 5 simulation runs with the standard deviation shaded. The number of fibroblasts is given in purple, the 

number of macrophages in red, the global MMP concentration in green, the global cartilage density in blue and the global bone density in black. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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n Table 2 . The simulation results for the first 20 days are shown in

ig. 5 . We plot the spatial distributions of cells, bone and cartilage at

our time-points in the left-hand panels. We additionally plot the av-

rage number of fibroblasts, average number of macrophages, average

lobal MMP concentration, average global cartilage density and aver-

ge global bone density from 5 runs of the simulation in the right-hand
6 
lots. Here, global concentration/density refers to the sum of the MMP

oncentration or cartilage/bone densities across the whole spatial do-

ain. We show the standard deviation between the 5 runs as the shaded

rea on each plot. We can see from these results that in this parameter

etting, the cartilage density does decrease as MMP concentration in-

reases, however no bone degradation occurs. In all of the line plots the
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Fig. 6. Example results where all parameters are those given in Table 2 except 𝛼𝐹 and 𝛼𝑀 

which are ten times the given value. Left-hand plots: Panels show the 

visualisation of spatial results of one of the runs of the simulation at the time-points 𝑡 = {0,5,10,20} days. The red dots are macrophages, the purple dots are fibroblasts, 

the blue-green surface is cartilage density and the black-grey surface is bone density. White space represents space in which cells can move freely in the joint, e.g., 

synovial fluid. Right-hand plots: The plots show the cell number, concentration or density over time averaged over 5 simulation runs with the standard deviation 

shaded. The number of fibroblasts is given in purple, the number of macrophages in red, the global MMP concentration in green, the global cartilage density in blue 

and the global bone density in black. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Example results where all parameters are those given in Table 2 except 𝛼𝐹 and 𝛼𝑀 

which are one hundred times the given value. Left-hand plots: Panels 

show the visualisation of spatial results of one of the runs of the simulation at the time-points 𝑡 = {0,5,10,20} days. The red dots are macrophages, the purple dots are 

fibroblasts, the blue-green surface is cartilage density and the black-grey surface is bone density. White space represents space in which cells can move freely in the 

joint, e.g., synovial fluid. Right-hand plots: The plots show the cell number, concentration or density over time averaged over 5 simulation runs with the standard 

deviation shaded. The number of fibroblasts is given in purple, the number of macrophages in red, the global MMP concentration in green, the global cartilage 

density in blue and the global bone density in black. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

7 
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Fig. 8. Panels show final visualisations of the 5 individual simulation runs to compare the spatial distributions of cells. The red dots are macrophages, the purple 

dots are fibroblasts, the blue-green surface is cartilage density and the black-grey surface is bone density. White space represents space in which cells can move 

freely in the joint, e.g., synovial fluid. Here, all parameters are base case except 𝛼𝐹 and 𝛼𝑀 

which are one hundred times the base value. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Sensitivity analyses of the movement probability of fibroblasts 𝜆𝐹 , ( top row ), or the movement probability of macrophages 𝜆𝑀 

, ( bottom row ). The five 

columns represent the five key outputs of the model: the total number of fibroblasts over time, the total number of macrophages over time, the global MMP 

concentration over time, the global cartilage density over time and the global bone density over time. In each subplot the results for each scalar value of 𝑆 𝑛 is plotted 

as indicated by the legend, where the original values of 𝜆𝐹 or 𝜆𝑀 

are multiplied by 𝑆 𝑛 in each case. The solid line is the average of five runs of the simulation and 

the shaded area in the same colour is the standard deviation between runs. 
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tandard deviation between runs is relatively low, especially in MMP

oncentration and the cartilage density plots. 

We can also consider situations to replicate a biologically motivated

cenario where immune activity has been amplified, as we would expect

n more aggressive forms of rheumatoid arthritis. In Fig. 6 we show

esults of the model where immune cell proliferation is increased ten-

old. From these results, we observe a larger increase in the number of

broblasts and macrophages over time as expected. We also see that the

oncentration of MMPs is increased in comparison to the results shown

n Fig. 5 . In this case, the cartilage degradation is more severe than

he previous case, however the bone density is retained. Once again,

e observe low standard deviation between runs for all of the model

utputs. 

Finally, we consider a case where we expect many more immune

ells in the affected joint, to replicate an even more aggressive form

f rheumatoid arthritis. We show results of the model where immune

ell proliferation is increased one hundred-fold in Fig. 7 . Here, we ob-

erve a significantly larger increase in the number of fibroblasts and

acrophages over time as expected. We also see that the concentration

f MMPs is increased in comparison to the previous cases. Furthermore,

he cartilage degradation is slightly more severe than the previous cases

nd we begin to see bone degradation occurring. Here, the standard de-
 a  

8 
iation is much larger in the cell numbers. Interestingly though there

s still very low standard deviation in the MMP concentration, and car-

ilage and bone densities. This suggests, from a modelling perspective,

hat even stochasticity in the number or spatial position of cells, we still

xpect similar levels of cartilage and bone degradation. We confirm this

y plotting the final spatial distributions of each run of the simulation

or the case shown in Fig. 7 , in Fig. 8 , where we observe a variety of

patial patterns arising from the cell dynamics, which do not appear to

ffect the overall outputs of the model. 

.3. Single parameter sensitivity analysis 

The initial parameterisation of our model is based upon data from a

ange of theoretical and experimental work, as described in Appendix C .

owever, this method of parameter estimation can lead to uncertainties.

herefore, it is useful to investigate how sensitive the outputs of the

odel are to changes in the parameter value inputs. Sensitivity analysis

echniques can help identify the key parameters within the model and

dentify which parameters require validated values to ensure accuracy

f the model output [78,79] . We perform a local ‘robustness’ sensitiv-

ty analysis where one single input parameter is varied while all others

re kept at fixed values. We keep all parameter values to be constant,
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Table 2 

The parameters used in numerical simulations of the model. Unless a reference is given the parameters are estimated or 

calculated. Descriptions of how each value is chosen are provided in Appendix C . 

Symbol Description Value 

Δ𝑡𝑐ℎ𝑒𝑚 time-step length for deterministic components 1 × 10 −4 days 

Δ𝑡𝑐𝑒𝑙𝑙𝑠 time-step length for stochastic components 1 × 10 −2 days 

Δ𝑥 grid-step length in 𝑥 direction 1 × 10 −3 cm 

Δ𝑦 grid-step length in 𝑦 direction 1 × 10 −3 cm 

𝑊 𝐵 initial thickness of bone 0.1 cm 

𝑊 𝐶 initial thickness of cartilage 0.04 cm [7] 

𝑊 𝐽 initial width of joint space 0.01 cm [6,8] 

𝑊 𝑀 initial width of synovial membrane 0.004 cm [11] 

𝑊 𝑆 initial width between edge of domain and the cartilage 2 𝑊 𝑀 cm 

𝑥 𝑙 minimum 𝑥 value of domain 0 cm 

𝑥 ℎ maximum 𝑥 value of domain 0.3 cm 

𝑦 𝑙 minimum 𝑦 value of domain 0 cm 

𝑦 ℎ maximum 𝑦 value of domain 𝑊 𝐽 + 2 𝑊 𝐶 + 2 𝑊 𝐵 cm 

𝛼𝐹 probability of a fibroblast dividing 0 . 33Δ𝑡𝑐𝑒𝑙𝑙𝑠 [39,71] 

𝛼𝑀 probability of a macrophage dividing 0 . 33Δ𝑡𝑐𝑒𝑙𝑙𝑠 

𝛽𝐹 concentration of MMPs produced by fibroblasts 13 . 912 × 10 −5 Δ𝑡𝑐𝑒𝑙𝑙𝑠 [39] 

𝛽𝑀 concentration of MMPs produced by macrophages 5 . 2717 × 10 −5 Δ𝑡𝑐𝑒𝑙𝑙𝑠 [39] 

𝜅𝐹 probability of a fibroblast undergoing apoptosis 0 . 03Δ𝑡𝑐𝑒𝑙𝑙𝑠 [39,72] 

𝜅𝑀 probability of a macrophage undergoing apoptosis 0 . 033Δ𝑡𝑐𝑒𝑙𝑙𝑠 [39,73] 

𝜆𝐹 probability of a fibroblast moving via undirected motion 
Δ𝑡𝑐𝑒𝑙𝑙𝑠 

Δ2 
𝑥 

8 . 64 × 10 −7 [39,74] 

𝜆𝑀 probability of a macrophage moving via undirected motion 
Δ𝑡𝑐𝑒𝑙𝑙𝑠 

Δ2 
𝑥 

8 . 64 × 10 −7 [39,74] 

𝑁 𝐹 (0) initial number of fibroblasts 200 cells. 

