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Abstract 29 

 30 

Living in groups provides benefits but incurs costs such as attracting disease vectors. For example, 31 

synanthropic flies associate with human settlements, and higher fly densities increase pathogen 32 

transmission. We investigated whether such associations also exist in highly mobile non-human primate 33 

groups (NHP). We studied flies in a group of wild sooty mangabeys (Cercocebus atys atys) and three 34 

communities of wild chimpanzees (Pan troglodytes verus) in Taï National Park, Côte d’Ivoire. We observed 35 

markedly higher fly densities within both mangabey and chimpanzee groups. Using a mark-recapture 36 

experiment, we showed that flies stayed with the sooty mangabey group for up to 12 days and for up to 1.3 37 

km. We also tested mangabey associated flies for pathogens infecting mangabeys in this ecosystem, Bacillus 38 

cereus biovar anthracis (Bcbva), causing sylvatic anthrax, and Treponema pallidum pertenue, causing yaws. 39 

Flies contained treponemal (6/103) and Bcbva (7/103) DNA. We cultured Bcbva from all PCR-positive 40 

flies, confirming bacterial viability and suggesting that this bacterium might be transmitted and disseminated 41 

by flies. Whole genome sequences of Bcbva isolates revealed a diversity of Bcbva, likely derived from 42 

several sources. We conclude that flies actively track mangabeys and carry infectious bacterial pathogens; 43 

these associations represent an understudied cost of sociality and potentially expose many social animals to 44 

a diversity of pathogens.  45 

 46 
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INTRODUCTION 49 

 50 

Living in social groups provides organisms a number of benefits but can also incur costs such as increasing 51 

the attraction of disease vectors. Possibly the strongest links between sociality and the risk of vector-borne 52 

disease in social living animals stems from comparative studies showing that malaria prevalence increases 53 

with group size across Neotropical primate species (Davies et al., 1991; Nunn et al., 2005). Synanthropic 54 

flies, which form close associations with human settlements and their livestock, have also been implicated 55 

in increasing disease risk in human settlements. A number of synanthropic fly species have been shown to 56 

serve as mechanical vectors for human pathogens (i.e., where a vector moves a parasite though is otherwise 57 

not necessary for the pathogen to complete its life cycle) and increasing fly densities have been shown to 58 

increase human disease risk (Banjo et al., 2005; Förster et al., 2007; Graczyk et al., 2001; Greenberg, 1971).  59 

 60 

Synanthropic flies are involved in transmitting a broad array of pathogens. For example, they play a role in 61 

the transmission of many protozoan parasites (e.g., Toxoplasma gondii, Wallace 1971; Giardia spp., Markus 62 

1980; Cryptosporidium parvum, Graczyk et al. 1999), bacteria (e.g., Chlamydia trachoma, Emerson et al. 63 

2000; Escherichia coli, Iwasa et al. 1999; Vibrio cholerae, Echeverria et al. 1983), viruses (e.g., 64 

enteroviruses, Gregorio et al. 1972; Rift Valley fever virus, Turell et al. 2010), and helminth eggs (e.g., 65 

Ascaris spp. and Trichuris trichiura, Monzon et al. 1991). Whether the associations observed between 66 

synanthropic flies and humans are a product of the development of agriculture and a more sedentary lifestyle 67 

(Graczyk et al., 2001; Hassell et al., 2017), or whether such associations exist more broadly in hunter 68 

gatherer populations or wild non-sedentary non-human primate social groups and influence disease ecology 69 

is to our knowledge, currently unknown.  70 

 71 

To address this knowledge gap, we examined the density of flies inside and outside a group of sooty 72 

mangabeys (Cercocebus atys atys) and two communities of chimpanzees (Pan troglodytes verus) living in 73 



 

Taï National Park (TNP), Côte d’Ivoire and conducted a mark recapture experiment in the mangabey group 74 

to examine how a high density of flies is maintained as the group moves several kilometers each day through 75 

the tropical rainforest. Concurrently, we captured flies in the syntopic community of wild chimpanzees that 76 

came into proximity of the mangabey group to examine whether flies marked in the mangabey group might 77 

change association to a primate species. We tested flies found in association with the mangabey group for 78 

mammal DNA to see whether they had contact with other species and might move pathogens between 79 

species. We molecularly characterized the fly species present and examined whether specific fly species 80 

captured in association with these social groups might play a role in disease epidemiology by testing these 81 

flies for the DNA of pathogens known to infect wildlife in this ecosystem; specifically, for bacteria causing 82 

sylvatic anthrax (Bacillus cereus biovar anthracis: Bcbva) (Hoffmann et al., 2017; Leendertz et al., 2004) 83 

and yaws (Treponema pallidum pertenue: TPE) (Gogarten et al., 2016; Knauf et al., 2018). To confirm that 84 

these flies containing Bcbva DNA could be involved in pathogen transmission and contained viable bacteria, 85 

we attempted to culture Bcbva from these flies and then sequenced the full genome of these isolates. To 86 

examine a potential epidemiological link between the Bcbva in flies and that killing mangabeys, we also 87 

cultured Bcbva from a mangabey that died during the study period in the same area and sequenced its full 88 

genome.  89 

 90 

Sylvatic anthrax, caused by Bcbva, is a persistent and widespread cause of death in a broad range of 91 

mammalian hosts in this ecosystem and was responsible for more than 38% of wildlife mortality observed 92 

over 26 years (Hoffmann et al., 2017; Leendertz et al., 2004). Bcbva was the likely cause of death for 11 of 93 

23 mangabeys and 31 of 55 chimpanzees for which necropsies were performed in Taï National Park and 94 

seroprevalence rates are extremely low in these species, suggesting Bcbva is highly lethal (Hoffmann et al., 95 

2017; Zimmermann et al., 2017). Furthermore, Bcbva DNA was detected in more than 5% of flies sampled 96 

throughout TNP and many of these flies were shown to contain viable spores (Hoffmann et al., 2017). In 97 

non-sylvatic ecosystems, it has been suggested that flies mechanically spread spores from Bacillus 98 



 

anthracis, the closely-related causative agent of classical anthrax, from carcasses through the environment, 99 

potentially leading to subsequent transmission (Blackburn et al., 2014; Fasanella et al., 2010). Little is 100 

known about the transmission and persistence of sylvatic anthrax.  101 

 102 

Non-human primates in TNP are also infected with TPE and present with severe lesions (Figure 1A; 103 

Gogarten et al., 2016; Knauf et al., 2018). Many mangabeys in the study group (referred to as the 104 

Audrenisrou group) presented with yaws symptoms during the study period (16% of individuals; data not 105 

shown) and full TPE genomes generated from lesion samples confirmed this pathogen is present in animals 106 

collected in the study group with these symptoms (Knauf et al., 2018). Chimpanzees in this ecosystem also 107 

appear to be infected with TPE, with next generation sequencing data from chimpanzee bones confirming a 108 

Treponema pallidum pathogen is present in these communities, though to date no samples from lesions are 109 

available to confirm infections (Gogarten et al., 2016). Flies have long been hypothesized to play a role in 110 

the epidemiology of yaws, with studies showing that flies can carry treponemes from lesions (Kumm, 1935; 111 

Satchell et al., 1953) and in experimental conditions, that flies transmitted the parasite from one host to 112 

another host when feeding on lesions (Kumm et al., 1936). Further, a high proportion of flies captured in 113 

two national parks in Tanzania, where wild olive baboons (Papio anubis) are infected with TPE, were found 114 

to contain Treponema pallidum DNA (Knauf et al., 2016); based on the low variability of the genomic 115 

regions of Treponema pallidum examined in this study, it was not possible to definitively determine which 116 

subspecies of Treponema pallidum was present in these flies, though the authors argue their results suggests 117 

that flies often come into contact with the spirochete on these baboons as there is no evidence for other 118 

