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Supplementary Section 1: Form of the self energy in ARPES simulations

The following mathematical form of the self energy was utilized in our simulations for

interpreting the ARPES data, within an energy window of ∼0.5 eV from the Fermi level:

Σn(k, ω) = Σloc(ω) − i
Γ

Z
+

∆
2/Z

ω + Z(εkn +Σ0) + iΓ0

. (1)

Here k is the momentum, ω is the energy, εkn is a generic band eigenvalue, Γ is scattering

rate, ∆ is the gap parameter, Γ0 is a constant related to the change in scattering rate due

to ∆ and Σloc is the momentum-independent (local) component of the self-energy:

Σloc(ω) = Σ0 −
1 − Z
Z

ω , (2)

which we approximated assuming a linear structure characterized by the quasiparticle residue

Z and a constant energy shift Σ0.

To explain the physical reasons underlying Eq. (1) we note that the corresponding

momentum-resolved single-particle Green’s function is represented as follows:

Gn(k, ω) =
1

ω − εkn −Σn(ω,k)
=

Z

ω − ε∗kn + Γ −
∆2

ω+εkn+iΓ0

, (3)

where

ε
∗
kn = Z (εkn +Σ0) . (4)

In fact, the last expression in Eq. (3) has the same mathematical structure of the phenomeno-

logical self-energy previously used for fitting ARPES data in the presence of a superconduct-

ing or charge density wave (CDW) gap [1, 2]. Therefore, in this work, Eq. (1) is designed

to represent the CDW effects on a band structure consisting of pre-existing quasi-particle

excitations renormalized by electron correlations.

Note that in Eq. (2) we assumed that Σloc(ω) acts as a number rather than a matrix.

However, in general, the self-energy correction Σloc(ω) shall be expected to be significant

only for the V 3d degrees of freedom. Furthermore, considering the symmetry of our system,

the dz2 , dx2+y2 + dxy and dxz + dyz components of the self-energy are not a-priori equal, as

they belong to distinct irreducible representations of the point symmetry group of the V

atoms. On the other hand, Eq. (2) is a meaningful approximation provided that, for energies

ω within ∼0.5 eV around the Fermi level, the following hypothesis are verified:
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FIG. S1: Theoretical calculations and band character. (a)-(c) DFT calculated bands. The contri-

bution from V and Se atoms are represented by yellow and violet color. The marker size corresponds

to the V dz2 , dx2+y2 + dxy and dxz + dyz orbital characters. (d) LDA + DMFT calculated band

structure (U = 6 eV, J = 0.8 eV). The DFT bands are overlayed as red dashed lines. (e) Density

of states corresponding to LDA + DMFT calculated band structure, shown in (d). (f)-(g) Energy

dependence of the (f) real and (g) imaginary parts of the electronic self energy, respectively.

1) Most of the spectral weight arises from the V 3d electrons.

2) The self-energy is approximately orbital-independent.

3) The momentum-independent local component Σloc of the self-energy is approximately

real and linear with respect to the frequency.

Here we use DFT and LDA+DMFT calculations to prove that these hypotheses are, in

fact, approximately applicable to our system. We show the DFT calculated bands resolved

with respect to their orbital character in Fig. S1(a)-(c). These calculations indicate that the

bands have mostly V 3d character near the Fermi level. Specifically, the spectral weight is

dominated by the dz2 , dx2+y2 + dxy contributions. Fig. S1(d) illustrates the LDA+DMFT

band structure obtained for a screened Hubbard interaction strength U = 6 eV and a Hund’s
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TABLE I: Quasiparticle weights of V 3d orbitals for different values of U , at J = 0.8 eV

U dz2 dx2+y2 + dxy dxz + dyz

5 eV 0.50635 0.78723 0.80550

6 eV 0.49489 0.75884 0.77807

7 eV 0.47736 0.73362 0.75279

8 eV 0.45801 0.70974 0.72878

9 eV 0.43984 0.68810 0.70745

coupling constant J = 0.8 eV. The orbitally-resolved LDA+DMFT local DOS in Fig. S1(e)

confirms that, consistent with DFT, most of the spectral weight near the Fermi level has