𝑁 𝑀 (0) initial number of macrophages 200 cells. 

𝑅 𝐹 radius of a single fibroblast 6 . 5 × 10 −4 cm [75] . 

𝑅 𝑀 radius of a single macrophage 10 . 5 × 10 −4 cm [76] 

𝜆𝐶𝑀 𝑀 𝑃 diffusivity of MMPs 6 . 59 × 10 −2 cm 

2 day −1 [39,74] 

𝜅𝐶𝑀 𝑀 𝑃 natural decay rate of MMPs 0 . 138 day −1 [39,77] 

𝜅𝜌𝐶 
decay rate of cartilage by MMPs 4 . 44×10 3 

1 . 15 
𝜌𝐶 (0) day −1 [39] 

𝜅𝜌𝐵 
decay rate of bone by MMPs 0.1 𝜅𝜌𝐶 
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hoosing the values given in Table 2 and then testing scaled values of

he parameter under investigation. For each sensitivity analysis we in-

orporate a vector 𝑆 to represent scalar values to multiply the parameter

nder investigation, where, 

 = [0 . 001 , 0 . 005 , 0 . 01 , 0 . 05 , 0 . 1 , 0 . 5 , 1 , 5 , 10 , 50 , 100] . (3.1)

e use the notation 𝑆 𝑛 = 𝑆( 𝑛 ) for 𝑛 = 1 , … , 11 to denote the value of

ach component. The maximum value of 𝑆 is chosen to ensure all prob-

bilities are less than or equal to 1. We then investigate parameters by

etting, 

𝑛 = 𝑆 𝑛 Θ for 𝑛 = 1 , … , 11 , 

here Θ is the parameter investigated. The model outputs that we focus

n are the total number of fibroblasts and macrophages over time, along

ith the global MMP concentration, global cartilage density and global

one density over time. Where global concentration/density refers to

he sum of the concentrations/densities across all spatial positions in

he domain. Each parameter setting is run 5 times and the average is

lotted along with the standard deviation of these runs. 

In Fig. 9 , we consider the movement probabilities of fibroblasts and

acrophages, 𝜆𝐹 and 𝜆𝑀 

. In the case where we vary 𝜆𝐹 only (top row),

or 𝑆 𝑛 ≤ 𝑆 7 = 1 there is no significant difference in all 5 outputs. How-

ver, for other values ( i.e., 𝑆 𝑛 ≥ 𝑆 8 = 5 ) there is a gradual increase in the

umber of fibroblasts and global MMP concentrations as 𝜆𝐹 increases.

or larger values of 𝑆 𝑛 ≥ 𝑆 10 = 50 we additionally observe an increase

n the degradation of cartilage, however for all 𝑆 𝑛 there is no significant

ifference in total macrophage number or bone degradation levels. In

he case where we vary 𝜆𝑀 

only (bottom row), for 𝑆 𝑛 ≤ 𝑆 7 = 1 there is

o significant difference in all 5 outputs. For the values of 𝑆 𝑛 ≥ 𝑆 8 = 5
e observe an increase in the number of macrophages, an increase in

lobal MMP concentration and a decrease in the number of fibroblasts

n the system over time as we increase 𝜆𝑀 

. Furthermore, for values

 𝑛 ≥ 𝑆 10 = 50 we additionally observe an increase in both cartilage and

one degradation over time. In both cases, for varying 𝜆𝐹 or 𝜆𝑀 

, the

tandard deviation between runs is relatively low. These results sug-
9 
est that although varying the movement probability of fibroblasts or

acrophages may alter the immune cell numbers, varying these param-

ters does not significantly alter the cartilage and bone degradation un-

ess large values are chosen. As each cell can only move and proliferate

nto free space around them increasing their movement probability al-

ows them to find areas of free space quicker, which subsequently allows

hem to proliferate more freely resulting in higher numbers of cells per-

itted in the system, as observed. 

We next consider the probability of cell division for fibroblasts and

acrophages, 𝛼𝐹 and 𝛼𝑀 

, respectively, and each sensitivity analysis re-

ult is displayed in Fig. 10 . For the cases where we vary 𝛼𝐹 (top row), for

he values 𝑆 𝑛 ≤ 𝑆 7 = 1 there is no significant difference in all 5 outputs.

or the other values, 𝑆 𝑛 ≥ 𝑆 8 = 5 , we observe an increase in the total

umber of fibroblasts, an increase in the global MMP concentration and

 decrease in the total number of macrophages as we increase 𝛼𝐹 . For

he larger values of 𝑆 𝑛 ≥ 𝑆 10 = 50 , we additionally observe a significant

ncrease in the cartilage and bone degradation levels as we increase fi-

roblast cell division. Similarly, for the cases where we vary 𝛼𝑀 

(bottom

ow), for the values 𝑆 𝑛 ≤ 𝑆 7 = 1 there is no significant difference in all

 outputs. When 𝑆 𝑛 ≥ 𝑆 8 = 5 we observe a decrease in the number of

broblasts, an increase in the total number of macrophages and an in-

rease in MMP global concentration as we increase 𝛼𝑀 

. For the larger

alues of 𝑆 𝑛 ≥ 𝑆 10 = 50 , we additionally observe a significant increase in

he cartilage and bone degradation levels as we increase fibroblast cell

ivision. Once again, in both cases, for varying 𝛼𝐹 or 𝛼𝑀 

, the standard

eviation between runs is relatively low. The results of these sensitivity

nalyses highlight that the values of 𝛼𝐹 and, to a lesser extent, 𝛼𝑀 

can

ignificantly alter the output in terms of cartilage and bone degradation.

he results also highlight the competition for space between the two cell

opulations, where an increase in the number of fibroblasts leads to a

ecrease in the number of macrophages, and vice versa, in some of the

arameter settings shown. 

In Fig. 11 , we display the results of sensitivity analyses for vary-

ng the values of the MMP secretion rates of both fibroblasts and
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Fig. 10. Sensitivity analyses of the division probability of fibroblasts 𝛼𝐹 , ( top row ), or the division probability of macrophages 𝛼𝑀 

, ( bottom row ). The five columns 

represent the five key outputs of the model: the total number of fibroblasts over time, the total number of macrophages over time, the global MMP concentration 

over time, the global cartilage density over time and the global bone density over time. In each subplot the results for each scalar value of 𝑆 𝑛 is plotted as indicated 

by the legend, where the original values of 𝛼𝐹 or 𝛼𝑀 

are multiplied by 𝑆 𝑛 in each case. The solid line is the average of five runs of the simulation and the shaded 

area in the same colour is the standard deviation between runs. 

Fig. 11. Sensitivity analyses of the MMP secretion rate of fibroblasts 𝛽𝐹 , ( top row ), or the MMP secretion rate of macrophages 𝛽𝑀 

, ( bottom row ). The five columns 

represent the five key outputs of the model: the total number of fibroblasts over time, the total number of macrophages over time, the global MMP concentration 

over time, the global cartilage density over time and the global bone density over time. In each subplot the results for each scalar value of 𝑆 𝑛 is plotted as indicated 

by the legend, where the original values of 𝛽𝐹 or 𝛽𝑀 

are multiplied by 𝑆 𝑛 in each case. The solid line is the average of five runs of the simulation and the shaded 

area in the same colour is the standard deviation between runs. 
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acrophages, 𝛽𝐹 and 𝛽𝑀 

. For all values of 𝑆 𝑛 the total number of fibrob-

asts and macrophages is consistent, as expected, as both macrophage

broblast movement and proliferation is unaffected by 𝛽𝐹 and 𝛽𝑀 

. When

arying 𝛽𝐹 (top row), for the values of 𝑆 𝑛 ≤ 𝑆 7 = 1 there is no signifi-

ant change in the global MMP concentration levels, however we ob-

erve an increase in these levels once 𝑆 𝑛 ≥ 𝑆 8 = 5 . Furthermore, as we
10 
ncrease 𝛽𝐹 , for values 𝑆 𝑛 ≥ 𝑆 5 = 0 . 1 , there is an increase in the degra-

ation of cartilage. There is no change in the bone degradation levels,

ntil 𝑆 𝑛 ≥ 𝑆 10 = 50 where there is a slight increase in bone degradation.

n the case where we vary 𝛽𝑀 

only (bottom row), for 𝑆 𝑛 ≥ 5 we observe

hat the global MMP concentration increases as we increase the value of

𝑀 

, and the cartilage density decreases over time faster as we increase
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Fig. 12. Sensitivity analyses of the apoptosis probability of fibroblasts 𝜅𝐹 , ( top row ), or the apoptosis probability of macrophages 𝜅𝑀 

, ( bottom row ). The five columns 

represent the five key outputs of the model: the total number of fibroblasts over time, the total number of macrophages over time, the global MMP concentration 

over time, the global cartilage density over time and the global bone density over time. In each subplot the results for each scalar value of 𝑆 𝑛 is plotted as indicated 

by the legend, where the original values of 𝜅𝐹 or 𝜅𝑀 

are multiplied by 𝑆 𝑛 in each case. The solid line is the average of five runs of the simulation and the shaded 

area in the same colour is the standard deviation between runs. 