Treponema pallidum subspecies circulating in this ecosystem (Knauf et al., 2016).  119 

 120 

 121 

MATERIALS AND METHODS  122 

 123 



 

(a) Study site 124 

This study was conducted on flies that associate with wild primates in TNP, Côte d’Ivoire (6°20’N to 5°10’N 125 

and 4°20’W to 6°50° W). TNP represents the largest remaining primary forest in West Africa and the wild 126 

non-human primate populations present in this ecosystem represent some of the best-studied populations in 127 

the world; studies on the chimpanzees and monkeys of TNP were initiated in 1979 and 1989 respectively 128 

(Boesch et al., 2000; McGraw et al., 2007) and a veterinary program that started in 2001 has targeted a 129 

broad array of pathogens associated with these populations (Gogarten et al., 2014; Hoffmann et al., 2017; 130 

Leendertz et al., 2006; Rich et al., 2009). We focused on a group of sooty mangabeys habituated to human 131 

observers in November 2012 (the Audrenisrou group), which consisted of ~60 individuals during the study 132 

period (Gogarten et al., 2018; Mielke et al., 2017). We also captured flies near a habituated chimpanzee 133 

community (the North group) with 17 individuals (in August 2013), whose territory overlaps that of the 134 

mangabey group, and two neighboring habituated chimpanzee communities (the South and East groups, 135 

containing 41 and 36 individuals respectively in December 2018).  136 

 137 

(b) Fly trapping to assess density inside and outside of the primate groups 138 

A large diversity of fly species is found in Taï National Park (Hoffmann et al., 2017). Genera present contain 139 

species that are known to be necrophagous, coprophagous, hematophagous, or myiatic, and their diets can 140 

be flexible and opportunistic, including different food types depending on what is available, though the life 141 

cycles and ecology of these sylvatic fly communities are poorly described. Flies were caught using either 142 

custom-made traps (described in: Hoffmann et al., 2017) placed over a commercial attractant based on 143 

animal proteins that mimic a decaying carcass (hereafter: synthetic carcass baited traps; Unkonventionelle 144 

Produkte Feldner, Waldsee, Germany) or using feces as an attractant. Flies were not attracted to fecal 145 

samples once cooled; to circumvent this limitation and ensure sampling conditions were similar at all 146 

distances from the primate group, a thermos full of hot water was used to warm fecal samples in a plastic 147 

bag placed at the top of the thermos (Figure S1). Flies were trapped using a clear plastic bag lowered over 148 



 

feces and startled flies would then fly and walk upwards in the bag (hereafter: feces baited traps). Both 149 

types of traps were left open for 20 minutes and flies were euthanized with ether. Flies from a given trap 150 

were stored at ambient temperature on silica in 50 ml Falcon tube containing up to 20 flies until they were 151 

transported back to the Robert Koch Institute and subsequently stored at 4°C. Flies caught with synthetic 152 

carcass baited traps did not have contact with the bait, while flies captured with feces baited traps were in 153 

contact with feces prior to capture. A researcher remained next to the traps throughout the entire experiment 154 

to discourage curious NHP from coming into contact with the traps. Our aim was to avoid any potential 155 

increase in disease risk for the primates through exposure to flies in the traps or through exposure to human 156 

microorganisms on the traps themselves. Had NHP come into contact with the traps, we would have 157 

immediately stopped the experiment. Throughout these experiments no mangabeys or chimpanzee came 158 

into contact with the fly traps.  159 

 160 

During five days between July 30th and August 3rd 2013, six fresh fecal samples were collected in the 161 

morning at the mangabey sleeping tree. Several hours after the mangabeys left the sleeping site, trapping of 162 

flies using feces bait traps was conducted at 1km from the group, 500m from the group, and within the 163 

mangabey group. These trapping distances were selected because individuals are usually within a range of 164 

100m of one another - we hoped that 500m and 1000m were sufficiently far from the study group that we 165 

would be clearly outside of it, while enabling us to travel the distance quickly so we could find the group 166 

again after sampling. On each day, two independent traps were set at different locations at each of the three 167 

distances, for a total of six trapping events per day. To avoid biasing sampling, the order of sampling each 168 

day was randomized. We repeated this experiment using synthetic carcass baited traps on 10 additional days 169 

between May 13th and May 29th, 2014.  170 

 171 

We repeated these fly density experiments with two communities of chimpanzees (South and East Groups) 172 

using feces baited traps in December 2018. Based on our results with the mangabeys and because of the 173 



 

larger home range sizes of chimpanzees that makes finding the group after you leave it difficult, we were 174 

not able to also set traps at 1000m from the group and traps were almost always first set in the chimpanzee 175 

group and then 500m from the group.  176 

  177 

(c) Mark and recapture of flies 178 

Flies were collected in the morning underneath the mangabey sleeping tree using a clear plastic bag placed 179 

over fresh feces (Figure 1B). Flies were placed in a cooler with ice packs to anesthetize them. Inspired by 180 

studies marking lice on lemurs (Zohdy et al., 2012), we marked flies on the posterior abdomen or thorax 181 

with a small amount of nail polish from a pipet tip, with a distinct color used at each marking location. GPS 182 

coordinates were taken at the point of marking. Flies were marked with five different colors on five days 183 

(Nmarked=1,591 flies; July 19th, 21st, 22nd, 23rd, and 27th). Flies captured after the initial marking day were 184 

checked for nail polish and the GPS point, number of marked, and the number of unmarked flies were 185 

recorded during each capture event (Nrecapture effort=3,164 flies). On August 1st, a party of 11 chimpanzees 186 

from the North group moved through the mangabey group’s territory at the same time we were conducting 187 

the mark recapture experiment; the North group has a much larger but overlapping territory with the sooty 188 

mangabey Audrenisrou group (Boesch et al., 2000). On the day after they passed close to the mangabey 189 

group, we sought to examine whether flies marked in the mangabey group might have found their way into 190 

the chimpanzee party by opportunistically collecting flies (N=166) with feces baited traps. 191 

 192 

(d) Flies in the social group after sleeping near a decaying carcass 193 

On May 2nd, 2014 the mangabey group slept in a tree near a dead duiker carcass (Figure 1C); to examine 194 

whether flies on the carcass might pick up pathogens from carcasses and then travel with the group, on May 195 

3rd, flies were captured over feces at 9:00 a.m. as the mangabeys were leaving the tree, and again at 10:00 196 

a.m., 12:00 a.m., 1:17 p.m., and lastly at 5:30 p.m. when the mangabeys entered their sleeping tree. A 197 

chimpanzee died elsewhere in the forest on the same day that the duiker carcass was found with the 198 



 

mangabeys and the veterinarian on site prioritized performing the necropsy on the chimpanzee and so no 199 

necropsy was performed on this dead duiker carcass. We did however perform necropsies from duikers in 200 

the study area on April 11th, 17th, 28th and May 13th 2014, for which Bcbva was confirmed as the cause of 201 

death (Hoffmann et al., 2017), demonstrating that anthrax was causing mortality in this duiker population. 202 

A necropsy on a mangabey in the study group that died on May 10th 2014 confirmed that Bcbva was the 203 

likely cause of death, showing that mangabeys were being exposed to anthrax through some route 204 