V 3d character. Finally, as shown in Fig. S1(f) and (g), the self-energy is approximately

linear and similar for all of the V 3d orbitals for energies ∣ω∣ ≲ 0.5 eV with respect to the

Fermi level. This observation is consistent with the LDA+DMFT quasi-particle weights:

Zα =
»»»»»»»»»
1 −

∂Σ
′
α

∂ω

»»»»»»»»»

−1

, (5)

see Table 1, which are all ≳ 0.5, in agreement with our simulation (in the range 0.52 to

0.54).

In Fig. S2 we show the LDA+DMFT bands for three different values of the Hubbard

interaction strength U . The bands are found to be very similar for these U values. This

indicates that our theoretical predictions are robust.
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FIG. S2: Behavior of LDA+DMFT bands as a function of U . (a)-(c) LDA+DMFT band structures

calculated using the given values of screened on-site Coulomb interaction strength U , at J = 0.8 eV.

The bare DFT bands are also shown for comparison (red dashed lines).
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Supplementary Section 2: Raw ARPES spectra in metallic and insulating phase

Fig. S3(a) and (b) show static ARPES spectra for both metallic and insulating phases.

The dispersion of the top V 3d band is different close to kF due to the formation of the

energy gap in the insulating phase. Figure S3(c) presents TR-ARPES snapshots of the

spectral changes in these two scenarios before and after optical excitation.
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FIG. S3: Comparison of ARPES spectra. (a)-(b) Static ARPES spectra for metallic and insulating

phase. (c) TR-ARPES spectra at the given time delays for metallic (top) and insulating (bottom)

phase.
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Supplementary Section 3: Simulation of ARPES spectra

The ARPES intensity is simulated using the expression

IARPES = [∣Mn(k, ω)∣2An(k, ω)nFD(ω)] ∗Rω ∗Rk. (6)

We expand Mn(k, ω) in second order polynomial terms of both ω and k [3]. The energy

and momentum resolution functions (Rω and Rk) are known from instrument calibration

and remain fixed for a given measurement. Furthermore, in static ARPES measurements

we use that Te = Ts and µ = EF such that nFD is fully specified. The parameters describing

Mn(k, ω) and Σn(k, ω) are obtained by performing a 2D fit of a simulated (ω, k)-dependent

intensity to the corresponding ARPES spectrum. In static condition, we find that a satis-

factory fit is obtained using a quasiparticle residue Z in the range of 0.52 to 0.54. Since the

values of Z and ∆ at a given Ts are intrinsic properties of the V 3d states that are indepen-

dent of measurement configuration, we apply the values obtained from the static ARPES

simulations to describe the TR-ARPES spectra. Note that the Se 4p states at higher binding

energies are well-described by the DFT bands and using a scattering rate that is merely ex-

pressed in terms of first order polynomials of ω and k. The parameters describing Mn(k, ω)
are related to the photoemission setup, however, we use the assumption that Mn(k, ω) is

independent of time such that the matrix element is always determined in the equilibrium

part of the TR-ARPES measurements. So, for the fits of the TR-ARPES data we account

for the time dependent changes of FD distribution and spectral function by allowing a vari-

ation of Te, ∆Es and the self-energy through the scattering rate (Γ ) and the gap parameter

∆. Data points acquired for t < −100 fs are described using a single optimized spectrum, as

the system is in equilibrium. The parameters of this optimized spectrum are used as input

for the fit of the TR-ARPES data points acquired at the remaining time delay points. We

allow for a slight adjustment of the energy- and momentum-position of the bands to ensure

consistency between measured and fitted spectra.

In Figs. S4(a)-(c) we show the TR-ARPES spectra, simulated spectra and the corre-

sponding unsigned relative error (∣ ε ∣) at t = −500 fs, 60 fs and 2000 fs for the metallic

phase (Ts = 200 K). The associated cumulative distribution of ∣ ε ∣ is given in Figs. S4(d)-(f).