Fig. 13. Sensitivity analyses of the diffusion rate of MMP 𝜆𝐶𝑀 𝑀 𝑃 , ( top row ), or the MMP decay rate 𝜅𝐶𝑀 𝑀 𝑃 , ( bottom row ). The five columns represent the five 

key outputs of the model: the total number of fibroblasts over time, the total number of macrophages over time, the global MMP concentration over time, the global 

cartilage density over time and the global bone density over time. In each subplot the results for each scalar value of 𝑆 𝑛 is plotted as indicated by the legend, where 

the original value of 𝜆𝐶𝑀 𝑀 𝑃 is multiplied by 𝑆 𝑛 in each case. The solid line is the average of five runs of the simulation and the shaded area in the same colour is the 

standard deviation between runs. 
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𝐹 for values 𝑆 𝑛 ≥ 𝑆 5 = 0 . 1 . There is additionally a small increase in

one degradation as we increase 𝛽𝑀 

for values of 𝑆 𝑛 ≥ 𝑆 10 = 50 . Once

gain, in both cases, for varying 𝛽𝐹 or 𝛽𝑀 

, the standard deviation be-

ween runs is relatively low. The results of these sensitivity analyses

ighlight that the values of 𝛽𝐹 and 𝛽𝑀 

can significantly alter the output

n terms of cartilage degradation, but not bone degradation significantly

ver the time-frame considered. The results also highlight that increas-
11 
ng the secretion rate of fibroblasts seems to have a larger effect on car-

ilage degradation than increasing the secretion rate of macrophages,

his could be due to the larger size of macrophages and the modelling

hoice that MMPs are only secreted at the centre of the cell. 

The sensitivity analysis results for varying the apoptosis probabilities

f fibroblasts or macrophages, 𝜅𝐹 and 𝜅𝑀 

, are displayed in Fig. 12 . For

he case where we vary 𝜅𝐹 only (top row), for the values of 𝑆 𝑛 ≤ 𝑆 5 = 0 . 1
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Fig. 14. Sensitivity analyses of the MMP degradation rate of cartilage 𝜅𝜌𝐶 
, ( top row ), or the MMP degradation rate of bone 𝜅𝜌𝐵 

, ( bottom row ). The five columns 

represent the five key outputs of the model: the total number of fibroblasts over time, the total number of macrophages over time, the global MMP concentration 

over time, the global cartilage density over time and the global bone density over time. In each subplot the results for each scalar value of 𝑆 𝑛 is plotted as indicated 

by the legend, where the original values of 𝜅𝜌𝐶 
or 𝜅𝜌𝐵 

are multiplied by 𝑆 𝑛 in each case. The solid line is the average of five runs of the simulation and the shaded 

area in the same colour is the standard deviation between runs. 

Fig. 15. Schematic describing the mechanisms and pa- 

rameters included in the hybrid model ( Fig. 4 ) with 

potential therapy effects included. TNF- 𝛼 inhibitors 

(Gold) can inhibit fibroblast division, inhibit MMP se- 

cretion by both macrophages and fibroblasts and in- 

hibit both cartilage and bone degradation in the RA 

setting. Tocilizumab (Dark orange) can inhibit both 

cartilage and bone degradation in the RA setting. 

Methotrexate (Pale Blue) can inhibit macrophage divi- 

sion, promote MMP decay and inhibit MMP secretion 

by fibroblasts in the RA setting. Gene therapy (Dark 

Red) can promote fibroblast apoptosis and celastrol 

(Pale green) can promote macrophage apoptosis and 

inhibit fibroblast division in the RA setting. (For inter- 

pretation of the references to colour in this figure leg- 

end, the reader is referred to the web version of this 

article.) 
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here is no difference in the 5 outputs and for all values of 𝑆 𝑛 there is

o change in the bone density levels over the time investigated. For the

alues of 𝑆 𝑛 ≥ 𝑆 6 = 0 . 5 we observe a decrease in fibroblasts cell number

nd a decrease in MMP concentration levels as we increase 𝜅𝐹 . For the

alues of 𝑆 𝑛 ≥ 𝑆 8 = 5 there appears to be an increase in the total number

f macrophages and a small decrease in cartilage degradation as we

ncrease 𝜅𝐹 . When considering the sensitivity analysis for varying 𝜅𝑀 

bottom row), we observe that for all values of 𝑆 𝑛 there is no significant

ifference in the global MMP concentration, cartilage density or bone

ensity outputs. For values of 𝑆 𝑛 ≥ 𝑆 8 = 5 there is an increase in the

otal number of fibroblasts as 𝜅𝐹 increases, while for values of 𝑆 𝑛 ≥

 6 = 0 . 5 the total number of macrophages decreases as 𝜅𝐹 increases.

he results of these sensitivity analyses on 𝜅𝐹 and 𝜅𝑀 

suggests that the

alues of 𝜅𝐹 and 𝜅𝑀 

will not significantly alter the output in terms of

artilage degradation or bone degradation. However, these parameters

an play a role in MMP concentration and the total number of fibroblasts
12 
nd macrophages. As we increase the probability of death of one cell

ype, this allows the other cell type to proliferate more freely due to the

ncreased free space, as observed in the figures displayed. As with the

revious sensitivity analyses, the results are robust as we observe small

tandard deviation between runs for all cases. 

Next we consider the diffusion rate of MMPs, 𝜆𝐶𝑀 𝑀 𝑃 , and the de-

ay rate of MMPs, 𝜅𝐶𝑀 𝑀 𝑃 , and perform sensitivity analyses with the

esults displayed in Fig. 13 . When varying 𝜆𝐶𝑀 𝑀 𝑃 (top row), for all

alues of 𝑆 𝑛 , there is very little difference in the total number of fibrob-

asts, macrophages and global MMP concentrations in the model out-

uts. For the values of 𝑆 𝑛 ≥ 𝑆 4 = 0 . 05 there is significant increase in the

artilage degradation levels as we increase 𝜆𝐶𝑀 𝑀 𝑃 , while for values of

 𝑛 ≥ 𝑆 8 = 5 we additionally observe an increase in bone degradation as

𝐶𝑀 𝑀 𝑃 increases. Considering the sensitivity analysis of the decay rate

f MMPs, 𝜅𝐶𝑀 𝑀 𝑃 (bottom row), we observe that for all values of 𝑆 𝑛 

here is no significant change in the 5 model outputs. These results sug-
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Fig. 16. Comparing the key outputs of the model for 𝛼𝐹 = 0 . 27Δ𝑡𝑐𝑒𝑙𝑙𝑠 (black) to replicate a setting where the drug celastrol is used, compared to the original results 

for 𝛼𝐹 = 0 . 33Δ𝑡𝑐𝑒𝑙𝑙𝑠 (red). The five panels represent the five key outputs of the model: the total number of fibroblasts over time, the total number of macrophages over 

time, the global MMP concentration over time, the global cartilage density over time and the global bone density over time. The solid line is the average of five runs 

of the simulation and the shaded area in the same colour is the standard deviation between runs. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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est that 𝜅𝐶𝑀 𝑀 𝑃 not a key parameter in determining the model results,

hile varying 𝜆𝐶𝑀 𝑀 𝑃 can significantly impact the output in terms of

artilage degradation or bone degradation. As we increase the diffusion

ate of the MMPs, this allows the concentration in the cartilage and bone

pace significantly faster, promoting increased degradation. As with the

revious sensitivity analyses, the results are robust as we observe small

tandard deviation between runs for all cases. 