(Hoffmann et al., 2017). This sample set allowed for an examination of a potential epidemiological link 205 

between Bcbva in flies present in the group before the mangabey’s death (N=3) and the Bcbva that killed 206 

the mangabey, but also with flies that were captured in the group after this mangabey’s death (N=4). 207 

 208 

(e) Molecular analyses 209 

Extraction 210 

DNA was extracted from a subset of individual flies captured using the synthetic carcass baited traps (N=45) 211 

and feces baited traps (N=33) in the mangabey group. DNA was also extracted from a subset of flies 212 

captured over fresh mangabey feces on the morning after the group slept near a duiker carcass (N=5 213 

flies/capture events, total 25 flies). DNA was extracted from flies using the GeneMATRIX Stool DNA 214 

Purification Kit (Roboklon, Berlin, Germany). Prior to homogenization with a Fast Prep® (MP 215 

Biomedicals, Santa Ana, CA, USA) each fly was cut into smaller pieces with sterilized scissors, but 216 

otherwise extraction followed the manufacturer’s instructions. DNA was extracted from the spleen of the 217 

dead mangabey using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany). DNA concentration 218 

was measured using a Nanodrop (Thermo Scientific, Waltham, MA, USA) and extracts were stored at -219 

20°C.  220 

 221 

Fly species identification  222 

To determine the fly species for this subset of flies we Sanger sequenced the COI fragment of these 103 223 



 

flies captured in the sooty mangabey group following (following: Folmer et al., 1994; details in 224 

Supplementary material). We aligned the resulting 96 sequences using Muscle (Edgar, 2004) as 225 

implemented in SeaView v4 (Gouy et al., 2009). This alignment was used for phylogenetic analyses in both 226 

maximum likelihood (ML) and Bayesian frameworks. We generated a ML tree using PhyML v3 with smart 227 

model selection (PhyML-SMS; Guindon et al., 2010; Lefort et al., 2017). We used a full optimization 228 

approach, and the tree search used subtree pruning and regrafting and the Bayesian information criterion for 229 

model selection. Branch robustness was assessed with Shimodaira-Hasegawa-like approximate likelihood 230 

ratio tests (SH-like aLRT: Anisimova et al., 2011). We also ran Bayesian Monte Carlo Markov chain 231 

(BMCMC) analyses with BEAST v1.8.2 (Drummond et al., 2012) using the nucleotide substitution model 232 

identified by PhyML-SMS, a lognormal relaxed clock (uncorrelated) and a birth-death speciation model. 233 

Multiple BMCMC runs were performed; we checked that runs converged and that the posterior was properly 234 

sampled using Tracer v1.6 (http://tree.bio.ed.ac.uk/software/tracer/). We combined posterior sets of trees 235 

using LogCombiner v1.8.2 (distributed with BEAST) and identified the maximum clade credibility tree 236 

using TreeAnnotator v1.8.2 (distributed with BEAST). Branch robustness was assessed with posterior 237 

probabilities. We also performed a ML analysis on a reduced dataset only comprising unique sequences 238 

(N=44), which we identified using FaBox v1.41 (Villesen, 2007). The resulting tree was used for a species 239 

delimitation analysis using a Bayesian Poisson tree processes model (bPTP; Zhang et al., 2013). We 240 

performed taxonomic assignment of the respective molecular operational taxonomic unit (MOTU) using 241 

BLAST (Altschul et al., 1990) and the non-redundant nucleotide database of NCBI. 242 

 243 

Mammal testing 244 

To determine whether flies associated with this social group were exposed to mammal DNA, we used a pan-245 

mammal PCR targeting a 130bp region of the mitochondrial 16S DNA (with primers and blockers described 246 

in; Boessenkool et al., 2012; Taylor, 1996; full protocol described in; Calvignac‐Spencer et al. 2013b). 247 



 

Chromatograms were evaluated using Geneious Pro v 8.1.3 and cleaned sequences were assigned to 248 

mammalian species using BLAST.  249 

 250 

Pathogen screening 251 

Bcbva 252 

Following Hoffmann et al. (2017) all DNA extracts were first tested for Bcbva in duplicate with a real-time 253 

PCR targeting pag (gene coding for the protective antigen; PA) located on the pXO1 plasmid. Positive 254 

samples were then tested in duplicate using real-time PCRs targeting capB (gene coding for capsule 255 

synthesis) located on PXO2 and Island IV, a chromosomal marker unique to Bcbva, which can be used to 256 

discriminate from Bacillus anthracis. Standards of a known concentration were available for all three assays 257 

allowing us to estimate template copy numbers and all assays were consistently able to detect 10 template 258 

copies. All real-time PCR runs were conducted using a Stratagene qPCR MX3000 cycler (Stratagene, 259 

Lajolla, CA, USA) and fluorescence signals were quantified with the software MXPRO 260 

(www.genomics.agilent.com). Conservatively, only samples positive in duplicate in all three Bcbva assays 261 

were considered positive for Bcbva DNA for the analyses presented below.  262 

 263 

From all Bcbva positive flies culture was attempted under biosafety level 3 conditions. Half of the fly mush 264 

that remained after DNA extraction was plated onto the following plates: Columbia blood agar (Oxoid, 265 

Wesel, Germany), blood-trimethoprim agar (1.6 mg trimethoprim, 6.4 mg sulfamethoxazole, 20 mg 266 

polymyxin B per liter agar medium) and Cereus Ident agar (Heipha Diagnostica, Eppelheim, Germany) with 267 

the chromogenic substrate 5-bromo-4-chloro-3-indoxyl-myoinositol-1-phosphate (Klee et al., 2006). In 268 

addition, a 10 μl aliquot of the mush was diluted 1:10 in sterile NaCl, heat treated for 30 min at 65°C and 269 

then plated on the plates described above. Cultures were incubated at 37°C and monitored daily and any 270 

morphologically suspicious colonies were sub-cultured, heat-inactivated and tested in real-time PCR as 271 

described above. We followed the same procedure for culturing Bcbva from the mangabey that died on May 272 

http://www.genomics.agilent.com/


 

10th, 2014. Bcbva was retrieved from all native and heat treated samples, indicating the presence of heat-273 

resistant spores.  274 

 275 

Libraries for whole-genome sequencing were prepared using the Nextera XT Sample Preparation Kit 276 

(Illumina) and Nextera XT Index Kit (Illumina) using 1 ng of heat extracted DNA from the isolates as input. 277 

We used AMpure XP beads (Beckman Coulter) for PCR clean-up. Final concentrations were assessed using 278 

a Qubit High Sense Double Stranded DNA Assay kit (Invitrogen, Carlsbad, CA, USA) and equimolar 279 

amounts of libraries were pooled and sequenced in two runs using the Illumina MiSeq platform with v3 280 

chemistry (2x300 bp) and the Illumina NextSeq 500 platform (2x150 bp). Reads from both runs were 281 

combined, quality filtered using Trimmomatic, setting the quality score to 30 over a sliding window of four 282 

bases, with a minimum read length of 40 bp for the surviving reads. Filtered reads were then mapped to a 283 

Bcbva chromosomal reference genome (NC _014335) using BWA-MEM (Li, 2013), and deduplicated using 284 

Picard's MarkDuplicates. Alignments with a MAPQ smaller than 30 and a mapping length lower than 30 285 

were removed using SAMtools (Li et al., 2009) and the BBMap reformat script 286 

(https://github.com/BioInfoTools/BBMap/blob/master/sh/reformat.sh). Variants were called using the 287 