As the actual intensity for the pixels above EF is very small, irrespective of the simulation

quality, the relative error for these pixels are high. We have therefore selected the energy

range from -2.5 eV to EF for our error analysis. All fitted pixels that fall below a margin set
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FIG. S4: Quality of simulation. (a)-(c) TR-ARPES specta for Ts = 200 K at the given time delays

(left column). Simulated spectra and the corresponding unsigned relative errors (ε = (simulation-

data)/data) are shown in the middle and right columns, respectively. (d)-(f) Cumulative distribu-

tion of ∣ ε ∣ for the corresponding time-delays in the same row in (a)-(c) for the energy range -2.5

eV to EF. The inserts present the distribution of ε. The green dashed lines in (d)-(f) correspond

to ∣ ε ∣= 0.1.

by ∣ ε ∣= 0.1 are deemed as providing a satisfactory agreement between model and data. We

find that this is the case for ≈92% of the pixels for all the three time delays. The symmetric

distribution of the relative error (see inserts in Figs. S4(d)-(f)) with respect to ε = 0 shows

the unbiased nature of our simulation.

In Figs. S5(a) and (b) we show the changes in the remaining fit parameters - scattering

rate (Γ ) associated with the V 3d band and the energy shift (∆Es) which accompany the

parameters Te and ∆ shown in Fig. 3 of the main text. Figs. S5(c)-(f) present the intensity
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FIG. S5: Resulting parameters from fits of t-dependent photoemission intensity. (a) The change

in the scattering rate (Γ ) of V 3d states for both insulating (Ts = 88 K) and metallic (Ts = 200 K)

phase. The solid curves show fits to a fast exponential rise followed by an exponential decay with

the given time constants. (b) The corresponding rigid energy shift of the spectra, ∆Es. (c)-(d)

Difference between the fitted equilibrium spectra and the fitted spectra at the given time delays

(60 fs and 2000 fs) for the metallic phase. (e)-(f) Corresponding difference spectra for the insulating

phase.

difference calculated by subtracting the fitted equilibrium spectra from the fitted spectra at

t = 60 fs and t = 2000 fs, which may be compared with the experimental results in Figs.

2(e) and (f) of the main manuscript.

In order to cross-check the optimization of ∆ in the fit of the insulating phase data,

we have generated difference spectra with values of ∆ of 0, 30 and 60 meV, while keeping

the rest of the parameters fixed to their optimized values. We pick the measurements at

t = 60 fs and t = 2000 fs, shown in Fig. S6(a), as a check of the robustness of the fit in the

dynamic and metastable phases of SL VSe2. The corresponding simulated difference spectra

are shown in Fig. S6(b). As ∆ increases, the red contrast above EF gets more pronounced
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FIG. S6: Effect of gap parameter on difference spectra. (a) Measured difference spectra for the

insulating sample at t = 60 fs and t = 2000 fs shown in top and bottom rows, respectively. (b)

simulated difference spectra for changes of the gap parameter ∆ given by 0, 30 and 60 meV with

the remaining parameters kept fixed to their fitted values. (c) Absolute error in the fit for the given

values of ∆ at 60 and 2000 fs in the top and bottom panels, respectively. The “star” marker with

the error bar indicates the value of ∆ obtained from the fit where ∆ is kept as a free parameter.

while the blue intensity below EF shifts away from Γ̄. These striking changes are caused

by the change of the spectral function at finite ∆ (see Fig. 1(f) in the main manuscript),

asserting that even a small value of ∆ can have a substantial impact on the time-dependent

photoemission intensity around EF. To quantify the error between data and simulation for

the different values of ∆, we have calculated the squared difference between the data and

simulation for each pixel and summed over the regions shown in Figs. S6(a)-(b). These

values are plotted in Fig. S6(c) together with the value of ∆, resulting from the fit where ∆

is kept as a free parameter (see “star” marker). The optimization shows that our fit yields

a correct minimum for ∆ within the error bar.
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Supplementary Section 4: Reproducibility of intensity difference signals

We have performed consistency checks of the observed intensity difference by repeating

the measurements discussed in the main manuscript for sample temperatures Ts of 88 K, 118

K, 166 K and 200 K and for two independent SL VSe2 samples, verifying that the spectral
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FIG. S7: Reproducibility of the response to optical excitation. (a) Difference spectra at t = 60 fs for

sample temperature 88 K (sample II), 118 K (sample I), 166 K (sample I) and 200 K (sample II).