Finally, we perform sensitivity analyses on the degradation rates of

artilage and bone by MMPs, 𝜅𝜌𝐶 
and 𝜅𝜌𝐵 

, the results of which are dis-

layed in Fig. 14 . From the results of the sensitivity analysis on 𝜅𝜌𝐶 

top row) we observe that for all values of 𝑆 𝑛 there are no signifi-

ant differences in the total number of fibroblasts, the total number

f macrophages, the MMP concentrations or bone density levels as the

alues of 𝜅𝜌𝐶 
are varied. However, for all values of 𝑆 𝑛 we observe an

ncrease in cartilage degradation as we increase 𝜅𝜌𝐶 
. From the results

f the sensitivity analysis on 𝜅𝜌𝐵 
(bottom row) we observe that for all

alues of 𝑆 𝑛 there are no significant differences in the total number of

broblasts, the total number of macrophages, the MMP concentrations

r cartilage density levels as the values of 𝜅𝜌𝐵 
are varied. However, for

alues of 𝑆 𝑛 ≥ 𝑆 10 = 50 we observe a very slight increase in bone degra-

ation as we increase 𝜅𝜌𝐵 
. These results suggest that 𝜅𝜌𝐶 

and 𝜅𝜌𝐵 
only

ffect the output levels of cartilage and bone, respectively, and not the

ther outputs of the model. Furthermore, varying 𝜅𝜌𝐶 
has a larger effect

n affected outputs than 𝜅𝜌𝐵 
, for the time-frame considered. As with the

revious sensitivity analyses, the results are robust as we observe small

tandard deviation between runs for all cases. 

.4. Relating our results to RA treatments 

The modelling framework aims to describe a biological situation

here no intervention ( e.g. treatment) is included, however the results

hown in Sections 3.2 and 3.3 can be implicitly related to to several

herapies currently used to treat rheumatoid arthritis. Without adding

rugs explicitly to the model, we can consider the effects of treatment by

arying the parameters within the model according to the mechanism

argeted by the drugs. Below we discuss briefly some of commonly used

reatments for RA. An overview of the drugs we could consider and the

echanisms that they promote or inhibit within the model are given in

ig. 15 . 

Disease modifying anti-rheumatic drugs (DMARDs) can target spe-

ific mechanisms within RA. For example, methotrexate, which is the

ost commonly prescribed drug in the UK [5,80] , has been shown to

odify the cytokine profile of patients. More specifically, methotrex-

te can reduce IL-6 levels, which plays a role in promoting macrophage

ivision [81] , methotrexate has also been shown to inhibit secretion

f MMPs by fibroblasts [5,81] and increase the levels of TIMPs which
13 
nhibit MMPs [81] . Other RA drugs target specific cytokines within

heumatoid arthritis. Tumour necrosis factor- 𝛼 (TNF- 𝛼) plays a role in

romoting the inflammatory mechanisms within RA. TNF- 𝛼 inhibitors,

uch as infliximab, adalimumab and etanercept are commonly pre-

cribed DMARDs that target TNF- 𝛼. In untreated RA, TNF- 𝛼 can pro-

ote the secretion of MMPs by both fibroblasts and macrophages [5] ,

romote fibroblast cell division [5] and promote cartilage and bone

egradation [5,10] . Therefore TNF- 𝛼 inhibitors, can reduce these effects

ithin the RA environment. Tocilizumab is another DMARD which tar-

ets and inhibits the IL-6 receptor which is produced by several immune

ell types. Among other things, IL-6 can promote cartilage and bone

egradation [5,10,82] . By blocking IL-6 receptors, tocilizumab can re-

uce the effects of this cytokine. Less commonly used therapies such

s chemotherapy through celastrol have promisingly been shown to re-

uce the aggressive proliferative abilities of fibroblasts [71] and increase

poptosis in macrophages [83] . Gene therapies can also be used to target

pecific cell surface receptors [84] , for example, genes can be delivered

hat induce apoptosis in RA fibroblasts, such as with the intra-articular

elivery of vectors containing PUMA, a down-stream effector of p53 and

n effective inducer of apoptosis [85,86] . 

The drugs considered above can be implicitly considered within our

athematical modelling framework by increasing or decreasing the pa-

ameter that controls the specified mechanism(s) targeted by the drug.

e provide in Table 3 an overview of the mechanisms which each drug

argets, the relevant parameter in the model and the corresponding sen-

itivity analysis results from Section 3.3 that correspond to increasing or

ecreasing that specific parameter without considering specific values

or these parameters. 

Where data is available, we can consider these drugs in more specific

etail within the model. For example, in [71] it was found that when

elastrol is added the fibroblast proliferation rate changed from approx-

mately 0.33 day −1 to 0.27 day −1 . We can replicate this in our model by

etting 𝛼𝐹 = 0 . 27Δ𝑡𝑐𝑒𝑙 𝑙 𝑠 rather than the original value of 𝛼𝐹 = 0 . 33Δ𝑡𝑐𝑒𝑙 𝑙 𝑠 ,

e show the results in Fig. 16 . From the figure we observe that this

mall reduction in 𝛼𝐹 does lead to less fibroblasts in the joint, and less

MPs secreted over time. However, this change is not enough to modify

he cartilage degradation levels over the time-frame considered. There-

ore these results suggest that using celastrol alone, will be beneficial in

educing immune cell number, but not the overall disease outcomes in

his particular parameter setting. 

.4.1. Sensitivity analysis of combined characteristics 

As detailed above, treatments for rheumatoid arthritis can target sev-

ral mechanisms underlying the disease, rather than just a single mech-

nism. Therefore, it is beneficial to understand how altering more than

ne mechanism within the modelling framework would affect the model
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Fig. 17. Combined sensitivity analysis of decreasing the division probability of fibroblasts ( 𝛼𝐹 ) and increasing the apoptosis probability of macrophages ( 𝜅𝑀 

). The 

five panels represent the five key outputs of the model at the final time-step: the total number of fibroblasts, the total number of macrophages, the global MMP 

concentration, the global cartilage density and the global bone density. In each panel the averaged results for each scalar value of 𝑆 𝛼𝐹 
and 𝑆 𝜅𝑀 

are displayed as a 

surface plot, where the original values of 𝛼𝐹 or 𝜅𝑀 

are multiplied by 𝑆 𝛼𝐹 
and 𝑆 𝜅𝑀 

, respectively, in each case. The values investigated are given, where values of 𝑆 𝛼𝐹 

are taken from the vector 𝐿 , and values of 𝑆 𝜅𝑀 
are taken from the vector 𝑀 . The results shown are the average of five runs of the simulation. 

Table 3 

Treatments and drugs currently used to treat rheumatoid arthritis. We include the biological actions of each treatment that are relevant to 

the mechanisms considered within our mathematical model. We can implicitly include these mechanisms in the existing model by increasing 

or decreasing the relevant parameters. We provide the details of the results from Section 3.3 as an example of the effects that including these 

drugs implicitly could have on the model output. 

Treatment Relevant biological action(s) of drug Incorporation 

into model 

Related model results 

Celastrol ∙ Inhibits fibroblast cell division [71] ∙ Decrease 𝛼𝐹 ∙ Fig. 10 (Top) : 𝑆 𝑛 < 𝑆 7 ( 𝑆 𝑛 < 1 ) 
∙ Promotes macrophage cell death [83] ∙ Increase 𝜅𝑀 ∙ Fig. 12 (Bottom) : 𝑆 𝑛 > 𝑆 7 ( 𝑆 𝑛 > 1 ) 

Gene therapies Intra-articular delivery of vectors containing PUMA, an 

effective inducer of apoptosis of fibroblasts [85,86] 

Increase 𝜅𝐹 Fig. 12 (Top) : 𝑆 𝑛 > 𝑆 7 ( 𝑆 𝑛 > 1 ) 

Methotrexate ∙ Inhibits IL-6 promoted macrophage cell division [81] ∙ Decrease 𝛼𝑀 ∙ Fig. 10 (Bottom) : 𝑆 𝑛 < 𝑆 7 ( 𝑆 𝑛 < 1 ) 
∙ Cytokine modulation inhibits fibroblast MMP secretion [5,81] ∙ Decrease 𝛽𝐹 ∙ Fig. 11 (Top) : 𝑆 𝑛 < 𝑆 7 ( 𝑆 𝑛 < 1 ) 
∙ Cytokine modulation promotes MMP inhibitor 

production [81] 