Variant Calling Pipeline (https://gitlab.com/RKIBioinformaticsPipelines/VariantCalling/) that uses GATK 288 

(McKenna et al., 2010) and SnpEff (Cingolani et al., 2012) A summary of the reads generated and the 289 

coverage for each isolate are available in Table S1. We considered a variant as present if it was present in 290 

95% of reads and at a minimum 10X coverage. To compare the dead mangabey Bcbva isolate with the 291 

Bcbva isolates from flies and accommodate uneven depth across isolates, we took all variants that were 292 

confidently assigned (present in 95% of reads and at a minimum 10X coverage) in the mangabey and 293 

assessed whether they were also present at those positions in the fly isolates (present in 95% of reads and at 294 

a minimum 10X coverage). We also looked at all other variants that were confidently assigned (present in 295 

95% of reads and at a minimum 10X coverage) in the fly isolates and determined whether they were present 296 

in the mangabey isolate (present in 95% of reads and at a minimum 10X coverage). For each fly, we then 297 



 

had an assessment of the variants shared with the dead mangabey, the variants confidently not shared with 298 

the dead mangabey, and unknown positions where sequencing depth was not sufficient to confidently call 299 

a variant in either the fly or dead mangabey isolate. We previously described Bcbva diversity within 300 

carcasses and found that isolates differed by a maximum of 2 chromosomal SNPs (Hoffmann et al., 2017), 301 

suggesting flies differing from the dead mangabey isolate by <2 variant positions are either 302 

epidemiologically linked or stemmed from the same source. 303 

 304 

Treponemal DNA 305 

DNA extracts were tested using a PCR amplifying a 67 bp DNA fragment, including primers from the DNA 306 

polA gene (described in: Leslie et al., 2007). An additional PCR using fusion primers was performed to 307 

append M13F/R sequences to first-round amplicons and thereby enable their sequencing (as described in; 308 

Gogarten et al., 2016). We tested the sensitivity of this assay and found it was able to detect as few as 10 309 

template molecules spiked into fly extracts (see Supplementary material for details). To add further support 310 

that Treponema pallidum was present, we performed a semi-nested PCR amplifying a 189 bp sequence of 311 

the Treponema pallidum cfpA gene (Harper et al., 2012; See Supplemantary material for details; Harper et 312 

al., 2008). Products were sequenced using Sanger sequencing and sequences were compared to publicly 313 

available sequences in NCBI through BLAST (Altschul et al., 1990). We assessed the sensitivity of this 314 

assay and found it was able to detect 1000 template molecules spiked into fly extract, but not able to 315 

consistently detect 100 template molecules spiked into fly extracts (see Supplementary material for details). 316 

Even tissue samples positive for Treponema pallidum have been positive in the short polA assay and then 317 

negative in the cfpA assay, despite having observed the spirochete in electron micrograph and ultimately 318 

being able to capture the whole genome using hybridization capture methods, further highlighting the low 319 

sensitivity of the semi-nested cfpA assay (unpublished data: SCS, JFG, FHL; Knauf et al., 2018).  320 

 321 

The regions amplified by both the polA and semi-nested cfpA assays are identical in closely related 322 



 

Treponema paraluisleporidarum, the closest relative of Treponema pallidum described to date (Šmajs et 323 

al., 2011), as well as other Treponema pallidum subspecies. To date, Treponema paraluisleporidarum has 324 

only been found in rabbits and hares, and no rabbits or hares have been detected in flies in TNP despite 325 

extensive sampling of flies (unpublished data: CH, CSC, FHL; Hoffmann et al., 2017), suggesting rabbits 326 

and hares are unlikely sources of treponemal bacteria in these flies. Similarly, no other Treponema pallidum 327 

subspecies have been described in the wildlife in this ecosystem. Because of the variation in sensitivity of 328 

the two assays used here and the fact that no hosts for Treponema paraluisleporidarum have been detected 329 

in flies in TNP, samples that yielded a Treponema sequence in the polA assay were tentatively considered 330 

TPE positive for the analyses presented below. TPE is microaerophilic and cannot grow on standard culture 331 

media (Edmondson et al., 2018), requiring direct culture of the treponemes in laboratory animals. We were 332 

unable to perform such culture experiments, so it was not possible to determine the viability of the TPE and 333 

these results should be interpreted with caution. 334 

 335 

(f) Statistical analyses 336 

To test whether the number of flies captured at synthetic baited or feces baited traps was influenced by the 337 

distance from the mangabey group, we used a generalized linear mixed effect models using a Poisson error 338 

structure and log link function (Baayen, 2008), with the number of flies caught at each trap as the response 339 

variable. Models were fitted separately for synthetic carcass baited traps and feces baited traps. Into these 340 

models we included the distance from the social group as a categorically coded fixed effect and trapping 341 

day as a random effect. To control for the effect of the ID of the person setting the trap and the hour the trap 342 

was set, these were included as further fixed effects. The hour the trap was set was approximately 343 

symmetrically distributed and z-transformed. To model the overdispersion that was evident in these models, 344 

we included trap ID as an observation level random effect (Harrison, 2014). Models were fitted in R using 345 

the function glmer in the R package lme4, using 1,000 parametric bootstraps. Samples used for the feces 346 

baited trap model consisted of 30 traps set over 5 days, while for the synthetic carcass baited traps this 347 



 

consisted of 60 traps set over 11 days.  348 

 349 

As an overall test of the effect of the distance from the mangabey group on the number of flies caught by a 350 

trap, we compared the full model with a null model lacking this fixed effect but comprising the same random 351 

effects structure and control fixed effects (Forstmeier et al., 2011) using a likelihood ratio test (Dobson, 352 

2002). We checked whether the assumptions of normally distributed and homogeneous residuals were 353 

fulfilled by visually inspecting a qqplot and residuals plotted against fitted values; both indicated no obvious 354 

deviations from these assumptions for either feces baited traps or synthetic carcass baited traps.  355 

 356 

To rule out problems of collinearity we determined Variance Inflation Factors (VIF: Field, 2005) for the 357 

standard linear model excluding random effects, which for feces baited traps revealed VIF of 1.02 for 358 

distance from the mangabey group, 1.00 for ID of capturer, and 1.02 for the hour the trap was set. For the 359 

synthetic carcass baited traps this revealed a VIF of 1.01 for distance from the mangabey group, 1.02 for ID 360 

of capturer, and 1.03 for the hour the trap was set, suggesting there were no issues with collinearity for either 361 

model.  362 

 363 

To examine whether the number of flies captured with feces baited traps was higher in the chimpanzee 364 

groups than 500m away from the group, we ran a separate paired t-tests for each of the two groups. We log 365 

transformed the number of flies captured to improve normality of this variable. Small sample sizes (10 and 366 

9 traps in the East and South groups respectively, along with 10 and 9 paired traps 500m away from the 367 

East and South groups respectively) precluded the use of generalized linear mixed effect models including 368 

time of trap set and date as random effects or an analysis of the impact of variation in party size on fly 369 

density.   370 

 371 



 

To test for an association between character states (i.e., the type of attractant used to capture the fly, whether 372 

the fly contained mammal DNA, Bcbva positivity, or Treponema pallidum positivity) and the fly phylogeny, 373 

we used Bayesian Tip-association Significance testing (BaTS). This approach tests whether any given taxon 374 

on the tree is more likely to share a character state with a sister taxon than expected by chance. BaTS uses 375 

the posterior sets of trees generated through the BMCMC analysis described above and incorporates the 376 

phylogenetic uncertainty arising from the data into its test of phylogeny-trait associations (Parker et al., 377 