(b) Corresponding difference spectra at t = 2000 fs. The purple arrows point to the (ω, k)-region

of the spectra most strongly affected by the phase transition. (c) Corresponding EDCs around kF

at the given time delays. The blue and orange tick marks represent peak positions for t < 0 and

t = 2000 fs, respectively. The black arrow indicates the change in peak position from t = 60 fs to

t = 2000 fs.
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signatures are robust for the two phases across Tc = 135 K. Figure S7 summarizes these

results by presenting the corresponding intensity difference spectra and the EDCs around

kF at multiple time delays. The intensity difference is seen to exhibit identical shapes in the

insulating and metallic phases as shown in Fig. 2(e)-(f) in the main manuscript. The EDCs

present similar gap closing trends below 135 K as discussed in connection with Fig. 2(d) in

the main manuscript.
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Supplementary Section 5: Thickness and polymorphic structure of VSe2

(a) Graphene/ SiC (b) SL VSe2 / Graphene / SiC (c) 2L VSe2 / Graphene / SiC

(1T) (1T)(1T') 

FIG. S8: Structure of VSe2 samples. (a)-(c) In situ RHEED images for (a) graphene substrate,

(b) SL VSe2 and (c) bi-layer VSe2 samples. The red arrows indicate stripes associated with the 1T

phase of SL VSe2. The green arrows indicate the 1T
′

phase that occurs for multilayers of VSe2.

Our SL VSe2 samples were grown on bi-layer (BL) Graphene on SiC. Initially, the SiC

substrates were outgassed at 650
◦
C for a few hours and then annealed three times up to

1300
◦
C for 2 min. The formation of BL graphene was verified by reflection high-energy

electron diffraction (RHEED) and low-energy electron diffraction (LEED). High-purity V

(99.8%) and Se (99.999%) were simultaneously evaporated while the substrate was kept at

250
◦
C. The growth rate was fixed at 5 min per Se-V-Se layer. During the growth of VSe2, the

sample quality, structure and thickness were monitored in situ using RHEED. The RHEED

images obtained from our graphene substrate, SL VSe2 and bi-layer VSe2 samples are shown

in Fig. S8. The red and green arrows in panels (b) and (c) indicate stripes originating from

1T and 1T
′
structures, respectively. The extra stripes in the case of the 1T

′
polymorph are

caused by an additional structural distortion, as observed in SL ReSe2 [4] and multilayers

of VSe2 [5]. All our samples exhibit the RHEED pattern in Fig. S8(b), which is consistent

with 1T SL VSe2.
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Supplementary Section 6: Determination of time resolution
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FIG. S9: Measurement of time-resolution on graphene substrate. (a) Photoemission intensity for

graphene substrate for t < 0 around K̄. (b) Intensity difference between a spectrum measured at

t = 60 fs and the spectrum shown in (a). (c) Intensity difference integrated within the region marked

by a dashed box in (b) as a function of time delay. The red curve is a fit to an exponential function

convoluted with a Gaussian that accounts for the time resolution. The black curve represents the

Gaussian with a FWHM of 54 fs.

We have performed TR-ARPES measurements on the graphene substrate in order to

determine the time resolution of our experiment. A TR-ARPES spectrum for t < 0 and an

intensity difference at t = 60 fs are presented in Figs. S9(a)-(b) around K̄. The intensity

difference integrated within the dashed black box in panel (b) is plotted as a function of time

in panel (c), and a fit is performed with an exponential function convoluted with a Gaussian

that accounts for the time resolution of the experiment. The full-width-at-half-maximum

(FWHM) for the Gaussian is determined from the fit to be σt = 54 fs, which we use as an

indication for the time resolution of the TR-ARPES experiment.
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