∙ Increase 

𝜅𝐶𝑀 𝑀 𝑃 

∙ Fig. 13 (Bottom) : 𝑆 𝑛 > 𝑆 7 ( 𝑆 𝑛 > 1 ) 

TNF- 𝛼 inhibitor ∙ Inhibits TNF- 𝛼 promoted fibroblast secretion of MMPs [5] ∙ Decrease 𝛽𝐹 ∙ Fig. 11 (Top) : 𝑆 𝑛 < 𝑆 7 ( 𝑆 𝑛 < 1 ) 
(Adalimumab) ∙ Inhibits TNF- 𝛼 promoted macrophage secretion of MMPs [5] ∙ Decrease 𝛽𝑀 ∙ Fig. 11 (Bottom) : 𝑆 𝑛 < 𝑆 7 ( 𝑆 𝑛 < 1 ) 
(Etanercept) ∙ InhibitsTNF- 𝛼 promoted fibroblast cell division [5] ∙ Decrease 𝛼𝐹 ∙ Fig. 10 (Top) : 𝑆 𝑛 < 𝑆 7 ( 𝑆 𝑛 < 1 ) 
(Infliximab) ∙ Inhibits TNF- 𝛼 promoted cartilage degradation [5,10] ∙ Decrease 𝜅𝜌𝐶 

∙ Fig. 14 (Top) : 𝑆 𝑛 < 𝑆 7 ( 𝑆 𝑛 < 1 ) 
∙ Inhibits TNF- 𝛼 promoted bone degradation [5,10] ∙ Decrease 𝜅𝜌𝐵 

∙ Fig. 14 (Bottom) : 𝑆 𝑛 < 𝑆 7 ( 𝑆 𝑛 < 1 ) 
IL-6 inhibitors ∙ Inhibits IL-6 promoted cartilage degradation [5,82] ∙ Decrease 𝜅𝜌𝐶 

∙ Fig. 14 (Top) : 𝑆 𝑛 < 𝑆 7 ( 𝑆 𝑛 < 1 ) 
(Tocilizumab) ∙ Inhibits IL-6 promoted bone degradation [5,10,82] ∙ Decrease 𝜅𝜌𝐵 

∙ Fig. 14 (Bottom) : 𝑆 𝑛 < 𝑆 7 ( 𝑆 𝑛 < 1 ) 
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utput. We focus on modifying two parameters at once, and as motiva-

ion for which two parameters to alter, we consider the target mecha-

isms of celastrol and tocilizumab. 

As described above celastrol inhibits the division rate of fibrob-

asts [71] and promotes apoptosis of macrophages [83] . In our model

his relates to decreasing the probability of fibroblast division 𝛼𝐹 and

ncreasing the probability of macrophage cell death 𝜅𝑀 

. Therefore it

s beneficial to investigate how the model outputs vary when altering

oth of these parameters by performing a combined sensitivity analysis,

he results of which are displayed in Fig. 17 . The five panels represent

he five key outputs of the model at the final time-step ( 𝑡 = 20 ): the to-
14 
al number of fibroblasts, the total number of macrophages, the global

MP concentration, the global cartilage density and the global bone

ensity. In each panel the value of each output for each parameter set-

ing is displayed as a surface plot, where low values are shown in blue

ncreasing towards high values in yellow. Each square within the pan-

ls represents a different parameter setting. We investigate 14 values

or 𝑆 𝛼𝐹 
< 1 , where in the model 𝛼𝐹 = 𝑆 𝛼𝐹 

𝛼𝐹 where 𝛼𝐹 is the original

alue of 𝛼𝐹 given in Table 2 . The values chosen are displayed below the

gure as 𝑆 𝛼𝐹 
( . ) = 𝐿 ( . ) . Similarly, we investigate 17 values for 𝑆 𝜅𝑀 

> 1 ,
here in the model 𝜅𝑀 

= 𝑆 𝜅𝑀 

̄𝜅𝑀 

where ̄𝜅𝑀 

is the original value of 𝜅𝑀 

iven in Table 2 . The values chosen are displayed below the figure as
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Fig. 18. Combined sensitivity analysis of decreasing the decay rate of cartilage by MMPs ( 𝜅𝜌𝐶 
) and decreasing the decay rate of bone by MMPs ( 𝜅𝜌𝐵 

) . The five panels 

represent the five key outputs of the model at the final time-step: the total number of fibroblasts, the total number of macrophages, the global MMP concentration, 

the global cartilage density and the global bone density. In each panel the averaged results for each scalar value of 𝑆 𝜅𝜌𝐶 

and 𝑆 𝜅𝜌𝐵 

are displayed as a surface plot, 

where the original values of 𝜅𝜌𝐶 
or 𝜅𝜌𝐵 

are multiplied by 𝑆 𝜅𝜌𝐶 

and 𝑆 𝜅𝜌𝐵 

, respectively, in each case. The values investigated are given, where values of 𝑆 𝜅𝜌𝐶 

and 𝑆 𝜅𝜌𝐵 

are both taken from the vector 𝐿 . The results shown are the average of five runs of the simulation. 
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 𝜅𝑀 

( . ) = 𝑀( . ) . We run 5 simulations for each value of 𝑆 𝛼𝐹 
and 𝑆 𝜅𝑀 

and

verage the results to understand how altering both values will alter the

odel outputs. From the top two panels we see that, the number of fi-

roblasts does not depend on the value of 𝜅𝑀 

but an increase in 𝛼𝐹 leads

o an increase in the number of fibroblasts. Conversely, the number of

acrophages does not depend on the value of 𝛼𝐹 but an increase in 𝜅𝑀 

eads to an decrease in the number of macrophages, in fact for values

f 𝑆 𝜅𝑀 

⪆ 9 we observe extinction of the macrophage population. From

he first panel in the bottom row, we find correlation between the total

MP concentration and both parameters where increasing 𝛼𝐹 leads to

n increase in MMP concentration, while increasing 𝜅𝑀 

leads to a de-

rease in MMP concentration. For higher values of 𝛼𝐹 , we observe high

oncentrations of MMPs irrespective of the value of 𝜅𝑀 

suggesting that

his output is more sensitive to 𝛼𝐹 than 𝜅𝑀 

. From the final two panels

n the bottom row, for both cartilage density and bone density we see

imilar correlations for both parameters. Generally, for an increase in

𝐹 and an increase in 𝜅𝑀 

we observe larger cartilage and bone densities

less destruction). Furthermore, when 𝜅𝑀 

is high enough that we get

xtinction of the macrophage population, unless 𝛼𝐹 is also at the higher

alues we have high cartilage/bone densities (little or no destruction).

he results indicate that these outputs are more sensitive to 𝜅𝑀 

. These

esults allow us to identify ranges for both of these parameters that re-

ult in either no change, a little change or significant change in model

utputs. 

As a second example of investigating the outputs of the model while

arying more than one parameter, we consider the mechanisms targeted

y the drug tocilizumab. As described above, tocilizumab inhibits IL-6

romoted cartilage and bone degradation [5,10,82] . In our model this

elates to decreasing both the decay rate of cartilage by MMPs, 𝜅𝜌𝐶 
, and

he decay rate of bone by MMPs, 𝜅𝜌𝐵 
. To investigate how the model

utputs vary when altering both of these parameters we consider com-

ined sensitivity analysis, the results of which are displayed in Fig. 18 .