2008).  378 

 379 

 380 

RESULTS 381 

 382 

(a) Fly density 383 

Overall there was a clear impact of the distance from the mangabey group on the number of flies captured 384 

for both synthetic carcass baited traps (likelihood ratio test comparing full and null model: 2=19.929, df=2, 385 

P<0.001; Table S2) and feces baited traps (2=41.443, df=2, P<0.001; Table S3). More specifically, the 386 

number of flies captured at each trap type was higher within the group than outside the group (Figure 2A 387 

and B; Table 1). Similarly, in both chimpanzee groups, there were more flies in the group than 500m away 388 

from the group (East group: x̄0m=19.1 flies, x̄500m=3.8 flies, paired t-test, P<0.001, t=12.974, df=9; South 389 

group: x̄0m=17.7 flies, x̄500m=2.4 flies, paired t-test, P<0.001, t=6.556, df=8; Figure 3 and Table S4).  390 

  391 

(b) Mark recapture 392 

Of the 1,591 flies marked in the mangabey group, 51 (3.2% of flies that were marked) were recaptured using 393 

a recapture effort of 3,164 in the mangabey group (Table S5). These flies were captured up to 1.3 km from 394 

the point of marking (mean distance traveled = 703m, SD = 297m) and were recaptured with the group up 395 



 

to 12 days after marking (mean days since marking = 3.4 days, SD = 2.6 days; Figure 4). The fly density 396 

experiment using feces as a bait described above was carried out shortly after the marking for the mark 397 

recapture experiment had finished. Specifically, the fly density experiment using a feces bait experiment 398 

was carried out 3 to 7 days after the last fly was marked in the mangabey group. During this fly density 399 

experiment using feces as a bait, 0% of flies (0/92) captured at 500m and 1000m from the group were 400 

marked. In contrast, 2.05% (11/534) of flies captured in the group on the same days were marked. On August 401 

1st, 2013, one marked fly was recaptured with the chimpanzee group that passed through the mangabey 402 

group’s territory and close to the mangabey group, 628m from where it was originally marked and nine days 403 

after having been marked in the mangabey group.  404 

 405 

(c) Fly species 406 

Our analysis suggested that the 96 flies for which good quality COI sequences were generated (poor quality 407 

sequences were generated for 7 flies) belonged to 14 putative species. Most flies were assigned to the family 408 

Muscidae (45.8%), Calliphoridae (35.4%) and Sarcophagidae (8.3%), while the remaining 10.4% of flies 409 

could not be assigned to a family based on BLAST results (Table 3). The BaTS analysis suggested that the 410 

type of attractant used to capture a fly was structured on the phylogeny (Table 4). While representatives of 411 

nearly all molecular operational taxonomic units (MOTUs) were captured using both feces and synthetic 412 

carcass baited traps, MOTU ratios measurably differed depending on the bait. For example, 60% of the flies 413 

attracted to feces belonged to MOTU 1 (family Muscidae); only 30% of the flies attracted to synthetic 414 

carcass bait belonged to the same MOTU. 415 

 416 

(d) Mammal DNA 417 

Sooty mangabey DNA was found in 40 of the 53 (tested) flies captured over feces, while only 7 of 45 418 

(tested) flies captured with a synthetic carcass baited trap contained mangabey DNA. As most of the flies 419 

that were captured over feces belonged to the family Muscidae, mammal positivity was also highest among 420 



 

this group and the BaTS analysis suggested that mammal positivity was structured on the fly phylogeny 421 

(Table 4). Duiker DNA was detected in three flies captured over mangabey feces the day after the mangabey 422 

group slept near a duiker carcass.  423 

 424 

(e) Pathogen screening 425 

Bcbva 426 

12 of the 98 flies tested in the mangabey group were positive in duplicate reactions for the Bcbva PA qPCR, 427 

with copy number estimates per µl ranging from 5.3 to 1228.0 (Table 1 and S5). Of these positive flies, 8 428 

tested positive in duplicate reactions for the CapB qPCR, with copy number estimates per µl ranging from 429 

6.5 to 1175.5. Seven of these positive flies were also positive in the Bcbva Island IV qPCR with copy 430 

numbers ranging from 3.38 to 1720.0. The highest Bcbva copy numbers were observed in flies captured in 431 

the mangabey group with feces on the day after they slept over a dead duiker carcass (Table S6). None of 432 

the flies positive for Bcbva DNA in all three assays contained mangabey DNA (Figure 5, Table S6) but 433 

several contained duiker DNA. Flies containing Bcbva DNA were captured with both bait types and all 434 

belonged to the family Calliphoridae (Figure 5, Table S6), though the BaTS analysis did not detect a pattern 435 

of Bcbva positivity on the fly phylogeny. This may be due to the small number of flies positive for Bcbva 436 

in all three assays. It was possible to culture Bcbva from the seven flies positive in the three assays and from 437 

the dead mangabey. 438 

 439 

In the dead mangabey Bcbva isolate 1903, we identified 62 variant sites (Table S7; details on sampling 440 

timeline: Figure 1D). The Bcbva isolate from fly 3465 only differed from the dead mangabey at a single 441 

one of these variant sites; all additional 7 variants identified in the Bcbva isolate from fly 3465 could not be 442 

confidently called in dead mangabey isolate but were present at lower coverage in this isolate (Table S8). 443 

Thus, these isolates were nearly identical, differing by only a single SNP. In contrast, all other flies were 444 

more different from the mangabey isolate; the Bcbva isolates from fly 3488, 3498, 3487, 3495, 3496, and 445 



 

3464 respectively differed at 8, 27, 31, 33, 34 and 37 of the mangabey isolate’s 62 variant sites. The 446 

mangabey isolate differed at 5 of the additional variants identified in the Bcbva isolate from fly 3488, while 447 

from flies 3498, 3487, 3495, 3496, and 3464 respectively the mangabey isolate 1903 differed at 9, 5, 13, 448 

13, and 5 of the additional variant sites, further highlighting the variability of these isolates (Table S8).  449 

   450 

Treponema pallidum 451 

Six of 98 (6.12%) flies tested in the mangabey group were positive with the PCR for a short fragment of the 452 

polA gene (Figure 5, Table S6), with sequences showing 100% identity to published Treponema pallidum 453 

strains. Only one of those six flies tested positive for a longer fragment of the cfpA gene. The low sensitivity 454 

of the cfpA assay may be responsible for the low positivity of this confirmatory test. Of these 6 flies 455 

containing Treponema pallidum DNA, 4 contained sooty mangabey DNA, including the fly positive in both 456 

Treponema pallidum assays (Figure 5, Table S6). Treponema pallidum positive flies were captured using 457 

both feces and synthetic carcass baited traps (Figure 5, Table S6) and a number of different fly MOTUs 458 

contained Treponema pallidum DNA. The BaTS analysis suggested there was no pattern of Treponema 459 

pallidum positivity on the fly phylogeny (Figure 5, Table 4), though this again may be due to the low number 460 

of flies containing this pathogen’s DNA. 461 

 462 

 463 

DISCUSSION 464 

 465 

Here we document a diverse fly community associated with a mangabey social group containing putative 466 

species belonging to fly genera that are reported to be opportunistically necrophagous, coprophagous, 467 

hematophagous, and/or myiatic. We found that these flies were at a higher density within the mangabey 468 

group than at different distances away from the group. We observed a similar pattern in two neighbouring 469 

chimpanzee communities, with significantly higher fly densities inside than outside groups. Further, flies 470 



 

marked in the mangabey group moved with the group for up to 12 days and for a straight-line distance of 471 

1.3km through the rain forest; mangabey groups do not move linearly through this environment, suggesting 472 

the actual distance moved by these flies is larger. If the process of marking flies impacted their survival and 473 

mobility, our estimates likely represent a further underestimation of the maximum duration and distance 474 

travelled by flies in these associations. The finding of mangabey DNA in most of the flies captured in the 475 

mangabey group is not surprising given that feces baited flies were observed coming into contact with feces 476 

prior to being captured, though many flies captured with the synthetic carcass baits also contained mangabey 477 

DNA. This suggests that some of the flies captured with the synthetic bait had come into contact to the 478 

mangabeys or their excrement. Flies captured using mangabey feces were less diverse than those captured 479 

with synthetic carcass baits, which supports the notion that some fly species prefer certain foods, though all 480 

fly MOTUs that were captured more than three times, were capture with both feces and synthetic carcass 481 

baits.   482 

 483 

Our results suggest that similar to synanthropic flies that increase human disease risk (Banjo et al., 2005; 484 

Förster et al., 2007; Graczyk et al., 2001; Greenberg, 1971), flies associating with NHP social groups have 485 

the potential to increase NHP disease risk. Flies captured in the mangabey group contained the DNA of two 486 

pathogens that infect wildlife in this ecosystem, Bcbva causing anthrax and likely TPE causing yaws, 487 

suggesting they may play a role in the ecology and persistence of these pathogens. Caution is warranted in 488 

the interpretation of the Treponema pallidum result, as the regions amplified by the assays for TPE used 489 

here are identical in the closely related Treponema paraluisleporidarum, as well as other pathogenic 490 

Treponema pallidum subspecies. To date, Treponema paraluisleporidarum has exclusively been described 491 

from rabbits and hares and no rabbits or hares have been detected in flies in this ecosystem, despite an 492 

extensive sampling of flies (unpublished data: CH, CSC, FHL; Hoffmann et al., 2017). Thus, rabbits and 493 

hares are unlikely to represent a source of treponemal bacteria found in these flies. The other Treponema 494 

pallidum subspecies described to date have not been found in wildlife species, though it is possible that 495 



 

other wildlife are infected with these or other treponemes that have not yet been described. The mangabey 496 

group in which the flies were captured was suffering from a continuous TPE outbreak, with ~16% of animals 497 

showing visible symptoms, which could represent a source of the treponemal DNA in the flies; further 498 

research is needed to definitively link the treponemes detected in flies with infections observed in these 499 

mangabeys. To this end, the development of sensitive PCRs allowing for a subspecies distinction of these 500 

treponemes will be extremely helpful, as would systems for culturing TPE (Edmondson et al., 2018). 501 

Laboratory infection studies with model organisms using flies carrying treponemes in the concentrations 502 

observed in the wild would ultimately be necessary for determining whether these flies can really lead to 503 

infection in another individual when flies come into contact with other animals, for example while feeding 504 

on open wounds (Kumm et al., 1936).  505 

 506 

The fact that we were able to culture Bcbva from these flies captured in the mangabey group, confirms they 507 

contain viable spores and could potentially be spreading Bcbva to the mangabeys and their surroundings. In 508 

fact, the highest concentration of Bcbva DNA (>1000 copies/ul of DNA), some of the highest copy numbers 509 

we have observed in flies in this forest (Hoffmann et al., 2017), were found in flies captured during the day 510 

after the mangabey group slept near a decaying duiker carcass, suggesting flies may move pathogens from 511 

carcasses into monkey groups. Indeed, it was possible to culture Bcbva from several of these flies captured 512 

on the day the mangabeys slept near a duiker carcass, and these flies both contained duiker DNA and their 513 

Bcbva isolates were nearly identical, suggesting they were exposed to Bcbva at a single carcass. A necropsy 514 

on a mangabey in the study group that died several days after sleeping near the decaying carcass confirmed 515 

that Bcbva was the likely cause of death, though comparisons of the Bcbva isolate from the dead mangabey 516 

with those obtained from flies captured in the week prior to the mangabey’s death, suggested these cases 517 

were not epidemiologically linked. The Bcbva isolate from one fly captured a week after the mangabey’s 518 

death had only a single variant compared to the dead mangabey isolate. It is not possible to know whether 519 

this fly picked up this Bcbva variant from the mangabey carcass itself, or whether the fly and mangabey 520 



 

both picked up that Bcbva variant from some other source.  521 

 522 

Flies in non-sylvatic ecosystems have been shown to mechanically spread spores from carcasses through 523 

the environment and contaminate plant surfaces, potentially increasing exposure of other animals 524 

(Blackburn et al., 2014; Fasanella et al., 2010). This is of particular concern if the flies follow a social group 525 

through the forest to feeding sites where they could contaminate food items (e.g. with their regurgitation or 526 

feces). While Bcbva was the likely cause of death for 11 of 23 mangabeys for which necropsies have been 527 

performed in TNP (Hoffmann et al., 2017), there was not a major mangabey die off while this study was 528 

carried out. With so many flies in the mangabey group carrying high concentrations of viable Bcbva, it is 529 

perhaps surprising that more mangabeys were not dying of anthrax. Laboratory studies using small animal 530 

models (e.g., Brézillon et al., 2015) are needed to confirm whether the amount of viable Bcbva spores or 531 

vegetative bacilli carried by flies are sufficient to cause mortality in a host directly (e.g., through 532 

consumption of flies by monkeys or apes or consumption of foods covered in fly vomit spots). Flies 533 

following monkeys might explain how arboreal monkey species are exposed to Bcbva spores in this 534 

ecosystem (Hoffmann et al., 2017). From the perspective of a carrion fly, moving pathogens from carcasses 535 

to living animals might increase a fly’s fitness by increasing the number of carcasses in the environment for 536 

itself or its offspring. This raises the interesting prospect that there could be selection for flies to be able to 537 

transmit pathogens efficiently from carcasses to animal groups.  538 

 539 

Further research is needed to assess whether these fly associations are found more broadly in different NHP 540 

species and in other ecosystems. It will be interesting to understand how these flies are able to track NHP 541 

and maintain their associations. Many hematophagous vectors (e.g., mosquitos) are attracted to their hosts 542 

via their carbon dioxide production (Gillies, 2009; Kellogg, 1970) and it will be interesting to test whether 543 

NHP-associated flies are using similar mechanisms. The finding of two chemosensory receptors that 544 

mediate carbon dioxide detection in Drosophila suggests the ability to detect and track carbon dioxide 545 



 

production could be present in other insects as well (Jones et al., 2007). However these flies are able to 546 

maintain such an association, the persistent fly community around a NHP social group could limit fly 547 

dispersion and movements between groups and species limiting pathogen transmission. Our data do not, 548 

however, support such a hypothesis; duiker DNA and Bcbva DNA was found in flies in this group, a fly 549 

marked in the mangabey group shifted to the chimpanzee group, and Bcbva DNA in flies captured outside 550 

a social group (Hoffmann et al., 2017) had similar Bcbva prevalence to that found inside the group in this 551 

study, all suggesting movement of flies into and out of association with particular primate groups. 552 

 553 

Synanthropic flies have also been suggested to serve as a vector between livestock and humans (Rosef et 554 

al., 1983). Determining whether NHP-associated flies can move out of the forest and into surrounding 555 

human populations is an important area of future research. We conducted a small-scale preliminary analysis 556 

of the mammalian and Bcbva DNA found in 45 flies captured in a village near Taï National Park. Though 557 

we did not detect any Bcbva, we did detect four wildlife species (Cephalophus sp., Praomys sp., 558 