d

15 
he five panels represent the five key outputs of the model at the final

ime-step ( 𝑡 = 20 ): the total number of fibroblasts, the total number of

acrophages, the global MMP concentration, the global cartilage den-

ity and the global bone density. In each panel the value of each output

or each parameter setting is displayed as a surface plot, where low val-

es are shown in blue increasing towards high values in yellow. Each

quare within the panels represents a different parameter setting. We

nvestigate here, 8 values for both 𝑆 𝜅𝜌𝐶 
< 1 and 𝑆 𝜅𝜌𝐵 

< 1 , that is de-

reasing values for both parameters. The simulations are run such that

𝜌𝐶 
= 𝑆 𝜅𝜌𝐶 

̄𝜅𝜌𝐶 
and 𝜅𝜌𝐵 

= 𝑆 𝜅𝜌𝐵 
̄𝜅𝜌𝐵 

where ̄𝜅𝜌𝐶 
and ̄𝜅𝜌𝐵 

are the original de-

ay rates given in Table 2 . The values investigates are displayed below

he figure as 𝑆 𝜅𝜌𝐶 
( . ) = 𝐿 ( . ) and 𝑆 𝜅𝜌𝐵 

( . ) = 𝐿 ( . ) . The results suggest that,

enerally, there is no significant difference in the number of fibroblasts,

umber of macrophages or the concentration of MMPs when varying 𝜅𝜌𝐶 

nd 𝜅𝜌𝐵 
, as the small differences in these panels can be attributed to the

tochasticity within the model. From the final two panels in the bottom

ow, for both cartilage density and bone density we see that each output

nly depends on one of the parameters. That is, increasing 𝜅𝜌𝐶 
leads to

n increase in cartilage destruction, irrespective of the value of 𝜅𝜌𝐵 
, and

onversely 𝜅𝜌𝐵 
leads to an increase in bone destruction, irrespective of

he value of 𝜅𝜌𝐶 
. These results further highlight that there is no differ-

nce in model outputs when considering variations in both 𝜅𝜌𝐶 
and 𝜅𝜌𝐵 

,

ompared to varying only one of these parameters. Therefore, for the

echanisms targeted by tocilizumab, in the model, there is no correla-

ion between the decay rate of cartilage and of bone by MMPs ( Fig. 18 )

hile such a correlation seems to exist for the mechanisms targeted by

elastrol ( i.e. , fibroblast division and macrophage cell death, Fig. 17 ).

ince experimental studies have shown that tocilizumab seems to affect

oth degradation of bone and cartilage, this suggests that there could

e other detailed biological mechanisms for tocilizumab that were not

onsidered in this study, and should be added to allow for more realistic

escriptions of this drug. 
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. Discussion and conclusions 

As a first step towards building a more realistic model of arthritic

estruction within a small PIP joint, in this study we introduced an off-

attice hybrid model to describe the growth and development of the pan-

us in the PIP joint space, in the context of rheumatoid arthritis (RA).

he model combined an off-lattice individual-based approach for the

ell dynamics coupled with a deterministic PDE approach to describe

he dynamics of MMPs, cartilage and bone. As previously highlighted,

his model is an initial formulation and a first step towards building a

ore realistic model of pannus formation within a rheumatoid arthritis

ffected joint. Therefore at this stage the model cannot be used to pre-

ict progression of disease accurately. However, the model can be used

o understand the effects that altering the mechanisms included on the

imulation results, highlighting the key parameters that require further

alidation. 

We have provided some initial results that considered three scenar-

os with increasing proliferation rates of cells to investigate increasing

ggressiveness of the pannus progression ( Figs. 5–7 ). The model results

uggest that increasing the proliferation rates of cells ten-fold does not

ead to a significant increase in the destruction of bone, even with sig-

ificantly increased numbers of cells (comparing Figs. 5 and 6 ), while

ncreasing the proliferation rates of cells a hundred-fold did result in in-

reased levels of bone destruction (comparing Figs. 5 and 7 ). This sug-

ests that the latter parameter setting can be used to describe a more

ggressive form of the disease. Furthermore, even when we observed

patial heterogeneity between simulation results, we still obtain low

tandard deviation in the global MMP concentrations, global cartilage

ensity and global bone density outputs ( Fig. 8 ), indicating that varied

patial patterns in the pannus, can still result in the same outcomes and

ate of degradation in the joint. We note that, this initial model is not

et at a stage where direct comparisons to clinical and experimental

ata can be made. However, some level of biological insight can be ob-

ained through considering the level of variation in the model outputs

hen increasing or decreasing the effects of the biological mechanisms

ncluded ( i.e. , varying the model parameters). Moreover, extensions of

he model to contain appropriate levels of complexity could be validated

ith more accurate data to allow for direct comparison with the spatial

atterns of cell populations within joints affected by RA, such as those

een within studies that image the progression of RA [87–91] . 

To identify the role of the key parameters within the model we per-

ormed a one-at-a-time sensitivity analysis. These sensitivity tests allow

s to identify the parameters that, when varied, will significantly al-

er the outputs of the model over the time-frame considered. The re-

ults highlighted that varying the immune cell movement probabilities

 Fig. 9 ), varying the apoptosis rates of cells ( Fig. 12 ), varying the decay

ate of MMPs ( Fig. 13 ) or varying the degradation rate of bone by MMPs

 Fig. 14 ) did not significantly affect cartilage and bone degradation over

he time-frame considered compared to the variation of other parame-

ers. On the other hand, the results also showed that bone and cartilage

ensity can be significantly reduced when we increase the division prob-

bility of cells ( Fig. 10 ), the MMP secretion rates of cell ( Fig. 11 ), the

iffusion rate of MMPs ( Fig. 13 ) or the degradation rates of cartilage

 Fig. 14 ), when compared to the variation of other parameters. There-

ore, the outputs of the model are more sensitive to these parameters

nd for the model to be able to provide biologically relevant results

e require the values of these specific parameters to be as accurate as

ossible. To obtain accurate values for these parameters, data from ex-

erimental and clinical studies are required. 

In Section 3.4 , we discussed the above sensitivity analysis results

n the context of current therapeutic approaches for RA. In particular,

e emphasised the model parameters that could be varied to investi-

ate (implicitly) the effects of different drug therapies, and how these

hanges in model parameters could be inferred by our sensitivity anal-

sis numerical simulations results. Furthermore, focusing on the mech-

nisms targeted by celastrol and tocilizumab for motivation, we briefly
16 
nvestigate combined sensitivity analyses to investigate the effects of al-

ering more than one parameter on model output(s). We can infer the

eneral changes to model output we expect with increasing or decreas-

ng the parameters that can be affected by the drug, highlighting the ex-

ected qualitative effects of these drugs on the key outputs of the model.

e note that the specific inclusion of the dynamics of these drugs into

he mathematical model, which was not the purpose of this particular

tudy, could lead to more complex dynamics due to potential nonlinear

ffects between different system components. This will be the focus of

 future study. 

.1. Future work 

As described in Section 1.1 , there are various layers of biological

omplexity that have not been included in the model so far. This simple

ramework can be easily extended using the current methods to incor-

orate further biological complexity. We provide some suggested exten-

ions to the model here. 

The current model considers only resident cells within the joint

pace, however immune cells can also be recruited from the circulatory

ystem and promote angiogenesis promoting this recruitment [5,13,14] .

e can extend the model to allow new immune cells to enter the do-

ain at the boundaries, or more specifically introduce vasculature a the

oundaries of the domain and allow the cells to enter through blood

essels. Moreover, in RA, the growth of the pannus can result in local

ypoxia driving angiogenesis which can further promote an influx of

ro-inflammatory immune cells entering the joint [14] . If we include

asculature we can also consider the influx of oxygen and nutrients into

he system, modelling these chemicals in as similar way to the MMPs in

his work. The recruitment of cells through vasculature could be incor-

orated using methods similar to individual-based approaches used to

odel the metastasis of tumour cells through vasculature [92] . 

Currently we focus on homogeneous populations of immune cells,

here all cells within the population exhibit the same probabilities

f migration and proliferation. However, the phenotype of fibroblasts

an be altered to a more tumour-like state where cell division is in-

reased, apoptosis of cells is decreased and migration of cells is more

nvasive [16,87,93,94] . There can be similar heterogeneity within the

acrophage populations [15] . We could incorporate this within the

odel by tracking the phenotype of each fibroblast and macrophage

nd allow the cells to alter their phenotypes over time. In the model

e consider only resident fibroblasts and resident macrophages, and not

ubsets of these populations or other immune cell types. Further immune

ells can play a role in the progression of rheumatoid arthritis such as

 cells and B cells [13,95] . These immune cells, their mechanisms and

heir interactions with components of the joint could be included within

he model using the same methods as those used to incorporate fibrob-

asts and macrophages. 

As mentioned in Section 2.3 , we implicitly take into account the

ffects of tissue inhibitors of MMPs (TIMPs) by including decay of

MPs and limitations on the local concentration of MMPs. We could

ake explicitly include TIMPs, using PDEs and further investigating the

ctivator-inhibitor like mechanisms of MMPs with TIMPs. To do this we

ould utilise a system of equations similar to that used in [39] to model

MP and TIMP dynamics. 