Piliocolobus badius, and Thryonomys sp.) in these flies (Table S9); the mammal detection rate in the village 559 

was noticeably lower in these preliminary results than typical detection rates from flies captured in the forest 560 

(9% vs. 20-40%). While these results may suggest that flies do leave the forest, it is also possible that these 561 

flies were exposed to the larger mammal species’ DNA through contact with bushmeat in the villages; both 562 

duikers and colobines are hunted frequently in the region, and the two rodent species detected are often 563 

found in human habitats (with cane rats even being bred for food). Further research, such as a mark recapture 564 

experiment at the forest edge, is needed to conclusively determine whether flies move between human and 565 

wildlife populations. Such research will be particularly relevant as expanding human populations come into 566 

increasingly close contact with non-human primate populations and their associated flies. Increasing 567 

evidence suggests that human (Köndgen et al., 2008) and domestic animal pathogens (Dobson et al., 1996) 568 

can spill-over or spill-back into wildlife populations and cause major population declines. It will thus also 569 

be important to understand whether synanthropic flies can move pathogens from human and domestic 570 



 

animal populations into wildlife populations.  571 

 572 

The DNA found in flies has been shown to be a promising tool for monitoring biodiversity (Calvignac‐573 

Spencer et al., 2013; Lee et al., 2015; Schubert et al., 2015); where it is usually picked up by flies was not 574 

investigated until now. Since many flies captured in the mangabey group tested positive for mangabey DNA 575 

during a time when none of the habituated individuals had died, it is clear that flies were exposed to 576 

mangabey DNA through sources other than carcasses. For those flies captured on feces, the feces itself 577 

represents a likely source of mangabey DNA, but we also found mangabey DNA in flies captured with the 578 

synthetic carcass bait. As discussed above, the fly species present appeared to be attracted to both the 579 

synthetic carcass baits and feces, suggesting exposure to feces might be another source of exposure to 580 

mangabey DNA for flies captured using synthetic carcass baits, though landing on a host and direct contact 581 

with their fluids is possible as well. Considering that these mangabeys usually defecate several times a day 582 

and can live for at least a decade, the amount of fecal biomass generated by a mangabey far outweighs the 583 

weight of the carcass it leaves behind – given that flies feeding on feces contain enough mangabey DNA to 584 

be detected with our molecular tools, perhaps only a minor proportion of randomly caught flies that contain 585 

mammalian DNA acquired it from carcasses. Vertebrate fecal metabolites (urobilinoids) detected in adult 586 

blow fly guts represent a potential means to identify when mammalian DNA came from contact with feces, 587 

which might help future research differentiate the source of mammalian DNA found in flies (Owings et al., 588 

2018). Despite the potential rarity of carcass DNA in flies, our results certainly lend further support for such 589 

an approach for monitoring bacterial pathogens (Hoffmann et al., 2017; Knauf et al., 2016).  590 

 591 

The finding of these two bacterial pathogens in only 103 flies captured in this primate social group, suggests 592 

that flies represent a cost effective and comparatively safe tool for pathogen monitoring. Sampling cadavers 593 

or anesthetizing animals to detect pathogens in wildlife requires extensive training and resources and poses 594 



 

a risk to the animals. A number of other highly infectious pathogens circulate in these ecosystems (e.g., 595 

monkeypox virus; 79, Ebola virus; 80), making the collection of necropsy samples a dangerous task best 596 

left for trained experts; an untrained biologist attempting to collect necropsy samples in Taï National Park 597 

was infected with a new strain of Ebola virus (Le Guenno et al., 1995). Thus, sampling flies may prove a 598 

safe and useful tool for allowing a broader geographical and temporal screening to understand the 599 

distribution of these and other pathogens in wildlife populations. We encourage researchers to use caution 600 

while trapping flies (e.g., wearing gloves, disinfecting hands after work, disinfecting trapping materials 601 

regularly) to minimize the potential risk of pathogen exposure, with the additional by-product that this will 602 

help avoid contaminating flies with human DNA.  603 

 604 

Collectively, our results suggest that attraction of flies might represent a previously underappreciated cost 605 

to forming social groups. Further studies are needed to confirm whether variation in species social 606 

organization (solitary vs. group-forming) and behavior (terrestrial vs. arboreal, group sizes) influences fly 607 

density and whether such associations exist with other animals and in other ecosystems. The chimpanzees 608 

of Taï forest represent an ideal study system for this purpose: chimpanzee groups fission and fusion, which 609 

provides a natural experiment to examine how group sizes influence vector exposure, though our sample 610 

sizes were not yet sufficient to explore the impact of this variable on fly densities. In fact, it has been 611 

hypothesized that the fission-fusion behaviour of chimpanzees actually evolved to mitigate disease risk 612 

(Lehmann et al., 2007) and it will be interesting to examine whether smaller parties are indeed less exposed 613 

to potential arthropod vectors, including flies. It will also be interesting to assess whether such fly 614 

associations also exist in more mobile human hunter gatherer populations and whether aspects of hunter 615 

gatherer behaviour, such as the repeated moving of camps or the use of latrines, might also serve to reduce 616 

exposure to flies and ultimately disease risk. Finally, it will be exciting to explore whether mechanical 617 

vectors like the flies examined here are attracted to social groups more generally and have contributed to 618 

shaping the ecology and evolution of social mammals more broadly.  619 
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Figure 1: A) An adult mangabey in the study group with a severe Treponema pallidum pertenue infection 927 

showing extensive facial tissue destruction, including damage to bone and cartilage, and a poor general 928 

condition. B) Flies feeding on mangabey feces. C) A duiker carcass in TNP covered in flies and their larva. 929 

D) Schematic showing the timing of Bcbva isolate collection: the fly isolate with only 1 variant position 930 



 

with the dead mangabey isolate, which are thus either epidemiologically linked or stemmed from the same 931 

source, are highlighted in bold.   932 

  933 



 

 934 
Figure 2: The number of flies captured at traps set at different distances from the mangabey social group 935 

using: A) synthetic carcass baited traps and B) feces baited traps. The middle horizontal line represents the 936 

median while the rectangle shows the quartiles and the vertical line represents the 2.5 and 97.5% percentiles 937 

and each circle indicates the number of flies caught in a particular trap.  938 
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 940 

Figure 3: The number of flies captured with traps feces baited traps set within and 500m away from two 941 

neighboring chimpanzee communities. Lines connect paired traps set consecutively on the same day. The 942 

Y-axis is shown using a log scale.  943 
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 945 
 946 

 947 
 948 
Figure 4: Scatter plot of flies recaptured in the sooty mangabey group indicating the distance from the 949 

location where they were initially marked and the number of days that elapsed between marking and 950 

recapturing. The size of the points is proportional to the number of flies recaptured or marked. The marginal 951 

histograms indicate the distribution of the distances from the location where marked and the time that 952 

elapsed between when they were marked and recaptured, and do not include the initial flies marked. In the 953 

lower left corner of the plot, the number of flies originally marked in each colour is indicated with 954 

overlapping circles. 955 

  956 



 

Figure 5: A maximum likelihood phylogeny generated 957 

using the CO1 sequences from flies captured using either 958 

feces (filled black square) or synthetic carcass (white 959 

square) as an attractant. Branches that received less than 960 

0.95 Shimodaira–Hasegawa approximate likelihood ratio 961 

test (SH-like aLRT) support are indicated in grey. 962 

Numbers at the tips of the branches indicate the unique 963 

fly identification number. In total, 14 MOTU were 964 

identified with bPTP and each fly identification number 965 

is colored based on its MOTU. MOTUs were numbered 966 

from the most to the least abundant. Flies that contained 967 

mammal DNA are shown with a black circle, while those 968 

that contained Bcbva or Treponema pallidum DNA are 969 

indicated with a black triangle in the respective column.   970 
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Table 1: GLMM results for synthetic carcass baited traps and feces baited traps.  971 
 972 

Synthetic carcass baited traps 

Term Estimate SE 

Lower 

CL 

Upper 

CL Z-value P-value 

Intercept - Within group 2.996 1.443 0.114 5.909 (1) (1) 

500m from group -1.611 0.411 -2.464 -0.839 -3.920 <0.001 

1000m from group -1.880 0.419 -2.732 -1.0852 -4.486 <0.001 

ID of capturer: JFG 0.129 0.337 -0.510 0.780 0.382 0.703 

Hour trap was set 0.056 0.109 -0.164 0.276 0.510 0.610 

       
Feces baited traps       

Term Estimate SE 

Lower 

CL 

Upper 

CL Z-value P-value 

Intercept - Within group 3.307 1.067 1.117 5.709 (1) (1) 

500m from group -2.481 0.308 -3.104 -1.969 -8.056 <0.001 

1000m from group -2.337 0.304 -2.951 -1.829 -7.693 <0.001 

ID of capturer: JMT -0.0309 0.261 -0.581 0.471 -0.118 0.906 

Hour trap was set 0.0392 0.083 -0.144 0.213 0.470 0.638 
 973 
(1)Not shown because of not having a meaningful interpretation.  974 
 975 
  976 



 

Table 2: Summary of pathogen screening for flies captured in the mangabey group. 977 
 978 

 

Treponema pallidum   Bcbva 

% pos.  

(N pos. / N tested)  

% pos.  

(N pos. / N tested) 

Trap type 

polA  

seq.  

cfpA 

seq.   

PA 

qPCR 

CapB 

qPCR 

Island IV 

qPCR 

Pos. in all 

three assays 

Feces 
5.2% 33.3% 

 

8.6% 50.0% 42.9% 5.2% 

(3/58) (1/3) (5/58) (4/8) (3/7) (3/58) 

        

Synthetic 

carcass 

8.6% 0.0% 

 

15.6% 33.3% 41.7% 8.9% 

(3/45) (0/6) (7/45) (4/12) (5/12) 4/45) 

 979 
  980 



 

Table 3: Details regarding fly MOTUs.  981 

MOTU Tentative taxonomic assignment based on BLAST 

Number 

of flies 

MOTU 

support 

1 Calyptratae: Ostroidea: Muscidae 44 0.84 

2 Calyptratae: Ostroidea: Calliphoridae: Chrysomya 20 0.89 

3 Calyptratae: Ostroidea: Sarcophagidae: Sarcophaga 8 0.46 

4 

Calyptratae: Ostroidea: Calliphoridae: Chrysomya 

putoria 8 0.88 

5 Calyptratae 3 0.69 

6 Calyptratae: Ostroidea: Calliphoridae 3 0.88 

7 Calyptratae 2 0.98 

8 Calyptratae 2 0.71 

9 Calyptratae: Ostroidea 1 1.00 

10 Calyptratae 1 1.00 

11 Calyptratae 1 1.00 

12 Calyptratae: Ostroidea: Calliphoridae 1 1.00 

13 Calyptratae: Ostroidea: Calliphoridae 1 1.00 

14 Calyptratae: Ostroidea: Calliphoridae: Hemigymnochaeta 1 1.00 
  982 



 

Table 4: Results of Bayesian Tip-association Significance testing (BaTS) of bait type, and mammal, Treponema pallidum, or Bcbva detection 983 
on the fly phylogeny (Figure 5). Only flies for which data was available for each of the four parameters were included in this analysis (98 984 
flies).  985 
 986 
 987 

 988 
 989 
 990 
 991 
 992 
 993 
 994 
 995 
 996 
 997 
 998 
 999 
 1000 
 1001 
 1002 
 1003 
 1004 
 1005 
 1006 
 1007 
 1008 
 1009 
 1010 
 1011 
 1012 
 1013 
 1014 

AI - association index; PS - Fitch parsimony score; MC - monophyletic clade statistic indicating the maximum observed 1015 

exclusive single-state clade size.  1016 

Parameter Statistic 

Observed 

mean 

Lower 

95% CI 

Upper 

95% CI 

Null 

mean 

Lower 

95% CI 

Upper 

95% CI 

Significance 

(P-value) 

Bait type AI 3.67 2.92 4.38 5.32 4.62 6.06 <0.001 

 PS 17.62 16.00 18.00 30.70 28.07 33.22 <0.001 

 MC (feces) 7.67 4.00 13.00 3.83 3.16 5.74 0.020 

 MC (synthetic) 6.17 5.00 7.00 3.48 2.88 4.37 0.020 

         

Mammal 

detection 

AI 3.21 2.40 4.01 5.22 4.51 5.90 <0.001 

PS 18.10 16.00 19.00 30.47 27.83 32.86 <0.001 

 MC (yes) 7.00 4.00 12.00 3.91 3.12 5.87 0.030 

 MC (no) 8.03 8.00 8.00 3.63 2.92 5.87 0.020 

         

T. pallidum 

detection 

AI 0.93 0.55 1.27 1.08 0.91 1.25 0.110 

PS 4.98 5.00 5.00 4.94 4.80 5.00 1.000 

 MC (yes) 1.02 1.00 1.00 1.06 1.00 1.20 1.000 

 MC (no) 19.69 19.00 24.00 19.57 14.16 37.91 0.380 

         

Bcbva 
detection 

AI 0.92 0.43 1.37 1.09 0.80 1.26 0.150 

PS 4.69 4.00 5.00 4.92 4.71 5.00 1.000 

 MC (yes) 1.29 1.00 2.00 1.08 1.00 1.27 1.000 

  MC (no) 45.89 40.00 58.00 19.90 12.89 40.17 0.030 



 

SUPPLEMENTARY DATA 

 

Figure S1: A schematic detailing how the feces baited traps were set up.  

 

Table S1: Summary of shotgun sequencing of Bcbva isolates from flies and the dead mangabey.  

 

Table S2: The number of flies captured at each trapping event at different distances from the 

mangabey group using synthetic carcass baited traps.  

 

Table S3: The number of flies captured at each trapping event at different distances from the 

mangabey group using feces baited traps.  

 

Table S4: The number of flies captured at each trapping event with and outside the two neighboring 

chimpanzee communities using feces baited traps.  

 

Table S5: Full results from the mark recapture experiment.  

 

Table S6: Full results for pathogen screening of flies captured on feces and using synthetic baits 

along with results of mammal DNA detection in flies and fly species determination.  

 

Table S7: Variant positions confidently identified in the dead mangabey Bcbva isolate (1903) and 

whether or not they were shared with each of the 7 fly Bcbva isolates.  

 

Table S8: Variant positions confidently identified in the fly Bcbva isolates and whether or not they 

were shared with the dead mangabey isolate (1903).  

 

 



 

Table S9: Results of pathogen screening of flies captured on in villages near Taï National Park 

captured using synthetic baits, along with results of mammal DNA detected in flies and fly species 

determination.  

 

 

 

 