Cartilage and bone densities are considered at a tissue-level scale

ithin the framework. However we could explicitly incorporate the

ellular-level components of these tissues. For example, the role of

hondrocytes and the highly organised extracellular matrix (ECM)

ithin cartilage [3,5,10,13] could be considered. Furthermore, the

im)balance between osteoclasts, which degrade bone, and osteoblasts,

hich produce bone, within the bone [5,10,13] could also be investi-

ated in the RA context further. To incorporate these features we could

onsider method similar to those used to previously model cartilage

rowth [96] or bone remodelling [97–102] . 
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All of the above mechanisms that can be incorporated into the model

ould extend the complexity of the model and the number of parame-

ers required. Therefore, to incorporate this biological complexity and to

btain biological relevance, we would require recent clinical and exper-

mental data to validate the modelling choices and parameter settings

nvestigated. 
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ppendix A. Discretisation of PDEs 

We require an on-lattice approach for numerical simulations of the

DE components of the model, to perform simulation we discretise the

DEs in space and time to allow for this. We consider the lattice to have

patial index positions 𝑖 ∈ [1 , … , 𝑁 𝑥 ] and 𝑗 ∈ [1 , … , 𝑁 𝑦 ] , and consider

he time to be discretised so that the time-step 𝑘 = 𝑡 ∕Δ𝑡𝑐ℎ𝑒𝑚 where Δ𝑡𝑐ℎ𝑒𝑚 

s some time-step length. We can then discretise the PDE in Eq. (2.1) us-

ng a fully explicit form to be written as, 

 

𝑘 +1 
𝑀 𝑀 𝑃 𝐢 

= 𝑐 𝑘 
𝑀 𝑀 𝑃 𝐢 

+ Δ𝑡𝑐ℎ𝑒𝑚 

(
𝜆𝐶𝑀 𝑀 𝑃  ( 𝑐 𝑘 

𝑀 𝑀 𝑃 𝐢 
) + 

(
𝛽𝐹 𝜌

𝑘 
𝐹 𝐢 + 𝛽𝑀 

𝜌𝑘 
𝑀 𝐢 

)

× (1 − 𝑐 𝑘 
𝑀 𝑀 𝑃 𝐢 

) − 𝜅𝐶𝑀 𝑀 𝑃 𝑐 
𝑘 
𝑀 𝑀 𝑃 𝐢 

)
, (A.1) 

here 𝑐 𝑘 
𝑀 𝑀 𝑃 𝐢 

is the concentration of MMP at spatial position 𝐢 at time-

tep 𝑘 , Δ𝑡𝑐ℎ𝑒𝑚 is the time-step length and  is the finite difference Lapla-

ian, such that, 

 ( 𝑐 𝑘 
𝑀 𝑀 𝑃 𝐢 

) = 

𝑐 𝑘 
𝑀 𝑀 𝑃 ( 𝑖 +1 ,𝑗) 

+ 𝑐 𝑘 
𝑀 𝑀 𝑃 ( 𝑖 −1 ,𝑗) 

− 2 𝑐 𝑘 
𝑀 𝑀 𝑃 ( 𝑖,𝑗) 

Δ2 
𝑥𝑐ℎ𝑒𝑚 

+ 

𝑐 𝑘 
𝑀 𝑀 𝑃 ( 𝑖,𝑗+1) 

+ 𝑐 𝑘 
𝑀 𝑀 𝑃 ( 𝑖,𝑗−1) 

− 2 𝑐 𝑘 
𝑀 𝑀 𝑃 ( 𝑖,𝑗) 

Δ2 
𝑦𝑐ℎ𝑒𝑚 

. 

ere, Δ𝑥𝑐ℎ𝑒𝑚 and Δ𝑦𝑐ℎ𝑒𝑚 are the space-step lengths in the 𝑥 and 𝑦 di-

ection, respectively. Similarly, the discrete forms of bone and cartilage

quations Eqs. (2.2) and (2.3) , can be written as, 

𝑘 +1 
𝐶 𝐢 

= 𝜌𝑘 
𝐶 𝐢 

− Δ𝑡𝑐ℎ𝑒𝑚 𝜅𝜌𝐶 
𝜌𝑘 

𝐶 𝐢 
𝑐 𝑘 
𝑀 𝑀 𝑃 𝐢 

, (A.2) 

𝑘 +1 
𝐵 𝐢 

= 𝜌𝑘 
𝐵 𝐢 

− Δ𝑡𝑐ℎ𝑒𝑚 𝜅𝜌𝐵 
𝜌𝑘 

𝐵 𝐢 
𝑐 𝑘 
𝑀 𝑀 𝑃 𝐢 

, (A.3) 

here 𝜌𝑘 
𝐶 𝐢 

and 𝜌𝑘 
𝐵 𝐢 

are the densities of cartilage and bone at spatial po-

ition 𝐢 at time-step 𝑘 , and Δ𝑡𝑐ℎ𝑒𝑚 is the time-step length. 

ppendix B. Code availability 

The full code used to perform the numerical simulations in Matlab

s available upon request via email to the corresponding author or can be

ccessed on GitHub at: https:/github.com/Fiona-Macfarlane/Arthritis . 

ppendix C. Parameter estimation 

1. Time and space-steps of numerical simulations 

For the off-lattice description of cells we arbitrarily choose the time-

tep of simulations to be, 

= 1 × 10 −2 days . 
𝑡𝑐𝑒𝑙 𝑙 𝑠 

17 
or the discretised PDEs describing MMPs, cartilage and bone we im-

ose a time-step Δ𝑡𝑐ℎ𝑒𝑚 and space-steps in the 𝑥 and 𝑦 spatial direc-

ions, Δ𝑥,𝑦 , for the numerical simulations such that the finite difference

ethod [103] used to solve the equations are stable. We choose, 

𝑡𝑐ℎ𝑒𝑚 = 1 × 10 −4 days , Δ𝑥 = Δ𝑦 = 1 × 10 −3 cm . 

ote that, we choose a different time-step for the deterministic part of

he model than the stochastic. This choice is made to speed up the sim-

lations where possible, as a smaller time-step is not required for the

tochastic parts. 

2. Set-up of the spatial domain 

We define the full domain of the grid to be 𝑥 ∈ [ 𝑥 𝑙 , 𝑥 ℎ ] and 𝑦 ∈
 𝑦 𝑙 , 𝑦 ℎ ] . We consider the length of the domain in the 𝑦 direction depends

n the choices of the sub-domain sizes described in Table 1 . Therefore

e set, 

 𝑙 = 𝑦 𝑙 = 0 cm , 𝑥 ℎ = 0 . 3 cm and 𝑦 ℎ = 𝑊 𝐽 + 2 𝑊 𝐶 + 2 𝑊 𝐵 cm . 

e arbitrarily choose the height of bone in the 𝑦 direction protruding

nto the top and bottom of the domain to be, 

 𝐵 = 0 . 1 cm . 

n [7] , the authors use high resolution MRI (magnetic resonance imag-

ng) to evaluate the cartilage of the 2nd and 3rd, metacarpophalangeal

MCP) and proximal interphalangeal (PIP) joints in hand osteoarthritis

atients and healthy controls. Based in the Netherlands, 41 OA patients

nd 18 healthy controls were evaluated. The patients were all female,

he OA patients were between 40–80 years old, while the healthy indi-

iduals were between 18–31 years old. For healthy controls the cartilage

hickness in the PIP joint varied between 0.2 mm and 0.7 mm, with a

ean of 0.4 mm and standard deviation of 0.1 mm. This mean and stan-

ard deviation was the same with the OA patients, but they exhibited

igher levels of variation. Therefore, we consider that prior to pannus

ormation, the cartilage width in our simulated PIP joint will be approx-

mately 0.4 mm, as this was the average of healthy controls. Therefore,

e consider the cartilage to be uniform width surrounding the bone and

et, 

 𝐶 = 0 . 04 cm. 

n [6] , the authors use radiographs to assess the joint space width (JSW)

n undamaged MCP and PIP joints of patients with early rheumatoid

rthritis (RA). The mean JSW of the 4 fingers on both hands was mea-

ured for the each of the 38 patients that were assessed. The cohort was

ade up of 29 females and 9 males, 13 patients were under 50 years

ld, 8 patients were 50–60 years old, and 17 were over 60 years old. In

he males the average joint space width was 1.28 mm ( ± 0.1 mm for the

5% confidence interval), while females were 0.99 mm ( ± 0.05 mm). The

verages between the age groups were all roughly the same, (1.1 mm,

.06 mm, 1.02 mm, respectively). Similarly, in [8] the authors use ra-

iographs to validate the joint space width (JSW) calculations in un-

amaged MCP and PIP joints of patients with early rheumatoid arthritis

RA). Two dutch data sets were used to validate the method, where

adiographs were taken every 6 months of the patients. They authors

se data from the 4 fingers on each hand, of each patient (omitting the

humbs). For the 1st data set, the average PIP joint in undamaged cases

527 images tested) was 1 ± 0.2 mm, while in the 2nd data set (570 im-

ges tested) the average was 0.9 ± 0.2 mm. Therefore, we consider that

rior to pannus formation, in our simulated PIP joint we would expect

he initial joint width to be approximated as, 

 𝐽 = 0 . 01 cm , 

here we assume the spacing to be uniform across the width of the joint.

n health, the synovial membrane contains relatively few cells consisting

f an intimal layer of 1–2 cell thickness and a distinct sublining [11] .

https://github.com/Fiona-Macfarlane/Arthritis
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herefore we initially want to allow around 2 layers of cells in the mem-

rane, so we choose 

 𝑀 

= 0 . 004 cm , 

his value is set so that an approximate maximum thickness of two

acrophages is possible for the cell membrane. We arbitrarily then

hoose the space between the cartilage and the edge of the domain in

he 𝑥 -direction to be, 

 𝑆 = 2 𝑊 𝑀 

cm . 

3. Cell parameters 

Cell radii . In [76] , the authors show that the average diameter of

uman alveolar macrophages from the lung of 10 participants was

1.2 ± 0.3 μm in diameter. They also highlight that the diameter of hu-

an macrophages is much large than that of other species. Furthermore,

n [75] it was shown that the average diameter of a fibroblast is between

0–15 μm, while for a macrophage the average diameter can be as large

s 20–80 μm. Therefore, we choose the diameter of a macrophage to

e approximately 21 μm and the diameter of a fibroblast to be approxi-

ately 13 μm, that is we set, 

 𝑀 

≈ 21 
2 

𝜇m = 10 . 5 × 10 −4 cm and 𝑅 𝐹 ≈
13 
2 

𝜇m = 6 . 5 × 10 −4 cm . 

Initial condition . In a healthy joint, the intimal layer of the membrane

s generally 1–2 cells thick and consists of fibroblast-like synoviocytes

FLSs) and macrophage-like synoviocytes (MLSs) evenly distributed and

n equal amounts [11,12] . Therefore we set the initial number of both

ell types to be equal as, 

 𝐹 (0) = 200 cells and 𝑁 𝑀 

(0) = 200 cells . 

ell division . In [71] , the authors study the effects of celastrol, and anti-

nflammatory chemical, on the proliferation rates of fibroblast-like syn-

viocytes from RA patients. In the untreated case the approximate dou-

ling time of FLSs is 2.1 days. This can be used to estimate an approxi-

ate growth rate through the equation for exponential growth, 𝐷 𝑇 = 

70 
𝑟 

,

ith 𝐷 𝑇 being the doubling time and 𝑟 the % growth rate. Using this

e can estimate the FLSs will have a proliferation rate of approximately

.33 day −1 , which corresponds to the probability of a fibroblast dividing

t any time-step as, 

𝐹 ≈ 0 . 33Δ𝑡𝑐𝑒𝑙 𝑙 𝑠 . 

he authors in [39] also use a similar value for fibroblast division and

stimate that macrophage division will be similar. Therefore, we use in

ur simulations that, 

𝑀 

= 𝛼𝐹 = 0 . 33Δ𝑡𝑐𝑒𝑙 𝑙 𝑠 . 

ote, that these probabilities are within the context of the cell having

vailable space. As macrophages are larger than fibroblasts, they are less

ikely to find available space to divide within the simulations, and there-

ore the probability of a macrophage dividing will be inherently lower

han that of fibroblasts. This is consistent with the suggestion that while

he proliferation of both macrophages and fibroblasts within the pannus

ncreases, fibroblasts may exhibit a particularly aggressive phenotype

nd have higher proliferation rates [87,93,94] . 

Cell death . In [72] , the authors use experimental methods to detect

poptotic cell death in synovial tissues biopsied from 6 patients with RA,

nd 3 with OA as controls. They found that 30% of the RA fibroblast like-

ynoviocytes were susceptible to apoptosis. The authors of [39] , use this

alue and the assumption that apoptosis takes 24 h to estimate that the

poptosis rate of fibroblast like-synoviocytes is around 0.3 day −1 . This

ould lead to the probability of a fibroblast undergoing apoptosis to be,

𝐹 = 0 . 3Δ𝑡𝑐𝑒𝑙 𝑙 𝑠 . 

his value results in proliferation and decay being very close (similar

o a homeostatic situation) but leads to extinction due to stochasticity.
18 
t the moment we choose a value of 10% of this, to prevent fibrob-

ast extinction and assume the value would be similar to macrophage

poptosis rates. In the review paper [73] , the authors discuss the key

henotypes of monocytes and macrophages. Specifically, they discuss

ouse model results, where Ly6C+ intestinal monocytes that have a

alf-life of 3 weeks. The authors of [39] , use this mouse model value

nd assume that apoptosis of macrophages occurs at the rate of 0.033

ay −1 . Therefore, we set the probability of a macrophage undergoing

poptosis to be, 

𝑀 

= 0 . 033Δ𝑡𝑐𝑒𝑙 𝑙 𝑠 . 

Cell migration . In many mathematical modelling works ani-

al cell movement is estimated to be of order 1 × 10 −11 cm 

2 

ec −1 [39,74,104–106] . This estimate translates to a diffusion rate of

 . 64 × 10 −7 cm 

2 day −1 , which through scaling corresponds to a probabil-

ty of moving of 
Δ𝑡𝑐ℎ𝑒𝑚 

Δ2 
𝑥𝑐𝑒𝑙𝑙𝑠 

8 . 64 × 10 −7 . Therefore, we set for fibroblasts, 

𝐹 = 

Δ𝑡𝑐𝑒𝑙 𝑙 𝑠 

Δ2 
𝑥 

8 . 64 × 10 −7 , 

nd similarly for macrophages, 

𝑀 

= 

Δ𝑡𝑐𝑒𝑙 𝑙 𝑠 

Δ2 
𝑥 

8 . 64 × 10 −7 . 

e note that these are just estimates and, as macrophages are larger,

hey may have a lower movement probability. Also note that 𝜆 is not the

otal probability, but contributes to this probability as we also consider

 volume exclusion process whereby cells cannot overlap in space with

ach other or with cartilage or bone. This probability relies on Δ𝑡𝑐ℎ𝑒𝑚 

nd Δ𝑥𝑐𝑒𝑙 𝑙 𝑠 = Δ𝑥 which have to be chosen such that 𝜆 ≤ 1 . 

4. Parameters for MMPs, cartilage and bone 

MMP secretion rates of cells . In the mathematical model described

n [39] , the authors estimate the MMP secretion rates of both fibroblasts

nd macrophages. For our initial simulations we use these values and

et, 

𝐹 = 13 . 912 × 10 −5 Δ𝑡𝑐𝑒𝑙 𝑙 𝑠 and 𝛽𝑀 

= 5 . 2717 × 10 −5 Δ𝑡𝑐𝑒𝑙 𝑙 𝑠 . 

Diffusion and decay of MMPs . The parameters for the mechanisms of

MPs in the joint are taken to be those used in [39] . They estimate the

iffusion rate of MMPs, using [74] , to be, 

𝐶𝑀 𝑀 𝑃 = 6 . 59 × 10 −2 cm 

2 day −1 . 

urthermore, they estimate, using [77] , the natural decay rate of MMPs

o be, 

𝐶𝑀 𝑀 𝑃 = 0 . 138 day −1 . 

Degradation of cartilage and bone by MMPs . In [39] , they only consider

artilage degradation, which they estimate to occur at the rate, 

𝜌𝐶 
= 

4 . 44 × 10 3 
1 . 15 

𝜌𝐶 (0) day −1 . 

e make the assumption that the decay rate of bone will be lower, and

or simulations, take the value, 

𝜌𝐵 
= 

𝜅𝜌𝐶 

10 
= 

4 . 44 × 10 3 
11 . 5 

𝜌𝐶 (0) day −1 . 
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